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Abstract: In this article, the consensus-related performances of the triplex multi-agent systems with
star-related structures, which can be measured by the algebraic connectivity and network coherence,
have been studied by the characterization of Laplacian spectra. Some notions of graph operations
are introduced to construct several triplex networks with star substructures. The methods of graph
spectra are applied to derive the network coherence, and some asymptotic behaviors of the indices
have been derived. It is found that the operations of adhering star topologies will make the first-order
coherence increase a constant value under the triplex structures as parameters tend to infinity, and
the second-order coherence have some equality relations as the node related parameters tend to
infinity. Finally, the consensus related indices of the triplex systems with the same number of nodes
but non-isomorphic graph structures have been compared and simulated to verify the results.

Keywords: consensus; coherence; Cartesian product; convergence speed; robustness; Laplacian
spectrum

1. Introduction

Consensus is a class of distributed coordination problems of multi-agent systems, and
the essence of the problem is that all agents are required to achieve a sort of common state
under the effects of some control strategy. In the consensus model, the agents are designed
to have communications among the nodes based on the graph structures of networks so
that they can accomplish the assigned tasks together effectively.

As a significant interdisciplinary field, consensus problems have aroused wide interest
among scholars and researchers, and there is significant potential value in many areas
on consensus such as sensor networks [1], neural networks [2], and robotic systems [3].
Researchers have done many good studies on consensus [1-26] from various perspectives
or using study factors including the dynamic order, communication ways(continuous or
discontinuous), topology types (fixed or switching), control methods(adaptive control,
intermittent control, impulsive control, etc.), and the consensus related index.

To solve consensus problems, communication relations can also be interpreted by
the graph of the networked system, and consensus-related indices, such as convergence
speed [4,9-11], and network coherence [13-20], can be characterized by the Laplacian
eigenvalues of the graph. Synchronization problems, which share similar control strategies
and have the same essence with consensus problems, are always connected with the graph
structure [27-33] and studied from the perspective of algebraic graph theory. These facts
inspire us to apply the methods of graph spectra in the study of conesensus problems in a
deeper way. Among these enlightening works, [4] has showed that the algebraic connec-
tivity A of an undirected (or directed) graph can characterize the convergence speed of
consensus problems. In [11], the authors studied how the Laplacian eigenvalues determine
the robustness and give derivations for A, and the H, norms of several classic graphs.
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References [13-15] have studied the robustness of first and second order systems due to the
Hj norm, and it has been proven that the network coherence can be characterized through
all nonzero Laplacian eigenvalues. Reference [17] has studied the network coherence for a
class of tree networks and found that the scalings of network coherence are smaller than
some studied tree graphs. Reference [19] constructed the network with iterated line graphs
of multisubdivision graph and obtained the scalings of the network coherence.

A network composed of interacting subnetworks of different (or similar) properties in
structure and dynamics can be called a multilayer network. A multilayer network is a fron-
tier research branch of network science, and its multilayered structure has many examples
in real life, for example, the interactions between power grid and the Internet, friendship re-
lations, or transportation and aviation networks. Multilayered networks have been studied
from many perspectives, including multi-agent system-related problems [26,34], synchro-
nization problems [30], epidemic propagation problems [35], etc. Multiplex networks are
coupled multilayer networks where each layer is composed of the same copy of node set but
possibly different graph structures, and the inter-layer links exist only between the counter-
part nodes in different layers [36]. Considering the multilayer structures of multi-agent
systems and the study of Laplacian-eigenvalue-related synchronizability problems [28,29]
with multiplex structures, it is natural to think that extending the consensus-index-related
problem to multilayered graph structures is necessary and meaningful.

The star network is a type of classic computer network type. In fact, a star network
can also be interpreted as a simplified model of the subnetworks of BA scale-free networks
in the sense of statistics. There is in-depth research on star-related structures [24,28] in
many fields including synchronization, consensus problem, sensor networks, etc.

Inspired by this notion, this paper considers some three-layered networks with certain
meaningful topologies that are constructed with graph operations; each layer contains
star subgraphs, and the triplex networks with star subgraphs in this work are interpreted
as adding communication links between the counterpart nodes for different layers of
the networks. This paper makes further efforts to apply the theory of graph spectra for
studying consensus indices in a deeper way.

This work mainly studies consensus indices of the networked systems with additive
stochastic disturbances with an application of graph spectra methods. Specifically, the
novelties of this paper are as follows:

1. Several novel layered star-like networks with different linking structures but the same
number of nodes have been constructed by applying graph operations.

2. Graph spectra methods are applied to derive the Laplacian spectrums through the
calculations of network coherence, and several new results on the asymptotic behavior
have been acquired.

3.  This article gives the notion that some nodes with low degree, for instance, the leaf
nodes, might only have connections within the same layer other than connections
with the counterpart nodes in different layers.

The paper is organized as follows. In Section 2, some graph operations are introduced,
and the relations between the consensus indices and Laplacian spectrum are explained.
In Section 3, the topological structure of the triplex systems are explained, and the main
results are given. In Section 4, simulations are given and the comparison of performances
for the four sorts of networks are made.

2. Preliminaries
2.1. Graph Theory and Notations

In this paper, all the graphs are considered undirected and connected. A star graph
with k leaves is denoted by Si. & denotes the empty graph with k vertices. Let G be a
undirected and connected graph with vertex set V- = {v1,vy,...,vn}, and the edge set
of G is denoted by €& = {(i,/)|i,j = 1,2,...,N;i # j}. The adjacency matrix of G, i.e.,
A(G), is defined as A(G) = [a;j]n, where a;; is the weight of the edge (i, j). All the edges
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Laplacian matrix of G is denoted by L(G), and L(G) = D(G) — A(G), where D(G) is
the diagonal degree matrix of G defined by D(G) = diag(dy,da, ..., dn) withd; = ¥ a;;.
j#i
The Laplacian spectrum of G is defined as SL(G) = < All(G) /\ZZ(G) APZ(G) ),
1 2 oee p
where A1(G) < A2(G) < ... < A,(G) are the eigenvalues of L(G) and Iy, 1, ..., I, are the
multiplicities of the eigenvalues. For any undirected graph, A; = 0 is an eigenvalue of
L(G) associated with the eigenvector 1 = (1,1,...,1), and L(G) is positive semi-definite
and real symmetric.
To construct the triplex networks, the following graph operations are needed.

in these networks are supposed to be 0-1-weighted, that is, a;; = {

Definition 1 ([37,38] (The corona of two graphs)). Let Gy and G, be two graphs on disjoint sets
of n and k vertices, respectively. The corona G o G of Gy and Gy is defined as the graph obtained
by taking one copy of Gy and n copies of G and then joining the ith vertex of Gy to every vertex in
the ith copy of Gp, (i =1,2,...,n).

Definition 2 ([39,40] (The Cartesian product of two graphs)). For two graphs G; = (V1,Eq)
and Gy = (V,, Ep), the Cartesian product graph G = Gy x Gy is the graph with vertex set Vy x Vy;
there is an edge from the vertex (x1,1y1) to the vertex (xz,y2) if and only if either x; = xp and
Vi y2 € Exoryr = ypand x1,x2 € Ey .

Definition 3 ([39] (The conjunction of two graphs)). The conjunction of simple graphs G and
H, written GV H, is the graph obtained from the disjoint union of G and H by adding the edges
{xy:x e V(G),ye V(H)}.

Lemma 1 ([37,38]). Let Gy be any graph with ny vertices and my edges, and let G, be any
graph with ny vertices, my edges. Suppose that SL(G1) = (p1, M2, ..., Un,) and SL(Gy) =
(61,62, ...,0n,). Then the Laplacian spectrum of Gy o Gy is given by

(i) Two multiplicity one eigenvalues ity 41+ (z}li+n2+1)2_4”i € SL(Gj o Gy) for each eigen-
value u;(i=1,2,...,n1) of SL(Gy);
(i) 6j+1 € SL(Gy o Gp) with multiplicity ny for every eigenvalue 6;(j = 2,...,n2) of SL(Gy).

Lemma 2 ([41]). If G has m vertices and H has n vertices, then the Laplacian eigenvalues of
G x H are the mn numbers: v;(G) +v;(H) (i=1,2...,m; j=1,2,...,n).

Lemma 3 ([41]). If G1 has m vertices and Gy has n vertices, then the Laplacian eigenvalues of
G1VGyare: O,m +n,m—|—/\i,n—|—y]-,i =2,3,...,m;,j=23,...,m.

2.2. Descriptions of Consensus Index with Laplacian Spectrum

The main objective for this work is to investigate the robustness of the triplex systems
when the dynamics have external disturbation and to accurately quantify the relations
between the consensus indices and Laplacian eigenvalues. The robustness of the systems
with noise can be described by the network coherence; in addition, the convergence speed,
which can be characterized by A; (algebraic connectivity), is discussed.

(i)  First order case.

In this case, the networked system with additive noise can be written as
(t) = —L(G)x(t) +¢(t), ©)

where x(t) € RN, and ¢(t) € RY is a vector of delta-correalted Gaussian noise, and L(G) is
the Laplacian matrix of G.
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Definition 4 ([13-15]). The first-order network coherence is defined as the mean steady-state
variance of the deviation from the average of all node values:

1Y 1Y
Hf = tll>nolo N l:Zl Var{xi(t) N ]; Xj(t) }

It has been proven that ([12,13,15]) the first-order coherence H can be completely characterized
by the Laplacian eigenvalues. Let the Laplacian eigenvalues be described by 0 = A1 < Ay < ... <
AN; then, the first-order coherence can be determined by

1

1

1

X @)

™M=

2

(i)  Second order case.

In the second order network, such as vehicle formation problem, there are N vehicles. The
states of a nodes have a position vector x(t) € RN and a velocity vector v(t) € RN . The network

can be written as
(: - - Ugt) I o)
[ v(g } [ LO(G) LI(G) } [ t) } [ 0 } (f) 3)

where ¢(t) is a 2N-vector of zero mean white noise processes and 1 is the identity matrix.

Definition 5. The second-order network coherence is defined in terms of x(t), and it describes
the deviation from the average of of the first state variable of one nodes, and the definition has an
identical form with the first-order case.

The second-order coherence can also be characterized by Laplacian eigenvalues [15],
ie.,
1 Y1
Hi=—) —. 4)
2
2N 5N
The notion of network coherence implies the ability of maintaining its convergence
trend under the effect of stochastic disturbances. The characterization of this consensus
index has some similarity with the Kirhoff index [42,43].

3. Model Description and Main Results

As mentioned in Section 1, the layered star-like network in this paper is a kind of
network in which all nodes have identical form of dynamics, and it has the topology
composed by linking the center nodes among basic star topologies. The graphs in this
article are undirected and connected. The following subsections are given to define the
four types of networks and calculate the consensus indices.

3.1. The Consensus Indices for Network Topology G(A)

The topology in the same layer can be viewed as two star graph structures sharing the
same leaf nodes, and for which there are communication links between the center nodes.
Between the pair of nodes with corresponding position of different layers of the triplex
network, they are connected with an edge of the path P;.

It is obvious that the network topology can be characterized by (P,V&,) x P3, and the
network is denoted by A (see Figure 1).
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Figure 1. An example of the topology G(A), n = 6.

Since SL(P,) = ( (1) i ), SL(¢,) = ( 2 ), and since SL(P3;) = (

then, by Lemmas 2 and 3, one has

—_ O

—_ =
—_ W
~__

~(03+n 1 3 3 54+n 5 2+4n 2
SL[G(AH_(I 2 1 n-11 2 n-1 2 n—l)

then the first-order coherence of network A can be derived as:

N
H(l)(A):;vg)t: 2(3n1+6) [l+3in+i+;(”_1>+;+5in
+% %(n—l)—i—u_%—i—%—i—%(n—l)}
:6n—1|—12<%+%(n_1)+3—|1—n+5v1Ln+2—|1—n)
%% ~0.172 (n — o0)

The second-order coherence of A can be calculated as:

1 M1 1 1 1 n-1 1 1 1
HYA) =V - — — 4+ + =
(A) ZNZ.;/\% 6n+12< +(3+n)2+16+ 9 +9+(5+n)2+36
(n—1) 1 1 (n—1) 361
= ~ 0.067 .
T Toxar ot T4 ) 7m0 (n = o)

3.2. The Consensus Indices for Network Topology G(B)

The topology in the same layer can be seen as a wheel graph, a wheel graph structure
can be interpreted as adding edges between the leaf vertices of the star graph, and the
original leaf nodes form into a circle. One can see that in this construction design, the
network A and B has the same number of nodes in one layer, but the ling structure is
different. The network topology G(IB) can be described as (€;VC,,11) x P5 (see Figure 2),
where C,,11 denotes the circle with n + 1 nodes.

Figure 2. An example of G(B) : (¢;VC,, 1) X P3, n = 6.
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Since SL(Cj41) = (0 4sin (f)) k=1,2,..,n, one has

0 n+2 1+4sin?(F=
SL(€1VCpy1) = ( 11 " (57) )

and since SL(P;) = ( (1) 1 ? ), by Lemmas 2-3, the Laplacian spectrum of G(B) has
the following form:
SL(G(B)) =
0 1 3+n 2+4sin2(nk—ﬁ) 3 5+n 4+4sin2(nk—ﬁ) n+2 1+ 4sin® (%)
11 1 n 1 1 n 1 n

From the Laplacian spectrum, one can see that A, = 1. Thus, it has the same conver-
gence speed with A.
Therefore, the first-order coherence of network B can be derived as:

)+3+5+n

1 M1 1 1 n 1 1 1
H + +
T2N Z T ent12 < 3+n ];2—0—451712

kmt
i= M (g1

n n
X et B )

= 4+4szn2 o 1—1—451712
then
1 /1 1 1 /1 1 1 /1 1
lim HY(B) =— —d — ——d = —d
a0 (B) 12 Jo 1+ 2sin?mx ¥+ s 0 14 sin?(mx) **e 0 1+ 4sin2mx
_V3 L V2V s
36 48 30

The second-order coherence of B can be derived as:

He Ng’)}_6n41—12(1+(3—:n)2+i[2+4517112(fl)]2+3
. 0 1 n 1
+ (5+n)? +k:1 [4+4sin2(nk—ﬁ)]2 (n+ ; [1 4 4sin? (X +1)]2>
then
tim 12(3) [ T o A TSR
6.Jo 1+4si7112<>12d"
:§+£+§~0067

3.3. The Consensus Indices for Network Topology G(A)

In real applications, there may exist nodes with low degree that connect others only
within the same layer but do not have connection with other layers. It should be noted that
in the case of Sections 3.3 and 3.4, the leaf node in one layer is designed to be disconnected
from other layers.

In this subsection, a sort of triplex star-like graph with symmetric structure based on
A is considered.
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As shown in Figure 3, let each node in A be the center nodes sticking to a star structure

with k leaf nodes; then G(A) = G(A) o &, k > 3, i.e., [(P,VE&,) X P3] o €. The leaf nodes
are designed to disconnect with other layers.

Figure 3. An example of G(A), n = 6,k = 3.

)
)]
®)
4)
©)
(6)
@)

(8)
©)

By Lemma 1, the Laplacian spectrum of G(A) has the following description:
0 € SL(G(A)) and k+1 € SL(G(A)) with multiplicity 1;
GAREAVACRLI A ”(22+k)2_4 € SL[G(A)] with multiplicity 1;

£k HE 12 o g1 16(R)) with multiplicity ;
4 ntkt/ (4+n+k)2—4(3+n)

> € SL[G(A)] with multiplicity 2;
Ctnthi(OHn k454 ¢ g1 [G(A)] with multiplicity 2;

w € SL|G(A)] with multiplicity (n — 1);

3+n+kE+/(3+n+k)2—4(24n)

€ SL[G(A)] with multiplicity 2;

2
SAREAVACALS A W € SL[G(A)] with multiplicity (n — 1).
1 € SL|G(A)] with multiplicity 3(n + 2)(k — 1).

—\/ 2_ -
From the Laplacian spectrum, one can see that A, = w for G(A).

Therefore, the first-order coherence of A has the form:

. 1 M1 1 1 (4+k)(n—1)
H'(A) 2N£Ai 2(3n+6)(k+1)<k+1+(2+k)+ 3
2(44+n+k) 4+k 2(6—|—n+k)+(6+k)(n—1)+2(3+n+k)
3+n 3 54n 5 24n
34+k)(n—1
+(+)2(n)+3(n+2)(k1)).
Therefore,
_121
i 1) — o
n}lgian (&) = 155 ~ 0672

Hence, one can see that adding the star topology does not change the first-order

coherence of A.

The second-order coherence of network A can be calculated as:



Symmetry 2021, 13, 1248

8 of 14

. 1 ¥ 1 1
H®)(A) :ﬁl;)\? = G r e (D) <<k+1)2 +(24k)? -
(4+k2>—-6  (4+n+k?>-2B+n) _(6+n+k?*-2(5+n)
+(n)—79 +2 Ga? +2 =L
2 n 2_ n 2 _
+(n_1)(6+k2)5 0,6+ Jsz)+n)22(2+ )+(n_1>w

+3(n+2)(k—1)),

Let 1,k — oo; the asymptotic behaviour for the second-order coherence can be de-

scribed as @
H (A) - 5 1
n,k— o0 k 24 + ﬁ ~ 0215

3.4. The Consensus Indices for Network Topology G(B)

As shown in Figure 4, let each node in B be the center nodes stick to a star structure
with k leaf nodes; then, G(B) = G(B) o €, p > 3. The leaf nodes of this vertex’s degree,
equal to 1, are designed to not have access to link to other layers. The number of basic
center nodes (black ones in Figure 4) in one layer is same with G(A); however, the linking
structure is different.

Figure 4. An example of G(B) : [(¢,VC,11) X P3] 0 Ep, n =6,p = 3.

By Lemmas 1-3, the Laplacian spectrum of G(B) can be characterized as:
(1) p+1,0 € SL|G(B)] with multiplicity 1;
() HPEVRIPA ¢ 61 [G(B)] with multiplicity 1;
3) 4+n+pi\/(4+n+p 4(3+n) c SL[ ( )]

oy 2 2 _
@) (3-+4sin® (5 +p :l:\/ 3+4sm2(n+1)+p) 4(2+4sin (n+1)) c SL[G(IB)] with multiplicity 1,
k=1,2,...,n;
(5) ViRl W € SL|G(B)] with multiplicity 1;
(6) SmPEVETPPoAGI o g1 1G(B)] with multiplicity 1;
5++dsin® (K2 ) 4-p) £,/ (5-+4sin? 24 (4+4sin? _
) ErErGE i V6 PGPSR gpIG(B)] with multiplicity 1,
k=1,2,...,n;
3+n+p+ (3+n+p)2—4(2+n

with multiplicity 1;

€ SL[G(B)] with multiplicity 1;

8)
2-+4sin? (KL ) 4-p) 4/ (2+4sin? 1+4sin? _
() o Ve S'”z("“)“’) WP GE) ¢ g1IG(B)] with multiplicity 1,

k=1,2,.
(10) 1€ SL[G( )] w1th multiplicity 3(n+2)(p — 1).

—/ -
Therefore, the convergence speed can be characterized as A, = M.
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The first-order coherence of network B can be calculated as:
_ 1 2 1 1 ( 1 n 1 44n+p
N&A 6n+2)(1+p) \p+1 p+2 3+n
1 1 4 6+n n 1
PR e e S P R0 )
=1 2 + 4sin?( +1) n =1 4 + 4sin?( +1)
3+n+p 1+p )
+—+ — )+ 3(n+2)(p—1
2+mn ; 1+4sin2(nk—fl)) ( =1
then
_ 1 /1 1 1 /1 1
lim HO(B —  _dx+ — - d
npSeo (B) = 12 Jo 1+ 2sin?(mx) ¥+ o 0 1+ sin?(mx) *
+1 ! ;dx +1
6 Jo 1+ 4sin?(nx ) 2
V3 V2 W5
— —+ — + - = 2
=36 + 13 + 30 + 0.65

Remark 1. Compared with the network B, one can see that if the layered network has had star
topologies added to each node, then the first-order coherence will increase at a constant value as
n,p — oo; that is, HV (B) = HO(B) + 0.5 (1, p — o0), and the same relationship applies to A
and A.

The second-order coherence of B can be calculated as:
1 N1
)\2
1 (Z (p2+2p(2+4sm (E5)) + (2 + 4sin? (K72
“6(n+2)(1+p) (14 4sin?(;55))2
) N Z (p +2p(3+4s1n (n+1)
1+ 451112 = (2 + 4sin?

i (p +2p(5+4szn (n+1)
(4 + 4sin?(5;

H®(B) =

k=1

1+ 251712 =

_l’_
2 _
26+w# >+» 2+Q+p) 24+ (1+
2

14+p.,

1
+( +5+n

)2 -

+(1+

5+4n

1+py_ 2 +»(4+p)2—6
2+n 2+n 9

Therefore, the symptotic behavior of H?) (B) can be described as:

lim H<2)(B> —1 ' 1 dx+i ' !
npoeo  p o 6Jo (1+4sin(mx))2 24 Jo (14 2sin?(mx))?
1
96 o (T sin2(mn))?
V5 V8 V2

50 —0—@—0—% ~ 0.067

dx

dx
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4. Simulation and Comparison

It should be emphasized that the numbers of nodes in each layer of A and B are
the same, i.e., |[V(G(A))| = |[V(G(B))| = n+ 2, and the equality relation applies to A
and B if the numbers of leaf nodes are also the same. The comparisons of performances
for the triplex networks are made from two perspectives: vertically, A and A, B and B;

horizontally, A and B, A and B. By the derivation of Section 3, since f(x) = “—HZH

is monotonically decreasing, the maximum convergence speed for G(A) and G(B) can

be characterized by Ay = % < land A — 0 as p — co. The change in A, is
shown in Figure 5. Therefore, the network A and B reach consensus much slower than
A and B, respectively. From the previous discussion, one can see that the first-order
coherence of A is 0.5 greater than that of A, and the relationship applies to B and B, which
means the robustness will increase at a fixed value when the operation of adding star
topologies is made. As for the relation of second-order coherence for B and B, we have
limy, p—e0 H? (B) = plimy o H? (B).

From the calculation results and the simulations, one can see that the first-order
coherence of A and B has the relation HM) (A) > HV(B) as n — oo, and for A and B, we
have HV (A) > HM(B) as n,k — 0.

In the second-order case, H? (A) ~ H?)(B) as n,p — co. The value of H?(A)
mainly depends on the number of leaf nodes k when n, k are large enough.

H® (A) is much larger than H®) (A) when n is large enough, which means the second
order robustness of A is not as good as that of A.

0.25

*
0.2 q
*
0.15F f
Y *
*
0.1 - * .
*
*
%
**
%
*,
0.051 *****M
o . . . . . . , \ |
0 10 20 30 40 50 60 70 80 90 100

n

Figure 5. The change of A, for G(A) and G(B).

The variances of the network coherence for the four networks are shown in Figures 6-13.
It can be seen that the simulations verify the calculation results well.

0.174

0.1721

0.156 b

0.154 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

n

Figure 6. The change of H(!) for A.



Symmetry 2021, 13, 1248 11 of 14

0.09

0.085- b
0.08 - b
0.075 B

0.07§ T

0.065
0

I I I I I I I I I
100 200 300 400 500 600 700 800 900 1000
n

Figure 7. The change of H® for A.

The variance of the network coherence for B is shown in Figures 8 and 9.

0.155

0.145 |

T o141 B

0.135 —

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
n

Figure 8. The change of H() for B.

0.08

0.075 i

0.07 b

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
n

Figure 9. The change of H?) for B.

The variance of the network coherence for A and B is shown in Figures 10-13.
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5. Conclusions

In this paper, the network coherence that characterizes the robustness of the triplex
star-like works is studied through the methods of graph spectra; in addition, the algebraic
connectivity that characterizes the convergence speed is discussed. By applying graph
operations methods, two pairs of triplex star-like networks that have non-isomorphic
graphs but with same structure parameters, i.e., n and k(or p), have been constructed.
This paper mainly studies the asymptotic behavior of the network coherence of the triplex
networks, and it is found that the adhering star topologies to each node of A and B
will increase at a constant value to the first-order coherence. For the two groups of non-
isomorphic graph structures, when n — oo, the first-order robustness of B is better than A,
and the second-order coherence of A and B is approximately equal as #, k tends to infinity.
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