Antimatter Free-Fall Experiments and Charge Asymmetry
Abstract
:1. Introduction
2. Charge Symmetry and Gravity
3. Charge Asymmetry and CPT Violation
4. Possible Implications on Charge Asymmetry of Antimatter
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Interatomic Interactions and Spin-Orbit Force
References and Note
- Lüders, G. On the Equivalence of Invariance under Time Reversal and under Particle–Antiparticle Conjugation for Relativistic Field Theories. Dan. Mat. Fys. Medd. 1954, 28N5, 1–17. [Google Scholar]
- Lüders, G. Proof of the TCP Theorem. Ann. Phys. 1957, 2, 1–15. [Google Scholar] [CrossRef]
- Hughes, R.J.; Deutch, B.I. Electric Charges of Positrons and Antiprotons. Phys. Rev. Lett. 1992, 69, 578–581. [Google Scholar] [CrossRef] [PubMed]
- Bressi, G.; Carugno, G.; Della Valle, F.; Galeazzi, G.; Ruoso, G.; Sartori, G. Testing the neutrality of matter by acoustic means in a spherical resonator. Phys. Rev. A 2011, 83, 052101. [Google Scholar] [CrossRef] [Green Version]
- Amole, C.; Ashkezari, M.D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C.; Charlton, M.; Eriksson, S.; Fajans, J.; et al. An experimental limit on the charge of antihydrogen. Nat. Commun. 2014, 5, 3955. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C.L.; Charlton, M.; Charman, A.E.; Eriksson, S.; et al. An improved limit on the charge of antihydrogen from stochastic acceleration. Nature 2016, 529, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Pollock, M.D. On the Dirac equation in curved space-time. Acta Phys. Pol. B 2010, 41, 1827–1845. [Google Scholar]
- Jentschura, U.D. Antimatter Gravity: Second Quantization and Lagrangian Formalism. Physics 2020, 2, 397–411. [Google Scholar] [CrossRef]
- Amole, C.; Ashkezari, M.D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C.; Charlton, M.; Eriksson, S.; Fajans, J.; et al. Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nat. Commun. 2013, 4, 1785–1792. [Google Scholar]
- Shapiro, I.S.; Estulin, I.V. Concerning the Electric Charge of the Neutron. J. Exp. Theor. Phys. 1956, 3, 626–628. [Google Scholar]
- Foot, R.; Joshi, G.C.; Lew, H.; Volkas, R.R. Charge Quantization in the Standard Model and Some of Its Extensions. Mod. Phys. Lett. A 1990, 5, 2721–2731. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Noble, J.H. Nonrelativistic Limit of the Dirac–Schwarzschild Hamiltonian: Gravitational Zitterbewegung and Gravitational Spin–Orbit Coupling. Phys. Rev. A 2013, 88, 022121. [Google Scholar] [CrossRef] [Green Version]
- Schiff, L.I.; Barnhill, M.V. Gravitation–Induced Electroc Field near a Metal. Phys. Rev. 1966, 151, 1067–1071. [Google Scholar] [CrossRef]
- Witteborn, F.C.; Fairbank, W.M. Experimental Comparison of the Gravitational Force on freely Falling Electrons and Metallic Electrons. Phys. Rev. Lett. 1967, 19, 1049–1052. [Google Scholar] [CrossRef]
- Witteborn, F.C.; Fairbank, W.M. Experiments to determine the Force of Gravity on Single Electrons and Positrons. Nature 1968, 220, 436–440. [Google Scholar] [CrossRef]
- Piccard, A.; Kessler, E. Determination du rapport des charges électrostatiques du proton et de 1’électron. Arch. Sci. Phys. Nat. 1925, 7, 340–342. [Google Scholar]
- The original passage in the article of Piccard and Kessler [16] reads as follows, in the French original: “A notre session de l’été dernier (Lucerne, 1924), M. Einstein a émis l’hypothèse de l’existence d’une petite différence entre ces deux charges, différence d’à peu près 0.1 unités électrostatiques pour un kg de protons, la charge du proton étant supérieure à la charge de l’électron.”.
- Stover, R.W.; Moran, T.I.; Trischka, J.W. Search for an Electron-Proton Charge Inequality by Charge Measurements on an Isolated Macroscopic Body. Phys. Rev. 1967, 164, 1599–1609. [Google Scholar] [CrossRef]
- King, J.G. Search for a Small Charge Carried by Molecules. Phys. Rev. Lett. 1960, 5, 562. [Google Scholar] [CrossRef]
- Dylla, H.F.; King, J.G. Neutrality of Molecules by a New Method. Phys. Rev. A 1972, 7, 1224–1229. [Google Scholar] [CrossRef]
- Sengupta, S. Binary pulsar PSR B1913q 16 constrains the electron-proton charge asymmetry. Phys. Lett. B 2000, 484, 275–277. [Google Scholar] [CrossRef]
- Caprini, C.; Ferreira, P.G. Constraints on the electrical charge asymmetry of the universe. J. Cosmol. Astropart. Phys. 2005, 2005, 006. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, J.; Ruderman, M.; Feinberg, G. Electromagnetic Properties of the Neutrino. Phys. Rev. 1963, 132, 1227–1233. [Google Scholar] [CrossRef]
- Barbiellini, G.; Cocconi, G. Electric charge of the neutrinos from SN1987A. Nature 1987, 329, 21–22. [Google Scholar] [CrossRef]
- Sivaram, C. Astrophysical Limits on the Neutrino Electric Charge. Prog. Theor. Phys. 1989, 82, 215. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.; Pai, P.B. Constraints on cosmic electric charge asymmetry and neutrino charge from the microwave background. Phys. Lett. B 1996, 365, 175–177. [Google Scholar] [CrossRef]
- Raffelt, G.G. Limits on neutrino electromagnetic properties—An update. Phys. Rep. 1999, 320, 319. [Google Scholar] [CrossRef]
- Werner, S.A.; Staudenmann, J.L.; Colella, R. Effect of Earth’s Rotation on the Quantum Mechanical Phase of the Neutron. Phys. Rev. Lett. 1979, 42, 1103–1106. [Google Scholar] [CrossRef]
- Peters, A.; Chung, K.Y.; Chu, S. Measurement of gravitational acceleration by dropping atoms. Nature 1999, 400, 849–852. [Google Scholar] [CrossRef]
- Sabulsky, D.O.; Dutta, I.; Hinds, E.A.; Elder, B.; Burrage, C.; Copeland, E.J. Experiment to Detect Dark Energy Forces Using Atom Interferometry. Phys. Rev. Lett. 2019, 123, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, P.J. Solutions of the Maxwell equations and photon wave functions. Ann. Phys. 2010, 325, 607–663. [Google Scholar] [CrossRef] [Green Version]
- Jentschura, U.D.; Nandori, I.; Trocsanyi, Z. CPT–Violation, Gauge Theories and Quantum Fields; submitted.
- Hughes, V.W. An experimental limit on the charge of antihydrogen. Phys. Rev. 1957, 105, 170–172. [Google Scholar] [CrossRef]
- Lyttleton, R.A.; Bondi, H. On the physical consequences of a general excess of charge. Proc. R. Soc. Lond. Ser. A 1959, 252, 313–332. [Google Scholar]
- Baker, J.C.; Grainge, K.; Hobson, M.P.; Jones, M.E.; Kneissl, R.; Lasenby, A.N.; O’Sullivan, C.M.M.; Pooley, G.; Rocha, G.; Saunders, R.; et al. Detection of cosmic microwave background structure in a second field with the Cosmic Anisotropy Telescope. Mon. Not. R. Astron. Soc. 1999, 308, 1173–1178. [Google Scholar] [CrossRef] [Green Version]
- Planck-Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef] [Green Version]
- Bjorken, J.D.; Drell, S.D. Relativistic Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Cockcroft, J.D.; Walton, E.T.S. Experiments with High Velocity Positive Ions. (I) Further Developments in the Method of Obtaining High Velocity Positive Ions. Proc. R. Soc. Lond. Ser. A 1932, 136, 619–630. [Google Scholar]
- Cockcroft, J.D.; Walton, E.T.S. Experiments with High Velocity Positive Ions. II. The Disintegration of Elements by High Velocity Protons. Proc. R. Soc. Lond. Ser. A 1932, 137, 229–242. [Google Scholar]
- Weiner, M.M. Analysis of Cockcroft-Walton Voltage Multipliers with an Arbitrary Number of Stages. Rev. Sci. Instr. 1969, 40, 330–333. [Google Scholar] [CrossRef]
- Ma, Z.W.; Su, X.D.; Lu, X.L.; Wei, Z.; Wang, J.R.; Huang, Z.W.; Miao, T.Y.; Su, T.L.; Yao, Z.E. 250 kV 6 mA compact Cockcroft-Walton high-voltage power supply. Rev. Sci. Instr. 2016, 87, 085117. [Google Scholar] [CrossRef]
- Winger, J.A.; Ilyushkin, S.V.; Rykaczewski, K.P.; Gross, C.J.; Batchelder, J.C.; Goodin, C.; Grzywacz, R.; Hamilton, J.H.; Korgul, A.; Królas, W.; et al. Large–Delayed Neutron Emission Probabilities in the 78Ni Region. Phys. Rev. Lett. 2009, 102, 142502. [Google Scholar] [CrossRef]
- Gross, C.J.; Rykaczewski, K.P.; Stracener, D.W.; Wolinska-Cichocka, M.; Varner, R.L.; Miller, D.; Jost, C.U.; Karny, M.; Korgul, A.; Liu, S.; et al. Measuring the absolute decay probability of 82Sr by ion implantation. Phys. Rev. C 2012, 85, 024319. [Google Scholar] [CrossRef] [Green Version]
- Paschen, F. Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Ann. Phys. 1889, 273, 69–96. [Google Scholar] [CrossRef]
- Kołos, W. Long-range interaction between 1S and 2S or 2p hydrogen atoms. Int. J. Quantum Chem. 1967, 1, 169–186. [Google Scholar] [CrossRef]
- Deal, W.J.; Young, R.H. Long–Range Dispersion Interactions Involving Excited Atoms; the H(1s)—H(2s) Interaction. Int. J. Quantum Chem. 1973, 7, 877–892. [Google Scholar] [CrossRef]
- Adhikari, C.M.; Debierre, V.; Matveev, A.; Kolachevsky, N.; Jentschura, U.D. Long-range interactions of hydrogen atoms in excited states. I. 2S–1S interactions and Dirac–δ perturbations. Phys. Rev. A 2017, 95, 022703. [Google Scholar] [CrossRef] [Green Version]
- Casimir, H.B.G.; Polder, D. The Influence of Radiation on the London-van-der-Waals Forces. Phys. Rev. 1948, 73, 360–372. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Debierre, V.; Adhikari, C.M.; Matveev, A.; Kolachevsky, N. Long-range interactions of excited hydrogen atoms. II. Hyperfine-resolved 2S–2S system. Phys. Rev. A 2017, 95, 022704. [Google Scholar] [CrossRef] [Green Version]
- Jentschura, U.D.; Adhikari, C.M.; Dawes, R.; Matveev, A.; Kolachevsky, N. Pressure Shifts in High–Precision Hydrogen Spectroscopy: I. Long–Range Atom–Atom and Atom–Molecule Interactions. J. Phys. B 2019, 52, 075005. [Google Scholar] [CrossRef]
- Matveev, A.; Kolachevsky, N.; Adhikari, C.M.; Jentschura, U.D. Pressure Shifts in High–Precision Hydrogen Spectroscopy: II. Impact Approximation and Monte–Carlo Simulations. J. Phys. B 2019, 52, 075006. [Google Scholar] [CrossRef]
- Craig, D.P.; Thirunamachandran, T. Molecular Quantum Electrodynamics; Dover Publications: Mineola, NY, USA, 1984. [Google Scholar]
- Nowack, K.C.; Koppens, F.H.L.; Nazarov, Y.V.; Vandersypen, L.M.K. Coherent Control of a Single Electron Spin with Electric Fields. Science 2007, 318, 1430–1433. [Google Scholar] [CrossRef] [Green Version]
- Hirohata, A.; Yamada, K.; Nakatani, Y.; Prejbeanu, I.L.; Diény, B.; Pirro, P.; Hillebrands, B. Review on spintronics: Principles and device applications. J. Magn. Magn. Mater. 2020, 509, 166711. [Google Scholar] [CrossRef]
- Itzykson, C.; Zuber, J.B. Quantum Field Theory; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Bethe, H.A.; Salpeter, E.E. Quantum Mechanics of One- and Two-Electron Atoms; Springer: Berlin, Germany, 1957. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jentschura, U.D. Antimatter Free-Fall Experiments and Charge Asymmetry. Symmetry 2021, 13, 1192. https://doi.org/10.3390/sym13071192
Jentschura UD. Antimatter Free-Fall Experiments and Charge Asymmetry. Symmetry. 2021; 13(7):1192. https://doi.org/10.3390/sym13071192
Chicago/Turabian StyleJentschura, Ulrich David. 2021. "Antimatter Free-Fall Experiments and Charge Asymmetry" Symmetry 13, no. 7: 1192. https://doi.org/10.3390/sym13071192
APA StyleJentschura, U. D. (2021). Antimatter Free-Fall Experiments and Charge Asymmetry. Symmetry, 13(7), 1192. https://doi.org/10.3390/sym13071192