Engine Vibration Data Increases Prognosis Accuracy on Emission Loads: A Novel Statistical Regressions Algorithm Approach for Vibration Analysis in Time Domain
Abstract
:1. Introduction
2. Methodology and Data Description
2.1. Exhausted Emission Parameters
2.2. Type of Fuel
2.3. Experimental Engine
2.4. The Engine Testing System
2.5. Vibrations and Sound Measurment System
2.6. Methodology of Statistical Analysis
3. Results
3.1. Fuel Properties
3.2. Vibration and Sound Pressure of the Engine
3.3. Descriptive Statistics of Exhausted Emission Parameters
3.4. Step 1: Significant Vibro-Acoustic Parameters in Time Domain
3.5. Step 2: ANCOVA Model for Engine Exhausted Emission Parameters
- -
- for fuel mass flow, CO, CO2, NOx, THC, COSick, O2, mass flow of the air, and texhaust
- -
- for tair, and tfuel
3.6. Step 3: Prediction Model Accuracy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
LHV | Lower Heating Value (MJ/kg) |
n | Rotational speed of the crankshaft (rpm) |
texhaust | Exhaaust gas temperature (°C) |
tair | Intake air temperature (°C) |
tfuel | Fuel temperature (°C) |
Abbreviations
ATDC | After Top Dead Centre |
ANCOVA | Analysis of covariance |
ANN | Artificial neural network |
ANOVA | Analysis of variance |
ARF | Air-fuel ratio |
AVL | Anstalt für Verbrennungskraftmaschinen List |
ASTM | American Society for Testing and Materials |
BTDC | Before Top Dead Centre |
CAD | Crank Angle Degree |
CCLD | Signal Conditioners and Amplifiers |
Ce(CH3CO2)3·H2O | Cerium (III) acetate hydrate |
CFPP | Cold Filter Plugging Point |
CO | Carbon monoxide |
CO Sick | Carbon monoxide measured by SICK Maihak S-710 |
CO2 | Carbon dioxide |
D100 | 100% conventional diesel fuel |
DIN | Deutsches Institut für Normung |
DTiCuN100 | Diesel + 50 ppm TiO2 + 50 ppm Cu(NO3)2 |
DTiCeA100 | Diesel + 50 ppm TiO2 + 50 ppm Ce(CH3CO2)3·H2O |
EGR | Exhaust Gas Recirculation |
EN | European Standards |
HHO | Hydroxy gas |
HVO | Hydrotreated Vegetable Oil |
HVO30 | 30% HVO and 70% D100 |
HVO50 | 50% HVO and 50% D100 |
IC | Internal combustion |
ISO | International Organization for Standardization |
PC | Personal computer |
THC | Total Hydrocarbons |
NOx | Nitrogen oxides |
O2 | Oxygen |
LONG | Longitudinal |
LRM | Linear regression model |
MAPE | Mean absolute percentage error |
SD | Standart deviation |
SME | Soybean oil methyl ester |
SME30 | 30% SME and 70% D100 |
SME50 | 50% SME and 50% D100 |
SP | Sound pressure |
TiO2 | Titanium (IV) dioxide |
TRAV | Traverse |
WCO | Waste cooking oil |
Appendix A
References
- Ecology in Transport: Problems and Solutions; Sładkowski, A. (Ed.) Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2020; Volume 124, ISBN 978-3-030-42322-3. [Google Scholar]
- Haasz, T.; Gómez Vilchez, J.J.; Kunze, R.; Deane, P.; Fraboulet, D.; Fahl, U.; Mulholland, E. Perspectives on decarbonizing the transport sector in the EU-28. Energy Strategy Rev. 2018, 20, 124–132. [Google Scholar] [CrossRef]
- Fuc, P.; Lijewski, P.; Kurczewski, P.; Ziolkowski, A.; Dobrzynski, M. The analysis of fuel consumption and exhaust emissions from forklifts fueled by diesel fuel and liquefied petroleum gas (LPG) obtained under real driving conditions. In Proceedings of the Asme International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017. [Google Scholar]
- Arthanarisamy, M.; Alagumalai, A.; Natarajan, N. Biodiesel as an Alternative Transportation Fuel in Diesel Engines An in-Depth Study on Biodiesel Performance; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2016; ISBN 978-3-330-01535-7. [Google Scholar]
- Saravanan, P.; Kumar, N.M.; Ettappan, M.; Dhanagopal, R.; Vishnupriyan, J. Effect of exhaust gas re-circulation on performance, emission and combustion characteristics of ethanol-fueled diesel engine. Case Stud. Therm. Eng. 2020, 20, 100643. [Google Scholar] [CrossRef]
- EL-Seesy, A.I.; Kayatas, Z.; Takayama, R.; He, Z.; Kandasamy, S.; Kosaka, H. Combustion and emission characteristics of RCEM and common rail diesel engine working with diesel fuel and ethanol/hydrous ethanol injected in the intake and exhaust port: Assessment and comparison. Energy Convers. Manag. 2020, 205, 112453. [Google Scholar] [CrossRef]
- Zöldy, M. Ethanol–biodiesel–diesel blends as a diesel extender option on compression ignition engines. Transport 2011, 26, 303–309. [Google Scholar] [CrossRef]
- Jamrozik, A.; Tutak, W.; Pyrc, M.; Gruca, M.; Kočiško, M. Study on co-combustion of diesel fuel with oxygenated alcohols in a compression ignition dual-fuel engine. Fuel 2018, 221, 329–345. [Google Scholar] [CrossRef]
- Mirhashemi, F.S.; Sadrnia, H. NOX emissions of compression ignition engines fueled with various biodiesel blends: A review. J. Energy Inst. 2020, 93, 129–151. [Google Scholar] [CrossRef]
- Sevinc, H.; Hazar, H. Investigation of performance and exhaust emissions of a chromium oxide coated diesel engine fueled with dibutyl maleate mixtures by experimental and ANN technique. Fuel 2020, 278, 118338. [Google Scholar] [CrossRef]
- Raghuvaran, S.; Ashok, B.; Veluchamy, B.; Ganesh, N. Evaluation of performance and exhaust emission of C.I diesel engine fuel with palm oil biodiesel using an artificial neural network. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Banković-Ilić, I.B.; Stojković, I.J.; Stamenković, O.S.; Veljkovic, V.B.; Hung, Y.-T. Waste animal fats as feedstocks for biodiesel production. Renew. Sustain. Energy Rev. 2014, 32, 238–254. [Google Scholar] [CrossRef] [Green Version]
- Rimkus, A.; Matijošius, J.; Manoj Rayapureddy, S. Research of Energy and Ecological Indicators of a Compression Ignition Engine Fuelled with Diesel, Biodiesel (RME-Based) and Isopropanol Fuel Blends. Energies 2020, 13, 2398. [Google Scholar] [CrossRef]
- Aatola, H.; Larmi, M.; Sarjovaara, T.; Mikkonen, S. Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Int. J. Engines 2008, 1, 1251–1262. [Google Scholar] [CrossRef] [Green Version]
- Zöldy, M. Fuel Properties of Butanol—Hydrogenated Vegetable Oil Blends as a Diesel Extender Option for Internal Combustion Engines. Period. Polytech. Chem. Eng. 2019, 64, 205–212. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Seljak, T.; Vihar, R.; Žvar Baškovič, U.; Dimaratos, A.; Bezergianni, S.; Samaras, Z.; Katrašnik, T. Improving PM-NOx trade-off with paraffinic fuels: A study towards diesel engine optimization with HVO. Fuel 2020, 265, 116921. [Google Scholar] [CrossRef]
- Dobrzyńska, E.; Szewczyńska, M.; Pośniak, M.; Szczotka, A.; Puchałka, B.; Woodburn, J. Exhaust emissions from diesel engines fueled by different blends with the addition of nanomodifiers and hydrotreated vegetable oil HVO. Environ. Pollut. 2020, 259, 113772. [Google Scholar] [CrossRef] [PubMed]
- Hunicz, J.; Matijošius, J.; Rimkus, A.; Kilikevičius, A.; Kordos, P.; Mikulski, M. Efficient hydrotreated vegetable oil combustion under partially premixed conditions with heavy exhaust gas recirculation. Fuel 2020, 268, 117350. [Google Scholar] [CrossRef]
- Romig, C.; Spataru, A. Emissions and engine performance from blends of soya and canola methyl esters with ARB #2 diesel in a DDC 6V92TA MUI engine. Bioresour. Technol. 1996, 56, 25–34. [Google Scholar] [CrossRef]
- San José Alonso, J.; López Sastre, J.A.; Romero-Ávila, C.; López, E. A note on the combustion of blends of diesel and soya, sunflower and rapeseed vegetable oils in a light boiler. Biomass Bioenergy 2008, 32, 880–886. [Google Scholar] [CrossRef] [Green Version]
- Omar, F.K.; Selim, M.Y.E.; Emam, S.A. Time and frequency analyses of dual-fuel engine block vibration. Fuel 2017, 203, 884–893. [Google Scholar] [CrossRef]
- Yaşar, A.; Keskin, A.; Yıldızhan, Ş.; Uludamar, E. Emission and vibration analysis of diesel engine fuelled diesel fuel containing metallic based nanoparticles. Fuel 2019, 239, 1224–1230. [Google Scholar] [CrossRef]
- Çalık, A. Determination of vibration characteristics of a compression ignition engine operated by hydrogen enriched diesel and biodiesel fuels. Fuel 2018, 230, 355–358. [Google Scholar] [CrossRef]
- Nag, S.; Sharma, P.; Gupta, A.; Dhar, A. Combustion, vibration and noise analysis of hydrogen-diesel dual fuelled engine. Fuel 2019, 241, 488–494. [Google Scholar] [CrossRef]
- Ong, Z.C.; Mohd Mishani, M.B.; Chong, W.T.; Soon, R.S.; Ong, H.C.; Ismail, Z. Identification of optimum Calophyllum inophyllum bio-fuel blend in diesel engine using advanced vibration analysis technique. Renew. Energy 2017, 109, 295–304. [Google Scholar] [CrossRef]
- Uludamar, E.; Tosun, E.; Tüccar, G.; Yıldızhan, Ş.; Çalık, A.; Yıldırım, S.; Serin, H.; Özcanlı, M. Evaluation of vibration characteristics of a hydroxyl (HHO) gas generator installed diesel engine fuelled with different diesel–biodiesel blends. Int. J. Hydrog. Energy 2017, 42, 23352–23360. [Google Scholar] [CrossRef]
- Uludamar, E.; Tosun, E.; Aydın, K. Experimental and regression analysis of noise and vibration of a compression ignition engine fuelled with various biodiesels. Fuel 2016, 177, 326–333. [Google Scholar] [CrossRef]
- Taghizadeh-Alisaraei, A.; Ghobadian, B.; Tavakoli-Hashjin, T.; Mohtasebi, S.S. Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends. Fuel 2012, 102, 414–422. [Google Scholar] [CrossRef]
- Çelebi, K.; Uludamar, E.; Tosun, E.; Yıldızhan, Ş.; Aydın, K.; Özcanlı, M. Experimental and artificial neural network approach of noise and vibration characteristic of an unmodified diesel engine fuelled with conventional diesel, and biodiesel blends with natural gas addition. Fuel 2017, 197, 159–173. [Google Scholar] [CrossRef]
- Çay, Y.; Korkmaz, I.; Çiçek, A.; Kara, F. Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network. Energy 2013, 50, 177–186. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Taghizadeh-Alisaraei, A.; Ghobadian, B.; Abbaszadeh-Mayvan, A. Artificial neural network modeling of performance, emission, and vibration of a CI engine using alumina nano-catalyst added to diesel-biodiesel blends. Renew. Energy 2020, 149, 951–961. [Google Scholar] [CrossRef]
- Koder, A.; Schwanzer, P.; Zacherl, F.; Rabl, H.-P.; Mayer, W.; Gruber, G.; Dotzer, T. Combustion and emission characteristics of a 2.2L common-rail diesel engine fueled with jatropha oil, soybean oil, and diesel fuel at various EGR-rates. Fuel 2018, 228, 23–29. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Liu, H.; Wu, Y.; Zaman, M.; Geng, Z.; Jin, C.; Zheng, Z.; Yue, Z.; Yao, M. Effect of soybean oil/PODE/ethanol blends on combustion and emissions on a heavy-duty diesel engine. Fuel 2021, 288, 119625. [Google Scholar] [CrossRef]
- Rimkus, A.; Žaglinskis, J.; Rapalis, P.; Skačkauskas, P. Research on the combustion, energy and emission parameters of diesel fuel and a biomass-to-liquid (BTL) fuel blend in a compression-ignition engine. Energy Convers. Manag. 2015, 106, 1109–1117. [Google Scholar] [CrossRef]
- Rimkus, A.; Stravinskas, S.; Matijošius, J. Comparative Study on the Energetic and Ecologic Parameters of Dual Fuels (Diesel–NG and HVO–Biogas) and Conventional Diesel Fuel in a CI Engine. Appl. Sci. 2020, 10, 359. [Google Scholar] [CrossRef] [Green Version]
Equipment/Device | Description Accuracy | Measurement Range |
---|---|---|
Fuel consumption AVL-7131-12 | δ = ±0.23% | 0–100 kg/h; |
Exhaust gas-analyzer system HORIBA MEXA-8120 F | ||
THC analyzer: FIA-22 (HORIBA) | ±4.35% (δI,s) | form 0–10, up to 0–5000 ppm |
NO/NOx analyzer: CLA-53 | ±4.42% (δI,s) | form 0–10, up to 0–5000 ppm |
CO analyzer: URAS 10E | <5% (δI,s) | 0–200 and 0–1000 ppm |
CO2 analyzer: URAS 10E | <5% (δI,s) | 0–10 v/v% |
O2 analyzer: SICK Maihak: S-710 | <5% (δI,s) | 0–5 and 0–25 v/v% |
CO analyzer: SICK Maihak: S-710 | <5% (δI,s) | 0–5 and 0–50 v/v% |
Piezo transducer Kistler KIAG 6005 | Linearity ≤ ±0.8 (% FSO) | 0–500 bar |
Charge amplifier Kistler 5018A 1000 | δpi < 0.01% | ≥±100 pC FS (max./typ.)% < ±1/ < ±0.5 ± 10 … ± 999,000 pC |
Crank angle speed encoder HENGSTLER RI 32-0/1024.ER.14 ka | 1024 pulses/round | max. 6000 rmp |
DeltaOHM HD2101.1 | ±0.1 °C; 0.1% RH% | −50 … + 250 °C 0 … 100% RH |
Properties | Device | Method | Accuracy | Fuel | ||
---|---|---|---|---|---|---|
Diesel 100 | HVO100 | SME100 | ||||
Gross heating value, MJ/kg | IKA C 5000 calorimeter | DIN 51900-2 | 130 J/g | 46.60 | 47.19 | 39.81 |
Lower heating value LHV, MJ/kg | 42.86 | 43.63 | 37.29 | |||
CFPP, °C | FPP 5 Gs analyzer | EN 116 | 1 °C | −37 | −44 | −4 |
Pour point, °C | CPP 5 Gs analyzer | ISO 3016 | 3 °C | −42 | −50 | −6 |
Dynamic viscosity, 40 °C, mPa × s | Anton Paar SVM 3000/G2 Stabinger Viscometer | ASTM D7042 | 0.1% | 1.745 | 2.198 | 3.657 |
Kinematic viscosity, 40 °C, mm2/s | 0.1% | 2.159 | 2.876 | 4.211 | ||
Density at 40 °C, g/mL | 0.0002 g/cm3 | 0.809 | 0.767 | 0.868 | ||
Dynamic viscosity, 15 °C, mPa × s | 2.975 | 4.014 | 6.742 | |||
Kinematic viscosity, 15 °C, mm2/s | 3.602 | 5.151 | 7.606 | |||
Density at 15 °C, g/mL | 0.826 | 0.781 | 0.887 | |||
Oxidative stability, min | PetroOXY analyzer | EN 16091 | 0.1% | 48.56 | 120 | 18.45 |
Water content acc. CF, % | Aquamax KF Coulometric analyzer | ISO 12937 | 0.0003% | 0.0028 | 0.0021 | 0.0922 |
Lubricity, μm/60 °C | WSD | ISO 12156 | 63 μm | 404 | 302 | 183 |
Flash point, °C | FP93 5G2 Pensky-Martens analyzer | ISO 2719 | 0.03 °C | 67.8 | 87 | 90 |
Elemental composition, % wt | Combustion of samples in a catalytic tube, separation of combustion gases, determination of components with a thermal conductivity detector | H | 13.5 | 15.3 | 11.12 | |
C | 86.5 | 84.7 | 78.08 | |||
O | 0 | 0 | 10.80 | |||
Cetane number | PetroSpec analyzer TD-PPA-I | ASTM D613 | 0.05% | 51 | 72 | 52 |
Parameter | Unit | |
---|---|---|
Number of cylinders | 3 in line | - |
Displacement | 2.9 | dm3 |
Bore | 104 | mm |
Stroke | 115 | mm |
Compression ratio | 17:1 | - |
Rated power | 24 | kW |
Speed | 1500 | rpm |
Parameter Expression | Parameter Expression |
---|---|
Fuel mass flow [kg/h] Mean (SD) | CO [ppm] Mean (SD) | CO2 [V%] Mean (SD) | NOx [ppm] Mean (SD) | THC [ppm] Mean (SD) | COSick [V%] Mean (SD) | |
---|---|---|---|---|---|---|
Total | 3.2 (1.29) | 488 (324.1) | 4.5 (1.95) | 1000 (495) | 120 (37.6) | 0.07 (0.027) |
Engine Power | ||||||
4 kW | 1.9 (0.07) | 297 (55.5) | 2.4 (0.10) | 285 (106.8) | 103 (19.0) | 0.05 (0.011) |
8 kW | 2.5 (0.09) | 296 (43.7) | 3.4 (0.09) | 422 (155.1) | 105 (19.0) | 0.05 (0.012) |
12 kW | 3.3 (0.43) | 260 (50.7) | 4.6 (0.51) | 678 (279.5) | 107 (27.2) | 0.05 (0.012) |
20 kW | 5.0 (0.21) | 955 (98.3) | 7.2 (0.15) | 1110 (369.9) | 158 (26.6) | 0.09 (0.021) |
Type of Fuel | ||||||
D100 | 3.1 (1.19) | 361 (233.4) | 4.5 (1.94) | 606 (419.6) | 102 (29.3) | 0.07 (0.020) |
HVO30 | 3.0 (1.14) | 413 (295.3) | 4.3 (1.86) | 605 (386.6) | 118 (20.1) | 0.08 (0.020) |
HVO50 | 3.1 (1.18) | 421 (316.3) | 4.3 (1.85) | 578 (377.1) | 105 (32.4) | 0.07 (0.021) |
SME30 | 3.5 (1.30) | 487 (313.2) | 4.6 (1.88) | 711 (434.7) | 128 (35.5) | 0.05 (0.014) |
SME50 | 3.3 (1.28) | 514 (292.7) | 4.4 (1.83) | 645 (412.0) | 139 (30.9) | 0.05 (0.013) |
Injection Timing at 12 kW | ||||||
5 CAD BTDC | 3.2 (1.24) | 440 (250.0) | 4.4 (1.87) | 352 (194.5) | 128 (27.9) | 0.06 (0.017) |
7.5 CAD BTDC | 3.2 (1.22) | 439 (285.6) | 4.4 (1.86) | 436 (247.4) | 124 (26.4) | 0.06 (0.019) |
10 CAD BTDC | 3.2 (1.22) | 429 (313.0) | 4.4 (1.86) | 545 (290.2) | 111 (28.4) | 0.06 (0.022) |
12.5 CAD BTDC | 3.2 (1.23) | 423 (311.3) | 4.4 (1.88) | 645 (341.7) | 112 (34.7) | 0.06 (0.023) |
15 CAD BTDC | 3.2 (1.25) | 431 (308.7) | 4.4 (1.89) | 806 (411.2) | 116 (39.2) | 0.06 (0.025) |
17.5 CAD BTDC | 3.2 (1.29) | 488 (324.1) | 4.5 (1.95) | 1000 (495.0) | 120 (37.6) | 0.07 (0.027) |
O2 [V%] Mean (SD) | tair [°C] Mean (SD) | Air mass flow [kg/h] Mean (SD) | tfuel [°C] Mean (SD) | texhaust [°C] Mean (SD) | ||
Total | 14.3 (2.95) | 21.6 (1.94) | 133.1 (1.53) | 27.9 (2.43) | 301 (107.0) | |
Engine Power | ||||||
4 kW | 17.4 (0.17) | 20.8 (1.83) | 134.4 (0.94) | 27.6 (2.66) | 198 (8.3) | |
8 kW | 16.0 (0.14) | 20.9 (2.02) | 134.5 (1.03) | 27.5 (2.19) | 247 (9.6) | |
12 kW | 14.2 (0.76) | 21.8 (2.04) | 133.7 (1.18) | 28.2 (2.52) | 311 (32.7) | |
20 kW | 10.1 (0.26) | 22.6 (2.49) | 132.1 (1.21) | 28.6 (3.27) | 464 (10.1) | |
Type of Fuel | ||||||
D100 | 14.2 (2.92) | 23.6 (1.27) | 132.9 (1.01) | 31.7 (0.56) | 306 (103.3) | |
HVO30 | 14.5 (2.82) | 20.1 (1.99) | 134.6 (1.53) | 25.4 (1.57) | 297 (100.8) | |
HVO50 | 14.5 (2.85) | 19.0 (0.79) | 134.7 (0.63) | 25.3 (1.55) | 300 (100.7) | |
SME30 | 14.1 (2.83) | 22.7 (1.54) | 132.6 (1.34) | 29.1 (1.19) | 328 (108.3) | |
SME50 | 14.6 (2.70) | 22.5 (0.97) | 133.3 (1.17) | 28.6 (0.85) | 301 (104.5) | |
Injection Timing | ||||||
5 CAD BTDC | 14.4 (2.81) | 21.5 (2.58) | 134.2 (1.41) | 28.1 (3.19) | 320 (104.1) | |
7.5 CAD BTDC | 14.4 (2.79) | 21.7 (2.35) | 133.8 (1.57) | 28.0 (2.87) | 310 (103.9) | |
10 CAD BTDC | 14.4 (2.80) | 21.5 (2.43) | 133.7 (1.55) | 27.9 (2.83) | 309 (103.5) | |
12.5 CAD BTDC | 14.5 (2.85) | 21.3 (2.05) | 133.6 (1.25) | 27.9 (2.63) | 300 (103.5) | |
15 CAD BTDC | 14.4 (2.85) | 21.6 (2.11) | 133.3 (1.27) | 27.9 (2.47) | 298 (104.0) | |
17.5 CAD BTDC | 14.3 (2.95) | 21.6 (1.94) | 133.1 (1.53) | 27.9 (2.43) | 301 (107.0) |
Longitudinal 1 | Longitudinal 2 | Traverse 1 | Traverse 2 | Sound Pressure | |
---|---|---|---|---|---|
- | 1 | - | 1 | - | |
10 | 10 | 10 | 8 | 9 | |
10 | 10 | 10 | 8 | 9 | |
10 | 10 | 10 | 8 | 9 | |
10 | 8 | 9 | 10 | 10 | |
10 | 10 | 10 | 8 | 9 | |
10 | 9 | 10 | 8 | 10 | |
9 | 9 | 10 | 8 | 9 | |
10 | 9 | 10 | 8 | 9 | |
10 | 10 | 10 | 8 | 9 | |
10 | 9 | 11 | 9 | 9 | |
- | - | 3 | 4 | 6 | |
7 | 1 | 8 | 7 | 7 | |
8 | 1 | 9 | 8 | 7 | |
10 | - | 5 | 10 | 8 | |
8 | 5 | 10 | 10 | 9 |
Exhausted Emission Parameter | % | Type of Fuel 2, % | Engine Power 2, % | Injection Timing 2, % |
---|---|---|---|---|
Fuel mass flow | 51.3 * | 2.5 | 96.0 * | <0.1 |
CO | 33.2 * | 3.4 | 95.3 * | 0.5 |
CO2 | 48.6 * | 0.6 | 97.8 * | <0.1 |
NOx | 52.6 * | 1.3 | 61.8 * | 29.9 * |
THC | 29.6 * | 18.3 * | 50.2 * | 3.6 |
COSick | 13.8 * | 35.3 * | 57.6 * | 9.8 |
O2 | 47.9 * | 4.9 | 97.8 * | 0.1 |
tair | 7.9 * | 62.5 * | 11.3 * | 0.4 |
Air mass flow | 30.9 * | 37.3 * | 44.0 * | 6.1 |
tfuel | 3.7 * | 80.4 * | 2.6 | 0.1 |
texhaust | 47.3 * | 1.2 | 96.9* | 0.6 |
R2, % | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
8 kW | 12 kW | 20 kW | 8 kW | 12 kW | 20 kW | ||||||
Fuel mass flow | 1.486 | 0.277 | 0.697 | −4.470 | −0.318 | −0.022 | 4.050 | 2.309 | 96.6 | ||
CO | 291.7 | 3.8 | −87.7 | −396.9 | −1125.7 | 60.5 | 246.6 | 1190.6 | 96.0 | ||
CO2 | 2.626 | −0.166 | 0.279 | −5.281 | 4.726 | 0.484 | 5.108 | 0.085 | 98.0 | ||
NOx | 1059.3 | −550.3 | −1496.5 | −4982.7 | −9382.1 | 1154.6 | 3704.7 | 6842.1 | 74.2 | ||
THC | 141.1 | −27.3 | −119.4 | −90.4 | −556.3 | 86.0 | 65.9 | 409.5 | 56.2 | ||
COSick | 0.131 | −0.055 | −0.057 | 0.089 | 0.025 | 0.041 | −0.060 | 0.012 | 58.8 | ||
O2 | 16.59 | 0.59 | −0.06 | 7.90 | −7.63 | −0.98 | −7.61 | 0.19 | 98.0 | ||
Air mass flow | 138.35 | −2.83 | 0.02 | 12.37 | 4.77 | 0.09 | −8.82 | −4.53 | 47.6 | ||
texhaust | 143.8 | 38.5 | 109.2 | −222.3 | 415.3 | −42.9 | 228.9 | −102.8 | 97.1 | ||
Intercept | at TRAV1 | Type of Fuel | at TRAV1 * Type of Fuel | R2 | |||||||
HVO30 | HVO50 | SME30 | SME50 | HVO30 | HVO50 | SME30 | SME50 | ||||
tair | 22.08 | 1.04 | −33.13 | 11.19 | −27.10 | −9.54 | 20.70 | −10.96 | 17.91 | 5.82 | 72.4 |
tfuel | 24.14 | 5.21 | −22.59 | 27.62 | −10.48 | −7.69 | 11.43 | −23.55 | 5.54 | 3.13 | 85.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žvirblis, T.; Vainorius, D.; Matijošius, J.; Kilikevičienė, K.; Rimkus, A.; Bereczky, Á.; Lukács, K.; Kilikevičius, A. Engine Vibration Data Increases Prognosis Accuracy on Emission Loads: A Novel Statistical Regressions Algorithm Approach for Vibration Analysis in Time Domain. Symmetry 2021, 13, 1234. https://doi.org/10.3390/sym13071234
Žvirblis T, Vainorius D, Matijošius J, Kilikevičienė K, Rimkus A, Bereczky Á, Lukács K, Kilikevičius A. Engine Vibration Data Increases Prognosis Accuracy on Emission Loads: A Novel Statistical Regressions Algorithm Approach for Vibration Analysis in Time Domain. Symmetry. 2021; 13(7):1234. https://doi.org/10.3390/sym13071234
Chicago/Turabian StyleŽvirblis, Tadas, Darius Vainorius, Jonas Matijošius, Kristina Kilikevičienė, Alfredas Rimkus, Ákos Bereczky, Kristóf Lukács, and Artūras Kilikevičius. 2021. "Engine Vibration Data Increases Prognosis Accuracy on Emission Loads: A Novel Statistical Regressions Algorithm Approach for Vibration Analysis in Time Domain" Symmetry 13, no. 7: 1234. https://doi.org/10.3390/sym13071234
APA StyleŽvirblis, T., Vainorius, D., Matijošius, J., Kilikevičienė, K., Rimkus, A., Bereczky, Á., Lukács, K., & Kilikevičius, A. (2021). Engine Vibration Data Increases Prognosis Accuracy on Emission Loads: A Novel Statistical Regressions Algorithm Approach for Vibration Analysis in Time Domain. Symmetry, 13(7), 1234. https://doi.org/10.3390/sym13071234