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Abstract: Statistical regression models have rarely been used for engine exhaust emission parameters.
This paper presents a three-step statistical analysis algorithm, which shows increased prediction
accuracy when using vibration and sound pressure data as a covariate variable in the exhaust
emission prediction model. The first step evaluates the best time domain statistic and the point
of collection of engine data. The univariate linear regression model revealed that non-negative
time domain statistics are the best predictors. Also, only one statistic evaluated in this study was a
statistically significant predictor for all 11 exhaust parameters. The ecological and energy parameters
of the engine were analyzed by statistical analysis. The symmetry of the methods was applied in
the analysis both in terms of fuel type and in terms of adjustable engine parameters. A three-step
statistical analysis algorithm with symmetric statistical regression analysis was used. Fixed engine
parameters were evaluated in the second algorithm step. ANOVA revealed that engine power was a
strong predictor for fuel mass flow, CO, CO2, NOx, THC, COSick, O2, air mass flow, texhaust, whereas
type of fuel was only a predictor of tair and tfuel. Injection timing did not allow predicting any
exhaust parameters. In the third step, the best fixed engine parameter and the best time domain
statistic was used as a model covariate in ANCOVA model. ANCOVA model showed increased
prediction accuracy in all 11 exhausted emission parameters. Moreover, vibration covariate was
found to increase model accuracy under higher engine power (12 kW and 20 kW) and using several
types of fuels (HVO30, HVO50, SME30, and SME50). Vibration characteristics of diesel engines
running on alternative fuels show reliable relationships with engine performance characteristics,
including amounts and characteristics of exhaust emissions. Thus, the results received can be used to
develop a reliable and inexpensive method to evaluate the impact of various alternative fuel blends
on important parameters of diesel engines.

Keywords: biodiesel; exhausted emission; statistical regression analysis; linear regression models

1. Introduction

Vehicle emission indicators have become increasingly more stringent in pursuit of
environmental benefits [1]. Decarbonization programs aimed at the use of clean, low-carbon
fuels in vehicles have been used to this end. Ambitious targets set to reduce concentrations
of hazardous compounds in exhaust gases have recently been supplemented with strict
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requirements to reduce particulate matter concentrations and volumes [2], which have
already been transposed into the legal framework (Euro 6 standard requirements) [3].

Thus attempts have been made to also limit harmfulness of exhaust gases through
the use of alternative fuels [4]. These can be ethanol-based fuels when improvements in
environmental and operational processes have been observed at low concentrations of
ethanol additive. Increasing the concentration of ethanol additive in fuel blends results
in an engine running loud and deterioration in the quality of its performance. Various
exhaust gas regulation (EGR) scenarios have been used to fix this problem, when increasing
the EGR rate has led to a reduction in thermal efficiency [5]. Another method is the supply
of hydrogen, but supplying it with ethanol and hydrogen simultaneously led to increased
soot concentration [6,7]. The use of blends of oxygenates and diesel is an effective method
to reduce soot concentrations, as it allows to reduce harmfulness of exhaust components [8]
(except for NOx, the concentration of which increases at higher temperatures [9]). These
can be various blends of dibutyl maleate and diesel [10], and of biodiesel (starting with
esters of palm oil [11], fat [12], rapeseed oil [13] and diesel.

Another option is using blends of hydrotreated vegetable oils (HVO) with diesel and
soybean oil methyl ester (SME) with diesel. Properties of HVO blends with diesel not only
improve environmental engine indicators, but also allow achieving better performance
characteristics thereof [14,15], especially when optimizing the principal fuel injection
timing [16]. Adding Ferrocene nanoparticles to diesel-HVO (7% HVO in diesel) blends can
reduce NOx concentrations by 30% [17], while the use of various EGR strategies leads to
an increase in THC and CO concentrations at high EGR mode [18].

When it comes to soybean oil methyl ester blends with diesel, environmental effect
of the use thereof has also been observed, at the same time emphasizing the stability
and taring of such blends [19]. Viscosity of soybean oil methyl ester, which is 10 times
higher than that of diesel, is another notable problem, thus its application is highly limited
especially at ambient temperatures below zero [20].

The review of literature offers solutions for environmental engine problems through
the use of biodiesels mentioned in various sources. On the other hand, the use of such fuel
results in lower engine vibrations, especially when it comes to the dual fuel engine [21]. The
use of various additives (such as DTiCuN100 (Diesel + 50 ppm TiO2 (Titanium (IV) dioxide
(TiO2)) + 50 ppm Cu(NO3)2 (copper (II) nitrate (Cu(NO3)2) and DTiCeA100 (Diesel +
50 ppm TiO2 + 50 ppm Ce(CH3CO2)3·H2O (cerium(III) acetate hydrate)) allowed reducing
the level of engine’s vibration and sound in all modes of operation of the engine [22].
This allows concluding that the level of sound pressure and vibrations can be lower using
various fuel additives compared to standard EN590 diesel. This has been observed when
using waste cooking oil (WCO) blends with diesel, and vibrations have further decreased
having added hydrogen [23]. Research with hydrogen and diesel blends also confirm this
trend, but vibrations can be emphasized to increase proportionally when increasing engine
load [24]. However, such research of vibrations is more targeted at identifying vibration
levels manifesting when using different biofuels—Calophyllum inophyllum biofuel blends
with diesel [25], three-component diesel—sunflower oil—HHO, diesel—canola oil –HHO
and diesel—corn oil—HHO blends [26].

Favorable prediction results were shown using linear and non-linear statistical models
for noise and vibration characteristic predictions using different fuel blends (low sulphur
diesel, sunflower, canola, corn biodiesels) at different engine speeds [27].

Another statistical approach was used to evaluate influence of various biodiesel
blends at different engine speeds seeking to identify the fuel blends with the minimal
vibration [28]. Using two-way ANOVA statistical model there was observed that vibration
values significantly depend on biodiesel blends and engine speed.

Moreover, advanced artificial neural network (ANN) modelling was used to pre-
dict noise and vibration level of the engine using various fuel blends at different engine
speeds [29]. Nevertheless, authors additionally presented a wide analysis of engine ex-
hausted emissions they did not apply artificial neural network modelling for it.
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Papers with predictions of engine exhaust emissions using ANN are very sparse. Cay
et al. [30] showed that ANN with input data such as fuel type, engine speed, torque, fuel
flow, carbon monoxide, unburned hydrocarbon, break specific fuel consumption and air–
fuel ratio can be very useful and accurate in CO, THC, BSFC and AFR values predictions.
Unfortunately, engine vibration was not included as input data.

One more comprehensive study for modeling of performance, emission, and vibration
of a compressed ignition engine using ANN technique was performed by Hosseini et al.
(2020) [31]. Even 12 parameters in input layer were used in ANN model for predicting
another 12 parameters in output layer. However, as in previous study engine vibration
data was not included in the input layer.

Literature review can imply that building a prediction models for exhausted emission
of ignition engines through statistical point of view is still challenging. Although, there are
developed several models which can be used for exhausted emission parameters predicting
but these models require a lot of input variables which can cause data gathering issues.

In this paper, three-step statistical analysis algorithm is presented to develop optimal
prognostic model for 11 exhausted emission parameters. Vibration and sound pressure
data in combination with stationary engine parameters such as engine power, fuel type
and injection timing were used as prediction model input parameters.

The objectives of this study are the following: (1) to investigate the prognostic impact
of vibrational and sound pressure data on engine emission parameters; (2) to evaluate if
vibration and sound pressure data together with fixed engine parameters, i.e., power, type
of fuel and fuel injection timing can improve prediction accuracy; (3) to investigate the
best prediction model for exhausted emission parameters dependent from the fixed engine
parameters and vibration and sound pressure data.

The rest of the paper is organized as follows: methodology and data description are
described in Section 2; in Section 3, the results of the investigated statistical analysis for
emission prediction are presented, and the conclusions close the article in Section 4.

During statistical analysis, we have analyzed one of the eleven engine emission pa-
rameter. In such way, we have symmetrically repeated statistical analysis for the rest
of 10 engine emission parameters. So, we have proposed three-step statistical analysis
algorithm with symmetrical statistical regression analysis. Also, LRM, ANOVA and AN-
COVA requires normally distributed (i.e., symmetrical) quantitative data sample. We have
checked this assumption with Kolmogorov-Smirnov criteria and found that data satisfies
this assumption. Data normality confirmation is not the key to our analysis, so authors
decided to not define this analysis.

2. Methodology and Data Description
2.1. Exhausted Emission Parameters

The investigations were elaborated on a naturally aspired, direct-injection 2.9 L IVECO
AIFO Diesel engine provides the task of the machinery, which is driven by an M8B 160
generator. The engine set was made for generator purposes. Thus, it did not incorporate
heat recovery. Therefore, a separate system had to be established for this purpose for
the basic engine set. Exhaust gas analysis was performed using specialized measuring
equipment, which was calibrated with a special gas before and after the tests. AVS 415
for FSN was used for particulate emission measurements. THC flame ionization detector,
NOx chemiluminescence analyzer and CO (sick) and CO2 non-dispersive infrared detector
and O2 para-magnetic were used to capture emissions of other gases. Table 1 summarizes
instrumentation and their description, accuracy and measurement range used both for
recording combustion characteristics and for emission tests, based on calculations the
δpi,t = 3.29%.
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Table 1. Used instrumentation.

Equipment/Device Description Accuracy Measurement Range

Fuel consumption AVL-7131-12 δ = ±0.23% 0–100 kg/h;
Exhaust gas-analyzer system HORIBA

MEXA-8120 F
THC analyzer: FIA-22 (HORIBA) ±4.35% (δI,s) form 0–10, up to 0–5000 ppm

NO/NOx analyzer: CLA-53 ±4.42% (δI,s) form 0–10, up to 0–5000 ppm
CO analyzer: URAS 10E <5% (δI,s) 0–200 and 0–1000 ppm
CO2 analyzer: URAS 10E <5% (δI,s) 0–10 v/v%

O2 analyzer: SICK Maihak: S-710 <5% (δI,s) 0–5 and 0–25 v/v%
CO analyzer: SICK Maihak: S-710 <5% (δI,s) 0–5 and 0–50 v/v%

Piezo transducer Kistler KIAG 6005 Linearity ≤ ±0.8 (% FSO) 0–500 bar

Charge amplifier Kistler 5018A 1000 δpi < 0.01% ≥±100 pC FS (max./typ.)% < ±1/ < ±0.5 ±
10 . . . ± 999,000 pC

Crank angle speed encoder HENGSTLER RI
32-0/1024.ER.14 ka 1024 pulses/round max. 6000 rmp

DeltaOHM HD2101.1 ±0.1 ◦C; 0.1% RH% −50 . . . + 250 ◦C
0 . . . 100% RH

2.2. Type of Fuel

Four fuel blends and conventional diesel fuel was used in the research. Fuel blends
consisted of conventional diesel fuel (D100) and hydrotreated vegetable oil (HVO100)
or soybean oil methyl ester (SME100). Renewable biofuels accounted for 30% or 50% in
the blends, and were marked as HVO30, HVO50, SME30 and SME50 in the article. All
4 biodiesel blends were volume-based. Physical and chemical properties of pure base fuels
were analyzed in the laboratory and are presented in Table 2.

Table 2. Physical and chemical fuel properties.

Properties Device Method Accuracy Fuel

Diesel 100 HVO100 SME100

Gross heating value, MJ/kg IKA C 5000
calorimeter DIN 51900-2 130 J/g 46.60 47.19 39.81

Lower heating value LHV, MJ/kg 42.86 43.63 37.29
CFPP, ◦C FPP 5 Gs analyzer EN 116 1 ◦C −37 −44 −4

Pour point, ◦C CPP 5 Gs analyzer ISO 3016 3 ◦C −42 −50 −6
Dynamic viscosity, 40 ◦C, mPa × s

Anton Paar SVM
3000/G2 Stabinger

Viscometer
ASTM D7042

0.1% 1.745 2.198 3.657
Kinematic viscosity, 40 ◦C, mm2/s 0.1% 2.159 2.876 4.211

Density at 40 ◦C, g/mL 0.0002 g/cm3 0.809 0.767 0.868
Dynamic viscosity, 15 ◦C, mPa × s 2.975 4.014 6.742
Kinematic viscosity, 15 ◦C, mm2/s 3.602 5.151 7.606

Density at 15 ◦C, g/mL 0.826 0.781 0.887
Oxidative stability, min PetroOXY analyzer EN 16091 0.1% 48.56 120 18.45

Water content acc. CF, %
Aquamax KF
Coulometric

analyzer
ISO 12937 0.0003% 0.0028 0.0021 0.0922

Lubricity, µm/60 ◦C WSD ISO 12156 63 µm 404 302 183

Flash point, ◦C
FP93 5G2

Pensky-Martens
analyzer

ISO 2719 0.03 ◦C 67.8 87 90

Elemental composition, % wt
Combustion of samples in a catalytic
tube, separation of combustion gases,
determination of components with a

thermal conductivity detector

H 13.5 15.3 11.12
C 86.5 84.7 78.08
O 0 0 10.80

Cetane number PetroSpec analyzer
TD-PPA-I ASTM D613 0.05% 51 72 52

2.3. Experimental Engine

The fuel tests were carried out on an IVECO AIFO 2.9 liter direct injection, natu-rally
aspirated compression ignition. The engine drives an M8B 160 generator, and the energy
produced was used in a multi-power stage water heating boiler. The main pa-rameters of
the engine are shown in Table 3. During the test series, using the pre-injection adjuster
alone is used to set the pre-ignition angle, no other modifications were made to the engine.
The engine operated in any case with the basic settings for fossil diesel.
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Table 3. The main parameters of the tested engine.

Parameter Unit

Number of cylinders 3 in line -
Displacement 2.9 dm3

Bore 104 mm
Stroke 115 mm

Compression ratio 17:1 -
Rated power 24 kW

Speed 1500 rpm

2.4. The Engine Testing System

The test bench scheme is presented in Figure 1. The measurement system includes
a number of static pressure and temperature sensors. Two piezo sensors are installed to
measure the fast-changing pressures, one measuring the pressure in the combustion cham-
ber and the other measuring the pressure in the high-pressure injection line. The sensors
are connected to the data acquisition system after the charge amplifiers. The encoder on
the crankshaft was used to trigger the measurements (1024 pulses/rev). 75 cycles were
measured at each measurement point. The calibration of the system (pres-sure transducer,
cables, charge amplifier and data acquisition system) before and after the tests (range 100
bar) and the accuracy was calculated.During the study. there were defined different starts
of fuel injection timing, which were evaluated as crank angle degrees (CAD) before top
dead center (BTDC) (5 CAD BTDC, 7.5 CAD BTDC, 10 CAD BTDC, 12.5 CAD BTDC, 15
CAD BTDC, and 17.5 CAD BTDC).
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Figure 1. The engine test system.

The combustion chamber pressures and injection tube pressures for D2 fuel and 20 kW
load are shown in Figure 2. For both figures, the averages of 75 cycles at one operating
point are shown. In the case of injection tube pressure, the pressure drop observed is
associated with the first pressure drop at the start of injection and the pressure oscillations
after injection are observed. The high ignition delay characteristic of this engine is clearly
observed for the in-cylinder pressure. For pre-injections at 17.5, 15, and 12.5 degrees, the
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maximum pressure location is observed around 5 degrees (ATDC) for smaller pre-injections,
the maximum location shifts significantly after TDC.
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Figure 2. The measured injection tube pressure and the in-cylinder pressure (indicated) pressure in the function of the crank
angle at 20 kW load and D2 fuel.

2.5. Vibrations and Sound Measurment System

Vibrations generated by internal combustion (IC) engine depend on disbalanced
return motion and rotating parts, cyclic variation in gas pressure, dynamic excitation
forces from rotating parts of the engine, and structural properties of the engine mounting
mechanism. Stiffness and damping of the engine mounting structure must be high in the
low frequency range, and low—in the high frequency range. Proper engine mounting must
be used to reduce engine vibrations. Sometimes using mounting elements of appropriate
characteristics at the engine-frame point of contact is necessary. Various types of vibration
insulation materials are often used to reduce forces transmitted from the engine to the
mounting structure.

When conducting experimental tests of the engine, sound of the surrounding envi-
ronment and vibrations did not affect measurements in the room. The walls of the test
room had an acoustic lining made of sound-insulating material, an acoustic door, and a
soundproof double-glazed window for viewing inside the engine test chamber from the op-
erator’s room. A GRAS 46AE microphone (Frequency range: 3.15 Hz to 20 kHz; Dynamic
range: 17 dB (A) to 138 dB; Sensitivity: 50 mV/Pa) was used to measure sound pressure
(Figure 3a(position 3),b)). Engine vibrations were measured at 2 points (Figure 3a(positions
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1 and 2),c) in the longitudinal (Y) and transverse (X) directions using four Bruel&Kjear 8341
CCLD accelerometers (Frequency range: 0.3–10,000 Hz; Sensitivity: 10 mV/ms−2). Data on
noise and vibrations were obtained using the Bruel&Kjear Machine Diagnostic Toolbox.
The Machine Diagnostics Toolbox consists of Machine Diagnostics Toolbox Type 9727 and
the versatile Machine Diagnostics Toolbox Software Bundle Type 7910. Type 9727 includes
the multichannel PULSE data acquisition unit Type 3560-B (5-channel).
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Figure 3. Points of measurement of vibrations and sound pressure: (a) general view of the engine
being analyzed and points of measurement of vibrations (points 1 and 2) and sound pressure
(point 3); (b) a microphone to measure sound pressure (point 3); (c) accelerometers to measure
vibrations (point 2) in X and Y directions.

2.6. Methodology of Statistical Analysis

Sixteen statistical parameters of time domain were evaluated before performing sta-
tistical regression analysis (Table 4). Descriptive analysis for engine exhaust parameters
and time domain statistics were also done. Three-step statistical analysis was performed to
develop optimal prognostic model for exhausted emissions.
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Table 4. Statistical characteristics in time domain.

Parameter Expression Parameter Expression

T1 = X = 1
N

N
∑

n=1
xn

T9 = T7 − T8

T2 = RMS =

√
1
N

N
∑

n=1
x2

n T10 = s2 = 1
N−1

N
∑

n=1
(xn − T1)

2

T3 =

(
1
N

N
∑

n=1

√
|xn|

)2
T11 = T2

T4

T4 = 1
N

N
∑

n=1
|xn| T12 = T7

T2

T5 = 1
N

N
∑

n=1
(xn − T1)

3 T13 = T7
T4

T6 = 1
N

N
∑

n=1
(xn − T1)

4 T14 = T7
T3

T7 = max
n

xn T15 = T5
T2

3

T8 = min
n

xn T16 = T6
T2

4

In the first step the best time domain parameter and outcome data acquisition engine
point was identified using univariate linear regression model (LRM):

YE = α + βTk
i + ε, (1)

where YE—exhausted emission counts (dependent variable), E—type of exhausted emis-
sion, Tk

i ith time domain parameter estimate (independent variable) for kth outcome data
acquisition engine point, α—intercept value, β—regression parameter for independent
variable, ε—random error.

In the second step, one way analysis of variance (ANOVA) model was used to evaluate
fuel, engine power and injection timing impact for exhausted emissions. Factor with the
highest R2 was determined as the strongest predictor for exhausted emissions and further
was included into analysis of covariance (ANCOVA) model together with the best time
domain parameter:

YE = α + βTk
i + γZj + µ

(
Tk

i ∗ Zj

)
+ ε, (2)

where YE—exhausted emission counts (dependent variable), E—type of exhausted emis-
sion, Tk

i ith time domain parameter estimate (covariate) for kth outcome data acquisition
engine point, Zj—categorical variable with j levels (independent variable), α—regression
intercept value, β—regression parameter for covariate, γ—regression parameter for in-
dependent variable, µ—regression parameter for covariate and independent variable
interaction, ε—random error.

In the third step, accuracy between the best prognostic model and real data was
evaluated using mean absolute percentage error (MAPE):

MAPE =
1
n

n

∑
i=1

RE
i − ŶE

i
RE

i
, (3)

where RE
i —real exhausted emission counts for ith experiment, ŶE

i —prognostic exhausted
emission counts for ith experiment, E—type of exhausted emission.

3. Results
3.1. Fuel Properties

A study of physical and chemical properties of fuel revealed that HVO has ~2% higher
and SME ~ 13% lower heating value compared to conventional diesel fuel, thus the use of
SME30 and SME50 increases fuel consumption. A significantly higher SME fuel kinematic
and dynamic viscosity are likely to degrade injection quality of these fuel blends, prolong
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the time of evaporation and mixing with air, as well as the combustion time. These changes
in SME fuel injection and combustion may lead to a longer rate of heat release as well
as a pressure rise during the kinetic (premixed) combustion phase [32,33]. This increases
the impact induced by rapidly increasing pressure on the piston and other surfaces of the
combustion chamber. However, SMEs contain ~11% oxygen which improves combustion
quality, reduces CO, THC emissions and smoke content. Increased oxygen concentration in
SME fuels and a more intense rate of heat release increases NOx emissions. First-generation
biodiesel (including SME) concentration in fuel is still limited to 7% in Europe according to
EN 590 diesel standard.

HVO is another type of fuel that may be used to prepare fuel blends. It has a lower
density, but its kinematic and dynamic viscosity is close to that of diesel fuel. High
HVO cetane number shortens the ignition delay phase of fuel blends, which in turn
reduces the rate of heat release and pressure increase in the kinetic (premixed) combustion
phase, reducing the mechanical load on the engine and NOx emissions upon a decrease in
temperatures [34,35]. HVO fuels have a lower C/H ratio, which reduces smoke content.
SME has a high cold filter plugging point (CFPP) and pour point temperature; therefore,
this fuel cannot be used in winter. HVO CFPP and pour point temperatures are low, and
these fuels can be mixed with diesel under winter conditions as well. HVO also has a high
oxidative stability, good lubricity, thus can be used both pure and in blends with diesel in
various proportions.

3.2. Vibration and Sound Pressure of the Engine

Determining vibrations and noise emitted by components of a diesel engine is one of
the most difficult environmental tasks because each engine mechanism affects vibrations
and noise separately.

For each experiment, vibration and sound pressure data were collected from the
engine unit with a 3.2 kHz sampling frequency for 2 s. These results are presented in
Appendix A.

3.3. Descriptive Statistics of Exhausted Emission Parameters

Descriptive statistical analysis revealed that engine power was strongly associated
with almost all exhausted emission parameters. O2 and mass flow of the air were inversely
proportional to increased engine power. The average O2 decreased up to 42.0% from
17.4 V% at 4 kW engine power to 10.1 V% at 20 kW engine power, while mass flow of the
air had more slightly decrease (1.7%). Other parameters were directly proportional. Huge
value jump regarding increased power was observed in NOx (289.5%), CO (221.5%) and
CO2 (200.0%) (Table 5).

Any type of fuel had a major impact for CO and THC: The mean (SD) variated from
361 (233.4) ppm to 514 (292.7) ppm and from 102 (29.3) ppm to 139 (30.9) ppm for CO and
THC, respectively. Fuels based on SME blend showed higher levels of fuel mass flow, CO,
CO2, NOx, THC, tair, tfuel, texhaust than HVO blends, while COSick and air mass flow were
slightly higher in HVO based blends. O2 value remained independent from fuel blends
(Table 5).

Increased injection timing was extremely associated with increased NOx. Mean (SD)
of NOx value increased from 352 (194.5) ppm at 5 CAD BTDC to 1000 (495.0) ppm at
17.5 CAD BTDC for injection timing at 12 kW. Interestingly, THC achieved minimal values
at 10 CAD BTDC with mean (SD) 111 (28.4) ppm, while moving towards to lower and
higher injection timing category THC loads started to grow. The same tendency was
observed in CO loads where minimal value with mean (SD) 423 (311.3) ppm was achieved
at 12.5 CAD BTDC. Lower mean texaust parameter values were associated with increased
injection timing. Mean (SD) of texaust value decreased from 320 (104.1) ◦C at 5 CAD BTDC
to 301 (107.0) ◦C at 17.5 CAD BTDC.
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Table 5. Descriptive Statistical Analysis for Engine Exhausted Emission Parameters.

Fuel mass flow
[kg/h]

Mean (SD)

CO [ppm]
Mean (SD)

CO2 [V%]
Mean (SD)

NOx [ppm]
Mean (SD)

THC [ppm]
Mean (SD)

COSick [V%]
Mean (SD)

Total 3.2 (1.29) 488 (324.1) 4.5 (1.95) 1000 (495) 120 (37.6) 0.07 (0.027)
Engine Power

4 kW 1.9 (0.07) 297 (55.5) 2.4 (0.10) 285 (106.8) 103 (19.0) 0.05 (0.011)
8 kW 2.5 (0.09) 296 (43.7) 3.4 (0.09) 422 (155.1) 105 (19.0) 0.05 (0.012)

12 kW 3.3 (0.43) 260 (50.7) 4.6 (0.51) 678 (279.5) 107 (27.2) 0.05 (0.012)
20 kW 5.0 (0.21) 955 (98.3) 7.2 (0.15) 1110 (369.9) 158 (26.6) 0.09 (0.021)

Type of Fuel
D100 3.1 (1.19) 361 (233.4) 4.5 (1.94) 606 (419.6) 102 (29.3) 0.07 (0.020)

HVO30 3.0 (1.14) 413 (295.3) 4.3 (1.86) 605 (386.6) 118 (20.1) 0.08 (0.020)
HVO50 3.1 (1.18) 421 (316.3) 4.3 (1.85) 578 (377.1) 105 (32.4) 0.07 (0.021)
SME30 3.5 (1.30) 487 (313.2) 4.6 (1.88) 711 (434.7) 128 (35.5) 0.05 (0.014)
SME50 3.3 (1.28) 514 (292.7) 4.4 (1.83) 645 (412.0) 139 (30.9) 0.05 (0.013)

Injection Timing at 12 kW
5 CAD BTDC 3.2 (1.24) 440 (250.0) 4.4 (1.87) 352 (194.5) 128 (27.9) 0.06 (0.017)

7.5 CAD BTDC 3.2 (1.22) 439 (285.6) 4.4 (1.86) 436 (247.4) 124 (26.4) 0.06 (0.019)
10 CAD BTDC 3.2 (1.22) 429 (313.0) 4.4 (1.86) 545 (290.2) 111 (28.4) 0.06 (0.022)

12.5 CAD
BTDC 3.2 (1.23) 423 (311.3) 4.4 (1.88) 645 (341.7) 112 (34.7) 0.06 (0.023)

15 CAD BTDC 3.2 (1.25) 431 (308.7) 4.4 (1.89) 806 (411.2) 116 (39.2) 0.06 (0.025)
17.5 CAD

BTDC 3.2 (1.29) 488 (324.1) 4.5 (1.95) 1000 (495.0) 120 (37.6) 0.07 (0.027)

O2 [V%]
Mean (SD)

tair [◦C]
Mean (SD)

Air mass flow
[kg/h]

Mean (SD)

tfuel [◦C]
Mean (SD)

texhaust [◦C]
Mean (SD)

Total 14.3 (2.95) 21.6 (1.94) 133.1 (1.53) 27.9 (2.43) 301 (107.0)
Engine Power

4 kW 17.4 (0.17) 20.8 (1.83) 134.4 (0.94) 27.6 (2.66) 198 (8.3)
8 kW 16.0 (0.14) 20.9 (2.02) 134.5 (1.03) 27.5 (2.19) 247 (9.6)

12 kW 14.2 (0.76) 21.8 (2.04) 133.7 (1.18) 28.2 (2.52) 311 (32.7)
20 kW 10.1 (0.26) 22.6 (2.49) 132.1 (1.21) 28.6 (3.27) 464 (10.1)

Type of Fuel
D100 14.2 (2.92) 23.6 (1.27) 132.9 (1.01) 31.7 (0.56) 306 (103.3)

HVO30 14.5 (2.82) 20.1 (1.99) 134.6 (1.53) 25.4 (1.57) 297 (100.8)
HVO50 14.5 (2.85) 19.0 (0.79) 134.7 (0.63) 25.3 (1.55) 300 (100.7)
SME30 14.1 (2.83) 22.7 (1.54) 132.6 (1.34) 29.1 (1.19) 328 (108.3)
SME50 14.6 (2.70) 22.5 (0.97) 133.3 (1.17) 28.6 (0.85) 301 (104.5)

Injection Timing
5 CAD BTDC 14.4 (2.81) 21.5 (2.58) 134.2 (1.41) 28.1 (3.19) 320 (104.1)

7.5 CAD BTDC 14.4 (2.79) 21.7 (2.35) 133.8 (1.57) 28.0 (2.87) 310 (103.9)
10 CAD BTDC 14.4 (2.80) 21.5 (2.43) 133.7 (1.55) 27.9 (2.83) 309 (103.5)

12.5 CAD
BTDC 14.5 (2.85) 21.3 (2.05) 133.6 (1.25) 27.9 (2.63) 300 (103.5)

15 CAD BTDC 14.4 (2.85) 21.6 (2.11) 133.3 (1.27) 27.9 (2.47) 298 (104.0)
17.5 CAD

BTDC 14.3 (2.95) 21.6 (1.94) 133.1 (1.53) 27.9 (2.43) 301 (107.0)

Other exhausted emission parameters remained stable at various injection timing at
12 kW (Table 5).

3.4. Step 1: Significant Vibro-Acoustic Parameters in Time Domain

A total of 16 time domain parameters for each 5 vibro-acoustic engine outcomes
parameters (longitudinal 1 (LONG1), longitudinal 2 (LONG2), traverse 1 (TRAV1), traverse
2 (TRAV2) and sound pressure (SP) (Figure 3)) were evaluated as independent prognostic
variables using univariate LRM. Regression analysis revealed that even 8–11 exhausted
emission parameters could be prognosed using parameters T2–T11 from all 5 vibro-acoustic
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engine outcomes. Also, 10 exhausted emission parameters could be prognosed using
T15 in LONG1 and TRAV2 point and T16 in TRAV1 and TRAV2 point, however T15 was
weak prognostic parameter at LONG2 and TRAV1 engine points. Only one parameter T11
calculated from TRAV1 engine data acquisition point had statistically significant impact
for all 11 engine exhausted emission parameters and was defined as the best prognostic
parameter in univariate LRM (Table 6). Due to strong prognostic value only T11 gathered
from TRAV1 was included in the further step 2 statistical ANCOVA analysis as model
covariate variable.

Table 6. Cumulative counts of statistically significant time domain statistics predicting ecological
engine outcome parameters.

Longitudinal 1 Longitudinal 2 Traverse 1 Traverse 2 Sound Pressure

T1 - 1 - 1 -
T2 10 10 10 8 9
T3 10 10 10 8 9
T4 10 10 10 8 9
T5 10 8 9 10 10
T6 10 10 10 8 9
T7 10 9 10 8 10
T8 9 9 10 8 9
T9 10 9 10 8 9
T10 10 10 10 8 9
T11 10 9 11 9 9
T12 - - 3 4 6
T13 7 1 8 7 7
T14 8 1 9 8 7
T15 10 - 5 10 8
T16 8 5 10 10 9

Descriptive analysis showed that engine power was strongly and directly associated
with increased T11 at TRAV1: the median (Q1–Q3) T11 at TRAV1 was 1.41 (1.38–1.43), 1.42
(1.39–1.46), 1.46 (1.45–1.48), and 1.51 (1.47–1.53) at 4 kW, 8 kW, 12 kW, and 20 kW engine
power, respectively (Figure 4a).
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Symmetry 2021, 13, 1234 12 of 20

It should be noted that variation was very low in power groups. Distribution of T11
at TRAV1 remained to be independent from various type of fuels. Also, the variation was
increased in each of fuels compared with variation in engine power groups. It could be
explained that engine power is very strong factor for the shape of T11 at TRAV1 distribution
and have significant impact in fuel blends groups (Figure 4b).

Distributions T11 at TRAV1 in various injection timing groups were slightly different.
Interestingly, there was no any linear tendency injection timing and T11 at TRAV1 values.
The minimum T11 at TRAV1 was observed in 7.5 CAD BTDC group with median (Q1–Q3)
1.38 (1.37–1.43), while maximum was observed in 12.5 CAD BTDC group 1.48 (1.45–1.50)
(Figure 4c).

Figure 4 shows parameter T11 distribution in engine power, type of fuel and injection
timing categories. T11 had moderate (Spearman’s ρ = 0.688, p < 0.001) and weak (Spear-
man’s ρ = 0.194, p = 0.036) correlation with engine power and injection angle, respectively,
and there was no correlation with type of fuel.

3.5. Step 2: ANCOVA Model for Engine Exhausted Emission Parameters

In this step one-way ANOVA analysis was performed to evaluate prognostic impact
of engine power, type of fuel and injection timing for all 11 exhausted emission parameters.
Analysis revealed that engine power had the highest R2 values for fuel mass flow, CO, CO2,
NOx, THC, COSick, O2, air mass flow, texhaust. Type of fuel had the highest R2 value for
tair and tfuel while fuel injection timing had very low R2 values and was not included in
further analysis (Table 7).

Table 7. R2 Estimates for engine exhausted emission parameters.

Exhausted Emission
Parameter

T11 at TRAV1
1,

%
Type of Fuel 2,

%
Engine Power 2,

%
Injection Timing 2,

%

Fuel mass flow 51.3 * 2.5 96.0 * <0.1
CO 33.2 * 3.4 95.3 * 0.5
CO2 48.6 * 0.6 97.8 * <0.1
NOx 52.6 * 1.3 61.8 * 29.9 *
THC 29.6 * 18.3 * 50.2 * 3.6

COSick 13.8 * 35.3 * 57.6 * 9.8
O2 47.9 * 4.9 97.8 * 0.1
tair 7.9 * 62.5 * 11.3 * 0.4

Air mass flow 30.9 * 37.3 * 44.0 * 6.1
tfuel 3.7 * 80.4 * 2.6 0.1

texhaust 47.3 * 1.2 96.9* 0.6
1 R2 estimated using univariate LRM (Step 1). 2 R2 estimated using one-way ANOVA model (Step 2). * Parameter
had statistically significant impact for respective exhausted emission parameter.

Engine power as independent factor has very high predictive model fit for fuel mass
flow, CO, CO2, O2 and texhaust with R2 > 90 (Table 7).

R2 for T11 at TRAV1 was somewhat lower than engine power or type of fuel but
remained still statistically significant for all exhausted emission parameters (Table 7).

Finally, from Table 7 the best predictive models for exhausted emission were developed
of T11 at TRAV1, engine power and type of fuel. Regarding ANCOVA Equation (2) further
predictive models with interaction of categorical variable and covariate were concluded:

- for fuel mass flow, CO, CO2, NOx, THC, COSick, O2, mass flow of the air, and texhaust

Y = α + β ∗ [T11 at TRAV1 ] + γ ∗ power + µ ∗ ([T11 at TRAV1 ] ∗ power) + ε; (4)

- for tair, and tfuel

Y = α + β ∗ [T11 at TRAV1 ] + γ ∗ f uel + µ ∗ ([T11 at TRAV1 ] ∗ f uel) + ε. (5)

Table 8 shows regression parameter estimates and R2 values calculated from regression
Equations (3) and (4). All R2 values were higher in ANCOVA model than in ANOVA model
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and much higher than in univariate LRM. The major R2 improvement between ANOVA and
ANCOVA models was reached in NOx and tair with 12.4% and 9.9% increment, respectively.
Exhaust parameters with R2 > 90% in ANOVA model had very low (<1%) R2 increment in
ANCOVA model.

Table 8. ANCOVA model parameter estimates for engine exhausted emission parameters.

Intercept (α) T11 at TRAV1 (β)
Engine Power (γ) T11at TRAV1 * Engine Power (µ) R2,

%8 kW 12 kW 20 kW 8 kW 12 kW 20 kW

Fuel mass
flow 1.486 0.277 0.697 −4.470 −0.318 −0.022 4.050 2.309 96.6

CO 291.7 3.8 −87.7 −396.9 −1125.7 60.5 246.6 1190.6 96.0
CO2 2.626 −0.166 0.279 −5.281 4.726 0.484 5.108 0.085 98.0
NOx 1059.3 −550.3 −1496.5 −4982.7 −9382.1 1154.6 3704.7 6842.1 74.2
THC 141.1 −27.3 −119.4 −90.4 −556.3 86.0 65.9 409.5 56.2

COSick 0.131 −0.055 −0.057 0.089 0.025 0.041 −0.060 0.012 58.8
O2 16.59 0.59 −0.06 7.90 −7.63 −0.98 −7.61 0.19 98.0

Air mass
flow 138.35 −2.83 0.02 12.37 4.77 0.09 −8.82 −4.53 47.6

texhaust 143.8 38.5 109.2 −222.3 415.3 −42.9 228.9 −102.8 97.1
Intercept

(α)
T11 at TRAV1 (β)

Type of Fuel (γ) T11 at TRAV1 * Type of Fuel (µ)
R2

HVO30 HVO50 SME30 SME50 HVO30 HVO50 SME30 SME50
tair 22.08 1.04 −33.13 11.19 −27.10 −9.54 20.70 −10.96 17.91 5.82 72.4
tfuel 24.14 5.21 −22.59 27.62 −10.48 −7.69 11.43 −23.55 5.54 3.13 85.8

Engine power of 4 kW and fuel type of D100 were defined as reference values with 0 model parameter estimates. * Interaction of
ANCOVA parameters.

3.6. Step 3: Prediction Model Accuracy

Regression model with independent predictor T11 at TRAV1 alone remained the
worst prediction model regarding relatively high MAPE values. On average, ANOVA
and ANCOVA models were 3.3 times more accurate that univariate LRM and remained
as strong prediction models for exhausted emissions. Tremendous prediction accuracy
improvement switching from univariate LRM to in ANOVA and ANCOVA models was
fixed in fuel mass flow, CO, CO2, O2 and texhaust parameters. However, THC, tair, and tfuel
had lower accuracy improvement than other parameters but still ANOVA and ANCOVA
models had showed significant accuracy improvement. Only prediction for air mass flow
parameter had not been improved through all prediction models. (Figure 5).

Step 2 ANCOVA model with two factors (T11 at TRAV1 and engine power or type of
fuel) remained the best predictive model for all 11 exhausted emission parameters with the
lowest MAPE values for all exhausted emission parameters (Figure 5). The most MAPE
reduction was defined in NOx, tair, and tfuel comparing ANOVA and ANCOVA models.
Figure 6a shows that increased prediction accuracy was observed in higher engine power
regardless type of fuel, whereas vibration covariate has not had any influence in low (4 kW
and 8 kW) engine power. Furthermore, vibration covariate has also not had any influence
in pure diesel engines. However, T11 at TRAV1 influence greatly improved while diesel
mixtures were used (Figure 6b,c).
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Figure 6. Engine exhausted emission real and prognostic values for (a) NOX, (b) tair and (c) tfuel. Optimal ANCOVA model
prognosis was made form Equation (2) and Table 8 parameter estimates. One-way ANOVA prognosis was made form
one-way ANOVA with only power or type of fuel predictor.

4. Conclusions

Experimental data showed that engine power has the biggest influence on generated
vibrational and sound pressure. Root mean square (RMS) values increased 20–30% while
engine power was changed from 4 kW to 20 kW (data not shown). Type of fuel and injection
timing was not associated with significant RMS differences (data not shown).

Vibration and sound pressure data have shown a high predictive power for exhausted
emissions in univariate LRM analysis. All non-negative time domain statistics were
associated with larger number of exhausted emissions which can be predicted using only
vibration and sound pressure data. Furthermore, best predictor was defined RMS related
function T11. Vibration data gathered from TRAV1 and aggregated with T11 had statistically
significant impact for all 11 exhausted emission parameters.

ANOVA analysis revealed that engine power and type of fuel can be used in exhausted
emissions prognostic equation development. In our case engine power was strong predictor
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for fuel mass flow, CO, CO2, NOx, THC, COSick, O2, air mass flow, texhaust, whereas type of
fuel was only a predictor of tair and tfuel.

Consolidation of univariate LRM and ANOVA analyses shown increased prediction
power for all 11 exhausted emission parameters. MAPE value reduced approximately
three times from univariate LRM MAPE value. Prediction accuracy has grown in higher
engine power modes by adding vibration data as a covariate variable in ANCOVA model
while prediction remained independent from vibration data in lower engine power (4 kW
and 8 kW). The same tendency was seen in different type of fuel. Prediction of exhausted
emission parameters has grown in fuels HVO30, HVO50, SME30 and SME50 by adding
vibration data as a covariate variable in ANCOVA model while prediction remained
independent from vibration data in fuel D100.

Study findings conclude that adding vibration parameter to prognostic model helps
to achieve higher prediction accuracy rate for various biodiesel fuels exhausted emissions
in a regression model. The findings of the study allow concluding that adding vibration
parameter to prognostic model helps to achieve higher prediction accuracy rate for various
biodiesel fuel exhaust emissions in the regression model. Characteristics of noise and
vibrations of diesel engines running on alternative fuels show reliable relationships with
performance characteristics of the engine, volumes, and characteristics of emissions. Thus,
the results received allow creating a reliable and inexpensive method for assessing the
impact of various alternative fuel blends on important parameters of diesel engines.
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Nomenclature

LHV Lower Heating Value (MJ/kg)
n Rotational speed of the crankshaft (rpm)
texhaust Exhaaust gas temperature (◦C)
tair Intake air temperature (◦C)
tfuel Fuel temperature (◦C)

Abbreviations

ATDC After Top Dead Centre
ANCOVA Analysis of covariance
ANN Artificial neural network
ANOVA Analysis of variance
ARF Air-fuel ratio



Symmetry 2021, 13, 1234 17 of 20

AVL Anstalt für Verbrennungskraftmaschinen List
ASTM American Society for Testing and Materials
BTDC Before Top Dead Centre
CAD Crank Angle Degree
CCLD Signal Conditioners and Amplifiers
Ce(CH3CO2)3·H2O Cerium (III) acetate hydrate
CFPP Cold Filter Plugging Point
CO Carbon monoxide
CO Sick Carbon monoxide measured by SICK Maihak S-710
CO2 Carbon dioxide
D100 100% conventional diesel fuel
DIN Deutsches Institut für Normung
DTiCuN100 Diesel + 50 ppm TiO2 + 50 ppm Cu(NO3)2
DTiCeA100 Diesel + 50 ppm TiO2 + 50 ppm Ce(CH3CO2)3·H2O
EGR Exhaust Gas Recirculation
EN European Standards
HHO Hydroxy gas
HVO Hydrotreated Vegetable Oil
HVO30 30% HVO and 70% D100
HVO50 50% HVO and 50% D100
IC Internal combustion
ISO International Organization for Standardization
PC Personal computer
THC Total Hydrocarbons
NOx Nitrogen oxides
O2 Oxygen
LONG Longitudinal
LRM Linear regression model
MAPE Mean absolute percentage error
SD Standart deviation
SME Soybean oil methyl ester
SME30 30% SME and 70% D100
SME50 50% SME and 50% D100
SP Sound pressure
TiO2 Titanium (IV) dioxide
TRAV Traverse
WCO Waste cooking oil

Appendix A

Typical results of measurement of vibrations and sound pressure (D100, HVO50 and
SME50) under 20 Nm load and injection timing 10 CAD BTDC, respectively, marking:
red—1 point transverse direction; blue—1 point longitudinal direction; green—2 points
transverse direction; orange—2 points longitudinal direction; orange—sound pressure,
please see Figure A1.
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Figure A1. Typical results of measurement of vibrations and sound pressure (D100, HVO50 and SME50) under 20 Nm load
and injection timing 10 CAD BTDC.
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