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Abstract: The technique of quantum electrodynamics (QED) calculations of energy levels in the
helium atom is reviewed. The calculations start with the solution of the Schrödinger equation and
account for relativistic and QED effects by perturbation expansion in the fine structure constant α.
The nonrelativistic wave function is represented as a linear combination of basis functions depending
on all three interparticle radial distances, r1, r2 and r = |~r1 −~r2|. The choice of the exponential
basis functions of the form exp(−αr1 − βr2 − γr) allows us to construct an accurate and compact
representation of the nonrelativistic wave function and to efficiently compute matrix elements of
numerous singular operators representing relativistic and QED effects. Calculations of the leading
QED effects of order α5m (where m is the electron mass) are complemented with the systematic
treatment of higher-order α6m and α7m QED effects.

Keywords: helium atom; Lamb shift; nonrelativistic QED

1. Introduction

The helium atom is the simplest many-body atomic system in nature. Since the advent
of quantum mechanics, helium was used as a benchmark case for developing and testing
various calculational approaches of many-body atomic theory. Today, the nonrelativistic
energy of various helium electronic states can be computed with an essentially arbitrary
numerical accuracy [1,2]. The same also holds for the leading-order relativistic correction.
Subsequently, the quantum electrodynamics (QED) effects in the atomic structure of helium
can be clearly identified and studied by the comparison of theoretical predictions with the
large body of available experimental data. Experimental investigations of helium spectra
have progressed rapidly over the years, recently reaching the precision of a few tens of
Hertz [3].

For light atomic systems, such as helium, relativistic and QED corrections to energy
levels can be systematically accounted for by the perturbation expansion in the fine struc-
ture constant α. The starting point of the expansion is the nonrelativistic energy of order
α2 m (=2 Ry, where m is the electron mass and Ry is the Rydberg energy). The leading
relativistic correction is of order α4 m, whereas QED effects enter first in order α5 m. A
large body of work has been done in recent years to calculate QED effects in helium
spectra. Extensive calculations of helium energies were accomplished by Gordon Drake
et al. [4–6]. Their calculations are complete through order α5 m and approximately include
some higher-order QED effects. The next-order α6 m QED correction was, for a long time,
known only for the fine structure intervals [7,8]. For individual energy levels, these effects
were derived and calculated numerically by one of us (K.P.) [9–11]. The higher-order α7 m
QED effects were evaluated by us first for the fine structure [12–14] and just recently for
the triplet n = 2 states of helium [15–17].
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The purpose of this article is to review and systematize the technique of calculations
of the helium atomic structure, developed in numerous investigations over the last three
decades. The starting point of the calculations is the Schrödinger equation, which is solved
variationally after expanding the wave function into a finite set of explicitly correlated
basis functions depending on all three interparticle radial distances. It has been known for
a long time [18] that the inclusion of the interelectronic distance explicitly into the basis set
is crucially important for constructing an accurate representation of the two-electron wave
function. Moreover, it has also long been recognized [19] that an accurate wave function
representation should satisfy the so-called cusp conditions at the two-particle coalescence
points |~ri −~rj| = 0. The cusp condition is expressed [20], after averaging over angles and
for the singlet states, as

ψ(S)(r) =
r→0

ψ(S)(0)
(
1 + λ r

)
+ O(r2) , (1)

where r is an interparticle distance and the parameter λ = 1/2 for the electron–electron
and λ = −Z for the electron–nucleus cusp (where Z is the nuclear charge number).

The two most successful basis sets used in the literature for high-precision calculations
of the atomic structure of helium are: the Hylleraas basis set adopted by Drake et al. [4–6]
and the exponential basis set put forward by Korobov [21,22] and used in numerous calcu-
lations of our group. Both these basis sets are explicitly correlated and are able to reproduce
the cusp conditions with great accuracy. In the present work we will concentrate on the
exponential basis set, because only this basis has been successfully used in calculations of
higher-order QED effects so far.

2. Wave Functions

The spatial wave function ψLML with a specified total angular momentum L and its
momentum projection ML for a two-electron atom is standardly represented as

ψLML = ∑
l1l2

fl1l2(r1, r2, r)Yl1l2
LML

(r̂1, r̂2) , (2)

where fl1l2 is the radial part of the wave function,~r =~r1 −~r2, and r̂ =~r/r. Furthermore,
Yl1l2

LML
are the bipolar spherical harmonics,

Yl1l2
LML

(r̂1, r̂2) = ∑
m1m2

〈l1m1l2m2|LML〉Yl1m1(r̂1)Yl2m2(r̂2) , (3)

where 〈l1m1l2m2|lm〉 is the Clebsch–Gordan coefficient and Ylm are the spherical harmonics.
We stress that the radial part of the wave function is assumed to be explicitly correlated,
that is, the function f depends on all interparticle distances, r1, r2, and r. In this case, the
sum over l1 and l2 in Equation (2) is restricted [23] by two conditions,

(A) : l1 + l2 = L , or (B) : l1 + l2 = L + 1 , (4)

which lead to wave functions of different parities (−1)l1+l2 . The bipolar spherical harmon-
ics are usually handled in the spherical coordinates using the apparatus of Racah algebra,
see, for example, Ref. [24]. We find, however, that calculations with explicitly correlated
functions are more conveniently performed in Cartesian coordinates. One of the reasons
is that the action of numerous momentum operators encountered in calculations is most
easily evaluated in the Cartesian coordinate system. The corresponding calculations can
easily be automatized and performed with the help of systems of symbolic computations.

For this purpose, the expansion of the wave function is more conveniently made in terms
of the bipolar solid harmonics. In order to define them, we start with the solid harmonics,
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YLM(~r) =
√

4 π AL rL YLM(r̂) , (5)

where the normalization coefficient AL is fixed below. The solid harmonics obey the
following summation rule,

1
2 L + 1

L

∑
M=−L

Y∗LM(~r ′)YLM(~r) = A2
L r′L rL PL(r̂′ · r̂) = (r′i r′j r′k . . .)(L) (ri rj rk . . .)(L) , (6)

where (ri rj rk . . .)(L) is a traceless and symmetric tensor of the order L constructed from
components of the vector~r with Cartesian indices i, j, k . . .. and the summation over these
Cartesian indices is implicit. The last equation determines AL, which is related to the
coefficient of xL in the Legendre polynomial PL(x), specifically,

A−2
L =

1
2L

(
2 L
L

)
. (7)

We now define the bipolar solid harmonics Y l1l2
LML

as

Y l1l2
LML

(~r1,~r2) =
l1+l2=L

1
L!
(
~r1 · ~∇ξ

)l1 (~r2 · ~∇ξ

)l2 YLM(~ξ) , (8)

Y l1l2
LML

(~r1,~r2) =
l1+l2=L+1

1
L!
(
~r1 · ~∇ξ

)l1−1 (
~r2 · ~∇ξ

)l2−1(~R · ~∇ξ

)
YLM(~ξ) , (9)

where ~R ≡~r1 ×~r2, ~ξ is an arbitrary vector, and the right-hand-side of the above equations
does not depend on ~ξ after the L-fold differentiation.

The bipolar solid harmonics are proportional to the corresponding bipolar spherical
harmonics with a prefactor that does not depend on angles, so their angular parts are
exactly the same. Now, using Equation (6), we obtain that the bipolar solid harmonics
Y l1l2

LML
obey the analogous summation rule,

1
2 L + 1

L

∑
ML=−L

Y l′1l′2
∗

LML
(~r ′1,~r ′2)Y

l1l2
LML

(~r1,~r2) = Y
l′1l′2
∗

i1..iL
(~r ′1,~r ′2)Y

l1l2
i1...iL

(~r1,~r2) , (10)

where Y l1l2
i1...iL

are the symmetric and traceless tensors of rank L with Cartesian indices i1 . . . iL,

Y l1l2
i1...iL

(~r1,~r2) =
l1+l2=L

(ri1
1 . . . r

il1
1 r

il1+1
2 . . . riL

2 )(L) , (11)

Y l1l2
i1...iL

(~r1,~r2) =
l1+l2=L−1

(ri1
1 . . . r

il1
1 r

il1+1
2 . . . riL−1

2 RiL)(L) . (12)

The summation formula (10) shows that the matrix elements with the spatial wave function

ψLML = ∑
l1l2

fl1l2(r1, r2, r)Y l1l2
LML

(~r1,~r2) (13)

can be represented in terms of matrix elements with the Cartesian wave function

ψi1i2..iL = ∑
l1l2

Fl1l2(r1, r2, r)Y l1l2
i1i2...iL

(~r1,~r2) (14)

as follows

1
2 L + 1 ∑

ML

〈ψ′LML
|Q|ψLML〉 = 〈ψ

′i1i2..iL |Q|ψi1i2..iL〉 , (15)
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where Q is an arbitrary spatial operator. Equation (14) is the Cartesian representation of
the spatial wave function used in the present work.

We now present explicit formulas for the Cartesian wave functions for different values
of the angular momentum and parity. For L = 0 we have l1 = l2 = 0 and only even parity.
The wave function is just a scalar,

ψ
(

1,3Se
)
= F(r1, r2, r)± (1↔ 2) , (16)

where the upper sign in ± corresponds to the singlet and the lower sign to the triplet state.
For L = 1, we have (l1, l2) = (0, 1), (1, 0) for the odd parity and (l1, l2) = (1, 1) for the even
parity. The corresponding wave functions are vectors,

~ψ
(

1,3Po
)

=~r1 F(r1, r2, r)± (1↔ 2) , (17)

~ψ
(

1,3Pe
)

=
(
~r1 ×~r2

)
F(r1, r2, r)± (1↔ 2) . (18)

The L = 2 odd and even wave functions are second-rank tensors,

ψij
(

1,3Do
)

=
[
ri

1
(
~r1 ×~r2

)j
+ rj

1
(
~r1 ×~r2

)i] F± (1↔ 2) , (19)

ψij
(

1,3De
)

=
(
ri

1rj
1
)(2) F +

(
ri

1rj
2
)(2) G± (1↔ 2) , (20)

where we suppressed arguments of the radial functions F and G and the elementary
second-rank tensors are defined as(

ri
arj

b
)(2)

=
1
2

(
ri

arj
b + ri

brj
a −

2
3

δij~ra ·~rb

)
. (21)

Explicit expressions for the L = 3 and L = 4 functions can be found in Appendix A of
Ref. [25]. The spatial wave functions are normalized by〈

ψ′(S)|ψ(S)
〉
=
〈
ψ′i(P)|ψi(P)

〉
=
〈
ψ′ij(D)|ψij(D)

〉
= 1 . (22)

3. Evaluation of Matrix Elements

The spin-dependent wave function, with definite values of the total momentum J, its
projection M, the angular momentum L, and the spin S, is given by

ψJM = ∑
ML MS

〈LMLSMS|JM〉ψLML χSMS , (23)

where MS is the spin projection, χSMS is the spin function, and ψLML is the spatial wave
function. As described in the previous section, in our calculations we evaluate all matrix
elements in Cartesian coordinates. The spatial wave function with the angular momentum
L is represented in the form of Equation (14); namely, as a traceless tensor of rank L,
symmetric in all Cartesian indices carried by~r1,~r2, and~r1 ×~r2. In addition, it is assumed
that the wave function has a definite symmetry with respect to~r1 ↔~r2.

The norm and the expectation value of any spin-independent operator are immediately
reduced to the spatial matrix element,

〈ψJM|Q|ψJM〉 = 〈ψi1i2..iL |Q|ψi1i2...iL〉 , (24)

where the summation over Cartesian indices is implicit. This equation is sufficient for
determining the nonrelativistic wave function and the nonrelativistic energy. The relativistic
and QED corrections involve operators depending on the electron spin. The expectation



Symmetry 2021, 13, 1246 5 of 26

value of an arbitrary operator Q on a state with definite J, for the singlet S = 0 states,
is expressed as

1
2J + 1 ∑

M
〈ψJM|Q|ψJM〉 = Tr

[
〈ψi1i2..iL |Q|ψi1i2...iL〉

(
I −

~S 2

2

)]
, (25)

where I is the unity matrix, ~J = ~L + ~S, ~S = (~σ1 +~σ2)/2, and the trace is performed in the
4-dimensional space of two spins. Further evaluation of the matrix element proceeds by
performing the trace of the operators in the spin space, with help of the following trace rules,

Tr I = 4 , (26)

Tr Si = 0 , (27)

Tr Si Sj = 2 δij , (28)

Tr Si Sj Sk = i εijk , (29)

Tr Si Sj Sk Sl = δij δkl + δjk δil . (30)

In the case of a spin-independent operator Q, Equation (25) is reduced to Equation (24).
For the triplet states, one considers three values of J = L− 1, L, L + 1. The expectation

value then takes the form

〈ψ|Q|ψ〉J = Tr
[
〈ψji2..iL |Q|ψii2...iL〉

( δij

3
~S 2
(1

2
− AJL − BJL

)
+ Si Sj AJL + Sj Si BJL

)]
.

(31)

For the spin-independent operators, this equation is equivalent to Equation (24). The
coefficients AJL and BJL are obtained by considering two particular cases, Q = LiSi and
Q = (Li Lj)(2) (Si Sj)(2). The left-hand-side of Equation (31) is then immediately expressed
in terms of J and L, whereas the right-hand-side is evaluated by using

−i εijk 〈ψii2..iL |Lj|ψki2...iL〉 = (L + 1) 〈ψ|ψ〉 , (32)

〈ψii2..iL |(Li Lj)(2)|ψji2...iL〉 = − (L + 1) (2 L + 3)
6

〈ψ|ψ〉 . (33)

This consideration gives

AJL =
L

L + 1

{
−2 L + 1

2 L + 3
, 1 , 0

}
, (34)

BJL =
1

L + 1

{
2 L

2 L + 3
, L− 1 , −L− 1

}
, (35)

for J = L + 1, L, and L− 1, correspondingly. These are all the formulas needed to factorize
out the spin dependence of matrix elements and to express them in terms of spatial integrals.

The expectation values of an arbitrary operator Q for the singlet and triplet wave func-
tions are obtained from Equations (25) and (31). We now write explicitly the corresponding
expressions. The results for the S states are

〈1S0|Q|1S0〉 = Tr
[
〈1S|Q|1S〉

(
I − S2

2

)]
, (36)

〈3S1|Q|3S1〉 = Tr
[
〈3S|Q|3S〉 S2

6

]
. (37)



Symmetry 2021, 13, 1246 6 of 26

For the P states, we obtain

〈1P1|Q|1P1〉 = Tr
[
〈1Pj|Q|1Pi〉 δij

(
I − S2

2

)]
, (38)

〈3P0|Q|3P0〉 = Tr
[
〈3Pj|Q|3Pi〉

(
δij S2

2
− Sj Si

)]
, (39)

〈3P1|Q|3P1〉 = Tr
[
〈3Pj|Q|3Pi〉 1

2
Si Sj

]
, (40)

〈3P2|Q|3P2〉 = Tr
[
〈3Pj|Q|3Pi〉 1

10

(
2 S2 δij − 3 Si Sj + 2 Sj Si

)]
. (41)

The results for the D states are

〈1D2|Q|1D2〉 = Tr
[
〈1Dij|Q|1Dij〉

(
I − 1

2
S 2
)]

, (42)

〈3D1|Q|3D1〉 = Tr
[
〈3Djk|Q|3Dik〉

(1
2

δij S 2 − Sj Si
)]

, (43)

〈3D2|Q|3D2〉 = Tr
[
〈3Djk|Q|3Dik〉

(
−1

6
δij S 2 +

2
3

Si Sj +
1
3

Sj Si
)]

, (44)

〈3D3|Q|3D3〉 = Tr
[
〈3Djk|Q|3Dik〉

(11
42

δij S 2 − 10
21

Si Sj +
4
21

Sj Si
)]

. (45)

4. Integrals with Exponential Basis Functions

The radial parts of the wave function are represented as linear combinations of the
exponential basis functions,

F(r1, r2, r) =
N

∑
k=1

ck e−αkr1−βkr2−γkr , (46)

where ck are linear coefficients, N is the size of the basis, and αk, βk, and γk are nonlinear
parameters obtained in the process of the basis optimization. One of the great features of
the exponential basis functions is that the evaluation of radial integrals is very simple. A
calculation of radial matrix elements of various operators with wave functions F(r1, r2, r)
is reduced to the evaluation of the integrals I(i, j, k),

I(i, j, k) =
1

16π2

∫
d3r1

∫
d3r2 ri−1

1 rj−1
2 rk−1e−αr1−βr2−γr . (47)

For matrix elements of the nonrelativistic Hamiltonian, only integrals with non-
negative values of i, j and k are required. All such integrals can be obtained by differentia-
tion of the master integral I(0, 0, 0) over the nonlinear parameters,

I(ni, nj, nk) = (−1)ni+nj+nk
∂ni

∂αni

∂nj

∂βnj

∂nk

∂γnk
I(0, 0, 0) , (48)

for ni, nj, nk ≥ 0. The expression for the master integral I(0, 0, 0) is very simple:

I(0, 0, 0) =
1

(α + β)(β + γ)(γ + α)
. (49)

Matrix elements of relativistic corrections involve integrals with additional inverse
powers of r1, r2 and r, whose evaluation requires two additional master integrals. Their
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expression can be obtained by integrating Equation (49) with respect to the corresponding
nonlinear parameters. The results are:

I(0, 0,−1) =
1

(α + β)(α− β)
ln
(

α + γ

β + γ

)
, (50)

I(−1, 0,−1) =
1

2 β

[
π2

6
+

1
2

ln2
(

α + β

β + γ

)
+ Li2

(
1− α + γ

α + β

)
+ Li2

(
1− α + γ

β + γ

)]
, (51)

where Li2 is the dilogarithm function [26]. Other integrals for relativistic corrections are
obtained by differentiating the above formulas for master integrals.

We note that Equation (50) contains a spurious singularity at α = β. The zero in the
denominator is compensated for by the vanishing logarithm function and thus is not a real
singularity but can lead to numerical instabilities. In order to transform Equation (50) to an
explicitly regular form, we introduce a regularized logarithm function ln1(x) by separating
out the first term of the Taylor expansion,

ln(1 + x) ≡ x ln1(x) . (52)

Introducing ln1(x) with x = (α − β)/(β + γ) in Equation (50), we obtain a regu-
lar representation of this formula. In practical calculations, we encounter more spuri-
ous singularities of this kind. They are eliminated with the help of functions lnn(x),
which are introduced analogously to ln1(x) by separating n first terms of the Taylor
expansion of ln(1 + x).

Matrix elements of QED corrections involve several integrals with large negative
powers of radial distances, such as 1/r3, 1/r4 and even 1/r5. Such integrals are singular
and need proper definitions. With the exponential functions, it is possible to obtain simple
and numerically stable representations for such integrals. The corresponding procedure is
described in Appendix A. Numerical results for basic singular integrals for the 23S and 23P
states of helium are presented in Table 1.

Table 1. Expectation values of singular operators for the 23S and 23P states of helium, in atomic units.
The numerical uncertainty is less than the last significant digit.

23S 23P

1/r3 0.038861 0.047927
1/r4 0.026567 0.043348
1/r5 0.017580 0.027240
1/r3

1 −23.022535 −21.886142
1/r4

1 25.511837 24.525751

In our calculations of the α7 m QED effects [27], integrals with ln r were encountered
for the first time,

Ilog(i, j, k) =
1

16π2

∫
d3r1

∫
d3r2 ri−1

1 rj−1
2 rk−1 (ln r + γE) e−αr1−βr2−γr , (53)

where γE is the Euler gamma constant. Such integrals are evaluated with the help of the
following set of master integrals [27]:

Ilog(0, 0, 0) =
1

(α− β) (α + β)

[
ln(α + γ)

α + γ
− ln(β + γ)

β + γ

]
, (54)

Ilog(0, 0,−1) =
1

2 (α− β) (α + β)

[
ln2(β + γ)− ln2(α + γ)

]
, (55)
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Ilog(−1, 0,−1) =
α>β

1
2 β

{
1
2

ln
(

α− β

α + β

) [
ln2(α + γ)− ln2(β + γ)

]
+ ln(α + γ)

[
Li2

(
−β + γ

α + γ

)
− Li2

(
β + γ

α + γ

)]
+ Li3

(
−β + γ

α + γ

)
− Li3

(
β + γ

α + γ

)}
, (56)

where Li3 is the trilogarithm function [26]. Equation (56) is valid for α > β. The correspond-
ing result for α < β is obtained by the analytic continuation with help of the following
identities [26]:

Li2
(
− z
)
+ Li2

(
− z−1) = − π2

6
− ln2(z)

2
, (57)

Li3
(
− z
)
− Li3

(
− z−1) = − π2

6
ln(z)− 1

6
ln3(z) . (58)

The result for the case of α = β is straightforwardly obtained from Equation (56).

5. Nonrelativistic Energy and Wave Function

The nonrelativistic Hamiltonian of the helium atom for the infinitely heavy nucleus is

H0 =
~p 2

1
2

+
~p 2

2
2
− Z

r1
− Z

r2
+

1
r

, (59)

where ~pa = −i~∇a is the momentum operator of the electron a and Z is the nuclear charge
number (Z = 2 for helium). The Schrödinger equation is

H0 ψ(~r1,~r2) = E0 ψ(~r1,~r2) . (60)

A direct solution of the Schrödinger equation is standardly substituted by the problem
of finding the minimum or, generally, a stationary point, of the variational functional,

Φ(ψ) =
〈ψ
∣∣H0

∣∣ψ〉
〈ψ|ψ〉 . (61)

The variational eigenvalues obtained from this functional are the upper bounds to
the true eigenvalues, and the corresponding eigenvectors provide the linear coefficients ck
in Equation (46). It is important that the variational principle works equally well for the
ground and for the excited states.

The finite nuclear mass correction to the nonrelativistic energy is induced by the
nuclear kinetic energy operator,

δM H =
~P 2

2M
, (62)

where M is the nuclear mass and ~P = −~p1 − ~p2 is the nuclear momentum. There are
two ways to incorporate the nuclear mass effect into the nonrelativistic energy: (i) to
include the operator δM H into the nonrelativistic Hamiltonian H0 and solve the nuclear–
mass dependent Schrödinger equation and (ii) to solve the Schrödinger equation for the
infinitely heavy nucleus and to account for the nuclear mass effects by perturbation theory.

In our calculations with the exponential basis, we found that the inclusion of δM H
into the nonrelativistic Hamiltonian leads to numerical instabilities for S states (but not
for P and higher-L states). So, for S states we account for the nuclear mass effects by
perturbation theory (up to the third order in 1/M [28]), whereas for the P and D states we
usually include δM H in the solution of the Schrödinger equation. We checked that for the
P and D states both methods yield equivalent results.
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It should be mentioned that in the literature it is customary to split the operator δM H
into the mass-scaling and mass-polarization parts,

δM H =
~p 2

1 + ~p 2
1

2M
+

~p1 · ~p2

M
. (63)

The effect of the mass scaling (caused by the first term in Equation (63)) can be incorpo-
rated into the nonrelativistic Hamiltonian H0 by switching to the reduced mass atomic units
r → µ r, where µ = 1/(1 + m/M) is the reduced mass. As a result, the mass-scaling term
leads to the appearance of the reduced mass prefactor in the nonrelativistic energy E0 → µ E0
and only the mass polarization term needs to be accounted for separately. We find it more
convenient to keep the nuclear kinetic energy operator in the closed form of Equation (62),
because this greatly simplifies the consideration of higher-order recoil QED effects.

As the nonrelativistic Hamiltonian H0 does not depend on spin, its matrix elements
are immediately reduced to radial integrals with the spatial wave functions according to
Equation (24). Computing the action of gradients∇1,2 on the wave functions, we express the
matrix elements 〈ψ|H0|ψ〉 as a linear combination of integrals I(i, j, k) with i, j, k ≥ 0, which
are rational functions of the nonlinear parameters αn, βn, and γn.

The choice of the nonlinear basis parameters αn, βn and γn is crucially important for
obtaining an accurate and compact representation of the wave function and the energy E0.
The general approach is to perform the variational optimization of the basis parameters, by
searching for a minimum of the eigenvalue of the Hamiltonian matrix corresponding to the
desired reference state. Because the optimization of each individual nonlinear parameter
is not effective from the computational point of view, we use the approach introduced by
Vladimir Korobov [21]. In this method, the (real) nonlinear parameters α, β, and γ are
quasirandomly distributed in the intervals,

α ∈ [A1, A2] ,

β ∈ [B1, B2] ,

γ ∈ [C1, C2] , (64)

and the parameters A1,2, B1,2, and C1,2 are determined by the variational optimization. We
note that the nonlinear parameters, as well as A1,2, B1,2 and C1,2, can be both positive and
negative. However, in order to ensure the normalizability of the wave function and its
physical behavior at large r1, r2 and r, we require that

{α + β, α + γ, β + γ} > ε , (65)

where ε ∼
√

2 Eio, with Eio being the ionization energy. The performance of the basis set
can be significantly improved if one introduces several sets of intervals A1,2, B1,2, and C1,2
which are optimised variationally. In our calculations we typically use two or three sets of
intervals. This can be considered an analogue of several different exponential scales in the
Hylleraas-type calculations by Drake et al. [6,29].

We also note that in calculations for excited 1snl states it is advantageous to include
several screened hydrogenic wave functions of the type φZ

1s(~r1) φZ−1
n′ l (~r2) with n′ ≤ n in the

basis, whose parameters are excluded from optimization. This ensures that the variational
optimization is localized at the local minimum with the desired principal quantum number
n and does not collapse to lower n’s.

Our procedure for the determination of the nonrelativistic wave function and energy
looks as follows. For a given size of the basis N, the nonlinear parameters αn, βn and γn
with n = 1, . . . , N are distributed quasirandomly within the initial set of intervals with
parameters Ai, Bi and Ci. Then, the N × N matrix of the nonrelativistic Hamiltonian H0
is computed. The linear coefficients cn and the desired reference-state eigenvalue E0 are
determined by the inverse iteration method. The inversion of the Hamiltonian matrix is
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performed by the LDU decomposition method. This procedure is repeated for different sets
of the parameters Ai, Bi and Ci, searching for the minimum value of the energy eigenvalue.

A disadvantage of working with the exponential basis is that the basis quickly de-
generates as N is increased (i.e., the determinant of the Hamiltonian matrix becomes very
small), which leads to numerical instabilities in linear algebra routines. Because of this,
the usage of an extended precision arithmetics is mandatory. In our calculations we used
the Fortran 95 libraries for the octuple precision (about 64 digits) arithmetics written by
V. Korobov [30], the quad-double routine by D. H. Bailey, and the MPFUN/MPFR library
by D. H. Bailey [31].

Table 2 shows an example of the convergence of numerical results with the exponential
basis with increase of the basis size. We observe that with just N = 200 basis functions one
obtains the nonrelativistic energy with about 10-digit accuracy.

Table 2. Convergence study of the nonrelativistic energy E0 of the 2 3P state of He, for the infinitely
heavy nucleus, in atomic units. N is the size of the basis.

N E0 Increment

100 −2.133 164 189 889 061 228 337 6
200 −2.133 164 190 766 840 570 131 8 −0.89 × 10−9

400 −2.133 164 190 779 088 013 045 2 −0.12 × 10−10

800 −2.133 164 190 779 281 832 163 4 −0.20 × 10−12

1200 −2.133 164 190 779 283 169 438 0 −0.14 × 10−14

1600 −2.133 164 190 779 283 201 696 6 −0.33 × 10−16

2000 −2.133 164 190 779 283 204 908 9 −0.32 × 10−17

2400 −2.133 164 190 779 283 205 102 6 −0.20 × 10−18

2800 −2.133 164 190 779 283 205 142 0 −0.39 × 10−19

3200 −2.133 164 190 779 283 205 145 6 −0.36 × 10−20

3600 −2.133 164 190 779 283 205 146 4 −0.87 × 10−21

Ref. [2] −2.133 164 190 779 283 205 146 992 763 806

6. Relativistic Correction

The relativistic correction splits the nonrelativistic energy levels with quantum num-
bers L > 0 and S > 0 into sublevels according to the value of the total momentum J.
This effect is known as the fine structure. It is often convenient to consider separately the
centroid energy levels obtained by averaging over all J sublevels, and the fine structure
intervals between individual J sublevels. The centroid energy is defined as

E(nL) =
∑JM E(nLJM)

(2L + 1)(2S + 1)
=

∑J(2J + 1)E(nLJ)

(2L + 1)(2S + 1)
. (66)

The relativistic correction is induced by the Breit Hamiltonian, which is conveniently
separated into the spin-independent and the spin-dependent parts,

HBreit = HA + Hfs . (67)

In the leading order of perturbation theory, the spin-independent part HA contributes
only to the centroid energy, whereas the spin-dependent part Hfs causes
the fine structure splitting.

6.1. Centroid Energy

The spin-independent part of the Breit Hamiltonian is given by

HA = −1
8
(~p 4

1 + ~p 4
2 ) +

Z π

2
[
δ3(r1) + δ3(r2)

]
+π δ3(r)− 1

2
pi

1

(
δij

r
+

ri rj

r3

)
pj

2
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+
Z

2M

[
pi

1

(
δij

r1
+

ri
1 rj

1
r3

1

)
+ pi

2

(
δij

r2
+

ri
2 rj

2
r3

2

)]
Pj , (68)

where ~P = −~p1 − ~p2 is the nuclear momentum. In order to account for the finite nuclear
mass effects, the expectation value of the operator HA should be evaluated with the eigen-
functions ψM of the Schrödinger Hamiltonian with the finite nuclear mass (i.e., the sum of
Equations (59) and (62)). Alternatively, the wave function ψM can be constructed by perturba-
tion theory in 1/M. In our calculations, we include the nuclear recoil effect for the relativistic
correction perturbatively for the S states, and nonperturbatively for the L > 0 states.

The matrix element of HA is reduced to the radial integral with the spatial wave
functions according to Equation (24) and can be evaluated numerically. However, the
expectation values of the operators ~p 4

a and δ3(ra) are slowly converging with respect to the
size of the basis because these operators are nearly singular. It is possible to significantly
improve the speed of convergence if one transforms these operators to a more regular
form [32]. Specifically, for a given nearly singular operator HX we search for another, more
regular operator HXR and an additional operator QX , which satisfy the following equation:

HX = HXR +
{

H0 − E0, QX
}

, (69)

where {. , .} denotes the anticommutator. It is obvious that 〈HX〉 = 〈HXR〉, as long as the
expectation value is evaluated with the eigenfunctions of the Hamiltonian H0. In practice,
it is usually possible to find such a pair of operators HXR, QX that the most singular
part of HX is absorbed in the anticommutator. The additional operator QX is generally a
combination of Z/r1, Z/r2 and 1/r, with the coefficients in front of these terms determined
by requiring the cancellation of all Dirac-δ-like contributions.

Specifically, we find the following regularized form of the operator HA (without the
nuclear recoil) [10],

HAR = − 1
2
(
E0 −V

)2 − pi
1

1
2r

(
δij +

rirj

r2

)
pj

2 +
1
4
~∇2

1
~∇2

2 −
Z
4

(~r1

r3
1
· ~∇1 +

~r2

r3
2
· ~∇2

)
, (70)

where V = −Z/r1 − Z/r2 + 1/r. The operator ~∇2
1
~∇2

2 in the above formula is not self-
adjoint and requires an explicit definition. Its action on a trial function φ on the right
should be understood as plain differentiation (omitting δ3(r)); no differentiation by parts is
allowed in the matrix element. It can be checked that the operators HA and HAR satisfy the
following equation:

HA = HAR +
{

H0 − E0, Q
}

, (71)

where

Q = −1
4

( Z
r1

+
Z
r2
− 2

r

)
. (72)

Formulas with the finite nuclear mass are analogous but more lengthy; they are given
by Equations (62)–(67) of Ref. [33].

Table 3 presents numerical results for the leading relativistic correction to the 2 3P cen-
troid energy, performed with different basis sets. We observe that, for the same basis size,
the number of correct digits for the matrix element is half as much as for the nonrelativis-
tic energy.
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Table 3. Convergence study of the leading relativistic correction, 〈HA〉, for the 2 3P state of He, for
the infinitely heavy nucleus. Units are α4m = α2 a.u.

N ∆E Increment

100 −1.967 366 535 960
200 −1.967 360 971 947 0.55 × 10−5

400 −1.967 358 035 372 0.29 × 10−5

600 −1.967 358 371 368 −0.33 × 10−6

800 −1.967 358 354 920 0.16 × 10−7

1200 −1.967 358 362 599 −0.76 × 10−8

1600 −1.967 358 376 018 −0.12 × 10−7

2000 −1.967 358 374 001 0.20 × 10−8

2400 −1.967 358 374 197 −0.20 × 10−9

2800 −1.967 358 374 236 −0.38 × 10−10

3200 −1.967 358 374 256 −0.26 × 10−10

3600 −1.967 358 374 254 0.15 × 10−11

6.2. Fine Structure

The fine structure of energy levels is induced by spin-dependent operators. The
spin-dependent part of the Breit Hamiltonian is conveniently written as a sum of three
operators with different spin structures,

Hfs = HB + HC + HD , (73)

with

HB =

[
Z
4

(
~r1

r3
1
× ~p1 +

~r2

r3
2
× ~p2

)
(1 + 2 κ)

− 3
4
~r
r3 × (~p1 − ~p2)

(
1 +

4 κ

3

)
− Z

2M

(
~r1

r3
1
+
~r2

r3
2

)
× ~P (1 + κ)

]
~σ1 +~σ2

2
, (74)

HC =

[
Z
4

(
~r1

r3
1
× ~p1 −

~r2

r3
2
× ~p2

)
(1 + 2 κ)

+
1
4
~r
r3 × (~p1 + ~p2)

− Z
2M

(
~r1

r3
1
−~r2

r3
2

)
× ~P (1 + κ)

]
~σ1 −~σ2

2
, (75)

HD =
1
4

(
~σ1~σ2

r3 − 3
~σ1 ·~r~σ2 ·~r

r5

)
(1 + κ)2 , (76)

where κ = α/2π + O(α2) is the anomalous magnetic moment correction and~σa is the vector
of Pauli matrices acting on a’th electron. We note that the operators HB, HC, and HD
contain radiative corrections in form of the electron anomalous magnetic moment. In this
way, we account for the complete QED effects of order α5 m to the fine structure.

It should be mentioned that the matrix element of HC is nonzero only if the operator is
sandwiched between wave functions with different spin values. Therefore, any symmetrical
matrix element of HC vanishes, and this operator does not contribute to the leading
order of perturbation theory. We note, however, that HC contributes to the second-order
perturbation corrections (in the order α6 m).
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In order to perform the spin-angular reduction in the matrix elements of Hfs, it is
convenient to introduce spatial operators QB, QC, and QD, explicitly separating the spatial
and the spin degrees of freedom,

HB = ~QB ·
~σ1 +~σ2

2
, (77)

HC = ~QC ·
~σ1 −~σ2

2
, (78)

HD = Qij
D

1
2

σi
1 σ

j
2 . (79)

Using Equations (31), (38)–(41) and performing traces of the spin operators, we express
all matrix elements in terms of spatial radial integrals. For the 3P states, we obtain

1
2J + 1 ∑

M
〈3PJM|HB|3PJM〉 = iεjkl 〈3Pj|Qk

B|3Pl〉 uJ(P) , (80)

1
2J + 1 ∑

M
〈3PJM|HD|3PJM〉 = 〈3Pj|Qjl

D|
3Pl〉 vJ(P) , (81)

where

uJ(P) = (1, 1/2,−1/2) , (82)

vJ(P) = (−1, 1/2,−1/10) , (83)

for J = 0, 1 and 2, respectively.
For the 3D states, an analogous calculation yields

1
2J + 1 ∑

M
〈3DJM|HB|3DJM〉 = iεjli 〈3Djk|Ql

B|3Dik〉 uJ(D) , (84)

1
2J + 1 ∑

M
〈3DJM|HD|3DJM〉 = 〈3Dik|Qij

D|
3Djk〉 vJ(D) , (85)

where

uJ(D) = (1/2, 1/6,−1/3) , (86)

vJ(D) = (−1, 1,−2/7) , (87)

for J = 1, 2 and 3, respectively.

7. Leading QED Correction

The leading QED contribution is of the order α5 m. For the fine structure, this con-
tribution is already accounted for by the electron anomalous magnetic moment terms in
the Breit Hamiltonian, as given by Equations (74)–(76). So, we need to examine only the
centroid energy.

The spin-independent mα5 Hamiltonian representing the leading QED effects was
derived in the 1950s by Araki and Sucher [34,35]:

H(5) =

(
19
30

+ ln(α−2)− ln k0

)
4 Z
3
[
δ3(r1) + δ3(r2)

]
+

(
164
15

+
14
3

ln α

)
δ3(r)− 7

6 π

1
r3
ε

, (88)

where ln k0 is the so-called Bethe logarithm defined as

ln k0 =

〈
(~p1 + ~p2) (H0 − E0) ln

[
2 (H0 − E0)

]
(~p1 + ~p2)

〉
2 π Z

〈
δ3(r1) + δ3(r2)

〉 , (89)
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and 1/r3
ε is the regularized 1/r3 operator (distribution) defined by its matrix elements with

an arbitrary smooth function f (~r) as

∫
d3r f (~r)

1
r3
ε
= lim

ε→0

∫
d3r f (~r)

[
1
r3 Θ(r− ε) + 4 π δ3(r) (γE + ln ε)

]
. (90)

The nuclear recoil correction to the leading QED contribution consists of two parts,

E(5)
M = 2 〈H(5) 1

(E0 − H0)′
δM H〉+ 〈δM H(5)〉 , (91)

where δM H is defined by Equation (62) and δM H(5) is the recoil addition to the α5 m
Hamiltonian given by [36]

δM H(5) =
1
M

[(
62
3

+ ln(α−2)− 8 ln k0 −
4
Z

δM ln k0

)
×Z2

3
[
δ3(r1) + δ3(r2)

]
− 7 Z2

6 π

( 1
r3

1,ε
+

1
r3

2,ε

)]
. (92)

Here, δM ln k0 is the correction to the Bethe logarithm ln k0 induced by the nonrelativistic ki-
netic energy operator ~P 2/2, and 1/r3

a,ε is the regularized 1/r3
a operator defined analogously

to Equation (90).
The recoil correction to the Bethe logarithm δM ln k0 is often separated into the mass-

scaling and mass-polarization parts,

δM ln k0 = 1 + δp1 p2 ln k0 , (93)

where δp1 p2 denotes the perturbation due to the mass polarization operator ~p1 · ~p2. The
corresponding separation for the 1/r3

ε matrix element reads:

δM

〈 1
r3
ε

〉
= − 3

〈 1
r3
ε

〉
+
〈
4 πδ3(r)

〉
+ δp1 p2

〈 1
r3
ε

〉
. (94)

From the computational point of view, the numerical evaluation of the QED effects
involves two new features, as compared to the relativistic correction: matrix elements
of the singular operators 1/r3 and 1/r3

a and the Bethe logarithm. The calculation of the
expectation values of singular operators with exponential basis functions is examined
in Appendix A; it does not present any computational difficulties. On the contrary, the
computation of the Bethe logarithm is rather nontrivial; it is examined in the next section.

Bethe Logarithm

There are two different approaches developed for the calculation of the Bethe log-
arithm in few-electron atoms. The first one starts with the definition of Equation (89)
and uses the basis set representation of the Hamiltonian as a sum of the spectrum of the
eigenfunctions. The difficulty is that the sum in the numerator is nearly diverging because
the dominant contribution comes from the high energy continuum states of the spectrum.
This problem is solved by using a basis set whose spectrum of pseudostates spans a huge
range of energies [37].

An alternative approach was first introduced by C. Schwartz [23] and further devel-
oped by V. Korobov [38–40]. Within this method, the Bethe logarithm ln k0 is represented
as an integral over the momentum of the virtual photon, with subtracting the ultraviolet
asymptotics and performing the limit,

ln k0 =
1
D

lim
Λ→∞

[〈
~∇2〉Λ + D ln 2Λ +

∫ Λ

0
dk k J(k)

]
, (95)
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where D = 2πZ
〈
δ3(r1) + δ3(r2)

〉
, ~∇ ≡ ~∇1 + ~∇2, and

J(k) =
〈
~∇ 1

E0 − H0 − k
~∇
〉

. (96)

The asymptotic expansion of J(k) for large k reads

J(k) =
k→∞

−1
k
〈~∇2〉 − D

k2 +
2
√

2ZD
k5/2 − 2Z2D

ln k
k3 + . . . . (97)

Splitting the integration interval (0, Λ) into two parts (0, K) and (K, Λ), where K is an
arbitrary cutoff parameter, we can rewrite Equation (95) as

ln k0 =
K
D
〈~∇2〉+ ln(2K) +

1
D

∫ K

0
dk k J(k) +

1
D

∫ ∞

K
dk k

[
J(k) +

1
k
〈~∇2〉+ D

k2

]
. (98)

The above expression is finite, does not depend on K, and is suitable for a numerical
evaluation.

We now address the angular reduction in the second-order matrix element J(k) given
by Equation (96). It is performed in several steps. First, we represent the gradient acting
on the reference-state wave function ∇j ψi1...iL as a sum of irreducible Cartesian tensors, as
described in Appendix B. For example, the gradient acting on a P-state wave function∇j ψi

is represented as a sum of the L = 0, L = 1, and L = 2 irreducible Cartesian tensors, which
induce, correspondingly, the L = 0, L = 1, and L = 2 angular momentum contributions
from the resolvent. The second-order matrix element of an irreducible tensor Φi1...iL is
transformed as 〈

Φi1...iL
∣∣∣ 1
E0 − H0 − k

∣∣∣Φi1...iL
〉
= 〈Φi1...iL |Φ̃i1...iL〉 , (99)

where Φ̃i1...iJ is the solution of the inhomogeneous Schrödinger equation,

(E0 − H0 − k) Φ̃i1...iL = Φi1...iL . (100)

Inserting the explicit representation of Φ̃ as a sum over the spectrum, we obtain

〈
Φi1...iL

∣∣∣ 1
E0 − H0 − k

∣∣∣Φi1...iL
〉
= ∑

n

∣∣∣〈Φi1...iL |ψi1...iL
n 〉

∣∣∣2
E0 − En − k

. (101)

An alternative way to arrive at this expression is to observe that the scalar product
〈Φ|ψ〉 includes an integration over the continuous and a summation over the discreet
variables, namely 〈Φ|ψ〉 ≡ 〈Φi1..iL |ψi1..iL〉 = ∑i1...iL

∫
d3nr Φi1..iL∗(r)ψi1..iL(r).

The advantage of the integral representation of the Bethe logarithm is that J(k) has a
form of the symmetric second-order perturbation correction and thus obeys the variational
principle. We therefore can variationally optimize the basis set representation of the
resolvent 1/(E0 − H0 − k) for different k > E0 − E(1s)2 . For lower values of k, the basis can
be variationally optimized if one fixes the pre-optimized parameters of the more deeply
bound states with En < E0.

Our numerical procedure was performed in two steps. First, we optimized the basis for
several different scales of the photon momentum, k = 10i, with typical values of i = 1, ..., 4.
After that, the computation of the function J(k) was performed with a basis obtained by
merging together the optimized sets for the two closest ki points, thus essentially doubling
the size of the basis. In the second step, we performed the integration over k. The integral
over (0, K) (with the typical choice of K = 10) was calculated analytically, after the full
diagonalization of the Hamiltonian matrix. The remaining interval was split into two
parts, (K, K2) and (K2, ∞), with the typical choice of K2 = 104. The integral over the



Symmetry 2021, 13, 1246 16 of 26

former was performed with the help of Gauss–Legendre quadratures, after the change of
variables t = 1/k2. The remaining part of the integral was calculated analytically, after
fitting numerical values of J(k) to the known form of the asymptotic expansion,

J(k) = pol
(

1√
k

)
+

ln k
k

pol
(

1
k

)
, (102)

where pol(x) denotes a polynomial of x. The first terms of this expansion are given by
Equation (97), whereas the higher-order coefficients are obtained by fitting.

Calculations of the Bethe logarithm for the finite nuclear mass can be performed
analogously to the above, or by perturbation theory. The numerical procedure for the
evaluation of the recoil correction to the Bethe logarithm by perturbation theory is described
in Appendix A of Ref. [41].

Table 4 presents a comparison of different calculations of the Bethe logarithm for the
23P state of helium. The most accurate results for the ground and excited states of helium
are obtained by Korobov in Ref. [40]. Results for He-like ions can be found in Refs. [37,41].

Table 4. Comparison of different calculations of the Bethe logarithm for the 23P state of helium.

Drake and Goldman 1999 [37] 4.369 985 20 (2)
Korobov 2004 [39] 4.369 985 356 (1)
Yerokhin and Pachucki 2010 [41] 4.369 985 364 4 (2)
Korobov 2019 [40] 4.369 985 364 549 (3)

8. α6 m QED Effects

The α6 m QED corrections to energy levels in atoms are represented by the sum of the
expectation value of the effective α6 m Hamiltonian H(6) and the second-order perturbation
correction induced by the Breit Hamiltonian,

E(6) = 〈H(6)〉+
〈

H(4)
Breit,R

1
(E0 − H0)′

H(4)
Breit,R

〉
, (103)

where H(4)
Breit,R is the regularized Breit Hamiltonian of the order α4 m,

H(4)
Breit,R = HAR + H(4)

B + H(4)
C + H(4)

D . (104)

We note that, in order to avoid admixture of higher-order contributions in E(6), we
have to retain only the α4 m part in the definition of the Breit Hamiltonian, that is, to set
the magnetic moment anomaly κ → 0 in the definitions (74)–(76). This is indicated by the
superscript “4” in the corresponding operators.

Formulas for the effective α6 m Hamiltonian H(6) are rather lengthy and will not be
reproduced here. In the case of fine structure, they were first obtained by Douglas and
Kroll in 1974 [42] and later re-derived in Refs. [43,44]. For the energy centroid, the situation
is greatly complicated because of the appearance of numerous diverging operators. The
corresponding derivation was accomplished by one of us (K.P.), in Ref. [9] for the triplet
states and in Ref. [10] for the singlet states of helium. The complete formulas suitable for
numerical evaluation can be found in Ref. [25].

The nuclear recoil α6 m correction has the same structure as the non-recoil one, but the
expressions for the operators are much more complicated. This correction was calculated
in Ref. [33] for the triplet states and in Ref. [45] for the singlet states of helium.

Second-Order Terms

We now discuss the evaluation of the second-order contributions, represented by the
second term in Equation (103). Such corrections were first calculated for the fine structure
by Hambro [46] and by Lewis and Serafino [7]. Later, the fine structure calculations were
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greatly improved in Refs. [47–49]. For the centroid energies, the second-order corrections
were calculated in Refs. [10,11] for the 2S and 2P states and in Refs. [25,50] for the nD states
of helium.

It is convenient to rewrite Equation (103), expressing the second-order perturbation
correction more explicitly,

E(6) = 〈H(6)〉+
〈

HAR
1

(E0 − H0)′
HAR

〉
+
〈

H(4)
B

1
(E0 − H0)′

H(4)
B

〉
+
〈

H(4)
C

1
(E0 − H0)′

H(4)
C

〉
+
〈

H(4)
D

1
(E0 − H0)′

H(4)
D

〉
+ 2

〈
H(4)

B
1

(E0 − H0)′
H(4)

D

〉
+ 2

〈
HAR

1
(E0 − H0)′

[
H(4)

B + H(4)
D
]〉

. (105)

We note that the non-symmetrical second-order corrections (the last two terms in the
above equation) vanish for the centroid energy, but contribute to the fine structure.

The second-order perturbative corrections are calculated as follows. In the first step,
we perform traces over the spin degrees of freedom in the matrix elements. Then we
decompose the product of a tensor operator Q and the reference state wave function ψ into
the irreducible tensor parts ψ̃, as described in Appendix B. In the last step, we calculate the
second-order matrix elements induced by the irreducible parts ψ̃ as (see Equation (101)),

〈
ψ̃
∣∣∣ 1
(E0 − H0)′

∣∣∣ψ̃〉 =
En 6=E0

∑
n

|〈ψ̃i1..iJ |ψi1..iJ
n 〉|2

E0 − En
. (106)

The numerical evaluation of symmetrical second-order contributions was carried
out with the variational optimization of the nonlinear parameters of the basis set for the
resolvent 1/(E0 − H0). Convergence of numerical results is often rather slow, especially
for contributions with HAR. This is associated with the fact that the effective wave function
|δψ〉 = 1/(E0 − H0)

′|HAR〉 has an integrable singularity at ra → 0. In order to represent
such wave functions with the exponential basis, very large (both positive and negative)
exponents are required. In order to effectively span large regions of parameters, we used
non-uniform distributions of the nonlinear parameters. For example, for the nonlinear
parameters αi we used the distributions of the kind [9]

αi = A1 + (t−a
i − 1) A2 , (107)

with a = 2 and 3, where the variable ti has a uniform quasirandom distribution over the
interval (0, 1) and the variables A1,2 are subjects of variational optimization. An example
of the convergence study of the second-order correction 〈HAR

1
(E0−H0)′

HAR〉 is given in
Table 5. The numerical evaluation of non-symmetrical second-order contributions was
carried out with basis sets, optimized for the corresponding symmetrical corrections.
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Table 5. Convergence study of the second-order perturbation correction 〈HAR
1

(E0−H0)′
HAR〉 for the

23P state of helium. Units are α6m = α4 a.u.

N ∆E Increment

200 −15.847 010 059
400 −15.848 416 968 −0.14 × 10−2

800 −15.848 498 832 −0.82 × 10−4

1200 −15.848 507 251 −0.82 × 10−5

1600 −15.848 508 295 −0.10 × 10−5

2000 −15.848 508 667 −0.37 × 10−6

2400 −15.848 508 705 −0.39 × 10−7

2800 −15.848 508 781 −0.75 × 10−7

Ref. [11] −15.848 510(2)

9. α7 m QED Effects

The α7 m QED correction to energy levels in atoms is given [12] by the sum of the
relativistic correction to the Bethe logarithm EL, the expectation value of the effective α7 m
Hamiltonian H(7), and the perturbation of the α5 m QED operator by the Breit Hamiltonian,

E(7) = EL + 〈H(7)〉+ 2
〈

H(4)
Breit,R

1
(E0 − H0)′

H(5)
R

〉
. (108)

The regularized effective α5 m Hamiltonian is [17]

H(5)
R = − Z

π

(19
45

+
2
3

ln
α−2

2

)(~r1 · ~∇1

r3
1

+
~r2 · ~∇2

r3
2

)
− 7

6π

1
r3 + H(5)

B + H(5)
C + H(5)

D , (109)

where H(5)
B,C,D are the O(α) parts of the corresponding spin-dependent parts of the Breit

Hamiltonian, HB = H(4)
B + α H(5)

B , etc. The operator H(5)
R is non-Hermitian and is assumed

to act on a ket trial function φ on the right.
The relativistic correction to the Bethe logarithm is rather complicated. We will not

discuss its calculation here, but direct the reader to original studies. This correction was first
calculated for the fine structure of the 23P state; the corresponding calculations for helium
and helium-like ions were performed in Refs. [12–14]. In our recent investigation [15], we
performed a calculation for the energy centroid of the 23S and 23P states. For singlet states
of helium, this correction has never been calculated so far.

The derivation of the effective α7 m Hamiltonian H(7) for helium is an extremely
difficult problem. It was first accomplished by one of us (K.P.) for the fine structure in
Refs. [12,13]. Recently, we performed [16,17] the derivation of H(7) for triplet states of
helium and calculated [27] the corresponding correction to the energies of the 23S and 23P
states. For singlet states, the effective α7 m Hamiltonian is unknown.

From the computational point of view, the main difficulty for the evaluation of the
α7 m correction is the calculation of the Bethe logarithm contribution EL. The computational
scheme is similar to that for the plain Bethe logarithm and is described in Ref. [15]. Con-
versely, the computation of the expectation value of H(7) and the second-order corrections
is very similar to the calculation of the α6 m corrections.

10. Other Effects

The finite nuclear size correction is given by (in relativistic units)

Efns =
2 π

3
Z α

〈
δ(3)(r1) + δ(3)(r2)

〉
R2 [1− (Z α)2 ln(m R Z α)

]
, (110)
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where R is the root-mean-square nuclear charge radius, and the expectation value of the
Dirac δ functions is assumed to include the finite-nuclear-mass correction induced by δM H.

The higher-order QED effects are approximated on the basis of known results for
hydrogenic atoms. Specifically, the hydrogenic one-loop and two-loop corrections for the
2s state of He+ are given by [51]

E(8+)
rad1 (hydr) =

Z7

8π
83.824 , (111)

E(8+)
rad2 (hydr) =

Z6

8π2

(
− 8

27
ln3[(Zα)−2] + 0.639 ln2[(Zα)−2]

+ 41.387 ln[(Zα)−2]− 81.1± 10
)

. (112)

An approximation for the higher-order α8m QED correction to the ionization energies
of the helium atom is obtained from the corresponding hydrogenic 2s contribution by

E(8+) = E(8+)(hydr)

〈
δ3(r1) + δ3(r2)

〉
− Z3/π

Z3/8π
. (113)

11. Comparison of Theory and Experiment

In this section, we summarize the numerical results of the QED calculations of energy
levels in 4He and compare theoretical predictions with available experimental results.
Table 6 presents such a comparison for transitions between states with the principal quan-
tum number n = 2. We note that our present theoretical uncertainty for the 2 3S – 2 1S
transition is increased as compared to our previous work [28]. The reason is an accidental
cancelation of the estimated α7m term between the 2 3S and 2 1S states in Ref. [28]. Now the
α7m correction is calculated for the 2 3S state and the theoretical uncertainty is defined by
the 2 1S state only. Table 6 shows good agreement of theory and experiment for the singlet–
singlet and triplet–triplet transitions but some tension for the singlet–triplet transitions.
Specifically, we note a 2.3 σ deviation from the experimental result [52] for the 2 3S–2 1P
transition (with σ denoting the standard deviation).

Table 6. Comparison of theory and experiment for the intrashell n = 2 transitions in 4He, in MHz.
23P stands for the centroid energy.

Transition Theory [17,25,28] Experiment Reference Difference

21S0–21P1 145 622 891.6 (2.3) 145 622 892.89 (18) Luo 2013 [53] −1.3 (2.3)
23S1–21P1 338 133 595.8 (0.4) 338 133 594.4 (5) Notermans 2014 [52] 1.4 (0.6)
23S1–21S0 192 510 704.2 (1.9) 192 510 702.148 72 (20) Rengelink 2018 [54] 2.1 (1.9)
23S1–23P 276 736 495.620 (54) 276 736 495.600 0 (14) a Zheng 2017 [55] 0.020 (54)

276 736 495.649 (2) a Pastor 2004 [56] −0.029 (54)
a using theoretical results for the 23P fine structure.

Of particular importance is the agreement observed for the 2 3P – 2 3S transition, be-
cause in this case, two triplet states are involved, for which the theoretical accuracy is the
highest. Theoretical calculations of energies for the 2 3S and 2 3P states [17] are complete
through order α7 m, with a resulting theoretical uncertainty below 100 kHz, whereas for
the 2 1S and 2 1P states the theory [28] is complete up to order α6 m only, and the theoretical
accuracy is on the level of 1 MHz. For the D states, theoretical calculations [25,50] are also
complete at order α6 m, but the absolute theoretical precision is much higher since the QED
effects are smaller. In general, we conclude that for the intrashell n = 2 transitions there
is good agreement for transitions between the states with the same spin multiplicity and
some tension for the states of different spin multiplicity.

The situation becomes even more strained when we consider ionization energies and
transitions involving states with different n’s. The corresponding comparison is presented
in Table 7. We immediately notice that all differences between theory and experiment
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are of the same sign and that most of them are outside of the theoretical error bars. The
largest discrepancies are found for the 2 3S1 – 3 3D1 and the 2 3P0 – 3 3D1 transition, of 6 and
12 σ, correspondingly. These transitions involve the triplet states, for which theoretical
uncertainties are the smallest, so that 0.5 MHz differences from the experimental values
lead to large relative deviations.

Table 7. Comparison of theory and experiment for the ionization energy (IE) and n-n′ transitions in
4He, in MHz.

Transition Theory [17,25,28] Experiment Reference Difference

11S0(IE) 5 945 204 172 (36) 5 945 204 212 (6) Kandula 2011 [57] −40 (36)
21S0(IE) 960 332 038.0 (1.9) 960 332 041.01 (15) Lichten 1991 [58] −3.0 (1.9)

960 332 040.491 (32) Clausen 2021 [59] −2.5 (1.9)
11S0–21S0 4 984 872 134 (36) 4 984 872 315 (48) Bergeson 1998 [60] −181 (60)
11S0–21P1 5 130 495 026 (36) 5 130 495 083 (45) Eikema 1997 [61] −57 (58)
21S0–31D2 594 414 289.3 (1.9) 594 414 291.803 (13) Huang 2018 [62] −2.5 (1.9)
21P1–31D2 448 791 397.8 (0.4) 448 791 399.11 (27) Luo 2013 [63] −1.3 (0.5)
23S1–33D1 786 823 849.540 (57) 786 823 850.002 (56) Dorrer 1997 [64] −0.462 (80)
23P0–33D1 510 059 754.863 (28) 510 059 755.352 (28) Luo 2016 [65] −0.489 (40)

The comparison in Tables 6 and 7 suggests that there might be a contribution missing in
theoretical calculations of energy levels, which weakly depends on L but strongly depends
on the principal quantum number n (the latter is natural because the 1/n3 scaling is typical
for all QED effects). This conjecture was put forward in Ref. [50] and since then has been
strengthened by subsequent calculations and measurements. Such a missing contribution
most likely originates from the α6 m or α7 m QED corrections because all other theoretical
effects are cross-checked against independent calculations [5].

Table 8 presents the comparison of theoretical and experimental results for the fine
structure intervals of the 23P state in 4He. Theoretical predictions for these intervals are
of greater accuracy than for other intervals of the n = 2 manifold. This is both due to the
fact that the theory of these intervals [14,66] is complete at the order α7 m and due to the
smallness of QED effects. We observe a generally good agreement between theory and
experiment for the fine structure intervals. The only tension is a 1.4 σ deviation for the
P1,2 interval measured in Ref. [3]. We note that all pre-2010 experimental results were to a
greater or lesser degree influenced by unaccounted quantum interference effects and were
re-evaluated in Refs. [67,68].

To summarize, we have reviewed a large amount of work accomplished during the last
decades on the calculations of QED effects in the atomic structure of the helium atom. The
leading-order α5 m QED effects are nowadays well established by independent calculations
and tested by comparison with numerous experiments. However, recent calculations of
higher-order α6 m and α7 m QED effects revealed some small but systematic deviations
from high precision experimental transition energies. Having in mind the importance
of the helium spectroscopy for the determination of nuclear properties and fundamental
constants, we conclude that further theoretical and experimental efforts are needed in order
to find the reasons behind the observed discrepancies.
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Table 8. Comparison of theory and experiment for the 23P fine structure intervals in 4He, in kHz.

Reference 23P0 − 23P2 23P1 − 23P2 23P0 − 23P1

Theory Pachucki and
Yerokhin 2010 [14] 31 908 131.4 (1.7) 2 291 178.9 (1.7) 29 616 952.3 (1.7)

Experiment Kato 2018 [3] 2 291 176.590 (25)
Zheng 2017 [55] 31 908 130.98 (13) 2 291 177.56 (19)
Feng 2015 [69] 2 291 177.69 (36)

Smiciklas 2010 [70] a 31 908 131.25 (32)
Borbely 2009 [71] a 2 291 177.55 (35)

Zelevinsky 2005 [72] a 31 908 126.8 (3.0) 2 291 176.8 (1.1) 29 616 951.7 (3.0)
Guisfredi 2005 [73] a 29 616 953. (10.0)
George 2001 [74] a 29 616 950.8 (0.9)

Castillega 2000 [75] a 2 291 177.1 (1.0)
a reevaluated in Refs. [67,68].
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Appendix A. Expectation Values of Singular Operators

In this section we discuss the evaluation of matrix elements of singular operators 1/r3,
1/r4, and 1/r5. The 1/r3 operator is standardly defined as

∫
d3r

f (~r)
r3

ε
≡ lim

ε→0

[ ∫ ∞

ε
dr

f (r)
r

+ f (0) (γE + ln ε)

]
, (A1)

where f (r) ≡
∫

dΩ f (~r) assumed to be a smooth function that allows a Taylor expansion
at r = 0. Further singular operators are defined [16,17] as

∫
d3r

f (~r)
r4

ε
≡ lim

ε→0

[ ∫ ∞

ε
dr

f (r)
r2 −

f (0)
ε

+ f ′(0) (γE + ln ε)

]
, (A2)∫

d3r
f (~r)
r5

ε
≡ lim

ε→0

[ ∫ ∞

ε
dr

f (r)
r3 −

f (0)
2 ε2 −

f ′(0)
ε

+
f ′′(0)

2
(γE + ln ε)

]
, (A3)

and ∫
d3r f (~r)

ln r
r4

ε
≡ lim

ε→0

[ ∫ ∞

ε
dr

f (r) ln r
r2 − f (0)

(1 + ln ε)

ε
− f ′(0)

ln2 ε

2

]
. (A4)

Here we corrected the sign misprint in Equation (E3) of Ref. [17]. Note that the definition
of the 1/r5 operator given by Equations (154) and (155) of Ref. [16] is valid for triplet states only.

We now obtain explicit formulas for integrals of singular operators with exponential
functions, starting with the operator 1/r3,

Iε(1, 1,−2) = lim
ε→0

1
16π2

∫
d3r1

∫
d3r2 e−αr1−βr2−γr

×
[

1
r3 Θ(r− ε) + 4 π δ3(r) (γE + ln ε)

]
. (A5)
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It is evident that

− ∂

∂γ
Iε(1, 1,−2) = I(1, 1,−1) , (A6)

where I(1, 1,−1) can be immediately obtained from Equation (48). Therefore, the formal
integration of I(1, 1,−1) over the parameter γ gives us an expression for Iε(1, 1,−2), which
is correct up to a γ-independent constant. The simplest way to fix this constant is to
examine the limit of Equation (A5) for γ→ ∞. For very large γ, only the region of small r
contributes, and therefore

1
16π2

∫
d3r1

∫
d3r2

e−αr1−βr2−γr

r3 Θ(r− ε)

= 2
∫ ∞

ε
dr r

∫ ∞

0
dr1 r1

∫ r1+r

|r1−r|
dr2 r2

e−αr1−βr2−γr

r3

≈ 2
(α + β)3

∫ ∞

ε
dr

e−γr

r
. (A7)

Hence,

Iε(1, 1,−2) =
γ→∞

− 2
(α + β)3 ln γ . (A8)

We conclude that the γ-independent constant in the limit γ → ∞ vanishes. It is
interesting that this simple prescription holds also for other singular integrals. Fixing the
γ-independent constant, we arrive at the final result

Iε(1, 1,−2) =
1

(α + β)3

[
− ln

[
(α + γ)(β + γ)

]
− 8αβ

(α− β)2

+
(α + β)3 + 8αβγ

(α− β)3 ln
α + γ

β + γ

]
. (A9)

We note that this expression has a spurious singularity at α = β. It can be easily
removed if we separate the first two Taylor expansion terms of the logarithm function by
introducing ln2(x).

We now turn to the integral with 1/r4. Analogously to 1/r3, we write

− ∂

∂γ
Iε(1, 1,−3) = Iε(1, 1,−2) . (A10)

So, integrating Equation (A9) over γ and setting the γ-independent constant in the
limit γ→ ∞ to zero (this time we omit the justification), we obtain

Iε(1, 1,−3) =
1

(α2 − β2)3

{
2(α− β)

[
αβ(α + β)− (α2 − 4αβ + β2)γ

]
−
[
2αβ(α2 + β2) + (α + β)3γ + 4αβγ2] ln

( α + γ

β + γ

)}
+

γ

(α + β)3 ln[(α + γ)(β + γ)] . (A11)

Repeating the same procedure once more, we obtain also a result for the 1/r5 integral,
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Iε(1, 1,−4) =
1

6(α2 − β2)3

[
αβ(α + β)3 + 12αβ(α2 + β2)γ + 3(α + β)3γ2 + 8αβγ3] ln

( α + γ

β + γ

)
+

1

18(α− β)2(α + β)3

[
− αβ(17α2 − 10αβ + 17β2)− 24αβ(α + β)γ + 3(9α2 − 26αβ + 9β2)γ2]

+
1

6(α + β)3 (αβ− 3γ2) ln[(α + γ)(β + γ)] . (A12)

Appendix B. Tensor Decomposition of a Product of Irreducible Tensors

In calculations of the Bethe logarithm and the second-order perturbation corrections,
we encounter a problem of decomposition of products of irreducible Cartesian tensors into
the irreducible parts. In this section we collect formulas required for such decompositions.
The product of two vectors is represented as a sum of a symmetric and traceless second-rank
tensor, a vector, and a scalar,

Pi Qj = (Pi Qj)(2) +
1
2

εijk (~P× ~Q)k +
δij

3
~P · ~Q . (A13)

The product of a vector and a symmetric and traceless second-rank tensor is decomposed as

Pi Qjk = (Pi Qjk)(3) + εijl Tkl + εikl T jl + δij Tk + δik T j − 2
3

δjk Ti , (A14)

where

Tk =
3

10
Pi Qik , (A15)

Tkl =
1
6

Pi (εijl Qjk + εijk Qjl) . (A16)

This identity can be verified by contracting Equation (A14) with δij and εijk. It can be
easily extended to the higher-rank tensors Q.

Finally, we present the decomposition of the product of two symmetric and traceless
tensors Pij and Qkl , required for calculations of second-order corrections involving D-states,

Pij Qkl = (Pij Qkl)(4) + εikaT jal + εjkaTial + εilaT jak + εjlaTiak + δikT jl + δilT jk + δjkTil + δjlTik

− 4
3

δijTkl − 4
3

δklTij + Ta (εikaδjl + εilaδjk + εjkaδil + εjlaδik)+ T
(
δikδjl + δil δjk − 2

3
δijδkl) , (A17)

where

T jbl =
1
4
(εikb Pij Qkl)(3) , (A18)

T jl =
3
7
(Pij Qil)(2) , (A19)

Tb =
1

10
εjlb Pij Qil , (A20)

T =
1

10
Pij Qij . (A21)
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