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Abstract: Currently, in nonlinear optics, models associated with various types of the nonlinear
Schrödinger equation (scalar (NLS), vector (VNLS), derivative (DNLS)), as well as with higher and
mixed equations from the corresponding hierarchies are usually studied. Typical tools for solving
the problem of propagation of optical nonlinear waves are the forward and inverse nonlinear Fourier
transforms. One of the methods for reconstructing a periodic nonlinear signal is based on the use
of spectral data in the form of spectral curves. In this paper, we study the properties of the spectral
curves for all the derivatives NLS equations simultaneously. For all the main DNLS equations
(DNLSI, DNLSII, DNLSIII), we have obtained unified Lax pairs, unified hierarchies of evolutionary
and stationary equations, as well as unified equations of spectral curves of multiphase solutions. It
is shown that stationary and evolutionary equations have symmetries, the presence of which leads
to the existence of holomorphic involutions on spectral curves. Because of this symmetry, spectral
curves of genus g are covers over other curves of genus M and N = g−M, where M is a number of
phase of solutions. We also showed that the number of the genus g of the spectral curve is related
to the number of phases M of the solution of one of the two formulas: g = 2M or g = 2M + 1. The
third section provides examples of the simplest solutions.

Keywords: spectral curve; derivative NLS equation; Kaup-Newell equation; Chen-Lee-Liu equation;
Gerdjikov-Ivanov equation

1. Introduction

The main tools for the study of nonlinear optical signals are the forward and inverse
nonlinear Fourier transforms [1–5], and the main models of nonlinear optics are the scalar,
vector, and derived nonlinear Schrödinger equations, as well as their higher forms from
the corresponding hierarchies. A key feature of these equations is the fact that they are
integrable nonlinear evolutionary differential equations. Integrable nonlinear equations can
usually be obtained as conditions for the compatibility of two linear differential equations,
called a Lax pair.

The first equation of the Lax pair for the scalar and vector Schrödinger equations has
the form

iΨx + UΨ = 0, (1)

where
U = Q(x)− λJ, (2)

J is some constant diagonal matrix with zero trace, λ is a spectral parameter. In particular,
these matrices are equal to:

J =
(

1 0
0 −1

)
, Q(x) =

(
0 p(x)

−q(x) 0

)
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in the case of the scalar nonlinear Schrödinger equation and the equations from the
Ablowitz-Kaup-Newell-Sigur hierarchy (AKNS) [6], and

J =
1
3

2 0 0
0 −1 0
0 0 −1

, Q(x) =

 0 p1(x) p2(x)
−q1(x) 0 0
−q2(x) 0 0

.

in the case of a two-dimensional vector nonlinear Schrödinger equation (Manakov system) [7].
Since spectral curves are used to reconstruct a periodic nonlinear signal (see, for

example, [8,9]), it is important to know the properties of these curves for each integrable
model. More than 30 years ago, Dubrovin B.A. showed [10] that the matrix Q(x) is a matrix
potential associated with a spectral curve of finite genus if there exists a monodromy matrix

M(x, λ) =
n

∑
j=0

mj(x)λj (3)

such that the functions Ψ and
Ψ̂ = M(x, λ)Ψ (4)

is simultaneously the solution of the Equation (1) (see also [8]). In this case, the equation of
the spectral curve associated with this matrix Q(x) has the form

det(νI −M) = R(ν, λ) = 0, (5)

where I is the unit matrix. Thus, to find the equation of the spectral curve associated with
the matrix Q, one must find the monodromy matrix M. Note that all the coefficients of the
Equation (5) are integrals.

Substituting the function Ψ̂ (4) in Equation (1) we obtain

iΨ̂x + UΨ̂ = 0 ⇒ i(MΨ)x + UMΨ = 0 ⇒
iMxΨ + iMΨx + UMΨ = 0.

Since the matrix-function Ψ is solution of the Equation (1), we have

iMxΨ−MUΨ + UMΨ = 0 or (iMx + UM−MU)Ψ = 0.

Therefore the matrix M satisfies the equation

iMx + UM−MU = 0. (6)

Substituting the sum (3) into the Equation (6) and equating the matrices for all powers
of the spectral parameter λ, we obtain the following matrix structure M

M = Vn +
n−1

∑
k=1

ckVn−k + cnU + Jn,

where Jn is a constant matrix, Tr(Jn) = 0,

V1 = λU + V0
1 , Vk+1 = λVk + V0

k+1, k ≥ 1.

Also, the Equation (6) implies recurrent relations between the elements of the matrices
V0

k . In addition, assuming λ = 0 in the Equation (6), we can obtain a hierarchy of corre-
sponding stationary equations that are satisfied by multiphase finite-gap solutions and
their degeneracies.

Choosing the second equation of the Lax pair in the form

iΨtk + VkΨ = 0, (7)
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from the condition of compatibility of the Equations (1) and (7) we obtain an integrable
evolutionary nonlinear equation from the corresponding hierarchy. That is, using the
structure of the monodromy matrix, we can construct the corresponding hierarchy of
integrable nonlinear equations. For the Manakov system and the Kulish-Sklyanin model,
this program was implemented in [11,12].

The first Lax pair equation for DNLS equations differs from the above equations in
that the matrix U has a quadratic dependence on the spectral parameter. Therefore, the
monodromy matrix M(x, λ) has a different structure and a different relationship to the Vk
matrices (see, for example, [13]).

Let us note that three forms of the DNLS equations are most often considered:

1. DNLSI or Kaup-Newell equation [13–21]

ipt + pxx + i(|p|2 p)x = 0, (8)

2. DNLSII or Chen-Lee-Liu equation [16–19,21,22]

ipt + pxx + i|p|2 px = 0, (9)

3. DNLSIII or Gerdjikov-Ivanov equation [16–19,21,23,24]

ipt + pxx − ip2 p∗x +
1
2
|p|4 p = 0, (10)

which are special cases of the generalized DNLS equation [25–28]. Let us note that there
are also gauge transformations that transform these equations into each other and preserve
the magnitude of the solution (see, for example, [16,21,29–31]).

Each of these nonlinear equations corresponds to its own matrix U. In particular, this
matrix is equal to

U = λ2
(

1 0
0 −1

)
+ iλ

(
0 p
q 0

)
for DNLSI equation,

U = (λ2 + pq/4)
(

1 0
0 −1

)
+ iλ

(
0 p
q 0

)
for DNLSII equation, and

U = (λ2 + pq/2)
(

1 0
0 −1

)
+ iλ

(
0 p
q 0

)
for DNLSIII eqaution.

It is easy to see that the U matrices discussed above can be written using a
single formula

U = (λ2 + spq)
(

1 0
0 −1

)
+ iλ

(
0 p
q 0

)
. (11)

where s = 0 for DNLSI, s = 1/4 for DNLSII, and s = 1/2 for DNLSIII.
In present paper, using the matrix (11), we apply the Dubrovin’s method to construct

a hierarchy of the DNLS equations and analyze the properties of multiphase solutions
of this hierarchy. The Section 1 of the paper is devoted to finding the structure of the
monodromy matrix and the recurrent relations between its elements. Also in the Section 1,
the second Lax pair operators are proposed for constructing a hierarchy of generalized
DNLS equations. In Section 2, the equations of spectral curves are considered and stationary
equations are derived. A significant difference from the case of the scalar NLS equation
is the difference between the genus of the spectral curve and the number of phases of
the solution. Also in the Section 2, we show that the equations of spectral curves are
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invariant under the involution λ → −λ. The Section 3 provides examples of null-phase
and one-phase solutions of the coupled DNLS equations.

2. Generalized DNLS Equation

Let us consider the equation
Ψx = UΨ, (12)

where

U = (−iλ2 − ispq)J + λQ, J =
(

1 0
0 −1

)
, Q =

(
0 p
q 0

)
,

p and q are functions, s is a constant.
Following [13], we take the monodromy matrix as a sum

M(λ, x) =
2n

∑
j=0

Mj(x)λj, Mj(x) =
(

aj(x) bj(x)
cj(x) −aj(x)

)
. (13)

It follows from the Equation (12) that the monodromy matrix M satisfies the equation
(see, for example, Equations (4) and (6))

∂x M−UM + MU = 0. (14)

Substituting the sum (13) in Equation (14) we have that the matrix M(λ, x) has a form

M(λ, x) = a0 J +
2n

∑
j=1

ajWj(λ, x), (15)

where ak are some constants,

W1 = λJ + iQ, W2k = λW2k−1, W2k+1 = λW2k + λW0
2k−1 + W0

2k, (16)

W0
2k−1 =

(
Fk(p, q) 0

0 −Fk(p, q)

)
, W0

2k =

(
0 Hk(p, q)

Gk(p, q) 0

)
. (17)

From the Equation (14) also follows the following relations on the elements of the
matrices W0

m

H1 = ipF1 − isp2q− 1
2

px,

G1 = iqF1 − ispq2 +
1
2

qx,

(Fk)x = pGk − qHk,

Hk+1 = ipFk+1 − spqHk +
i
2
(Hk)x,

Gk+1 = iqFk+1 − spqGk −
i
2
(Gk)x.

(18)
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In particular,

F1(p, q) =
1
2

pq,

H1(p, q) = − 1
2

px +
i
2
(1− 2s)p2q,

G1(p, q) =
1
2

qx +
i
2
(1− 2s)pq2,

F2(p, q) =
1
8
(3− 8s)p2q2 − i

4
(pqx − qpx),

H2(p, q) =
i
8
(3− 12s + 8s2)p3q2 +

3
4
(2s− 1)pqpx +

s
2

p2qx −
i
4

pxx,

G2(p, q) =
i
8
(3− 12s + 8s2)p2q3 − 3

4
(2s− 1)pqqx −

s
2

q2 px −
i
4

qxx,

F3(p, q) =
1

16
(5− 24s + 24s2)p3q3 +

1
8

pxqx +
3i
8
(2s− 1)pq(pqx − qpx)

− 1
8
(pqxx + qpxx),

H3(p, q) =
i

16
(5− 30s + 48s2 − 16s3)p4q3 − 3

16
(5− 20s + 16s2)p2q2 px

+
3
4
(1− 2s)sp3qqx +

3i
8
(2s− 1)qp2

x +
i
4
(5s− 1)ppxqx

+
i
8
(2s− 1)p2qxx +

i
2
(2s− 1)pqpxx +

1
8

pxxx,

G3(p, q) =
i

16
(5− 30s + 48s2 − 16s3)p3q4 +

3
16

(5− 20s + 16s2)p2q2qx

+
3
4
(2s− 1)spq3 px +

3i
8
(2s− 1)pq2

x +
i
4
(5s− 1)qpxqx

+
i
8
(2s− 1)q2 pxx +

i
2
(2s− 1)pqqxx −

1
8

qxxx.

From the Equations (16) and (17) the following equalities follow

W2k+2 = λ2kW2 +
k

∑
j=1

(
λ2Fk λHk
λGk −λ2Fk

)
λ2k−2j,

and
U = −i

(
W2 + 2sW0

1

)
. (19)

Taking the matrix Vk in the form

Vk = −2ki
(

W2k+2 + 2sW0
2k+1

)
, (20)

let us define the second equation of the Lax pair

Ψtk = VkΨ. (21)

From the conditions of compatibility

∂tk U − ∂xVk + UVk −VkU = 0
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of the Equations (12) and (21) the following evolutionary nonlinear equations follow

∂tk p = −2ki(Hk)x + 2k+1spqHk − 2k+2ispFk+1

= −2k+1(Hk+1 + i(2s− 1)pFk+1),

∂tk q = −2ki(Gk)x − 2k+1spqGk + 2k+2isqFk+1

= 2k+1(Gk+1 + i(2s− 1)qFk+1).

(22)

The first coupled equation from this hierarchy has the form

ipt1 + pxx + 2i(2s− 1)pqpx + i(4s− 1)p2qx + (4s− 1)sp3q2 = 0,

−iqt1 + qxx − 2i(2s− 1)pqqx − i(4s− 1)q2 px + (4s− 1)sp2q3 = 0.
(23)

We believe that the Equation (23) is the most natural form of the generalized DNLS
equation, since substituting q = −p∗ and the appropriate s into it, one can get one of
the Equations (8)–(10). It is not difficult to see that the Equation (23) implies three main
coupled DNLS equations.

1. The coupled DNLSI for s = 0

ipt1 + pxx − i(p2q)x = 0,

−iqt1 + qxx + i(q2 p)x = 0.

2. The coupled DNLSII for s = 1/4

ipt1 + pxx − ipqpx = 0,

−iqt1 + qxx + ipqqx = 0.

3. The coupled DNLSIII for s = 1/2

ipt1 + pxx + ip2qx +
1
2

p3q2 = 0,

−iqt1 + qxx − iq2 px +
1
2

p2q3 = 0.

Note that from the Equations (18) and (22), it follows that for any value of s, the equality

∂tk F1 = 2k∂xFk+1

holds and, therefore, there exists a function ϕ such that Fk+1 = 2−k∂tk ϕ (x ≡ t0). Let us note
that similar equalities hold in the case of other integrable equations (see, for example, [11]).

3. Spectral Curves of the Multiphase Solutions

Substituting (13) into (14) and simplifying, we get

(M0)x = ispq[M0, J],

(M1)x = ispq[M1, J]− [M0, Q],

(Mj)x = ispq[Mj, J]− [Mj−1, Q] + [Mj−2, J], j = 2, . . . , 2n,

(24)
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where [A, B] = AB− BA,

M0 = a0 J + ia1Q +
n−1

∑
k=1

a2k+1W0
2k,

Mj = aj J + iaj+1Q +
2n−j−1

∑
k=1

ak+j+1W0
k , j = 1, . . . , 2n− 2,

M2n−1 = a2n−1 J + ia2nQ, M2n = a2n J.

(25)

For j = 0 from (24) and (25) the following stationary equations follow

a1(ipx − 2sp2q) +
n−1

∑
k=1

a2k+1((Hk)x + 2ispqHk) = 0,

a1(iqx + 2spq2) +
n−1

∑
k=1

a2k+1((Gk)x − 2ispqGk) = 0.

(26)

These equations are satisfied by multiphase solutions of the evolutionary nonlinear
Equation (22). As in the case of the Kaup-Newell hierarchy [13], the multiphase solutions
must also satisfy the second set of stationary equations (obtained from (24) and (25) for
j = 1)

2a0 p + a2(ipx − 2sp2q) +
n−1

∑
k=1

a2k+2((Hk)x + 2ispqHk) = 0,

2a0 − a2(iqx + 2spq2)−
n−1

∑
k=1

a2k+2((Gk)x − 2ispqGk) = 0.

(27)

Since the equation of the spectral curve of the multiphase solution has the form

R(ν, λ) = det(νI −M) = 0,

where I is the unit matrix, and since TrM = 0, in this case the spectral curve is given by
the equation

ν2 = −det M = a2
2nλ4n +

4n

∑
k=1

fk(p, q)λ4n−k for a2n 6= 0, (28)

and

ν2 = −det M = a2
2n−1λ4n−2 +

4n−2

∑
k=1

fk(p, q)λ4n−2−k for a2n = 0, (29)

where fk(p, q) are integrals of the evolutionary nonlinear Equation (22). Since the
curves (28) and (29) are hyperelliptic, their genus is g = 2n− 1 and g = 2n− 2, respectively.

It follows from Equation (18) that the functions Fk, Gk and Hk have the
following symmetries

Fk(−p,−q) ≡ Fk(p, q),

Gk(−p,−q) ≡ −Gk(p, q),

Hk(−p,−q) ≡ −Hk(p, q).

Therefore, the stationary and evolutionary equations are invariant with respect to the
involution τ1 : (p, q)→ (−p,−q).

Since the matrices Wk (17) have the symmetry τ2 : (λ, p, q) → (−λ,−p,−q), the
monodromy matrix M also has this symmetry. Due to the fact that the equation of the
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spectral curve of multiphase solutions is invariant with respect to two involutions τ1 and
τ2 simultaneously, it has the following symmetry

R(ν,−λ) ≡ R(ν, λ).

Therefore all coefficients f2k−1 (k ∈ N) are equal to zero.

4. Examples
4.1. Case g = 0

If g = 0, then n = 1, a2 = 0 and a1 = 1. Therefore, a matrix M has a form

M(λ, x) = a0 J + W1 =

(
λ + a0 ip

iq −λ− a0

)
. (30)

It follows from the Equation (30) that the spectral curve is given by the equation

ν2 = (λ + a0)
2 − pq.

Therefore, the product pq is a constant, pq = p0q0.
From the Equation (14) for N = 0, the following stationary equations follow

a0 p = 0, a0q = 0,

ipx − 2sp2q = 0, iqx + 2spq2 = 0.

Solving these equations for pq = p0q0, we have: a0 = 0,

p = p0eiKx, q = q0e−iKx, K = −2sp0q0.

Substituting these expressions in Equation (23), we obtain the solution of Equation (23)
in the form of a plane wave

p = p0eiKx+iκt1 , q = q0e−iKx−iκt1 , K = −2sp0q0, κ = −3s(p0q0)
2. (31)

Since a0 = 0 and pq = p0q0, the equation of the spectral curve of this solution has
the form

ν2 = λ2 − p0q0.

4.2. Case g = 1

If g = 1, then n = 1 and a2 = 1. Therefore, a matrix M has a form

M(λ, x) = a0 J + a1W1 + W2. (32)

From the Equation (14) for g = 1, the following stationary equations follow

a1(ipx − 2sp2q) = 0, a1(iqx + 2spq2) = 0,

2a0 p + (ipx − 2sp2q) = 0, 2a0q− (iqx + 2spq2) = 0.
(33)

From the Equation (33) it follows that if a1 6= 0, then a0 = 0 and the solution of the
Equation (23) has the form of a plane wave (31). Therefore, we assume that a1 = 0 and
a0 6= 0.

Calculating the equation of the spectral curve, we get

ν2 = (λ2 + a0)
2 − λ2 pq.
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Since the coefficients of this equation are constant values, the equation pq = p0q0 also
holds in this case. Solving the Equation (33) for a1 = 0, pq = p0q0, we have

p = p0eiKx, q = q0e−iKx, K = 2(a0 − sp0q0).

Substituting these expressions in the Equation (23), we get the solution of the Equation (23)
in the form of a plane wave

p = p0eiKx+iκt1 , q = q0e−iKx−iκt1 , K = 2(a0 − sp0q0),

κ = −4a2
0 + 2(4s + 1)a0 p0q0 − 3s(p0q0)

2.
(34)

It is easy to see that the solution (31) is a special case of the solution (34) for a0 = 0.
This example illustrates the fact that the genus g = 1 of the spectral curve in the case

of DNLS equations does not coincide with the number of phases (m = 0).

4.3. Case g = 2
4.3.1. General Formulas

Let us assume g = 2, n = 2, a4 = 0, a3 = 1. Then the matrix M has the form

M(λ, x) = a0 J + a1W1 + a2W2 + W3. (35)

From the Equation (14) for g = 2, the following stationary equations follow

2a0 p + a2

(
ipx − 2sp2q

)
= 0,

2a0q− a2

(
iqx + 2spq2

)
= 0,

a1

(
ipx − 2sp2q

)
+ (2s− 1)sp3q2 + i(1− 3s)pqpx +

i
2
(1− 2s)p2qx −

1
2

pxx = 0,

a1

(
iqx + 2spq2

)
− (2s− 1)sp2q3 + i(1− 3s)pqqx +

i
2
(1− 2s)q2 px +

1
2

qxx = 0.

(36)

For a2 6= 0, the condition of compatibility of the Equation (36) implies the constancy
of the product pq. Therefore, we will assume that a2 = a0 = 0.

Calculating the equation of the spectral curve, we get

ν2 = λ6 + 2a1λ4 + f4λ2 + f6,

where the integrals fk equal to

f4 = a2
1 − a1 pq +

1
4
(8s− 3)p2q2 +

i
2
(pqx − qpx),

f6 = −1
4

pq(2a1 + (1− 2s)pq)2 +
i
4
(2a1 + (1− 2s)pq)(pqx − qpx)−

1
4

pxqx.
(37)

From the Equations (36) and (37) it follows that the function u(x) = pq satisfies
the equation

uxx = −1
2

u3 − 3a1u2 + (2 f4 − 6a2
1)u− 4(a3

1 − a1 f4 + 2 f6) (38)

or
(ux)

2 = −1
4

u4 − 2a1u3 + (2 f4 − 6a2
1)u

2 − 8(a3
1 − a1 f4 + 2 f6)u + c1, (39)
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where c1 is the integration constant. It follows from the Equation (39) that u(x) is an elliptic
function or its degeneracy.

From (37) it is not difficult to find the Wronskian of the functions p and q

W[p, q] =
i
2
(8s− 3)u2 − 2ia1u + 2i(a2

1 − f4).

Knowing the Wronskian of functions and their product, it is not difficult to find the
functions themselves

p(x) =
√

u exp
{
−1

2

∫ Wdx
u

}
=
√

u exp

{
−i
∫ (8s− 3

4
u− a1 −

f4 − a2
1

u

)
dx

}
,

q(x) =
√

u exp
{

1
2

∫ Wdx
u

}
=
√

u exp

{
i
∫ (8s− 3

4
u− a1 −

f4 − a2
1

u

)
dx

}
.

(40)

Substituting (40) in (36), (37) and simplifying with the relations (38), (39), we get the
value of c1:

c1 = −4(a2
1 − f4)

2.

It is not difficult to check that the corresponding onee-phase solution of the Equation (23)
has the form

p(x, t1) =
√

u(X) exp

{
−i
∫ (8s− 3

4
u(X)− a1 −

f4 − a2
1

u(X)

)
dx + iKt1

}
,

q(x, t1) =
√

u(X) exp

{
i
∫ (8s− 3

4
u(X)− a1 −

f4 − a2
1

u(X)

)
dx− iKt1

}
,

(41)

where X = x− 2a1t1, K = 4s f4 − 2(2s + 1)a2
1.

In this case, a spectral curve of the genus g = 2 corresponds to the one-phase solution
with the phase X.

4.3.2. Quasi-Rational Travelling Wave

Let us consider a degenerate spectral curve, which is given by the equation

ν2 =
(

λ2 + a2
)3

, a ∈ R. (42)

In this case
a1 =

3
2

a2, f4 = 3a4, f6 = a6, c1 = −9
4

a8.

For these parameter values, the function u(x) satisfies the equation

(ux)
2 = −1

4
(u + a2)3(u + 9a2).

Solving this equation, we get

u = − a2(4a4x2 + 9)
4a4x2 + 1

.
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It follows from Equation (41) that the corresponding solution has the form

p(x, t1) = ia

√
4a4(x− 3a2t1)

2 + 9
4a4(x− 3a2t1)2 + 1

eiφ1(x,t1)+i(8s−3)φ2(x,t1)+2isa2x−3isa4t1 ,

q(x, t1) = ia

√
4a4(x− 3a2t1)

2 + 9
4a4(x− 3a2t1)2 + 1

e−iφ1(x,t1)+−i(8s−3)φ2(x,t1)−2isa2x−3isa4t1 ,

(43)

where
φ1(x, t1) = arctan

(
2a2(x− 3a2t1)/3

)
,

φ2(x, t1) = arctan
(

2a2(x− 3a2t1)
)

.

It follows from the identity

ei arctan(A) = cos(arctan(A)) + i sin(arctan(A)) =
1 + iA√
A2 + 1

(44)

that the solution (43) of the Equation (23) can be written by the following equalities

p(x, t1) =
ia(3 + 2ia2(x− 3a2t1))(1 + 2ia2(x− 3a2t1))

8s−3

(4a4(x− 3a2t1)2 + 1)4s−1 e2isa2x−3isa4t1 ,

q(x, t1) =
ia(3− 2ia2(x− 3a2t1))(1− 2ia2(x− 3a2t1))

8s−3

(4a4(x− 3a2t1)2 + 1)4s−1 e−2isa2x+3isa4t1 .
(45)

For 4s ∈ Z the solution (45) is a quasi-rational travelling wave. It is easy to see that
the solution (45) satisfies the condition q = −p∗. Figure 1 shows the magnitude of the
solution (45) for a = 1.

Figure 1. A magnitude |p| of the travelling wave (45) for a = 1.

4.4. Case g = 3
4.4.1. General Formulas

Let us assume g = 3, n = 2, a4 = 1. Then the matrix M has the form

M(λ, x) = a0 J + a1W1 + a2W2 + a3W3 + W4. (46)
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From the Equations (26) and (27) it follows that to construct new solutions, ones
should put a1 = a3 = 0.The stationary equations in this case have the form

2a0 p + a2

(
ipx − 2sp2q

)
+ (2s− 1)sp3q2 + i(1− 3s)pqpx +

i
2
(1− 2s)p2qx −

1
2

pxx = 0,

− 2a0q + a2

(
iqx + 2spq2

)
− (2s− 1)sp2q3 + i(1− 3s)pqqx +

i
2
(1− 2s)q2 px +

1
2

qxx = 0.

(47)

Calculating the equation of the spectral curve, we get

ν2 = λ8 + 2a2λ6 + f4λ4 + f6λ2 + a2
0,

where the integrals fk equal to

f4 = 2a0 + a2
2 − a2 pq +

1
4
(8s− 3)p2q2 +

i
2
(pqx − qpx),

f6 = a0(2a2 + pq)− 1
4

pq(2a2 + (1− 2s)pq)2

+
i
4
(2a2 + (1− 2s)pq)(pqx − qpx)−

1
4

pxqx.

(48)

From the Equations (47) and (48) it follows that the function u(x) = pq satisfies
the equation

uxx = − 1
2

u3 − 3a2u2 + 2( f4 − 3a2
2 + 6a0)u

− 4(a3
2 − 2a0a2 − a2 f4 + 2 f6)

(49)

or
(ux)

2 = − 1
4

u4 − 2a2u3 + 2( f4 − 3a2
2 + 6a0)u2

− 8(a3
2 − 2a0a2 − a2 f4 + 2 f6)u + c1,

(50)

where c1 is the integration constant. It follows from the Equation (50) that u(x) is an elliptic
function or its degeneracy.

From (48) we find the Wronskian of the functions p and q

W[p, q] =
i
2
(8s− 3)u2 − 2ia2u + 2i(2a0 + a2

2 − f4).

Knowing the Wronskian of functions and their product, it is not difficult to find the
functions themselves

p(x) =
√

u exp

{
−i
∫ (8s− 3

4
u− a2 −

f4 − a2
2 − 2a0

u

)
dx

}
,

q(x) =
√

u exp

{
i
∫ (8s− 3

4
u− a2 −

f4 − a2
2 − 2a0

u

)
dx

}
.

(51)

Substituting (51) in (47), (48) and simplifying with the relations (49), (50), we get the
value of c1:

c1 = −4(2a0 + a2
2 − f4)

2.
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It is not difficult to check that the corresponding one-phase solution of the Equation (23)
has the form

p(x, t1) =
√

u(X) exp

{
−i
∫ (8s− 3

4
u(X)− a2 −

f4 − a2
2 − 2a0

u(X)

)
dx + iKt1

}
,

q(x, t1) =
√

u(X) exp

{
i
∫ (8s− 3

4
u(X)− a2 −

f4 − a2
2 − 2a0

u(X)

)
dx− iKt1

}
,

(52)

where X = x− 2a2t1, K = 4s f4 − 2(2s + 1)a2
2 − 4(2s− 1)a0.

In this case, a spectral curve of the genus g = 3 corresponds to the one-phase solution
with phase X.

4.4.2. Soliton Solution

Let us consider a degenerate spectral curve, which is given by the equation

ν2 =
(
(λ2 + a)2 + b2

)2
, a, b ∈ R. (53)

In this case

a0 = a2 + b2, a2 = 2a, f4 = 2(3a2 + b2), f6 = 4a(a2 + b2), c1 = 0.

For these parameter values, the function u(x) satisfies the equation

(ux)
2 =

1
4
(64b2 − 16au− u2)u2.

Therefore,

x =
∫ 2du

u
√

64b2 − 16au− u2
.

Calculating the integral and expressing the function u(x) from it, we get

u(x) =
8b2

√
a2 + b2 cosh(4bx) + a

. (54)

Thus, the one-phase solution of the Equation (23) constructed from the spectral
curve (53) has the form

p(x, t1) =
2
√

2bεe−i(8s−3)φ(x,t1)+2iax+4i(b2−a2)t1√√
a2 + b2 cosh(4bx− 16abt1) + a

,

q(x, t1) =
2
√

2bei(8s−3)φ(x,t1)−2iax−4i(b2−a2)t1

ε
√√

a2 + b2 cosh(4bx− 16abt1) + a
,

where

φ(x, t1) = arctan

(√
a2 + b2 − a

b
tanh(2bx− 8abt1)

)
.
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It follows from the identity (44) that this solution of the Equation (23) is defined by
the following equalities

p(x, t1) =
2
√

2bε(b cosh X− ic sinh X)3−8se2iax+4i(b2−a2)t1

c(3−8s)/2
(√

a2 + b2 cosh 2X + a
)2−4s ,

q(x, t1) =
2
√

2b(b cosh X + ic sinh X)3−8se−2iax−4i(b2−a2)t1

εc(3−8s)/2
(√

a2 + b2 cosh 2X + a
)2−4s ,

(55)

where X = 2bx − 8abt1, c =
√

a2 + b2 − a. For |ε| = 1, the solution (55) satisfies the
condition q(x, t1) = p∗(x, t1). Figure 2 shows the magnitude of the soliton (55) for a = 4,
b = 3, ε = 1.

Figure 2. A magnitude |p| of the soliton (55) for a = 4, b = 3.

Changing the sign before the square root in the expression (54), we get

u(x) =
−8b2

√
a2 + b2 cosh(4bx)− a

and

p(x, t1) =
2
√

2ibε(b cosh X + ic1 sinh X)3−8se2iax+4i(b2−a2)t1

c(3−8s)/2
1

(√
a2 + b2 cosh 2X− a

)2−4s ,

q(x, t1) =
2
√

2ib(b cosh X− ic1 sinh X)3−8se−2iax−4i(b2−a2)t1

εc(3−8s)/2
1

(√
a2 + b2 cosh 2X− a

)2−4s ,

(56)

where X = 2bx − 8abt1, c1 =
√

a2 + b2 + a. For |ε| = 1 the solution (56) satisfies the
condition q(x, t1) = −p∗(x, t1). Figure 3 shows the magnitude of the soliton (56) for a = 4,
b = 3, ε = 1.
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Figure 3. A magnitude |p| of the soliton (56) for a = 4, b = 3.

Let us note that solutions (55) and (56) correspond to the same spectral curve (53).

4.4.3. One-Phase Periodic Solution

Let a degenerate spectral curve be given by the equation

ν2 =
(
(λ2 + a)2 − b2

)2
, a > b > 0. (57)

This equation can be obtained from (53) by replacing b → ib. It is not difficult to
check that the corresponding solutions of the DNLS equations can also be obtained using
this substitution:

u(x) =
−8b2

√
a2 − b2 cos(4bx) + a

, (58)

and

p(x, t1) =
2
√

2ibε(b cos X + ic2 sin X)3−8se2iax−4i(b2+a2)t1

c(3−8s)/2
2

(√
a2 − b2 cos 2X + a

)2−4s ,

q(x, t1) =
2
√

2ib(b cos X− ic2 sin X)3−8se−2iax+4i(b2+a2)t1

εc(3−8s)/2
2

(√
a2 − b2 cos 2X + a

)2−4s ,

(59)

where X = 2bx − 8abt1, c2 = a −
√

a2 − b2. For |ε| = 1 the solution (59) satisfies the
equation q(x, t1) = −p∗(x, t1). Figure 4 shows the magnitude of the one-phase periodic
solution (59) for a = 4, b = 3, ε = 1.

By changing the parameter a→ −a in the curve Equation (57):

ν2 =
(
(λ2 − a)2 − b2

)2
, a > b > 0, (60)

we get the following equalities

u(x) =
8b2

√
a2 − b2 cos(4bx) + a

, (61)
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and

p(x, t1) =
2
√

2bε(b cos X− ic2 sin X)3−8se2iax−4i(b2+a2)t1

c(3−8s)/2
2

(√
a2 − b2 cos 2X + a

)2−4s ,

q(x, t1) =
2
√

2b(b cos X + ic2 sin X)3−8se−2iax+4i(b2+a2)t1

εc(3−8s)/2
2

(√
a2 − b2 cos 2X + a

)2−4s ,

(62)

where X = 2bx − 8abt1, c2 = a −
√

a2 − b2. For |ε| = 1 the solution (59) satisfies the
condition q(x, t1) = p∗(x, t1).It is not difficult to see that the solutions (59) and (62) have
the same magnitude.

Figure 4. A magnitude |p| of the one-phase periodic solutions (59), (62) for a = 4, b = 3.

5. Concluding Remark

As a result of the analysis of the examples, we can make the conjecture.
Let us write the equation of the spectral curve of a M-phase solution in the follow-

ing form
Γg : ν2 = Pg+1(λ

2), (63)

where Pk(µ) is a polynomial of µ of degree k. Then the genus g of the spectral curve (63)
is equal: g = 2M for even g and g = 2M + 1 for odd g. Therefore the spectral curve of a
M-phase solution of the derived NLS equation is a covering of the algebraic cuve of the
genus M:

ΓM : ν2 = Pg+1(µ). (64)

Hence, it seems that finite-gap solutions should be constructed not according to curve
Γg (63), but according to curve ΓM (64).

It is well known that the presence of symmetry λ → −λ of the hyperelliptic curve
Γg (63) leads to the fact that it is a cover over two other curves: ΓM (64) and

ΓN : ν2 = µPg+1(µ), (65)

where N = g−M is a genus of the curve (65). In the future, we plan to investigate the
roles of curves ΓM and ΓN in the process of constructing finite-gap multiphase solutions.
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