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����������
�������

Citation: Dziewit, B.; Kordiaczyńska,
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Abstract: We investigate an extension of the Standard Model with one additional triplet of scalar
bosons. Altogether, the model contains four Higgs bosons. We analyze the associated production of
the doubly charged scalar with the Standard Model gauge bosons and the remaining Higgs bosons
of the model, which are: the light (SM) and heavy neutral scalars and a singly charged scalar. We
estimate, in the context of the present (HL–LHC) and future (FCC–hh) hadron colliders, the most
promising processes in which a single produced doubly charged Higgs boson is involved.

Keywords: theoretical physics; particle physics; Standard Model; Higgs triplets; doubly charged
Higgs bosons; hadron colliders

1. Introduction

Experimental evidence of the Higgs boson’s existence, found at the Large Hadron
Collider (LHC) [1,2], was a quantum leap in particle physics history. Nevertheless, ques-
tions related to the minimal Higgs sector are still open. From this point of view, extensions
of the Standard Model can be realized in two ways: directly, by introducing additional
multiplets, or indirectly, by extending the gauge group (e.g., left right symmetric mod-
els [3–8]). In the first scenario, many Beyond the Standard Model (BSM) theories assume
the existence of additional Higgs bosons [9,10]. In the context of hadron colliders, doubly
charged Higgs bosons [11–13] are especially attractive propositions; they lead to a produc-
tion of same-charged leptons. In various BSM theories, they can occur at a significantly
high rate. Thus, the Higgs sector with the Higgs triplet can lead to a discovery of new
physics effects. In a general outline, triplet representations depend on the hypercharge
Y ≡ 2(Q− T3) [13–16]. In this paper, we will focus on the Higgs Triplet Model (HTM), which
extends the standard Higgs sector by adding one SU(2) scalar triplet (∆) with hypercharge
Y = 2 [10,13]. The importance of investigation processes involving H++ is due to two facts.
First, the triplet vacuum expectation value (VEV) is very small, whereas H++ mass can be
at the level of a few hundred GeV. Such masses of H++ scalars can be probed at the hadron
colliders. Second, processes involving H++ lead to the lepton flavor violation (LFV) as well
as lepton number violating (LNV) processes, which can also be probed at hadron colliders.
In addition, the model provides tiny masses of neutrinos by generating Majorana mass
terms via the Type-II seesaw mechanism. Therefore, neutrino oscillation experiments put
severe constraints on both the VEV v∆ of the triplet scalar and Yukawa couplings.

The doubly charged Higgs bosons can be produced in pairs or as single events as-
sociated with gauge bosons and/or singly charged and neutral scalars. Amid the most
important production channels at hadron colliders, it is worth mentioning the Drell-Yan pro-
cesses via s-channel γ∗/Z∗ or W∗ exchange [17–19], the vector boson fusion process [20,21]
or the gluon fusion process [22–24]. Pair production of doubly charged scalar and its
signature as multi-leptons has been widely studied in the literature [25–38].
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Searches of the charged scalars at the LHC show no significant excess from the SM
backgrounds, thus lower bounds are put on their masses. The ATLAS collaboration set
the lower bound on the mass of doubly charged scalar in the range of 770–870 GeV, as-
suming 100% branching ratios of leptonic modes [39] with

√
s = 13 TeV. Recently, ATLAS

has searched the decay of doubly charged scalar into gauge bosons with multileptons in
final states and established the lower bound on doubly charged scalar as 350 GeV (pair
production) and 230 GeV [40]. The CMS collaboration has also provided lower bounds
that vary between 396–712 GeV for a pair production (assuming 100% branching ratios of
leptons) and 479–746 GeV for an associated production, depending on the decay channel
bounds [41] with

√
s = 13 TeV. In this paper, we analyze the associated production of the

doubly charged scalar with other scalars of the HTM model and/or SM gauge bosons. All
relevant phenomenological constraints on the non-standard neutral and charged Higgs
scalar parameters connected with HTM are taken into account. Among those worth men-
tioning are neutrino oscillations, low energy experiments, the bound on the ρ parameter,
limits on HTM contributions to (g− 2)µ and lepton LFV processes, as well as limits on HTM
parameters coming from collider e+e− and e−e− scatterings. We will present results ob-
tained for HL–LHC

√
s = 14 TeV [42,43] and FCC-hh

√
s = 100 TeV [44–48] proton-proton

collision energies.

2. The Higgs Triplet Model Phenomenological Constraints

To extend the Standard Model, one additional SU(2)L triplet ∆ is introduced. Depend-
ing on the triplet hypercharge Y, this triplet contains neutral, singly and/or doubly charged
scalar fields. In our case, since we are interested in the doubly charged Higgs production,
we chose the Y = 2 and convention Q = 1

2 Y + T3 (where T3 is the third component of the
izospin). So the scalar sector contains one doublet and the mentioned Y = 2 triplet:

Φ =
1√
2

( √
2w+

Φ
vΦ + hΦ + izΦ

)
, ∆ =

1√
2

(
w+

∆

√
2δ++

v∆ + h∆ + iz∆ −w+
∆

)
. (1)

The linear combination of neutral, charged and doubly charged fields of the above
multiplets creates the physical states h (associated with the SM Higgs boson and mass
around 125 GeV), H (heavy neutral boson), and singly H± and doubly charged H±± scalar
particles (see Appendix A.1) and one pseudoscalar.

The entire Lagrangian can be found in [49] and is built from its kinetic potential and
Yukawa parts. The scalar potential and the exact formulas for the scalar particles’ masses
can be found in the Appendix A.1.

In this work, we assume that the non-standard scalar particles’ masses are degen-
erated. This choice is justified since the constraints from the unitarity, T-parameter and
h→ γγ [50,51] process limit the mass gap between the MH , MH± and MH±± to a few
dozens of GeV [52,53].

Other constraints on the model parameters come from the low and high energy
processes after the Yukawa part of the Lagrangian:

L∆
Y =

1
2

y``′L
T
` C−1iσ2∆L`′ + h.c. (2)

This leads to the H±± − li − lj and H± − li − νj vertices (see Appendix A.2). Therefore,
this interaction provides contributions to several lepton flavor violating processes, for
example, the `i → `jγ, `i → `j`k`l , µ→ e conversion. Besides, there are also contributions
to a few standard model lepton scatterings and (g− 2)µ that are mediated by heavy charged
scalars. These phenomenological constraints in the context of HTM have been analysed
in detail in the literature [37]. Studies in [10,36,53,54] point out that H±± production
strongly depends on neutrino oscillations, LHC and e+e− SM processes and low-energy
lepton flavour violating data. It appears that the VEV of v∆ is very small. Due to neutrino
oscillation data, the v∆ minimal value is constrained to be at the (sub)electronvolt level,
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and due to theoretical constraints combined with low-energy neutral and charged processes,
the v∆ upper limit cannot exceed a gigaelectronovolt value. In this work, we take v∆ = 50
eV and v∆ = 0.5 GeV as reference values.

3. Results

Let us first analyse the production 2 → 2 and 2 → 3 processes at hadron collid-
ers where a single H±± boson and SM gauge bosons or other Higgs scalars of the HTM
model are simultaneously produced. We use the CTEQ6L1 Parton Distribution Functions
(PDF) [55,56] and basic MadGraph cuts. In Table 1, we present production rates for eleven
non-vanishing processes. Other processes with two neutral bosons production, such as,
for example, pp → H±±Zh, are forbidden by the charge conservation principle. For the
reader’s convenience, the most promising processes are given in blue. Corresponding
Feynman diagrams, which contribute to the processes shown in Table 1, are presented in the
Appendix A.3. In this work, calculations have been performed using the MadGraph [57]
and Pythia [58,59] programs. The UFO files were generated using FeynRules [60] and were
built on our model file [37,53,61], based on the default Standard Model implementation.

The dominant process associated with a single H±± production is pp → H±±H∓.
The expected cross sections for the given Higgs boson masses are 8.13× 10−5 for

√
s = 14 TeV,

and 8.78× 10−3 pb for
√

s = 100 TeV. With assumed luminosity L = 4 ab−1 = 4000 f b−1

for HL–LHC [43] and L = 25 ab−1 = 25000 f b−1 for FCC–hh [47], it converts to a total
number of ∼300 and ∼2× 105 events at HL–LHC and FCC–hh, respectively.

The following ‘blue’ processes in Table 1 are connected with 2→ 3 processes. The pro-
cesses that provide negligible cross sections can be understood by analysing individual
Feynman vertices; see the Appendix A.3 and Table 2. As we can see in Table 2, many
vertices are proportional to VEV v∆, which, as explained in Sections 1 and 2, is at the level
of (sub)eV-GeV.

Table 1. Cross section for a production of a single H±± boson with associated SM gauge bosons and other HTM scalars at the
pp colliders in 2 → 2 and 2 → 3 processes. Cross sections are calculated for

√
s = 14 TeV (100 TeV) and are given in pb.

Charged scalar masses are degenerated, MH±± = MH± = 1000 GeV.

Process Cross Section [pb] Process Cross Section [pb]

(I) pp→ H±±W∓ ∼10−22
(I I) pp→ H±±H∓ 8.13× 10−5

(∼10−20) (8.78× 10−3)

(I I I) pp→ H±±ZW∓ ∼10−12
(IV) pp→ H±±ZH∓ 6.29× 10−7

(2.7× 10−9) (1.56× 10−4)

(V) pp→ H±±W∓W∓ ∼10−10
(VI) pp→ H±±W∓h ∼10−12

(1.87× 10−9) (3.47× 10−8)

(VII) pp→ H±±W∓H 1.35× 10−6
(VII I) pp→ H±±W∓H∓ 2.88× 10−6

(2.44× 10−4) (6.81× 10−4)

(IX) pp→ H±±hH∓ 1.07× 10−7 )
(X) pp→ H±±HH∓ ∼10−29

(1.63× 10−6 (∼10−26)

(XI) pp→ H±±H∓H∓ ∼10−31

(∼10−28)
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Table 2. Couplings for the non standard scalars: H± (charged, top table) and H (neutral, bottom table).

Decay Channel Coupling Decay Channel Coupling Decay Channel Coupling

H± →W± h ∼v∆ H± →W± γ ∼v∆ H± →W± Z ∼v∆

H+ → l+i ν̄j ∼y`i`j
∼ 1

v∆
H+ → l+i νj ∼ v∆

vΦ
H± → qi q̄j ∼

√
2

vφ
CKM

H → h h ∼v∆ H →W+ W− ∼v∆ H → Z Z ∼v∆
H → l+ l− ∼v∆ H → q q̄ ∼v∆

In Figure 1, the MH±± mass dependence of the pp→ H±±H∓ cross section is given.
As we can see, it depends strongly on the doubly charged Higgs boson mass. Note that
in Table 1, results are given for MH±± = MH± = 1000 GeV. However, as discussed in the
Introduction and in [37], smaller masses of heavy Higgs bosons are still possible, so signal
predictions given for processes in Table 1 can be even larger.

0.01

0.1

1

10

100

400 500 600 700 800 900 1000 1100 1200

σ
[fb

]

MH±± [GeV]

pp→ H±±H∓

14 TeV
100 TeV

Figure 1. Cross section for pp→ H±±H∓ process as a function of MH±± . In the calculations, MH±

is taken to be 1000 GeV.

Concerning the decay modes of the HTM Higgs bosons, in the case of doubly charged
Higgs boson H±±, we discussed the decay channels in detail in Section 5.2 of our previous
work [37]. Here, we initiate a similar analysis for singly charged H± and heavy neutral
scalar bosons H. First, possible decay modes of H± and H with corresponding strengths of
interactions (couplings) are given in Table 2.

As one can find in Table 2, singly charged scalar H± coupling can break the lepton
number (H+ → l+i νj) and lepton flavour number (H+ → l+i ν̃j). These couplings also
contribute to muon (g− 2)µ, which was discussed in the Appendix of [37].

As we mentioned in Section 2, the triplet VEV v∆ is bounded from below due to the
LFV processes and from the top because of the ρ parameter constrain. From Table 2 we
can see that H± decay depends on v∆, as well as the doubly charged scalar decay modes
(see Figure 11 in [37]). Due to the assumed scalar’s mass degeneration, decays to the
non-standard scalars are not considered, even though those might be significant as off-shell
processes and are worth discussion in future studies.

Since H±± and H± decays depend on the triplet VEV, to examine different decay
modes, we choose two values; v∆ = 50 eV and v∆ =0.5 GeV. We assume degenerated mass
scenario MH±± = MH± = MH . For v∆ = 50 eV, the doubly charged scalar H±± decays
dominantly to a pair of leptons, and H± decays to a charged lepton and an (anti)neutrino.
Branching ratios for particular flavours depend on the neutrino mass hierarchy and mixing
angles. In the second case, v∆ = 0.5 GeV, H±± decays to a gauge boson pair W±W±.
Regarding the singly charged scalar H±, the situation is a bit more complicated as shown in
Figure 2. For clarity, we present the dominant decay channels for H±± and H± in Table 3.
Other possible final states are negligible.
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Figure 2. Branching ratios for H± (charged, a) and H (neutral, b) Higgs boson decays in HTM.

Table 3. Dominant decays of H± and H±± for different values of triplet VEV, v∆ = 50 eV
and v∆ = 0.5 GeV.

v∆ = 50 eV H± → l−i νj / l+i ν̃j H±± → l±i l±j
W± Z

v∆ = 0.5 GeV H± → W± h H±± → W±W±

qi q̄j

The final state for the above processes depends on the SM and heavy scalar par-
ticles’ decays. For the purpose of this work, we chose the least complicated case—the
pp → H±±H∓ process. As one can see in Table 3, decay modes depend on the triplet
VEV. Moreover, in the same table we presented the simplified relationship between the
scalar-leptons couplings and triplet and doublet VEVs. In the Table 4 we present the cross
section for the intermediate states and corresponding background. In the Appendix A.2,
we demonstrate more exact formulas. Those vertices depend on the PMNS matrix—on neu-
trino mixing parameters and mass hierarchy. Because decay to a l±i l±j pair depends strongly
on the neutrino parameters, we decided to follow the convention adopted in [37] and find
the parameter space where decay to same flavour lepton is most probable. That means:

• to maximize the e± e± e∓ signal: mν3 = 0 (inverted neutrino mass hierarchy), α1 = π
2 ,

α2 = π
2 ,

• to maximize the µ±µ±µ∓ signal: mν1 = 0.015 eV (normal neutrino mass hierarchy),
α1 = 0, α2 = 0,

where α1, α2 are Majorana phases in the PMNS matrix (see Equation (A9)) and other
neutrino parameters are taken from nu-fit.org (accessed on 2 July 2021) [62].

nu-fit.org
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Table 4. Singly and doubly charged scalar production pp → H±±H∓ with primary decays to the
SM particles for CM energy 14 TeV (100 TeV).

v∆ Process: Signal [pb]: Background [pb]:

50 eV pp→ H±±H∓ →
e± e± e∓ �ET

1.79 × 10−5 5.05 × 10−2

(2.00 × 10−3) (3.15 × 10−1)

µ±µ±µ∓�ET
1.43 × 10−5 5.05 × 10−2

(1.55 × 10−3) (3.15 × 10−1)

W±W±W∓ Z 3.62 × 10−5 7.00 × 10−4

(3.93 × 10−3) (1.60 × 10−2)

0.5 GeV pp→ H±±H∓ → W±W±W∓h 3.53 × 10−5 6.19 × 10−5

(3.84 × 10−3) (1.12 × 10−3)

W±W± jj 3.68 × 10−10 3.09 × 10−1

(4.01 × 10−8) (5.65)

In Table 4, we present the above process with primary scalar particles and Standard
Model particles. As one can see, for v∆ = 50 eV, the possible final state is l±l±l∓�ET . In
Table 5, we present the results after using the following cuts:

• Lepton identification criteria: transverse momentum pT ≥ 20 GeV, pseudorapidity
|η| < 2.5;

• Hard pT cuts: pT(l1) > 30 GeV, pT(l2) > 30 GeV, pT(l3) > 20 GeV;
• Detector efficiency for electron (muon): 70% (90%);
• Lepton–lepton separation: ∆Rll ≥ 0.2;
• Z-veto—the invariant mass of any same flavour and opposite charge lepton should

satisfy the condition: |ml1l2 −MZ1 | ≥ 6 ΓZ1 .

The signal after the above cuts for v∆ = 50 eV is still negligible in comparison to the
background. However, we are planning to repeat the above studies for 0.5 GeV, since that
case looks much more promising.

Table 5. Results from Table 4 for v∆ = 50 eV, after cuts. Centre mass energy:
√

s = 14 TeV.

Process:
Signal: Background:

Before Cuts [pb]: After Cuts [fb]: Before Cuts [pb]: After Cuts [fb]:

e± e± e∓ �ET 1.79 × 10−5 5.46 × 10−3 5.05 × 10−2 0.94

µ± µ± µ∓ �ET 1.43 × 10−5 9.68 × 10−3 5.05 × 10−2 1.77

4. Summary and Outlook

Observation of the Higgs boson opens up possibilities for other charged and neutral
scalars to be detected at present and future colliders. In this paper, we studied the associated
production of a doubly charged scalar within the Higgs triplet model at the pp colliders and
with a centre of mass energy of 14 (HL–LHC) and 100 TeV (FCC–hh). We analysed all the
associated processes of H±± with gauge and scalar bosons and found that five of them are
worth further study. We found that the largest cross section is for the pp→ H±±H± process.
Our preliminary studies show that the background signals for the considered processes
are substantial, and a more detailed analysis of kinematic conditions and appropriate
distributions or choice of final states, which can enhance new physics signals over the SM
background, are needed and will be undertaken in the near future.

Further, we analyzed the dominant decay modes of singly charged and heavy neutral
scalars within the model. The final state’s signature at the hadron colliders will depend
strongly on HTM VEV; we discuss possible decay scenarios for v∆ = 50 eV and v∆ = 0.5 GeV.
For v∆ = 50 eV, the dominant decay modes are leptonic, while for v∆ = 0.5 GeV the
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dominant modes involve SM gauge bosons. Scenarios with off-shell, non-standard scalar
decays will also be compelling to explore.

We have examined the v∆ = 50 eV. Even though applied cuts slightly improved the
significance, the result is still very low compared to the background. We are planning to
repeat the detailed studies with appropriate cuts for v∆ = 0.5 GeV, which seems to be more
attractive in comparison to the background.

As an outlook similar to the work in [37], for a case of doubly charged Higgs boson
pair production at hadron colliders, we should consider how HTM signals—where a single
H±± Higgs boson is involved—can be discriminated from other models, including H±±

scalars, notably the Left–Right Symmetric Models [21,52,63–66].
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Appendix A

Appendix A.1. The Scalar Potential of the Model

The scalar potential can be expressed as [49]:

V = −m2
Φ

(
Φ†Φ

)
+

λ

4

(
Φ†Φ

)2
+ M2

∆ Tr
(

∆†∆
)
+
[
µ
(

ΦTiσ2∆†Φ
)
+ h.c.

]
+λ1

(
Φ†Φ

)
Tr
(

∆†∆
)
+ λ2

[
Tr
(

∆†∆
)]2

+ λ3 Tr
[(

∆†∆
)2
]
+ λ4Φ†∆∆†Φ ,(A1)

where Φ indicates SM doublet, µ, λ and λi (i = 1, . . . , 4) are real dimensionless couplings.
The m2

Φ and M2
∆ can be expressed as functions of model parameters together with triplet

and doublet VEV’s (v∆, vΦ):

m2
Φ =

λ

4
v2

Φ +
(λ1 + λ4)

2
v2

∆ −
√

2µ v∆ , (A2)

M2
∆ = −(λ2 + λ3) v2

∆ −
(λ1 + λ4)

2
v2

Φ +
µ√
2

v2
Φ

v∆
. (A3)
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Physical states are obtained by a rotation of the triplet and doublet fields. Here, we
are presenting that dependence in a simplified way:

h = cos α hφ + sin α h∆,
H = − sin α hφ + cos α h∆,
H± = − sin β w±Φ + cos β w±∆ ,
H±± = δ±±,

(A4)

where α and β are functions of the scalar potential parameters and multiplets VEV’s.
The exact formulas can be found in [49] and in the Appendix of [37]. In this paper, only the

approximation for v∆ � vΦ: sin α ∼ 2 v∆
vΦ

[53], tan β =
√

2v∆
vΦ

is presented. The physical
states masses are as follows:

M2
h = λv2

Φ cos2α +

(
µv2

Φ√
2v∆

+ 2v2
∆(λ2 + λ3)

)
sin2α + 2

(
vΦv∆(λ1 + λ4)−

√
2µvΦ

)
cos α sin α,

M2
H = λv2

Φ sin2α +

(
µv2

Φ√
2v∆

+ 2v2
∆(λ2 + λ3)

)
cos2α− 2

(
vΦv∆(λ1 + λ4)−

√
2µvΦ

)
cos α sin α,

M2
H± = (2

√
2µ−λ4v∆)

4v∆
(v2

Φ + 2v2
∆),

M2
H±± =

µv2
Φ√

2v∆
− λ4

2 v2
Φ − λ3v2

∆.
(A5)

Appendix A.2. Scalar-Leptons Couplings

Here we present the exact formulas for the H±± − li − lj and H± − li − νj vertices,
derived from the Yukawa Lagrangiang for the scalar triplet ∆ (see Equation (2)):

V±± =

{
l+i − l+j − H−− = i

(
Yij + Yji

)
,

l−i − l−j − H++ = i
(
Y∗ij + Y∗ji

)
,

(A6)

V±∆ =

 ν̃i − l+j − H− = i√
2

cos β
(
Yij + Yji

)
,

νi − l−j − H+ = i√
2

cos β
(
Y∗ij + Y∗ji

)
,

(A7)

where Yij is the Yukawa coupling, and from the neutrino mass diagonalisation we ob-
tain [37] the following formula. mνi means neutrino mass and VPMNS is the Pontecorvo–
Maki–Nakagawa–Sakata matrix, parametrised as in the Equation (A9) (sij, cij denote sin(θij)
/ cos(θij)).

Yij =
1√
2v∆

V∗PMNS Dν V†
PMNS , Dν = diag{mν1 , mν2 .mν3}, (A8)

VPMNS =

 c12c13eiα1 s12c13eiα2 s13e−iδCP

(−s12c23 − c12s23s13eiδCP)eiα1 (c12c23 − s12s23s13eiδCP)eiα2 s23c13
(s12s23 − c12c23s13eiδCP)eiα1 (−c12s23 − s12c23s13eiδCP)eiα2 c23c13

. (A9)

Appendix A.3. Feynman Diagrams

Below, we list the most relevant diagrams which contribute to the processes considered
in the work, in which one doubly charged Higgs boson is present (so those marked with
blue in Table 1). We keep the same numeration as in the mentioned table, so we had chosen
the processes (I I), (IV), (VII), (VII I) and (IX).



Symmetry 2021, 13, 1240 9 of 13

(I I) pp→ H±±H∓
qi

q̄j

H±±

H±,W±

H∓

(a)
(IV) pp→ H±±ZH∓

qi

q̄j

Z

H∓

H±±

H±,W± H±±

qi

q̄j

H∓

Z

H±±

H±,W± H±,W±
H∓,W∓

qi

q̄j

Z

H±±

H±,W±

H∓

(b) (c) (d)
qi

q̄j

W±

H±±

Z

H∓

qi

qj

q′
Z

H±±

H∓W±, H±

(e) (f)
(VII) pp→ H±±W∓H

qi

q̄j

W∓

H

H±±

H±,W± H±,W±

qi

q̄j

H

W∓

H±±

H±,W± H±±
H∓,W∓

qi

q̄j

W∓

H±±

H±,W±

H

(g) (h) (i)
qi

q̄j

W±

H±±

W∓

H

qi

qj

q′
H

H±±

W∓W±, H±

(j) (k)
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(VII I) pp→ H±±W∓H∓

q

q̄

W∓

H∓

H±±

h,H, γ, Z
H±,W±

q

q̄

H∓

W∓

H±±

h,H, γ, Z
H±,W± H∓∓

q

q̄

W∓

H±±

h,H, γ, Z

H∓

(l) (m) (n)
q

q̄

γ, Z

H∓

W∓

H±±

qi

qj

q′

W∓/H∓

H∓/W∓

H±±W±, H±

(o) (p)
(IX) pp→ H±±hH∓

qi

q̄j

h

H∓

H±±

H±,W± H±±

qi

q̄j

h

H∓

H±±

H±,W± H±,W±
H∓,W∓

qi

q̄j

h

H±±

H±,W±

H∓

(r) (s) (t)
qi

q̄j

H±

H±±

h

H∓

qi

qj

q′
h

H∓

H±±W±, H±

(u) (w)
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(XI) pp→ H±±H∓H∓

q

q̄

H∓

H∓

H±±

h,H, γ, Z
H±,W± H∓∓

q

q̄

H∓

H±±

h,H, γ, Z

H∓

(l) (m)
q

q̄

h,H

H∓

H∓

H±±

qi

qj

q′
H∓

H∓

H±±W±, H±

(n) (o)

Figure A1. Feynman diagrams for singly and doubly charged scalars production in pp collision, associated with other spin 0 particles
(gauge and scalar bosons).
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65. Bambhaniya, G.; Chakrabortty, J.; Gluza, J.; Jeliński, T.; Kordiaczynska, M. Lowest limits on the doubly charged Higgs boson

masses in the minimal left-right symmetric model. Phys. Rev. 2014, D90, 095003. [CrossRef]
66. Chakrabortty, J.; Gluza, J.; Jelinski, T.; Srivastava, T. Theoretical constraints on masses of heavy particles in Left-Right Symmetric

Models. Phys. Lett. 2016, B759, 361–368. [CrossRef]

https://fcc-cdr.web.cern.ch/
http://dx.doi.org/10.1103/PhysRevD.84.095005
http://dx.doi.org/10.1103/PhysRevD.86.035015
http://dx.doi.org/10.1007/JHEP11(2012)106
http://dx.doi.org/10.3390/sym12010153
http://dx.doi.org/10.1103/PhysRevD.94.015015
http://dx.doi.org/10.3389/fphy.2018.00040
http://dx.doi.org/10.1088/1126-6708/2002/07/012
http://dx.doi.org/10.1007/JHEP07(2014)079
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://dx.doi.org/10.1103/PhysRevD.45.1693
http://www.ncbi.nlm.nih.gov/pubmed/10014539
http://dx.doi.org/10.1007/JHEP01(2019)106
http://dx.doi.org/10.1007/JHEP07(2012)038
http://dx.doi.org/10.1007/JHEP05(2014)033
http://dx.doi.org/10.1103/PhysRevD.90.095003
http://dx.doi.org/10.1016/j.physletb.2016.05.092

	Introduction
	The Higgs Triplet Model Phenomenological Constraints
	Results
	Summary and Outlook
	
	The Scalar Potential of the Model 
	Scalar-Leptons Couplings 
	Feynman Diagrams 

	References

