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Abstract: The Cayley–Klein (CK) formalism is applied to the real algebra so(5) by making use of
four graded contraction parameters describing, in a unified setting, 81 Lie algebras, which cover
the (anti-)de Sitter, Poincaré, Newtonian and Carrollian algebras. Starting with the Drinfel’d–Jimbo
real Lie bialgebra for so(5) together with its Drinfel’d double structure, we obtain the corresponding
CK bialgebra and the CK r-matrix coming from a Drinfel’d double. As a novelty, we construct
the (first-order) noncommutative CK spaces of points, lines, 2-planes and 3-hyperplanes, studying
their structural properties. By requiring dealing with real structures, we found that there exist
63 specific real Lie bialgebras together with their sets of four noncommutative spaces. Furthermore,
we found 14 classical r-matrices coming from Drinfel’d doubles, obtaining new results for the de
Sitter so(4, 1) and anti-de Sitter so(3, 2) as well as for some of their contractions. These geometric
results were exhaustively applied onto the (3 + 1)D kinematical algebras, considering not only the
usual (3 + 1)D spacetime but also the 6D space of lines. We established different assignations between
the geometrical CK generators and the kinematical ones, which convey physical identifications for the
CK contraction parameters in terms of the cosmological constant/curvature Λ and the speed of light
c. We, finally, obtained four classes of kinematical r-matrices together with their noncommutative
spacetimes and spaces of lines, comprising all κ-deformations as particular cases.

Keywords: quantum groups; classical r-matrices; contractions; symmetric homogeneous spaces;
Anti-de Sitter; Carroll; Newton–Hooke; kappa-deformation; noncommutative spacetimes; noncom-
mutative spaces of lines
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1. Introduction

The notion of Cayley–Klein (CK) Lie algebras along with their corresponding Lie
groups and symmetric homogeneous spaces date back to early studies of projective metrics.
In particular, CK Lie groups appear in a natural way within the context of the consideration
by Klein that most geometries are, in fact, subgeometries of projective geometry and
also in relation to Cayley’s theory of projective metrics [1–3]. However, the complete
classification of CK geometries, understood as geometries endowed with a projective
metric, was not given by Klein himself. The two-dimensional (2D) geometries were studied
under the name of “quadratic geometries” by Poincaré, who followed a modern group
theoretical approach.

The classification of CK geometries for an arbitrary dimension N was finally achieved
by Sommerville in 1909 [4], where he showed that there exist exactly 3N different CK
geometries in dimension N, each of them corresponding to a different choice of the kind of
measure of distance between points, lines, 2-planes, . . . , (N − 1)-hyperplanes, which can
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be either of elliptic, parabolic or hyperbolic type [3]. Then, CK groups are just the motion
groups of the CK geometries acting as groups of isometries of the symmetric homogeneous
CK spaces. In dimension N, such CK groups are semisimple pseudo-orthogonal groups
SO(p, q) (p + q = N + 1) and some of their contractions, such as the inhomogeneous
ISO(p′, q′) (p′ + q′ = N).

In order to set up the main ideas and the formalism that we shall follow along the
whole paper, let us consider the well-known nine 2D CK geometries [3,5–12]. These emerge
as the different possibilities for considering the measures of distance between two points
and the measure of an angle between two lines, with each of them being either of elliptic,
parabolic or hyperbolic type. The CK groups are the simple real Lie groups SO(3) and
SO(2, 1), the non-simple inhomogeneous Euclidean ISO(2) and Poincaré ISO(1, 1) and the
twice inhomogeneous Galilean IISO(1) (in this notation ISO(1) ≡ R).

The 2D CK geometries are constructed through the coset spaces of the above 3D Lie
groups with a precise 1D isotropy subgroup. Early, the usual procedure for describing
these geometries made use of hypercomplex numbers with two hypercomplex units ι1 and
ι2 [2,3,5,6]. We recall that a hypercomplex number is defined by z := x + ι y, where (x, y)
are two real coordinates and ι is a hypercomplex unit such that ι2 ∈ {−1,+1, 0}.

Hence, there are three possible kind of hypercomplex numbers according to the
specific unit ι: (1) If ι2 = −1, then ι is an elliptical unit providing the usual complex
numbers; (2) If ι2 = +1, ι is a hyperbolic unit yielding the so-called split complex, double
or Clifford numbers; and (3) if ι2 = 0, ι is a parabolic unit leading to the dual or Study
numbers. Alternatively, 2D CK geometries can also be studied in terms of two real graded
contraction parameters ω1 and ω2, which can take positive, negative or zero values [7–12].
By taking into account the above two approaches, we display the specific 2D CK geometries
in Table 1, where they are named in their original geometric form [3], as well as in their
physical (or kinematical) terminology (second and third rows).

Table 1. The nine two-dimensional Cayley–Klein geometries as homogeneous spaces according to
two real graded contraction parameters (ω1, ω2) and to two hypercomplex units (ι1, ι2).

Measure of Angle
Measure of Distance

Elliptic Parabolic Hyperbolic
ω1 > 0 ι2

1 = −1 ω1 = 0 ι2
1 = 0 ω1 < 0 ι2

1 = +1

Elliptic • Spherical • Euclidean • Hyperbolic
ω2 > 0 ι22 = −1 SO(3)/SO(2) ISO(2)/SO(2) SO(2, 1)/SO(2)
Parabolic • Co-Euclidean • Galilean • Co-Minkowskian
ω2 = 0 ι22 = 0 or Oscillating NH or Expanding NH

ISO(2)/R IISO(1)/R ISO(1, 1)/R
Hyperbolic • Co-Hyperbolic •Minkowskian • Doubly Hyperbolic
ω2 < 0 ι22 = +1 or Anti-de Sitter or De Sitter

SO(2, 1)/SO(1, 1) ISO(1, 1)/SO(1, 1) SO(2, 1)/SO(1, 1)

Consequently, the family of 2D CK geometries contains nine homogeneous spaces
of constant curvature: the three classical Riemannian spaces in the first row of Table 1;
the three (Newtonian) spaces with a degenerate metric in the second row; and the three
pseudo-Riemannian or Lorentzian spaces in the third row.

In the procedure that makes use of the real parameters (ω1, ω2) [7–12], the generic
CK Lie algebra is denoted by soω1,ω2(3) = span{J01, J02, J12}, which corresponds to a
two-parametric family of Lie algebras with commutation relations given by

[J12, J01] = J02, [J12, J02] = −ω2 J01, [J01, J02] = ω1 J12. (1)

The vanishing of a given parameter ωm (i.e., ωm → 0) is equivalent to apply an
Inönü–Wigner contraction [13]. The CK algebra has a single quadratic Casimir given by
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C = ω2 J2
01 + J2

02 + ω1 J2
12. (2)

The 2D CK geometry is then defined as the following coset space between the CK Lie
group SOω1,ω2(3) with Lie algebra soω1,ω2(3) (1) and the isotropy subgroup of a point H,
spanned by J12 [9]:

S2
[ω1],ω2

:= SOω1,ω2(3)/H, H = SOω2(2) = 〈J12〉. (3)

Hence, J12 leaves a point O invariant (the origin) acting as the generator of rotations
around O, while J01 and J02 are the generators of translations that move O along two basic
directions on the space. The CK geometry (3) has a metric, provided by the Casimir (2),
which is of constant (Gaussian) curvature equal to ω1 and with metric signature given by
diag(+1, ω2) (see Table 1).

Spacetimes of constant curvature in (1 + 1) dimensions arise as particular cases of the
CK geometry (3) through different assignations between the geometrical generators Jab
and the kinematical ones, which require appropriate relations between the CK parameters
(ω1, ω2) and physical quantities. Explicitly, let {P0, P1, K} be the generators of time transla-
tions, space translations and boost transformations. Under the particular identification

J01 ≡ P0, J02 ≡ P1, J12 ≡ K, ω1 ≡ −Λ, ω2 ≡ −c−2, (4)

where Λ is the cosmological constant and c is the speed of light, we find that the CK algebra
(1) adopts the form

[K, P0] = P1, [K, P1] =
1
c2 P0, [P0, P1] = −ΛK. (5)

Thus, under the relations (4), the CK group SOω1,ω2(3) with Lie algebra (5) becomes
a kinematical group acting as the group of isometries of six relevant (1 + 1)D spacetime
models [14] of constant curvature equal to −Λ, which are all contained in (3). These are
the three Lorentzian spacetimes with the metric signature diag(+1,−c−2), mentioned in
the third row of Table 1, along with their non-relativistic limit c→ ∞ leading to the three
Newtonian spacetimes with degenerate metric diag(+1, 0) in the second row of Table 1
(NH means Newton–Hooke). All of the kinematical algebras and spacetimes can also be
described within the CK framework except for the static algebra [14]; at this dimension,
the latter is just the abelian algebra.

In principle, the very same results can be obtained by making use of the formalism in
terms of hypercomplex numbers [2,3,5,6] since, roughly speaking, one finds the relations
ι2 ∼ −ω. Nevertheless, in addition to simply dealing with real numbers instead of
hypercomplex ones, the main differences between both approaches clearly appear in the
pure contracted case corresponding to consider the parabolic unit ι2 = 0 and to set ω = 0.
In particular, the contraction of exponentials of a Lie generator J could give rise to different
results; for instance:

exp(ι2xJ)→ 1, exp(ιxJ)→ 1 + ιxJ, exp(ωxJ)→ 1, exp(
√

ω xJ)→ 1,

where x is a real number. We stress that this kind of exponential often appears in quantum
groups, and, moreover, terms depending on some

√
ωm will be omnipresent through-

out the paper (within Lie bialgebra structures), so that both procedures could be no
longer equivalent in a quantum deformation framework. Thus, we shall make use of
the graded contraction approach with real parameters ωm in such manner that a smooth
and well-defined ωm → 0 limit of all the expressions that we shall present here will be
always feasible.

In addition, we stress that the same CK group SO(2, 1) appears three times in Table 1,
and two of their CK spaces are “similar” (see [15,16] for a very detailed description of
these three geometries in terms of hypercomplex numbers). The structure of the three CK
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geometries involved, hyperbolic and the (anti-)de Sitter ones, can be better understood by
considering not only the usual CK space (3) shown in Table 1 but also their 2D homogeneous
spaces of lines, as it was performed in [8,12] and likewise for the Euclidean and Poincaré
groups, which appear twice in Table 1.

In arbitrary dimension N, the CK algebra depends on N real graded contraction
parameters ωm (m = 1, . . . , N) and is denoted by soω1,...,ωN (N + 1). This family comprises
3N semisimple and non-semsimple real Lie algebras (being some of them isomorphic),
which share common geometric and algebraic properties. The signs of the parameters
ωm 6= 0 determine a specific real form so(p, q) and when at least one ωm vanishes the CK
algebra becomes a non-semisimple one.

In algebraic terms, a CK algebra can be defined as a graded contracted Lie algebra
from so(N + 1) [17], which keeps the same number of algebraically independent Casimir
invariants as in the semisimple case, regardless of the values of ωm [18]. This definition
implies that all of the 3N particular CK algebras have the same rank (even for the most
contracted case with all ωm = 0), so that they are also known as quasisimple orthogonal
algebras [18,19]. From this viewpoint they can be seen as the “closest” contracted algebras
to the semisimple ones.

In this respect, we remark that the CK contraction sequence ensures to always obtain
a non-trivial quadratic Casimir (like (2)), which, in turn, means that there always exists a
non-trivial metric on the ND CK geometry, although degenerate in many cases. This fact
explains the absence of the static algebra in the CK family. Obviously, if one goes beyond
the CK Lie algebra contraction sequence, then one can obtain the static algebra, and finally
arrive at the abelian algebra [20].

From the CK algebra, the corresponding CK Lie group SOω1,...,ωN (N + 1) can be
constructed, and the ND CK geometry is defined as the coset space (see (3))

SN
[ω1],ω2,...,ωN

:= SOω1,...,ωN (N + 1)/SOω2,...,ωN (N), (6)

which has a metric of constant (sectional) curvature equal to ω1 with signature given by
diag(+1, ω2, . . . , ωN).

In this paper, we focus on the physically relevant dimension N = 4, thus covering the
(3 + 1)D spacetimes of constant curvature. Hence, the CK algebra and group will depend on
a set of four real graded contraction parameters ω = (ω1, ω2, ω3, ω4), thus, comprising
34 = 81 specific Lie algebras. For each CK algebra/group, we shall consider four types of
symmetric homogeneous spaces: the usual 4D CK space of points (spacetimes) (6) along
with the 6D space of lines, 6D space of 2-planes and 4D space of 3-hyperplanes, with all
of them of constant curvature and equal to ω1, . . . , ω4. Therefore, in this paper, by a CK
geometry, it will be understood the set of these four homogeneous spaces associated with a
given Lie algebra in the CK family and not only the usual space of points (6), which is the
one commonly considered in the literature.

In this geometrical setting, we initially study CK Lie bialgebras and their associated
noncommutative spaces in order to further develop their physical applications. Thus, we,
first review the basics on quantum groups that will be used along the paper in Section 2.
Secondly, we present a two-fold work in Sections 3–6 with two main but interrelated parts,
whose structure, objectives and results are as follows.

1. Starting with the Drinfel’d–Jimbo Lie bialgebra for so(5) and also considering its
Drinfel’d double structure in Section 3, we obtain the corresponding CK bialgebra
along with the classical CK r-matrix coming from a Drinfel’d double in Section 4.
As a novelty, we construct, by means of quantum duality, the first-order (in the
quantum coordinates) noncommutative CK spaces of points, lines, 2-planes and 3-
hyperplanes. We analyse their properties and always require real structures. We
found that, finally, there were 63 specific real Lie bialgebras together with their sets of
four (first-order) noncommutative spaces, which are summarized in Tables 2 and 3,
respectively. Additionally, we found 14 classical r-matrices coming from Drinfel’d
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double real structures: there are four cases (I)–(IV) for the simple algebras and 10 more
cases for their contractions. In this way, we obtain new results for de Sitter so(4, 1)
(case (II)) and anti-de Sitter so(3, 2) (case (IV)) Drinfel’d doubles and for some of their
contractions, which are displayed in Table 4.

2. The above geometric results are exhaustively applied onto the (3 + 1)D kinematical
algebras [14] not only considering the usual (3 + 1)D spacetime but also the 6D space
of lines; the classical picture for each kinematical algebra is presented in Section 5
and outlined in Table 5. In Section 6, we establish different assignations between the
geometrical CK generators and the kinematical ones, which convey appropriate phys-
ical identifications for the CK contraction parameters ω in terms of the cosmological
constant/curvature Λ and speed of light c. In this process, we obtain four classes of
kinematical r-matrices and, for some algebras, also r-matrices coming from Drinfel’d
doubles. These classes are called A, B, C and D, matching, in this order, with the
above cases (I)–(IV). The resulting kinematical bialgebras are given in Table 6, while
their corresponding first-order noncommutative spacetimes and spaces of lines are
shown in Table 7. We stress that class C covers the kappa-deformations.

Although, in this work, we do not construct the complete quantum kinematical
algebras and their associated full noncommutative spacetimes and spaces of lines, we
comment on related known results and open problems in Sections 6.5 and 6.6, respectively.
To finish with, several conclusions and a more exhaustive list of open problems, also
concerning the geometric CK setting, are drawn in Section 7.

2. Fundamentals on Quantum Groups

In this Section, we review the basic background on quantum groups necessary for
the paper along with updates and physical motivation related to the main results here
presented. We shall focus on quantum deformations of Lie algebras (with a Hopf algebra
structure) along with their connection to Lie bialgebras, Poisson–Lie groups, Poisson
homogeneous spaces, noncommutative spaces and Drinfel’d doubles. More details on
these topics can be found in [21–26].

2.1. Lie Bialgebras and Quantum Algebras

Let us consider an nD Lie algebra g = span{X1, . . . , Xn} with commutation relations
given by

[Xi, Xj] =
n

∑
k=1

ck
ijXk. (7)

The Lie algebra g is endowed with a Lie bialgebra structure (g, δ) [27] if there exists a
map δ : g→ g∧ g called the cocommutator verifying two conditions:

(i) δ is a 1-cocycle,

δ([Xi, Xj]) = [δ(Xi), Xj ⊗ 1 + 1⊗ Xj] + [Xi ⊗ 1 + 1⊗ Xi, δ(Xj)], ∀Xi, Xj ∈ g. (8)

(ii) The dual map δ∗ : g∗ ⊗ g∗ → g∗ is a Lie bracket on the dual Lie algebra g∗ of g.

Therefore, any cocommutator δ can be written in a skew-symmetric form as

δ(Xi) =
n

∑
j,k=1

f jk
i Xj ⊗ Xk , f jk

i = − f kj
i , (9)

in such a manner that the antisymmetric factors f jk
i turn out to be the structure constants

of the dual Lie algebra g∗ = span{x̂1, . . . , x̂n}:

[x̂j, x̂k] =
n

∑
i=1

f jk
i x̂i. (10)
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The duality between the generators of g and g∗ is determined by a canonical pairing
given by the bilinear form

〈x̂i, Xj〉 = δi
j , ∀i, j. (11)

The cocycle condition (8) leads to the following compatibility equations among the
structure constants ck

ij (7) and f jk
i (10):

n

∑
k=1

f lm
k ck

ij =
n

∑
k=1

(
f lk
i cm

kj + f km
i cl

kj + f lk
j cm

ik + f km
j cl

ik

)
, ∀i, j, l, m.

For some Lie bialgebras, the 1-cocycle δ is coboundary [27], that is, it can be obtained
from an element r ∈ g⊗ g in the form

δ(Xi) = [Xi ⊗ 1 + 1⊗ Xi, r], ∀Xi ∈ g. (12)

The element r is the so-called classical r-matrix, which can always be written in a
skew-symmetric form

r =
n

∑
i,j=1

rijXi ⊗ Xj , rij = −rji, (13)

and must be a solution of the modified classical Yang–Baxter equation

[Xi ⊗ 1⊗ 1 + 1⊗ Xi ⊗ 1 + 1⊗ 1⊗ Xi, [[r, r]] ] = 0, ∀Xi ∈ g, (14)

where [[r, r]] is the Schouten bracket defined by

[[r, r]] := [r12, r13] + [r12, r23] + [r13, r23], (15)

such that

r12 =
n

∑
i,j=1

rijXi ⊗ Xj ⊗ 1 , r13 =
n

∑
i,j=1

rijXi ⊗ 1⊗ Xj , r23 =
n

∑
i,j=1

rij1⊗ Xi ⊗ Xj .

If the Schouten bracket (15) does not vanish for an r-matrix written in the skew-
symmetric form (13), then the Lie algebra g is endowed with a quasitriangular (or standard)
Lie bialgebra structure (g, δ(r)). The vanishing of the Schouten bracket corresponds to the
classical Yang–Baxter equation

[[r, r]] = 0, (16)

and (g, δ(r)) is called triangular (or nonstandard) Lie bialgebra.
We remark that the deformation parameter, that we shall denote as z throughout the

paper and such that q = ez, is already contained within δ (9) and r (13) in the factors f jk
i

and rij as a global multiplicative constant. This, in turn, means that the non-deformed
or “classical” limit z → 0 (i.e., q → 1) leads to a trivial coproduct δ = 0 with all f jk

i ≡ 0
and classical r-matrix r = 0 with all rij ≡ 0, being g∗ an abelian Lie algebra, thus, with
commutative generators x̂i (10).

A quantum algebra Uz(g) is a Hopf algebra deformation of the universal enveloping
algebra U (g) of g constructed as formal power series C[[z]] in a deformation indeter-
minate parameter z and coefficients in U (g)—that is, Uz(g) = U (g) ⊗̂C[[z]]. The Hopf
algebra structure of Uz(g) is determined by the coproduct ∆z, counit ε and antipode γ
mappings [24–26]. In particular, the coproduct ∆z : Uz(g) → Uz(g)⊗ Uz(g) must be an
algebra homomorphism and fulfil the coassociativity condition

(Id⊗ ∆z)∆z = (∆z ⊗ Id)∆z ,
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where Id is the identity map, giving rise to a coalgebra structure (Uz(g), ∆z). Once ∆z is
obtained, the remaining maps, ε and γ, can directly be deduced from the Hopf algebra
axioms providing the complete Hopf algebra structure. Hence, hereafter, we shall only
focus on the coalgebra structure of Uz(g) assuming the existence of the corresponding
counit and antipode.

The remarkable point is that any quantum algebra Uz(g) is determined at the first-
order in z by a Lie bialgebra (g, δ). Explicitly, if we write the coproduct ∆z as a formal
power series in z, the cocommutator δ (9) is just the skew-symmetric part of the first-order
term ∆1 in z, namely

∆z(Xi) = ∆0(Xi) + ∆1(Xi) + o[z2],

∆0(Xi) = Xi ⊗ 1 + 1⊗ Xi , (17)

δ(Xi) = ∆1(Xi)− σ ◦ ∆1(Xi),

where σ is the flip operator σ(Xi ⊗ Xj) = Xj ⊗ Xi and ∆0 is called the primitive (non-
deformed) coproduct. Therefore, each Lie bialgebra (g, δ) determines a quantum defor-
mation (Uz(g), ∆z), and the equivalence classes (under automorphisms) of Lie bialgebra
structures on g will provide all its possible quantum algebras.

We recall that, for semisimple Lie algebras, all their Lie bialgebra structures are
coboundaries, so that all their possible quantum deformations are determined by classical
r-matrices. The paradigmatic type of them is provided by the so-called Drinfel’d–Jimbo
deformations [28–30]; the corresponding Drinfel’d–Jimbo r-matrix for the compact real
form so(5) [31] will be our starting point for the detailed study of the CK Lie bialgebras,
which will be performed in Sections 3 and 4.

However, even for semisimple Lie algebras, the determination of all the Lie bialgebra
structures through classical r-matrices is a cumbersome task and, in fact, there are only
classifications for the Lorentz algebra so(3, 1) [32] and for the related real forms so(4) and
so(2, 2) [33,34]; from a kinematical viewpoint, these classifications for so(3, 1) and so(2, 2)
correspond to (2 + 1)D (anti-)de Sitter r-matrices [35]. Therefore, in the (3 + 1)D case, which
is the one that we shall consider throughout this paper, there are no such classifications
for the simple algebras so(p, q) with p + q = 5, although we remark that there are some
partial results.

In particular, it was shown in [36] that there exist only two two-parametric classical
r-matrices for the (anti-)de Sitter algebras so(4, 1) and so(3, 2) keeping the primitive (unde-
formed) time translation generator and a single rotation generator. The classification of
their r-matrices, which preserve a Lorentz so(3, 1) sub-bialgebra was very recently obtained
in [37] starting with the former full (2 + 1)D classification [32,33].

All the Lie bialgebra structures for inhomogeneous pseudo-orthogonal algebras
iso(p, q) with p + q ≥ 3 are also coboundaries [38,39]. Their classification for the (3 + 1)D
Poincaré algebra iso(3, 1) was obtained in [38,40,41], while for the (2 + 1)D Poincaré algebra
iso(2, 1) and 3D Euclidean iso(3), it was performed in [42]; the latter classifications have
also been recovered in [43] by contracting the (2 + 1)D (anti-)de Sitter and so(4) r-matrices
given in [33,34].

Concerning other kinematical algebras, we also recall that the obtention of Lie bial-
gebras mainly covers low-dimensional cases such as the (1 + 1)D Galilei algebra (isomor-
phic to the Heisenberg–Weyl algebra h3) [44–47], the 2D Euclidean algebra iso(2) [48],
the (1 + 1)D centrally extended Galilei algebra [49–51] and the (1 + 1)D centrally extended
Poincaré algebra in the light-cone basis (isomorphic to the oscillator algebra h4) [52,53].
With the exception of the latter, all of them have both coboundary and non-coboundary Lie
bialgebra structures.

In general, for solvable and nilpotent Lie algebras, many of their Lie bialgebra struc-
tures are non-coboundaries; in this respect, see [54,55] and the references therein for the
classification of 3D Lie bialgebras. Finally, very recently, the classification of 4D inde-
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composable coboundary Lie bialgebras was carried out in [56], which showed how the
difficulties of this task grow when the dimensions of the Lie bialgebras increase.

2.2. Quantum Groups and Noncommutative Spaces

Let us consider a quantum algebra (Uz(g), ∆z) with underlying Lie bialgebra (g, δ)
and let G be the Lie group with Lie algebra g. A quantum group (Gz, ∆Gz) is a noncommuta-
tive algebra of functions on G defined as the dual Hopf algebra to the quantum algebra
(Uz(g), ∆z). Explicitly, let mGz and mz be the noncommutative products in Gz and Uz(g),
respectively. The duality between the Hopf algebras (Gz, mGz , ∆Gz) and (Uz(g), mz, ∆z) is
established by means of a canonical pairing 〈 , 〉 : Gz ×Uz(g)→ R such that

〈mGz( f ⊗ g), X〉 = 〈 f ⊗ g, ∆z(X)〉, (18)

〈∆Gz( f ), X⊗Y〉 = 〈 f , mz(X⊗Y)〉, (19)

where X, Y ∈ Uz(g), f , g ∈ Gz and 〈 f ⊗ g, X⊗Y〉 = 〈 f , X〉 〈g, Y〉.
The duality relation (18) implies that the noncommutative product mGz in the quantum

group Gz is defined by the coproduct ∆z in the quantum algebra Uz(g) and, conversely,
the expression (19) implies that the coproduct ∆Gz in Gz is given by the noncommutative
product mz in Uz(g). By taking into account that the first-order term in z of the coproduct
∆z is defined by the cocommutator δ (17), a straightforward consequence of the above
Hopf algebra duality is that the commutation relations for the quantum group Gz at the
first-order in the quantum (noncommutative) coordinates x̂i are given by the dual map δ∗

of δ (9), that is, with fundamental Lie brackets (10).
Furthermore, each quantum group (Gz, ∆Gz) can be associated with a Poisson–Lie group

(G, Π), with Poisson structure Π, and the latter with a unique Lie bialgebra structure (g, δ).
In particular, it is well known [27] that Poisson–Lie structures on a connected and simply
connected Lie group G are in one-to-one correspondence with Lie bialgebra structures.
Hence, quantum groups are quantizations of Poisson–Lie groups, that is, quantizations of
the Poisson–Hopf algebras of multiplicative Poisson structures on Lie groups [24,25,30].
In the case of coboundary Lie bialgebras (g, δ(r)), coming from a skew-symmetric classical
r-matrix (13), the Poisson structure Π of the Poisson–Lie group is given by the so-called
Sklyanin bracket [24,30]

{ f , g} =
n

∑
i,j=1

rij(∇L
i f∇L

j g−∇R
i f∇R

j g
)
, f , g ∈ C∞(G), (20)

where ∇L
i and ∇R

i are left- and right-invariant vector fields on G.
Next, a Poisson homogeneous space of a Poisson–Lie group (G, Π) is a Poisson manifold

(M, π) endowed with a transitive group action B : G×M→ M, which is a Poisson map
with respect to the Poisson structure on the manifold M and the product Π⊕ π of the
Poisson structures on G and M. In this paper, we shall consider that the manifold M is an
`D homogeneous space

M = G/H (21)

of a Lie group G (the motion group of M) with isotropy subgroup H whose Lie algebras
are g and h, respectively. Moreover, throughout this paper, we will be interested in pointed
Poisson homogeneous spaces, i.e., Poisson homogeneous spaces in which the origin is
fixed, and we will not study how the Poisson structure is modified when this origin is
changed. The Lie algebra g, understood as a vector space, can be written as the sum of two
vector subspaces

g = h⊕ t, [h, h] ⊂ h.

The generators of h leave a point of M invariant, which is taken as the origin O of the
space, and thus they play the role of rotations around O, while the ` generators belonging
to t move O along ` basic directions, behaving as translations on M. The group parameters



Symmetry 2021, 13, 1249 9 of 57

(u1, . . . , u`) of the generators of t lead to ` coordinates of M and they span the annihilator
h⊥ of the vector subspace h in the dual Lie algebra g∗ [57].

In principle, the Lie algebra g of G may admit several coboundary Lie bialgebra struc-
tures (g, δ(r))—that is, different classical r-matrices. Then, a particular Poisson homoge-
neous space (M, π) can be constructed by endowing the motion group G with the Poisson–
Lie structure Π (20) for a given classical r-matrix and the homogeneous space M (21) with
a Poisson bracket π that has to be compatible with the group action B : G × M → M.
Therefore, according to the possible classical r-matrices of g, it follows that the Lie group
G may be endowed with several Poisson–Lie structures Π (20), each of them leading to a
different Poisson homogeneous space [58].

A distinguished type of Poisson homogeneous space is that in which the Poisson
bracket π is obtained as the canonical projection on M with the coordinates (u1, . . . , u`)
of the Poisson–Lie bracket Π [57,59] (see also [60,61]). In terms of the underlying Lie
bialgebra, this requirement corresponds to imposing the so-called coisotropy condition for
the cocommutator δ with respect to the isotropy subalgebra h of H given by [57,59]

δ(h) ⊂ h∧ g. (22)

A particular and very restrictive case of the above condition is for the subalgebra h to
be a sub-Lie bialgebra,

δ(h) ⊂ h∧ h, (23)

which implies that the Poisson homogeneous space is constructed through an isotropy
subgroup H, which is a Poisson subgroup (H, Π) of (G, Π). Furthermore, since the quan-
tum group (Gz, ∆Gz) is the quantization of the Poisson–Lie group (G, Π), the quantization
of a coisotropic Poisson homogeneous space (M, π) fulfilling (22) provides a quantum
homogeneous space Mz with the quantum coordinates (û1, . . . , û`), onto which the quan-
tum group Gz co-acts covariantly [62]. The coisotropy condition (22) ensures that the
commutation relations that define Mz at the first-order in all the quantum coordinates
close a Lie subalgebra, which is simply the annihilator h⊥ of h on the dual Lie algebra
g∗, and such relations determine a Lie subalgebra of g∗ (10). Generically, Mz is called a
noncommutative space.

Probably, the best known and most studied example of noncommutative spaces is the
so-called κ-Minkowski spacetime coming from the κ-Poincaré algebra [63–69] where κ is
the quantum deformation parameter, which is proportional to the Planck mass and here
related to z as κ = z−1. The quantum algebra Uz(g) and quantum group Gz correspond to
the κ-Poincaré algebra and κ-Poincaré group. In this case, the underlying homogeneous
space (21) is the flat (3 + 1)D Minkowski spacetime constructed as the coset space of the
Poincaré group G = ISO(3, 1) with the Lorentz isotropy subgroup H = SO(3, 1):

M3+1 = ISO(3, 1)/SO(3, 1). (24)

Thus, the dimension is ` = 4, and the coordinates (u1, . . . , u4) are identified with the
time and spatial ones (x0, xi) (i = 1, 2, 3). The κ-Poincaré classical r-matrix [67] provides
a quasitriangular quantum deformation of the Poincaré algebra [64–66] such that the
Lorentz subalgebra h = so(3, 1) fulfils the coisotropy condition (22), thus, giving rise to
the subalgebra h⊥ whose generators are the quantum coordinates (x̂0, x̂i) dual to the time
and space translation generators. The complete quantization of h⊥ is the κ-Minkowski
spacetime M3+1

κ , which is defined by the commutation relations given by [67]:

[x̂0, x̂i] = −1
κ

x̂i, [x̂i, x̂j] = 0, i, j = 1, 2, 3, (25)

which are covariant under the κ-Poincaré quantum group [69]. We remark that M3+1
κ is a

linear algebra that coincides exactly with the one obtained through the Sklyanin bracket (20)
of the underlying classical r-matrix [67], which provides the (linear) Poisson homogeneous
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spacetime. Therefore, no higher-order terms in the classical and quantum coordinates
arise. By contrast, when the κ-deformation is applied to a curved manifold instead of (24),
higher-order terms in the coordinates appear in the Poisson homogeneous spacetime, so
that the corresponding quantization is not straightfoward at all, as the recent constructions
of the κ-noncommutative (anti-)de Sitter [70], Newtonian and Carrollian [71] spacetimes
explicitly show.

It is worth stressing that the κ-Minkowski spacetime M3+1
κ (25) has become the

paradigmatic noncommutative space in the same way that Drinfel’d–Jimbo deforma-
tions are for quantum algebras; in fact, we recall that the κ-Poincaré algebra was formerly
obtained as a real quantum algebra coming from a contraction of the Drinfel’d–Jimbo
deformation of sp(4,C) [63,64].

Among other issues and within the vast literature, let us mention that κ-Minkowski
space along with the κ-Poincaré algebra have been studied in relation to noncommuta-
tive differential calculi [72,73], wave propagation on noncommutative spacetimes [74],
deformed or doubly special relativity at the Planck scale [75–80], noncommutative field
theory [81–83], representation theory on Hilbert spaces [84,85], generalized κ-Minkowski
spacetimes through twisted κ-Poincaré deformations [86,87], deformed dispersion rela-
tions [88–90], curved momentum spaces [91–95], relative locality phenomena [96], star
products [97], deformed phase spaces [98], noncommutative spaces of worldlines [99,100]
and light cones [101] (in all cases see the references therein).

In Section 6.3, we shall recover the κ-Minkowski space M3+1
κ (25) and the κ-Poincaré

Lie bialgebra as a particular case of “time-like” deformations within the CK family of
Lie bialgebras, a fact that is already well known [31,102]. However, as we shall show in
Section 4.3, what is a striking point is that a formally similar structure to M3+1

κ arises as
the first-order noncommutative CK space of points, which is shared by 63 CK bialgebras.
Moreover, the complete (in all orders in the quantum coordinates) noncommutative CK
space of points is kept linear and shared by 27 CK bialgebras.

Consequently, a linear noncommutative space similar to (25) is somewhat “ubiqui-
tous”, which, in turn, suggests that additional “structures” should be taken into account.
In fact, this is one of the main aims of this paper, and, as a novel result, we shall explic-
itly show in Section 4.3 that the consideration of other noncommutative spaces beyond
the space of points (kinematically, spacetimes) associated with a given quantum algebra
(namely, noncommutative spaces of lines, 2-planes and 3-hyperplanes) does allow one to
distinguish mathematical and physical properties between two quantum algebras with the
same underlying noncommutative space of points.

2.3. Drinfel’d Double Structures

Let us assume that the dimension of the Lie algebra g is the even n = 2d. In this case, g
is a Lie algebra of a Drinfel’d double group [30] if there exists a basis {Y1, . . . , Yd, y1, . . . , yd}
of g such that the commutation relations (7) can be written as

[Yα, Yβ] =
d

∑
γ=1

Cγ
αβYγ , [yα, yβ] =

d

∑
γ=1

Fαβ
γ yγ,

[yα, Yβ] =
d

∑
γ=1

(
Cα

βγyγ − Fαγ
β Yγ

)
.

(26)

Hence, g can be split into two Lie subalgebras

g1 = span{Y1, . . . , Yd}, g2 = span{y1, . . . , yd}
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with the structure constants Cγ
αβ and Fαβ

γ , respectively. Both subalgebras are dual to
each other, g∗2 = g1, by means of the duality defined with respect to the nondegenerate
symmetric bilinear form 〈 , 〉 : g× g→ R given by

〈Yα, Yβ〉 = 0, 〈yα, yβ〉 = 0, 〈yα, Yβ〉 = δα
β , ∀α, β, (27)

which is “associative” or invariant in the sense that

〈[X, Y], Z〉 = 〈X, [Y, Z]〉, ∀X, Y, Z ∈ g.

The triple (g1, g2 = g∗1 , g) is called a Manin triple, and the Drinfel’d double Lie group
is the unique connected and simply connected Lie group G with Lie algebra g. Therefore,
the Lie algebra g, verifying (26), is the double Lie algebra of g1 and of its dual algebra
g∗1 = g2.

By construction, each Drinfel’d double structure for g has a canonical classical r-matrix

rcan =
d

∑
α=1

yα ⊗Yα , (28)

which is a solution of the classical Yang–Baxter Equation (16). Moreover, the universal
enveloping algebra U (g) of g always has a quadratic Casimir element given by

C =
1
2

d

∑
α=1

(yα Yα + Yα yα),

which is directly related to the bilinear form (27). The tensorized form of C reads

Ω =
1
2

d

∑
α=1

(yα ⊗Yα + Yα ⊗ yα), (29)

which is ad-invariant under the action of g, that is

[X⊗ 1 + 1⊗ X, Ω] = 0, ∀X ∈ g.

The element Ω leads to a skew-symmetric classical r-matrix for the Drinfel’d double
Lie algebra g from the canonical one (28) in the form:

rD = rcan −Ω =
1
2

d

∑
α=1

yα ∧Yα , (30)

which is a solution of the modified classical Yang–Baxter Equation (14) (its Schouten bracket
does not vanish now), and thus rD defines a quasitriangular or standard quantum defor-
mation of g with a coboundary Lie bialgebra (g, δD(rD)) determined by a cocommutator
δD through the relation (12).

Concerning the Drinfel’d–Jimbo quantum deformations of semisimple algebras [28–30],
it is known that they are closely related to quantum deformations of Drinfel’d doubles,
that is, quantum doubles, in such a manner that they are “almost” but not strictly speak-
ing quantum doubles [24]. Nevertheless, it is remarkable that proper Drinfel’d double
structures for the four Cartan series of semisimple Lie algebras on C have been obtained
in [103,104] by enlarging the Lie algebras with an appropriate number of central extensions.

From a physical viewpoint, it is worth stressing that Drinfel’d double structures are
naturally related to (2 + 1)D gravity, which is a quite different theory from the full (3 + 1)D
one [105,106]. In particular, (2 + 1)D gravity is a topological theory that admits a description
as a Chern–Simons theory with the gauge group given by the group of isometries of the
corresponding spacetime of constant curvature [107,108]. The phase space structure of
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(2 + 1)D gravity is related to the moduli space of flat connections on a Riemann surface,
the symmetries of which are given by certain Poisson–Lie groups [109,110] such that the
Poisson structure on this space admits a description in terms of coboundary Lie bialgebras
associated with the gauge group.

Hence, quantum group symmetries arise as the quantum counterparts of the (semi-
classical) Poisson–Lie symmetries of the classical theory. The essential fact in the (2 + 1)D
gravity framework is that the relevant quantum group symmetries are those coming from
some classical r-matrices corresponding to Drinfel’d double structures [111–117], which
ensures that the Fock–Rosly condition [110] is fulfilled. The symmetric component of such
admissible classical r-matrices, which is just the element Ω (29) when these are written in
the symmetric form (28), must be dual to the Ad-invariant symmetric bilinear form in the
Chern–Simons action.

As a consequence, the κ-Poincaré and κ-(anti-)de Sitter symmetries are not com-
patible [111,112] with the Chern–Simons formulation of (2 + 1)D gravity. Furthermore,
the Chern–Simons approach to non-relativistic (2 + 1)D quantum gravity has also been
developed in [118,119] by making use of a two-fold central extension of the Galilei [120]
and Newton–Hooke algebras, and their full quantum deformation was obtained in [121].
Additionally, Drinfel’d doubles also play a prominent role in the state sum or spin foam
models for (2 + 1)D gravity as shown in [122,123] in the context of the Turaev–Viro model
and invariant.

We recall that the classifications of non-isomorphic 4D and 6D real Drinfel’d double
structures were carried out in [124] and [125], respectively, while their Hopf algebra
quantizations were constructed in [126]. From these results, and also from [54], there
were obtained the classifications of Drinfel’d double structures for the (2 + 1)D (anti-)de
Sitter algebras in [115], (2 + 1)D Poincaré algebra and centrally extended (1 + 1)D Poincaré
algebra in [127] and 3D Euclidean algebra in [128].

In contrast, results concerning Drinfel’d double structures in the (3 + 1)D case are
very scarce, only covering the real so(5) and anti-de Sitter so(3, 2) algebras given in [129].
In this respect, we advance that, in Section 4.4, we shall obtain two new classical r-matrices
coming from Drinfel’d doubles: one for the de Sitter so(4, 1) and another for the anti-de
Sitter so(3, 2).

3. The Drinfel’d–Jimbo Lie Bialgebra for so(5)

Let us consider the real orthogonal Lie algebra so(5) with generators {Jab} (a < b;
a, b = 0, 1, . . . , 4) fulfilling the Lie brackets

[Jab, Jac] = Jbc, [Jab, Jbc] = −Jac, [Jac, Jbc] = Jab, a < b < c, (31)

and such that those commutators involving four different indices are equal to zero. The
universal enveloping algebra of the Lie algebra so(5) is endowed with two (second- and
fourth-order) Casimir operators [18,130]. The quadratic one, coming from the Killing–
Cartan form, is given by

C = ∑
0≤a<b≤4

J2
ab . (32)

A fine grading group Z⊗4
2 of so(5) is spanned by the four commuting involutive

automorphisms Θ(m) (m = 1, . . . , 4) of (31) defined by [17,20]:

Θ(m)(Jab) :=

{
Jab, if either m ≤ a or b < m;
−Jab, if a < m ≤ b.

(33)

Each involution Θ(m) provides a Cartan decomposition of so(5) in invariant and
anti-invariant subspaces denoted h(m) and t(m) respectively:

so(5) = h(m) ⊕ t(m), m = 1, . . . , 4. (34)
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These subspaces verify that

[h(m), h(m)] ⊂ h(m), [h(m), t(m)] ⊂ t(m), [t(m), t(m)] ⊂ h(m), (35)

where h(m) is a Lie subalgebra such that

h(1) = so(4), h(2) = so(2)⊕ so(3), h(3) = so(3)⊕ so(2), h(4) = so(4), (36)

while the vector subspace t(m) is not a subalgebra.
A faithful matrix representation of so(5), ρ : so(5)→ End(R5), is given by

ρ(Jab) = −eab + eba, (37)

where eab is the 5× 5 matrix with a single non-zero entry 1 at row a and column b (a, b = 0,
1, . . . , 4), fulfilling the orthogonal matrix condition

ρ(Jab)
TI + I ρ(Jab) = 0, I = diag(1, 1, 1, 1, 1), (38)

where ρ(Jab)
T is the transpose matrix of ρ(Jab).

3.1. Symmetric Homogeneous Spaces

According to each automorphism Θ(m) (33) and its associated Cartan decomposition
(34), we construct four symmetric homogeneous spaces, of the type (21), as the coset
spaces [131–133]

S(m) = SO(5)/H(m), m = 1, . . . , 4, (39)

where H(m) is the isotropy subgroup with Lie algebra h(m) in (34) (see (36)). We briefly
describe their structure.

1. 4D space of points. We write the ten generators of so(5) in array form, and the decom-
position (34) for Θ(1) gives

J01 J02 J03 J04

J12 J13 J14
J23 J24

J34

(40)

where the four generators in the rectangle span the subspace t(1). Hence, we obtain
the coset space

S(1) = SO(5)/SO(4), H(1) ≡ SO(4) = 〈J12, J13, J14, J23, J24, J34〉,

which is identified with the symmetric homogeneous space of points. The subgroup
H(1) is the isotropy (or stabilizer) group of a point, which is taken as the origin in S(1)
so that its generators play the role of rotations on S(1) (leaving the origin invariant),
while the generators of t(1) play the role of translations on S(1) (so moving the origin
along four basic directions).

2. 6D space of lines. The decomposition (34) for Θ(2) can be represented as

J01 J02 J03 J04
J12 J13 J14

J23 J24
J34

(41)
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where now the six generators in the rectangle span the subspace t(2). We find the
coset space

S(2) = SO(5)/
(
SO(2)⊗ SO(3)

)
, H(2) ≡ SO(2)⊗ SO(3) = 〈J01〉 ⊗ 〈J23, J24, J34〉,

which is interpreted as the symmetric homogeneous space of lines. The subgroup
H(2) is the isotropy group of a line (the origin in S(2)), while the six generators in t(2)

play the role of translations on S(2) (moving the origin-line).
3. 6D space of 2-planes. The decomposition (34) for Θ(3) is displayed as

J01 J02 J03 J04
J12 J13 J14

J23 J24

J34

(42)

where the six generators in the rectangle span the subspace t(3). The coset space reads

S(3) = SO(5)/
(
SO(3)⊗ SO(2)

)
, H(3) ≡ SO(3)⊗ SO(2) = 〈J01, J02, J12〉 ⊗ 〈J34〉,

which corresponds to the symmetric homogeneous space of 2-planes. The six gener-
ators in t(3) play the role of translations on S(3), while H(3) is the isotropy group of
a 2-plane.

4. 4D space of 3-hyperplanes. Finally, the decomposition (34) for Θ(4) yields

J01 J02 J03 J04
J12 J13 J14

J23 J24

J34

(43)

where the four generators in the rectangle span the subspace t(4). The coset space is
given by

S(4) = SO(5)/SO(4), H(4) ≡ SO(4) = 〈J01, J02, J03, J12, J13, J23〉,

which is interpreted as the symmetric homogeneous space of 3-hyperplanes. The four
generators in t(4) play the role of translations on S(4), while H(4) is the isotropy group
of a 3-hyperplane.

Some remarks are in order. First, the four spaces (39) are of positive constant curvature
in the sense that their sectional curvature K is equal to +1 and they are endowed with a
Riemmanian metric (thus with a positive definite signature). Secondly, the 4D spaces of
points and 3-hyperplanes are of rank 1, that is, there is a single invariant under the action
of SO(5) for a pair of points (the ordinary distance) or 3-hyperplanes. The 6D spaces of
lines and 2-planes are of rank 2 [132,133] so that there are two independent invariants
under the action of SO(5) for a pair of lines (an angle and the distance between two lines)
or 2-planes (see [134] for the Euclidean case). Thirdly, there is a relevant automorphism of
so(5) defined by

D(Jab) := −J4−b 4−a , (44)

that, in the array display of the generators, is visualized as

J01 J02 J03 J04

J12 J13 J14

J23 J24
J34

D←→

−J34 −J24 −J14 −J04

−J23 −J13 −J03

−J12 −J02
−J01

(45)
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leaving J04 and J13 invariant (up to the minus sign). Thus, the map D interchanges the
spaces of points and 3-hyperplanes and the spaces of lines and 2-planes:

S(1) D←→ S(4), S(2) D←→ S(3). (46)

Note that D2 = Id. The map D will be called polarity, since for so(3) reduces to the
well known duality in projective geometry interchanging the 2D space of points with the
2D space of lines (see [8] and the references therein), which, only at this dimension, are
both of rank 1. Note that this map is sometimes called ordinary duality [8], although in
this paper we will always call it polarity in order to avoid confusion with the completely
unrelated notion of quantum duality.

3.2. Lie Bialgebra

Let us consider the Drinfel’d–Jimbo quantum deformation of the real compact form
g = so(5) [28–30], which, in the basis (31), is generated by the following classical r-
matrix [31]

r04,13 = z(J14 ∧ J01 + J24 ∧ J02 + J34 ∧ J03 + J23 ∧ J12). (47)

Recall that z is the quantum deformation parameter (such that q = ez) and, hereafter,
it will be assumed that z is an indeterminate real parameter. We remark that r04,13 is a solution
of the modified classical Yang–Baxter Equation (14) so that this underlies a quasitriangular
Hopf algebra structure. Therefore, the corresponding cocommutator is coboundary [27],
δ = δ(r), so that this is obtained from (47) through the relation (12), yielding

δ(J04) = 0, δ(J13) = 0,

δ(J12) = zJ12 ∧ J13, δ(J23) = zJ23 ∧ J13,

δ(J01) = z(J01 ∧ J04 + J24 ∧ J12 + J34 ∧ J13 + J02 ∧ J23),

δ(J02) = z(J02 ∧ J04 + J12 ∧ J14 + J34 ∧ J23 + J23 ∧ J01 + J12 ∧ J03),

δ(J03) = z(J03 ∧ J04 + J13 ∧ J14 + J23 ∧ J24 + J02 ∧ J12), (48)

δ(J14) = z(J14 ∧ J04 + J13 ∧ J03 + J12 ∧ J02 + J24 ∧ J23),

δ(J24) = z(J24 ∧ J04 + J23 ∧ J03 + J01 ∧ J12 + J12 ∧ J34 + J23 ∧ J14),

δ(J34) = z(J34 ∧ J04 + J02 ∧ J23 + J01 ∧ J13 + J24 ∧ J12).

The resulting real Lie bialgebra (so(5), δ(r04,13)) is determined by the commutation
rules (31) and cocommutator (48). The indices in r04,13 (47) indicate the primitive generators
J04 and J13. The first primitive generator J04 is the “main” one in the sense that, once the
CK scheme of contractions is introduced and further applied to kinematical algebras, it
will provide dimensions of the deformation parameter z since the product zJ04 must be
dimensionless [7,135]; this fact will be studied in detail in Section 6.

The last term of r04,13 is a classical r-matrix r13 = zJ23 ∧ J12 giving rise to the Drinfel’d–
Jimbo Lie bialgebra (so(3), δ(r13)), with so(3) = span{J12, J13, J23} and primitive generator
J13, which is a sub-Lie bialgebra of (so(5), δ(r04,13)); thus, J13 plays the role of a “secondary”
primitive generator in r04,13 [31].

Now, we analyse how to implement the Z⊗4
2 -grading of so(5) into (so(5), δ(r04,13)).

This requires generalizing the action of the automorphisms Θ(m) : so(5)→ so(5) (33) onto
the cocommutator δ : so(5)→ so(5)⊗ so(5) and also to consider a possible action on the
quantum deformation parameter [7,135]. Recall that δ (48) is the skew-symmetric part of
the first-order term in z (17) of the full coproduct ∆ of the real quantum algebra Uz(so(5)) =
U (so(5)) ⊗̂R[[z]] such that, as mentioned above, z is an indeterminate parameter.

Since z is linked to the “main” primitive generator J04 through the product zJ04, both
elements must be transformed in the same way. By taking into account that J04 → −J04
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under the four maps Θ(m), then z → −z as well. Hence, we define four z-maps (m =
1, . . . , 4)

Θ(m)
z
(
δ(Jab)

)
:= δ

(
Θ(m)(Jab)

)
,

Θ(m)
z (zJab ⊗ Jcd) :=

(
−z Θ(m)(Jab)⊗Θ(m)(Jcd)

)
,

(49)

where Θ(m) is given in (33). Notice that the second relation in (49) can directly be applied
to the r-matrix (47), consistent with the relation (12), and extended to higher-order tensor
product spaces. When the z-maps (49) are applied either to δ (48) or to the r-matrix (47)
one finds that only Θ(2)

z and Θ(3)
z remain as involutive automorphisms of (so(5), δ(r04,13)),

meanwhile Θ(1)
z and Θ(4)

z are no longer involutions.
This is a consequence of the presence of the term r13 = zJ23 ∧ J12 in r04,13, which does

not appear in either the Drinfel’d–Jimbo quantum deformation of so(3) [7] or in so(4) [135];
for these latter deformations, the whole initial Z⊗2

2 - and Z⊗3
2 -grading is kept, respectively;

however, for (so(5), δ(r04,13)) there only remains a Z⊗2
2 -grading spanned by Θ(2)

z and Θ(3)
z .

Likewise, the polarity (44) can be implemented into (so(5), δ(r04,13)) by also consider-
ing an action on the deformation parameter defined by [7,135]

Dz
(
δ(Jab)

)
:= δ

(
D(Jab)

)
,

Dz(zJab ⊗ Jcd) :=
(
−zD(Jab)⊗D(Jcd)

)
,

(50)

with D given in (44), so that D2
z = Id. It can be checked that the r-matrix (47) remains

invariant under this “z-polarity” (and, clearly, the cocommutator (48) as well). Note that
both primitive generators J04 and J13 are kept unchanged under D (up to the minus sign)
as shown in (45).

From (48), it is straightforward to prove that this deformation fulfils the coisotropy
condition (22) [57,59] for the four isotropy subalgebras h(m) (36):

δ(h(m)) ⊂ h(m) ∧ so(5), m = 1, . . . , 4. (51)

Thus, each of them would provide a Poisson homogeneous space. Notice, however,
that none of them lead to a Poisson subgroup since the condition (23) is not satisfied:

δ(h(m)) 6⊂ h(m) ∧ h(m), m = 1, . . . , 4.

3.3. Dual Lie Algebra and Noncommutative Spaces

According to Section 2.1, we denote, by x̂ab (a < b; a, b = 0, 1, . . . , 4), the generators in
g∗ = so(5)∗ dual to Jab in g = so(5) with canonical pairing defined by (11):

〈x̂ab, Jcd〉 = δa
c δb

d. (52)

From the cocommutator (48), read as (9), we obtain the commutation relations of the
dual Lie algebra so(5)∗ (10), which are given by
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[x̂01, x̂02] = 0, [x̂01, x̂12] = zx̂24, [x̂02, x̂12] = z(x̂03 − x̂14),
[x̂01, x̂03] = 0, [x̂01, x̂13] = zx̂34, [x̂03, x̂13] = −zx̂14,
[x̂01, x̂04] = zx̂01, [x̂01, x̂14] = 0, [x̂04, x̂14] = −zx̂14,
[x̂02, x̂03] = 0, [x̂02, x̂23] = z(x̂01 + x̂34), [x̂03, x̂23] = −zx̂24,
[x̂02, x̂04] = zx̂02, [x̂02, x̂24] = 0, [x̂04, x̂24] = −zx̂24,
[x̂03, x̂04] = zx̂03, [x̂03, x̂34] = 0, [x̂04, x̂34] = −zx̂34,
[x̂12, x̂13] = zx̂12, [x̂12, x̂23] = 0, [x̂13, x̂23] = −zx̂23,
[x̂12, x̂14] = zx̂02, [x̂12, x̂24] = −z(x̂01 + x̂34), [x̂14, x̂24] = 0,
[x̂13, x̂14] = zx̂03, [x̂13, x̂34] = −zx̂01, [x̂14, x̂34] = 0,
[x̂23, x̂24] = z(x̂03 − x̂14), [x̂23, x̂34] = −zx̂02, [x̂24, x̂34] = 0,

(53)

[x̂01, x̂23] = −zx̂02, [x̂01, x̂24] = 0, [x̂01, x̂34] = 0,
[x̂02, x̂13] = 0, [x̂02, x̂14] = 0, [x̂02, x̂34] = 0,
[x̂03, x̂12] = −zx̂02, [x̂03, x̂14] = 0, [x̂03, x̂24] = 0,
[x̂04, x̂12] = 0, [x̂04, x̂13] = 0, [x̂04, x̂23] = 0,
[x̂12, x̂34] = zx̂24, [x̂13, x̂24] = 0, [x̂14, x̂23] = −zx̂24.

(54)

In contrast to the commutation rules of so(5) (31), the Lie brackets of so(5)∗ involving
four different indices (54) are no longer equal to zero.

Next, we express the dual Lie algebra so(5)∗ as the sum of two vector spaces

so(5)∗ = h
(m)
⊥ ⊕ t

(m)
⊥ , m = 1, . . . , 4, (55)

where h
(m)
⊥ and t

(m)
⊥ are, in this order, the annihilators in so(5)∗ of the vector subspaces h(m)

and t(m) of so(5) given in (34) and verifying (35). From the results presented in Section 2.2,
each h

(m)
⊥ leads to a linear noncommutative space that is the first-order in the quantum

coordinates of the full noncommutative space associated with the homogeneous space (39).
We shall denote such a first-order noncommutative space by S(m)

z ≡ h
(m)
⊥ .

Following [60,61], we analyse the relations
[
h
(m)
⊥ , h(m)

⊥
]
,
[
h
(m)
⊥ , t(m)

⊥
]

and
[
t
(m)
⊥ , t(m)

⊥
]

for
each m. Such structures do depend on the chosen quantum deformation (here determined
by (47)) and they are directly deduced from (53) and (54):

1. Noncommutative space of points S(1)z ≡ h
(1)
⊥ = 〈x̂01, x̂02, x̂03, x̂04〉:[

h
(1)
⊥ , h(1)⊥

]
⊂ h

(1)
⊥ ,

[
h
(1)
⊥ , t(1)⊥

]
⊂ t

(1)
⊥ + h

(1)
⊥ ,

[
t
(1)
⊥ , t(1)⊥

]
⊂ h

(1)
⊥ + t

(1)
⊥ . (56)

2. Noncommutative space of lines S(2)z ≡ h
(2)
⊥ = 〈x̂02, x̂03, x̂04, x̂12, x̂13, x̂14〉:[

h
(2)
⊥ , h(2)⊥

]
⊂ h

(2)
⊥ ,

[
h
(2)
⊥ , t(2)⊥

]
⊂ t

(2)
⊥ ,

[
t
(2)
⊥ , t(2)⊥

]
⊂ h

(2)
⊥ . (57)

3. Noncommutative space of 2-planes S(3)z ≡ h
(3)
⊥ = 〈x̂03, x̂04, x̂13, x̂14, x̂23, x̂24〉:[

h
(3)
⊥ , h(3)⊥

]
⊂ h

(3)
⊥ ,

[
h
(3)
⊥ , t(3)⊥

]
⊂ t

(3)
⊥ ,

[
t
(3)
⊥ , t(3)⊥

]
⊂ h

(3)
⊥ . (58)

4. Noncommutative space of 3-hyperplanes with S(4)z ≡ h
(4)
⊥ = 〈x̂04, x̂14, x̂24, x̂34〉:[

h
(4)
⊥ , h(4)⊥

]
⊂ h

(4)
⊥ ,

[
h
(4)
⊥ , t(4)⊥

]
⊂ t

(4)
⊥ + h

(4)
⊥ ,

[
t
(4)
⊥ , t(4)⊥

]
⊂ h

(4)
⊥ + t

(4)
⊥ . (59)

Consequently, the four first-order noncommutative spaces S(m)
z close on a Lie subalge-

bra of so(5)∗
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[
h
(m)
⊥ , h(m)

⊥ ] ⊂ h
(m)
⊥ ,

as it should be, since this is a direct consequence of the coisotropy condition (51) [57,59–61].
Furthermore, the noncommutative spaces of lines S(2)z and 2-planes S(3)z are both reductive
and symmetric [

h
(l)
⊥ , t(l)⊥ ] ⊂ t

(l)
⊥ ,

[
t
(l)
⊥ , t(l)⊥

]
⊂ h

(l)
⊥ , l = 2, 3. (60)

The pairing (52) allows us to define the following maps in so(5)∗ from (33) by consid-
ering again an action on z:

θ(m)(x̂ab) :=

{
x̂ab, if either m ≤ a or b < m;
−x̂ab, if a < m ≤ b.

θ
(m)
z (x̂ab, z) :=

(
θ(m)(x̂ab),−z

)
.

(61)

Similarly to (49), the action of θ
(m)
z can be extended to the tensor product space

so(5)∗ ⊗ so(5)∗, although we shall not make use of it in this paper. It can be checked that
only θ

(2)
z and θ

(3)
z are involutive automorphisms of the commutation relations (53) and (54)

in agreement with the symmetric property of S(2)z and S(3)z (60).
Moreover, a dual polarity dz can also be defined in so(5)∗ in the form

d(x̂ab) := −x̂4−b 4−a, dz(x̂ab, z) :=
(
d(x̂ab),−z

)
, d2

z = Id, (62)

such that the map d is dual to D (44) through the pairing (52) and dz is an automorphism
of so(5)∗, which, as expected, interchanges the noncommutative spaces of points and
3-hyperplanes and the noncommutative spaces of lines and 2-planes:

S(1)z
dz←→ S(4)z , S(2)z

dz←→ S(3)z , (63)

to be compared with (46).

3.4. Drinfel’d Double Structure

In [129], it was shown that the real Lie algebra so(5) has a classical r-matrix coming
from a Drinfel’d double structure for the classical complex Lie algebra c2. We now review
the main results according to the notation introduced in Section 2.3.

Let us consider the complex Lie algebra c2 in a Chevalley basis with generators
{hl , e±l} (l = 1, 2) fulfilling the Lie brackets given by

[h1, e±1] = ±e±1, [h1, e±2] = ∓e±2, [e+1, e−1] = h1,

[h2, e±1] = ∓e±1, [h2, e±2] = ±2e±2, [e+2, e−2] = h2,

[h1, h2] = [e−1, e+2] = [e+1, e−2] = 0.

We define four new generators e±3, e±4 as

[e+1, e+2] := e+3, [e−2, e−1] := e−3, [e+1, e+3] := e+4, [e−3, e−1] := e−4,

such that the Serre relations read

[e+1, e+4] = [e+2, e+3] = 0, [e−1, e−4] = [e−2, e−3] = 0.

Then, the 10 generators {hl , e±m} with l = 1, 2 and m = 1, . . . , 4 span the Lie algebra
c2 in the Cartan–Weyl basis. As a shorthand notation, we denote em ≡ e+m and fm ≡ e−m
so that the full commutation rules of c2 read
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[h1, h2] = 0, [h1, e1] = e1, [h1, f1] = − f1,

[h1, e2] = −e2, [h1, f2] = f2, [h1, e3] = 0,

[h1, f3] = 0, [h1, e4] = e4, [h1, f4] = − f4,

[h2, e1] = −e1, [h2, f1] = f1, [h2, e2] = 2e2,

[h2, f2] = −2 f2, [h2, e3] = e3, [h2, f3] = − f3,

[h2, e4] = 0, [h2, f4] = 0, [e1, f1] = h1,

[e1, e2] = e3, [e1, f2] = 0, [e1, e3] = e4,

[e1, f3] = − f2, [e1, e4] = 0, [e1, f4] = − f3, (64)

[ f1, e2] = 0, [ f1, f2] = − f3, [ f1, e3] = e2,

[ f1, f3] = − f4, [ f1, e4] = e3, [ f1, f4] = 0,

[e2, f2] = h2, [e2, e3] = 0, [e2, f3] = f1,

[e2, e4] = 0, [e2, f4] = 0, [ f2, e3] = −e1,

[ f2, f3] = 0, [ f2, e4] = 0, [ f2, f4] = 0,

[e3, f3] = h1 + h2, [e3, e4] = 0, [e3, f4] = f1,

[ f3, e4] = −e1, [ f3, f4] = 0, [e4, f4] = 2h1 + h2.

To unveil the Drinfel’d double structure for c2, we consider the linear combination of
the two generators h1 and h2 belonging to the Cartan subalgebra given by [129]:

e0 := 1√
2

(
(1 + i)h1 + ih2

)
, f0 := 1√

2

(
(1− i)h1 − ih2

)
. (65)

Finally, the identification

Ya ≡ ea, ya ≡ fa, a = 0, . . . , 4,

allows us to express the commutation relations (64) with the new Cartan generators (65)
in the required form (26), thus, obtaining a Drinfel’d double structure for c2 with two 5D
subalgebras g1 = span{Ya ≡ ea} and g2 = span{ya ≡ fa} (a = 0, . . . , 4), which are dual to
each other by means of the canonical pairing (27).
• Lie subalgebra g1 = span{e0, . . . , e4}:

[e0, e1] =
1√
2

e1, [e0, e2] = − 1√
2
(1− i)e2,

[e0, e3] =
i√
2

e3, [e0, e4] =
1√
2
(1 + i)e4,

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = 0,
[e2, e3] = 0, [e2, e4] = 0, [e3, e4] = 0.

• Lie subalgebra g2 = g∗1 = span{ f0, . . . , f4}:

[ f0, f1] = − 1√
2

f1, [ f0, f2] =
1√
2
(1 + i) f2,

[ f0, f3] =
i√
2

f3, [ f0, f4] = − 1√
2
(1− i) f4,

[ f1, f2] = − f3, [ f1, f3] = − f4, [ f1, f4] = 0,
[ f2, f3] = 0, [ f2, f4] = 0, [ f3, f4] = 0.
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• Crossed relations [ea, fb]:

[e0, f0] = 0, [e1, f1] =
1√
2
(e0 + f0), [e3, f3] = − i√

2
(e0 − f0),

[e2, f2] = − 1√
2

(
(1 + i)e0 + (1− i) f0

)
, [e4, f4] =

1√
2

(
(1− i)e0 + (1 + i) f0

)
,

[ f1, e0] =
1√
2

f1, [ f2, e0] =
1√
2
(i− 1) f2, [ f3, e0] =

i√
2

f3, [ f4, e0] =
1√
2
(1 + i) f4,

[e1, f0] = − 1√
2

e1, [e2, f0] =
1√
2
(1 + i)e2, [e3, f0] =

i√
2

e3, [e4, f0] =
1√
2
(i− 1)e4,

[e1, f2] = 0, [e2, f1] = 0, [e3, f1] = −e2, [e4, f1] = −e3,
[e1, f3] = − f2, [e2, f3] = f1, [e3, f2] = e1, [e4, f2] = 0,
[e1, f4] = − f3, [e2, f4] = 0, [e3, f4] = f1, [e4, f3] = e1.

From these results, the real Lie algebra so(5) ∼ c2 is obtained on the basis with
generators {Jab} obeying the commutation rules (31) through the following change of
basis [129]:

e0 = − 1√
2
(J04 − iJ13), f0 = 1√

2
(J04 + iJ13),

e1 = 1√
2
(J23 + iJ12), f1 = − 1√

2
(J23 − iJ12),

e2 = 1
2
(

J01 − J34 − i(J03 + J14)
)
, f2 = − 1

2
(

J01 − J34 + i(J03 + J14)
)
,

e3 = 1√
2
(J24 + iJ02), f3 = − 1√

2
(J24 − iJ02),

e4 = 1
2
(

J01 + J34 + i(J03 − J14)
)
, f4 = − 1

2
(

J01 + J34 − i(J03 − J14)
)
,

whose inverse reads

J01 = 1
2 (e2 − f2 + e4 − f4), J13 = − i√

2
(e0 + f0),

J02 = − i√
2
(e3 + f3), J14 = i

2 (e2 + f2 + e4 + f4),

J03 = i
2 (e2 + f2 − e4 − f4), J23 = 1√

2
(e1 − f1),

J04 = − 1√
2
(e0 − f0), J24 = 1√

2
(e3 − f3),

J12 = − i√
2
(e1 + f1), J34 = − 1

2 (e2 − f2 − e4 + f4).

The canonical pairing (27) now reads

〈Jab, Jcd〉 = −δacδbd.

Then, the canonical classical r-matrix (28) turns out to be

rcan =
4

∑
a=0

fa ⊗ ea =
1
2

i(J01 ∧ J14 + J02 ∧ J24 + J03 ∧ J34 + J12 ∧ J23 + J04 ∧ J13) + Ω,

where
Ω = −1

2 ∑
0≤a<b≤4

Jab ⊗ Jab,

is the ad-invariant element (29) corresponding to the tensorized expression of the Casimir
C (32). Hence, the skew-symmetric form for rcan is obtained by substracting Ω, as in (30).
We explicitly introduce the quantum deformation parameter z, multiplying this result by
2iz as r̃D = 2iz(rcan −Ω), obtaining the real r-matrix

r̃D = z(J14 ∧ J01 + J24 ∧ J02 + J34 ∧ J03 + J23 ∧ J12 + J13 ∧ J04), (66)

which, in terms of the Drinfel’d–Jimbo classical r-matrix (47) considered for so(5), reads
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r̃D = r04,13 + zJ13 ∧ J04.

Hence, a Reshetikhin twist with the commuting primitive generators must be added
to (47) in order to obtain a classical r-matrix coming from a Drinfel’d double structure.
Recall that it is possible to consider a generalized two-parametric r-matrix [136]

rz,ϑ = z(J14 ∧ J01 + J24 ∧ J02 + J34 ∧ J03 + J23 ∧ J12) + ϑJ13 ∧ J04, (67)

showing the effects of the twist with the quantum deformation parameter ϑ on the former
deformation determined by r04,13 and properly recovering the Drinfel’d double r-matrix
whenever ϑ = z. We remark that both r̃D and rz,ϑ are quasitriangular classical r-matrices
(like r04,13), so that they are solutions of the modified classical Yang–Baxter Equation (14),
while the twist itself determines a triangular r-matrix with vanishing Schouten bracket (16).
In this sense, r̃D and rz,ϑ can be regarded as “hybrid” classical r-matrices [114,137].

4. The Drinfel’d–Jimbo Lie Bialgebra for the Cayley–Klein Algebra soω(5)

The Z⊗4
2 -grading of so(5) generated by the four automorphisms Θ(m) (33) enables

one to obtain a particular set of contracted real Lie algebras [17,20] through the graded
contraction formalism [138,139]. These are the so-called orthogonal Cayley–Klein (CK)
algebras or quasisimple orthogonal algebras [18,19,31,133] (see [140] for their description
in terms of hypercomplex units).

We collectively denote them by soω(5), as this family of contracted algebras depends
explicitly on four real graded contraction parameters ω = (ω1, ω2, ω3, ω4). Alternatively,
each contraction parameter ωm (m = 1, 2, 3, 4) can be introduced in the initial commutation
rules of so(5) (31) by means of the following mapping provided by the involution Θ(m) (33):

φ(m)(Jab) :=

{
Jab, if either m ≤ a or b < m;

√
ωm Jab, if a < m ≤ b.

The composition of the four (commuting) mappings gives [31]

Φ(Jab) := φ(1) ◦ φ(2) ◦ φ(3) ◦ φ(4)(Jab) =
√

ωab Jab, (68)

where the contraction parameter with two indices ωab is defined by

ωab :=
b

∏
s=a+1

ωs, 0 ≤ a < b ≤ 4. (69)

Next, we apply the map (68) with all the factors
√

ωab 6= 0 onto the commutation rules
of so(5) (31) obtaining the Lie brackets corresponding to the CK family soω(5), which are
given by

[Jab, Jac] = ωab Jbc, [Jab, Jbc] = −Jac, [Jac, Jbc] = ωbc Jab, a < b < c, (70)

without sum over repeated indices and with all the remaining brackets being equal to zero.
This is just the same result coming from a particular solution of the Z⊗4

2 -graded contraction
equations for so(5) [17] (see [20] for the general solution). Explicitly, the non-vanishing
commutation relations of soω(5) read
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[J01, J02] = ω1 J12, [J01, J12] = −J02, [J02, J12] = ω2 J01,
[J01, J03] = ω1 J13, [J01, J13] = −J03, [J03, J13] = ω2ω3 J01,
[J01, J04] = ω1 J14, [J01, J14] = −J04, [J04, J14] = ω2ω3ω4 J01,
[J02, J03] = ω1ω2 J23, [J02, J23] = −J03, [J03, J23] = ω3 J02,
[J02, J04] = ω1ω2 J24, [J02, J24] = −J04, [J04, J24] = ω3ω4 J02,
[J03, J04] = ω1ω2ω3 J34, [J03, J34] = −J04, [J04, J34] = ω4 J03,
[J12, J13] = ω2 J23, [J12, J23] = −J13, [J13, J23] = ω3 J12,
[J12, J14] = ω2 J24, [J12, J24] = −J14, [J14, J24] = ω3ω4 J12,
[J13, J14] = ω2ω3 J34, [J13, J34] = −J14, [J14, J34] = ω4 J13,
[J23, J24] = ω3 J34, [J23, J34] = −J24, [J24, J34] = ω4 J23.

(71)

We remark that, although the factor
√

ωab 6= 0 in the map (68) can be an imaginary
number, enabling to change the real form of the algebra, the resulting commutation re-
lations (70) of soω(5) only comprise real Lie algebras. Moreover, the zero value for ωab
is consistently allowed in (70), which is equivalent to apply an Inönü–Wigner contrac-
tion [13,31], leading to a more abelian (contracted) Lie algebra. Consequently, each graded
contraction parameter ωm can take a positive, negative or zero value in (70), and, when
ωm 6= 0, it can be reduced to ±1 through scaling of the Lie generators. Hence, soω(5)
contains 34 = 81 specific real Lie algebras, with some of them being isomorphic.

Moreover, the CK algebra soω(5) (70) is always endowed with two non-trivial Casimirs
regardless of the values of ω. One of them is the quadratic Casimir coming from the Killing–
Cartan form, which is given by [18]

C = ω2ω3ω4 J2
01 + ω3ω4 J2

02 + ω4 J2
03 + J2

04 + ω1ω3ω4 J2
12 + ω1ω4 J2

13

+ω1 J2
14 + ω1ω2ω4 J2

23 + ω1ω2 J2
24 + ω1ω2ω3 J2

34, (72)

to be compare with (32). Observe that, in the most contracted case, with all ωm = 0, C = J2
04.

The second Casimir is a fourth-order one that can be found explicitly in [18], and this
is related to the Pauli–Lubanski operator. In the most contracted case, the fourth-order
Casimir does not vanish. In this respect, we recall that the CK Lie algebras are the only
graded contracted algebras from so(N + 1) [17,18] that preserve the rank of the semisimple
algebra, understood as the number of algebraically independent Casimirs, which, at this
dimension, is equal to two.

To unveil the structure of the CK family soω(5), let us recall that the vector represen-
tation of the CK algebra in terms of 5× 5 real matrices, ρ : soω(5) → End(R5), is given
by [18,19]

ρ(Jab) = −ωabeab + eba, (73)

which fulfils that

ρ(Jab)
TIω + Iω ρ(Jab) = 0,

Iω = diag(1, ω01, ω02, ω03, ω04)

= diag(1, ω1, ω1ω2, ω1ω2ω3, ω1ω2ω3ω4),

(74)

to be compared with (37) and (38). The value of the parameter ωab (69) determines the
Lie subalgebra generated by Jab (73), denoted soωab(2), i.e., so(2) for ωab > 0, so(1, 1) for
ωab < 0 and iso(1) ≡ R for the pure contracted case with ωab = 0.

According to the values of ω = (ω1, ω2, ω3, ω4), we mention the most relevant mathe-
matical and physical Lie algebras contained within soω(5) [18,19]:

• If all ωm 6= 0, soω(5) is a pseudo-orthogonal algebra so(p, q) (p + q = 5) where (p, q)
are the number of positive and negative terms in the invariant quadratic form with
matrix Iω (74). Clearly, for all ωm > 0, we recover so(5); otherwise, we find either
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so(3, 2) (isomorphic to the (3 + 1)D anti-de Sitter algebra) or so(4, 1) (isomorphic to
the (3 + 1)D de Sitter algebra or to the 4D hyperbolic one).

• When only ω1 = 0, we find the inhomogeneous pseudo-orthogonal algebras with
semidirect sum structure

so0,ω2,ω3,ω4(5) ≡ R4 ⊕S soω2,ω3,ω4(4) ≡ iso(p, q), p + q = 4, (75)

where the abelian subalgebra R4 is spanned by 〈J01, J02, J03, J04〉 and soω2,ω3,ω4(4) is a
pseudo-orthogonal algebra, preserving the quadratic form with a 4× 4 matrix

diag(1, ω12, ω13, ω14) = diag(1, ω2, ω2ω3, ω2ω3ω4),

that acts on R4 through the vector representation (73) (see (40)). Hence, the 4D Eu-
clidean iso(4), the (3 + 1)D Poincaré iso(3, 1) and iso(2, 2) algebras belong to this class.

• If only ω4 = 0, we again obtain inhomogeneous pseudo-orthogonal algebras with
semidirect sum structure

soω1,ω2,ω3,0(5) ≡ R′4 ⊕S soω1,ω2,ω3(4) ≡ i′so(p, q), p + q = 4, (76)

where, now, the abelian subalgebra R′4 = 〈J04, J14, J24, J34〉 and soω1,ω2,ω3(4), that
preserves the quadratic form with a 4× 4 matrix

diag(1, ω01, ω02, ω03) = diag(1, ω1, ω1ω2, ω1ω2ω3),

acts on R′4 through the contragredient of the vector representation (73) (see (43)).
These algebras are isomorphic to the previous ones with structure (75), e.g., iso(4) '
i′so(4).

• For ω1 = ω2 = 0, we obtain a “twice-inhomogeneous” pseudo-orthogonal algebra

so0,0,ω3,ω4(5) ≡ R4 ⊕S

(
R3 ⊕S soω3,ω4(3)

)
≡ iiso(p, q), p + q = 3, (77)

where R4 = 〈J01, J02, J03, J04〉, R3 = 〈J12, J13, J14〉 and soω3,ω4(3) = 〈J23, J24, J34〉 is a
pseudo-orthogonal algebra that preserves the quadratic form with a 3× 3 matrix

diag(1, ω23, ω24) = diag(1, ω3, ω3ω4).

Here, we find the (3 + 1)D Galilean algebra iiso(3) as well as iiso(2, 1).
• If ω1 = ω4 = 0, we obtain that

so0,ω2,ω3,0(5) ≡ R4 ⊕S

(
R′3 ⊕S soω2,ω3(3)

)
≡ ii′so(p, q), p + q = 3, (78)

where R4 = 〈J01, J02, J03, J04〉, R′3 = 〈J14, J24, J34〉 are abelian subalgebras and the
pseudo-orthogonal algebra soω2,ω3(3) = 〈J12, J13, J23〉, preserving

diag(1, ω12, ω13) = diag(1, ω2, ω2ω3),

acts on R′3 through the contragredient of the vector representation, while R′3 ⊕S
soω2,ω3(3) acts on R4 through the vector representation. Alternatively, the structure
(78) can also be expressed as

so0,ω2,ω3,0(5) ≡ R′4 ⊕S

(
R3 ⊕S soω2,ω3(3)

)
≡ i′iso(p, q), p + q = 3, (79)

where R′4 = 〈J04, J14, J24, J34〉 and R3 = 〈J01, J02, J03〉; note that R′4 ' R4 and R′3 ' R3

via D (44). As particular algebras, we obtain the (3 + 1)D Carroll algebra ii′so(3) '
i′iso(3) formerly introduced in [14,141] (see also [142–147] and the references therein)
and ii′so(2, 1) ' i′iso(2, 1).
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• When ω2 = 0, these contracted algebras are of Newton–Hooke-type [14] (see
also [142,145,147–149]) with structure [150]

soω1,0,ω3,ω4(5) ≡ R6 ⊕S
(
soω1(2)⊕ soω3,ω4(3)

)
≡ i6

(
soω1(2)⊕ soω3,ω4(3)

)
, (80)

where R6 = 〈J02, J03, J04, J12, J13, J14〉 is an abelian subalgebra, and the direct sum is
between the subalgebras soω1(2) = 〈J01〉 and soω3,ω4(3) = 〈J23, J24, J34〉.

• The fully contracted case in the CK family corresponds to setting the four ωm = 0.
This is the so-called flag algebra

so0,0,0,0(5) ≡ R4 ⊕S
(
R3 ⊕S

(
R2 ⊕SR

))
≡ iiiiso(1), (81)

where R4 = 〈J01, J02, J03, J04〉, R3 = 〈J12, J13, J14〉, R2 = 〈J23, J24〉 and R = 〈J34〉 ≡
iso(1).

Therefore, the kinematical algebras associated with different models of (3 + 1)D
spacetimes of constant curvature [14,151] belong to the CK family soω(5) [20,152].

It is worth stressing that the polarity D (44) also remains as an automorphism of the
whole family of CK algebras in such a manner that this map interchanges isomorphic Lie
algebras within the family in the form

soω1,ω2,ω3,ω4(5)
D←→ soω4,ω3,ω2,ω1(5); (82)

therefore, interchanging the contraction parameters ω1 ↔ ω4 and ω2 ↔ ω3. Consequently,
the CK algebras with ω4 = 0 (76) are related, through D, to those with ω1 = 0 (75) and
so they are isomorphic; those with ω4 = ω3 = 0 are twice-inhomogeneous algebras and
isomorphic to the ones with ω1 = ω2 = 0 (77); those with ω3 = 0 are also Newton–Hooke-
type algebras isomorphic to (80); and the (single) flag algebra (81) remains unchanged
under D.

We also recall that all the CK algebras in soω(5) (even the flag algebra) have the
same number of functionally independent Casimirs [18]. At this dimension, there are
two (second- and fourth-order) Casimir invariants, exactly equal to the rank of the simple
algebra so(5); for this reason, they are also called quasisimple orthogonal algebras.

4.1. Symmetric Homogeneous Cayley–Klein Spaces

Since, by construction, the Z⊗4
2 -grading is preserved for the CK algebra soω(5),

the same Cartan decompositions (34) in invariant h(m)
ω and anti-invariant t(m)

ω subspaces
under Θ(m) (33) also hold (m = 1, 2, 3, 4)

soω(5) = h
(m)
ω ⊕ t

(m)
ω . (83)

Now, from (70), we can express the relations (35) by taking into account the contraction
parameter ωm:

[h
(m)
ω , h(m)

ω ] ⊂ h
(m)
ω , [h

(m)
ω , t(m)

ω ] ⊂ t
(m)
ω , [t

(m)
ω , t(m)

ω ] ⊂ ωm h
(m)
ω . (84)

This, in turn, means that again, for any value of ωm, h(m)
ω is always a Lie subalgebra;

however, the subspace t(m) becomes an abelian subalgebra when ωm = 0.
Next, as in Section 3.1, we construct the homogeneous CK spaces as the coset

spaces [131–133]
S(m)

ω = SOω(5)/H(m)
ω , (85)

where SOω(5) is the CK Lie group with Lie algebra soω(5), and H(m)
ω is the isotropy

subgroup of SOω(5) with Lie algebra h
(m)
ω . We recall that, usually, a CK geometry (6) is

identified with the space of points S(1)ω , without taking into account other spaces. Along
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this paper, a CK geometry will be understood as the full set of the four homogeneous
spaces (85).

The four spaces S(m)
ω (85) are symmetric and reductive spaces of constant sectional

curvature K equal to the graded contraction parameter ωm. These are (see (40)–(43)):

1. 4D CK space of points:

S(1)ω = SOω(5)/SOω2,ω3,ω4(4), K = ω1. (86)

2. 6D CK space of lines:

S(2)ω = SOω(5)/
(
SOω1(2)⊗ SOω3,ω4(3)

)
, K = ω2. (87)

3. 6D CK space of 2-planes:

S(3)ω = SOω(5)/
(
SOω1,ω2(3)⊗ SOω4(2)

)
, K = ω3. (88)

4. 4D CK space of 3-hyperplanes:

S(4)ω = SOω(5)/SOω1,ω2,ω3(4), K = ω4. (89)

We stress that, strictly speaking, only the rank-one spaces S(1)ω and S(4)ω are of constant
curvature in the sense that all their sectional curvatures are equal to ω1 and ω4, respectively.
However, the rank-two spaces S(2)ω and S(3)ω are not, in general, of constant curvature in
the above sense; however, they are as close to constant curvature as a rank-two space
would allow [132]. In particular, the sectional curvature K of the space of lines S(2)ω along
any 2-plane direction spanned by any two tangent vectors (J0i, J0j), (J1i, J1j) and (J0i, J1i)
(i, j = 2, 3, 4) is constant and equal to ω2; however, the remaining sectional curvatures
could be different but proportional to ω2. When ω2 = 0, S(2)ω is a proper flat space with
K = 0. Similarly, for S(3)ω .

By taking into account the above comments, we can say, roughly speaking, that the
coefficients ω = (ω1, ω2, ω3, ω4) that label the CK family soω(5) are just the constant
curvatures of the four aforementioned spaces. Therefore, two isomorphic algebras in
the family soω(5) lead to two different sets of four homogeneous spaces through their
corresponding Lie groups, and such sets of spaces are those that determine each specific
CK geometry amongst the 81 ones. In this respect, we remark that the polarity D (44), which
relates isomorphic CK algebras in the form (82), also interchanges the homogeneous CK
spaces as in (46):

S(1)ω
D←→ S(4)ω , S(2)ω

D←→ S(3)ω .

For instance, the 4D Euclidean algebra iso(4) corresponding to take ω = (0,+,+,+)
yields a flat space of points S(1) = ISO(4)/SO(4) (86) but a positively curved space of
3-hyperplanes S(4) = ISO(4)/ISO(3) (89). Conversely, the isomorphic algebra i′so(4) '
iso(4) arising for ω = (+,+,+, 0), via D, gives rise to a positively curved space of points
S(1) = ISO(4)/ISO(3) but a flat space of 3-hyperplanes S(4) = ISO(4)/SO(4).

It is possible to construct other 4D and 6D symmetric homogeneous spaces from the
CK group SOω(5), which, depending on each particular CK geometry, could be different
from the four above ones (85). In particular, any composition of the automorphisms Θ(m)

(33), which form a basis for the Z⊗4
2 -grading, gives rise to another automorphism that

provides another Cartan decomposition, like (83), and, from it, the corresponding coset
space can be constructed. For instance, the composition Θ(1)Θ(4) leads to the 6D symmetric
homogeneous space

SOω(5)/H′ω , H′ω ≡ SOω04(2)⊗ SOω2,ω3(3) = 〈J04〉 ⊗ 〈J12, J13, J23〉 (90)
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(to be compared with (41)), which can be interpreted as another 6D CK space of lines. This
fact can clearly be appreciated in the Lorentzian spacetimes where there exist time-like
and space-like lines. In the single case of so(5) with ω = (+,+,+,+) all such possible
CK spaces are equivalent to the four spaces (39). Furthermore, it is also possible to obtain
generalizations of the polarity D (44) relating such other homogeneous spaces belonging to
different CK geometries with the same (isomorphic) CK algebra. In the 2D case shown in
Table 1, the prefix “Co-” in the name of some CK geometries reminds the action of D that
here interchanges ω1 ↔ ω2; thus, keeping the three geometries in the diagonal unchanged.
The full description of all the 2D CK spaces and the generalizations of the polarity D can
be found in [7,12].

4.2. Cayley–Klein Lie Bialgebra

Let us start with the classical r-matrix r04,13 (47) for so(5). The Lie bialgebra contraction
procedure introduced in [31] shows that it is not only necessary to apply the contraction
map Φ (68) to the Lie generators of so(5) in order to obtain a classical r-matrix for the CK
algebra soω(5); however, additionally a possible transformation of the quantum deforma-
tion parameter z must be considered. We recall that the idea to transform the deformation
parameter in contractions of quantum groups was formerly introduced in [153,154]. In our
case, the coboundary Lie bialgebra contraction that ensures a well defined limit ωm → 0
(for any m) of both the classical r-matrix and the cocommutator for so(5) is given by the
transformation [31]

Ψ(z) =
z√
ω04

=
z√

ω1ω2ω3ω4
. (91)

Then, we apply the composition of the maps (68) and (91) to r04,13 in the form

r =
(
Φ−1 ⊗Φ−1) ◦Ψ−1(r04,13),

obtaining that

r = z
(

J14 ∧ J01 + J24 ∧ J02 + J34 ∧ J03 +
√

ω1ω4 J23 ∧ J12
)
. (92)

Its Schouten bracket (15) turns out to be

[[r, r]] = z2(J01 ∧ J04 ∧ J14 + J02 ∧ J04 ∧ J24 + J03 ∧ J04 ∧ J34 + ω1ω4 J12 ∧ J13 ∧ J23

+ω4(ω3 J01 ∧ J02 ∧ J12 + J01 ∧ J03 ∧ J13 + J02 ∧ J03 ∧ J23)

+ω1(J12 ∧ J14 ∧ J24 + J13 ∧ J14 ∧ J34 + ω2 J23 ∧ J24 ∧ J34)
)
. (93)

It can be checked that r (92) is a solution of the modified classical Yang–Baxter
Equation (14) for any Lie algebra within the CK family soω(5) (so for any value of
ω = (ω1, ω2, ω3, ω4)). The corresponding cocommutator can either be obtained from
the Lie bialgebra contraction of (48) or through the relation (12) with (92) giving rise to the
CK Lie bialgebra (soω(5), δ(r)); namely
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δ(J04) = 0, δ(J13) = 0,

δ(J12) = z
√

ω1ω4 J12 ∧ J13, δ(J23) = z
√

ω1ω4 J23 ∧ J13,

δ(J01) = z
(

J01 ∧ J04 + ω1 J24 ∧ J12 + ω1 J34 ∧ J13 +
√

ω1ω4 J02 ∧ J23
)
,

δ(J02) = z
(

J02 ∧ J04 + ω1 J12 ∧ J14 + ω1ω2 J34 ∧ J23

+ω2
√

ω1ω4 J23 ∧ J01 +
√

ω1ω4 J12 ∧ J03
)
,

δ(J03) = z
(

J03 ∧ J04 + ω1 J13 ∧ J14 + ω1ω2 J23 ∧ J24 + ω3
√

ω1ω4 J02 ∧ J12
)
,

δ(J14) = z
(

J14 ∧ J04 + ω4 J13 ∧ J03 + ω3ω4 J12 ∧ J02 + ω2
√

ω1ω4 J24 ∧ J23
)
,

δ(J24) = z
(

J24 ∧ J04 + ω4 J23 ∧ J03 + ω3ω4 J01 ∧ J12

+ω3
√

ω1ω4 J12 ∧ J34 +
√

ω1ω4 J23 ∧ J14
)
,

δ(J34) = z
(

J34 ∧ J04 + ω4 J02 ∧ J23 + ω4 J01 ∧ J13 +
√

ω1ω4 J24 ∧ J12
)
.

(94)

Now, some remarks are in order.

• The last term in the CK r-matrix (92) is also an r-matrix r13 = z
√

ω1ω4 J23 ∧ J12
generating the CK Lie bialgebra (soω2,ω3(3), δ(r13)) with generators 〈J12, J13, J23〉 and
primitive generator J13, which is a sub-Lie bialgebra of (soω(5), δ(r)). Notice that, as in
(48), J04 is the “main” primitive generator such that the product zJ04 is dimensionless,
while J13 is a “secondary” primitive generator.

• The same z-polarity Dz (50) is an automorphism of the whole family of CK bialgebras
relating the cocommutators (94) as

(soω1,ω2,ω3,ω4(5), δ(r)) Dz←→ (soω4,ω3,ω2,ω1(5), δ(r)), (95)

so interchanging ω1 ↔ ω4 and ω2 ↔ ω3 as in (82). Note that the classical r-matrix
(92) and its Schouten bracket (93) remain unchanged under (50) and (95).

• As far as the z-maps Θ(m)
z (49) is concerned, it can directly be checked from the

expression of the r-matrix (92) that Θ(2)
z and Θ(3)

z are, again, involutive automorphisms
of (soω(5), δ(r)) for any value of the contraction parameters ω. Moreover, both Θ(1)

z

and Θ(4)
z become involutions whenever, at least, either ω1 = 0 or ω4 = 0, that is,

when the last term of r (92) vanishes. Therefore, a complete Z⊗4
2 -grading spanned

by the four Θ(m)
z (49) is kept for the 45 Lie bialgebras with contraction parameters

ω = (0, ω2, ω3, ω4) and ω = (ω1, ω2, ω3, 0), which cover inhomogeneous algebras
and their further contractions. The quantum algebras for the first set of 27 bialgebras
with ω = (0, ω2, ω3, ω4) were fully constructed in [102], while the second set is
related to the first one by means of Dz (95); in these results, it can be appreciated that
the term exp(zJ04/2) always appears in the deformed coproduct ∆z, for any value of
ω = (0, ω2, ω3, ω4), showing that zJ04 is dimensionless and that, in this sense, J04 is
the principal primitive generator.

• The coisotropy condition (22) is always satisfied by the four CK subalgebras h(m)
ω

δ(h
(m)
ω ) ⊂ h

(m)
ω ∧ soω(5), m = 1, . . . , 4, (96)

but none of them fulfils the Poisson subgroup condition for any value of the contrac-
tion parameters (even for the flag algebra with all ωm = 0)

δ(h
(m)
ω ) 6⊂ h

(m)
ω ∧ h

(m)
ω .

Thus far, we have obtained, in a unified setting, a family of coboundary Lie bialgebra
structures (soω(5), δ(r)), with quasitriangular classical r-matrix (92) and cocommutator
δ (94), which covers 81 particular Lie bialgebras with the aforementioned properties.
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However, it is worth stressing that, for some values of the contraction parameters, the
CK cocommutator could involve imaginary quantities due to the term

√
ω1ω4 in the

CK r-matrix, although the CK algebras are always real ones. If we require a real Lie
bialgebra, then

ω1ω4 ≥ 0, (97)

which excludes the 18 cases with the following values for (ω1, ω2, ω3, ω4):

Complex Lie bialgebras: (+, ω2, ω3,−) and (−, ω2, ω3,+), ∀ω2, ω3.

Hence, there remain 63 real Lie bialgebras, which are explicitly presented in Table 2
according to the sign or zero value of the contraction parameters and following the notation
(75)–(81).

Table 2. The 63 Cayley–Klein algebras with commutation relations (71) endowed with a real Lie
bialgebra structure (soω(5), δ(r)), determined by the r-matrix (92), according to the sign of the graded
contraction parameters ω = (ω1, ω2, ω3, ω4) such that ω1ω4 ≥ 0.

• Simple Lie algebras so(p, q)
so(5) ω = (+,+,+,+)
so(4, 1) ω = (+,−,−,+)
so(3, 2) ω = (+,+,−,+), (+,−,+,+), (−,+,+,−),

(−,+,−,−), (−,−,+,−), (−,−,−,−)

• Inhomogeneous Lie algebras iso(p, q) ' i′so(p, q)
iso(4) ω = (0,+,+,+), (+,+,+, 0)
iso(3, 1) ω = (0,+,+,−), (0,−,+,+), (0,+,−,−), (0,−,−,+),

(−,+,+, 0), (+,+,−, 0), (−,−,+, 0), (+,−,−, 0)
iso(2, 2) ω = (0,+,−,+), (0,−,+,−), (0,−,−,−), (+,−,+, 0), (−,+,−, 0), (−,−,−, 0)

• Newton–Hooke-type algebras i6
(
so(p, q)⊕ so(p′, q′)

)
i6
(
so(2)⊕ so(3)

)
ω = (+, 0,+,+), (+,+, 0,+)

i6
(
so(2)⊕ so(2, 1)

)
ω = (+, 0,−,+), (+,−, 0,+)

i6
(
so(1, 1)⊕ so(2, 1)

)
ω = (−, 0,+,−), (−, 0,−,−), (−,+, 0,−), (−,−, 0,−)

• Twice inhomogeneous Lie algebras iiso(p, q) ' i′i′so(p, q)
iiso(3) ω = (0, 0,+,+), (+,+, 0, 0)
iiso(2, 1) ω = (0, 0,+,−), (0, 0,−,+), (0, 0,−,−), (−,+, 0, 0), (+,−, 0, 0), (−,−, 0, 0)

• Carroll-type algebras ii′so(p, q) ' i′iso(p, q)
ii′so(3) ω = (0,+,+, 0)
ii′so(2, 1) ω = (0,+,−, 0), (0,−,+, 0), (0,−,−, 0)

• i6
(
so(p, q)⊕ iso(p′, q′)

)
i6
(
so(2)⊕ iso(2)

)
ω = (+, 0, 0,+)

i6
(
so(1, 1)⊕ iso(1, 1)

)
ω = (−, 0, 0,−)

• Inhomogeneous Newton–Hooke-type algebras i4
(
i4
(
so(p, q)⊕ so(p′, q′)

))
i4
(
i4
(
so(2)⊕ so(2)

))
ω = (0,+, 0,+), (+, 0,+, 0)

i4
(
i4
(
so(2)⊕ so(1, 1)

))
ω = (0,+, 0,−), (0,−, 0,+), (−, 0,+, 0), (+, 0,−, 0)

i4
(
i4
(
so(1, 1)⊕ so(1, 1)

))
ω = (0,−, 0,−), (−, 0,−, 0)

• Thrice inhomogeneous Lie algebras iiiso(p, q) ' i′i′i′so(p, q)
iiiso(2) ω = (0, 0, 0,+), (+, 0, 0, 0)
iiiso(1, 1) ω = (0, 0, 0,−), (−, 0, 0, 0)

• Inhomogeneous Carroll-type algebras iii′so(p, q) ' i′i′iso(p, q)
iii′so(2) ω = (0, 0,+, 0), (0,+, 0, 0)
iii′so(1, 1) ω = (0, 0,−, 0), (0,−, 0, 0)

• Flag algebra iiiiso(1) ' i′i′i′i′so(1)
iiiiso(1) ω = (0, 0, 0, 0)
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4.3. Dual Cayley–Klein Algebra and Noncommutative Cayley–Klein Spaces

We consider the generators x̂ab in soω(5)∗ dual to Jab in soω(5) with pairing (52) and
compute the commutation rules of soω(5)∗ (10) from the CK cocommutator (94) obtaining

[x̂01, x̂02] = 0, [x̂01, x̂12] = zω3ω4 x̂24, [x̂02, x̂12] = zω3
(√

ω1ω4 x̂03 −ω4 x̂14),
[x̂01, x̂03] = 0, [x̂01, x̂13] = zω4 x̂34, [x̂03, x̂13] = −zω4 x̂14,

[x̂01, x̂04] = zx̂01, [x̂01, x̂14] = 0, [x̂04, x̂14] = −zx̂14,

[x̂02, x̂03] = 0, [x̂02, x̂23] = z
(√

ω1ω4 x̂01 + ω4 x̂34), [x̂03, x̂23] = −zω4 x̂24,

[x̂02, x̂04] = zx̂02, [x̂02, x̂24] = 0, [x̂04, x̂24] = −zx̂24,

[x̂03, x̂04] = zx̂03, [x̂03, x̂34] = 0, [x̂04, x̂34] = −zx̂34,

[x̂12, x̂13] = z
√

ω1ω4 x̂12, [x̂12, x̂23] = 0, [x̂13, x̂23] = −z
√

ω1ω4 x̂23,

[x̂12, x̂14] = zω1 x̂02, [x̂12, x̂24] = −z
(
ω1 x̂01 +

√
ω1ω4 x̂34), [x̂14, x̂24] = 0,

[x̂13, x̂14] = zω1 x̂03, [x̂13, x̂34] = −zω1 x̂01, [x̂14, x̂34] = 0,

[x̂23, x̂24] = zω2
(
ω1 x̂03 −√ω1ω4 x̂14), [x̂23, x̂34] = −zω1ω2 x̂02, [x̂24, x̂34] = 0,

(98)

[x̂01, x̂23] = −zω2
√

ω1ω4 x̂02, [x̂01, x̂24] = 0, [x̂01, x̂34] = 0,

[x̂02, x̂13] = 0, [x̂02, x̂14] = 0, [x̂02, x̂34] = 0,

[x̂03, x̂12] = −z
√

ω1ω4 x̂02, [x̂03, x̂14] = 0, [x̂03, x̂24] = 0,

[x̂04, x̂12] = 0, [x̂04, x̂13] = 0, [x̂04, x̂23] = 0,

[x̂12, x̂34] = zω3
√

ω1ω4 x̂24, [x̂13, x̂24] = 0, [x̂14, x̂23] = −z
√

ω1ω4 x̂24.

(99)

Alternatively, the same result is achieved by applying a contraction map directly to
the commutation relations of the dual algebra so(5)∗ (53) and (54). By taking into account
the pairing (52) and the maps Φ (68) and Ψ (91), the full contraction map for so(5)∗ turns
out to be

Φ ◦Ψ(x̂ab, z) :=
(
Φ(x̂ab), Ψ(z)

)
=

(
x̂ab
√

ωab
,

z√
ω04

)
.

We remark that the commutation relations (98) and (99) define a real dual CK algebra
so(5)∗ under the constraint (97), thus covering the 63 cases given in Table 2. Note also that
all the commutators (99) vanish for either ω1 = 0 or ω4 = 0, corresponding to the dual
algebra of inhomogeneous algebras and their contractions.

Similarly to (55), we express the dual CK algebra soω(5)∗ as the sum of two vec-
tor spaces

soω(5)∗ = h
(m)
⊥,ω ⊕ t

(m)
⊥,ω , m = 1, . . . , 4,

where h
(m)
⊥,ω and t

(m)
⊥,ω are the annihilators of the vector subspaces h(m)

ω and t
(m)
ω introduced

in (83) and fulfilling (84). As we already performed in Section 3.3 for so(5)∗, we define the
first-order noncommutative CK spaces by

S(m)
z,ω := h

(m)
⊥,ω , m = 1, . . . , 4; (100)

see (56)–(59). Each linear noncommutative space S(m)
z,ω is the first-order in the quantum

coordinates of the complete noncommutative space associated with the homogeneous CK
space S(m)

ω (85). We display, in Table 3, the defining commutation relations for the four
noncommutative CK spaces along with the Lie brackets among h

(m)
⊥,ω and t

(m)
⊥,ω.
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Table 3. The first-order noncommutative Cayley–Klein spaces S(m)
z,ω (100) and the relations among

h
(m)
⊥,ω and t

(m)
⊥,ω . Real commutation relations are ensured whenever ω1ω4 ≥ 0 covering the 63 cases

shown in Table 2.

• Noncommutative CK space of points S(1)z,ω ≡ h
(1)
⊥,ω = 〈x̂01, x̂02, x̂03, x̂04〉

[x̂0i, x̂04] = zx̂0i [x̂0i, x̂0j] = 0 i, j = 1, 2, 3[
h
(1)
⊥,ω , h(1)⊥,ω ] ⊂ h

(1)
⊥,ω

[
h
(1)
⊥,ω , t(1)⊥,ω ] ⊂ t

(1)
⊥,ω + ω1ω4h

(1)
⊥,ω

[
t
(1)
⊥,ω , t(1)⊥,ω

]
⊂ ω1h

(1)
⊥,ω + ω1ω4t

(1)
⊥,ω

• Noncommutative CK space of lines S(2)z,ω ≡ h
(2)
⊥,ω = 〈x̂02, x̂03, x̂04, x̂12, x̂13, x̂14〉

[x̂02, x̂03] = 0 [x̂02, x̂04] = zx̂02 [x̂03, x̂04] = zx̂03

[x̂12, x̂13] = z
√

ω1ω4 x̂12 [x̂12, x̂14] = zω1 x̂02 [x̂13, x̂14] = zω1 x̂03

[x̂02, x̂12] = zω3
(√

ω1ω4 x̂03 −ω4 x̂14) [x̂03, x̂12] = −z
√

ω1ω4 x̂02 [x̂04, x̂12] = 0

[x̂02, x̂13] = 0 [x̂03, x̂13] = −zω4 x̂14 [x̂04, x̂13] = 0

[x̂02, x̂14] = 0 [x̂03, x̂14] = 0 [x̂04, x̂14] = −zx̂14

[
h
(2)
⊥,ω , h(2)⊥,ω ] ⊂ h

(2)
⊥,ω

[
h
(2)
⊥,ω , t(2)⊥,ω ] ⊂ t

(2)
⊥,ω

[
t
(2)
⊥,ω , t(2)⊥,ω

]
⊂ ω1ω2h

(2)
⊥,ω

• Noncommutative CK space of 2-planes S(3)z,ω ≡ h
(3)
⊥,ω = 〈x̂03, x̂04, x̂13, x̂14, x̂23, x̂24〉

[x̂03, x̂13] = −zω4 x̂14 [x̂03, x̂23] = −zω4 x̂24 [x̂13, x̂23] = −z
√

ω1ω4 x̂23

[x̂04, x̂14] = −zx̂14 [x̂04, x̂24] = −zx̂24 [x̂14, x̂24] = 0

[x̂03, x̂04] = zx̂03 [x̂13, x̂04] = 0 [x̂23, x̂04] = 0

[x̂03, x̂14] = 0 [x̂13, x̂14] = zω1 x̂03 [x̂23, x̂14] = z
√

ω1ω4 x̂24

[x̂03, x̂24] = 0 [x̂13, x̂24] = 0 [x̂23, x̂24] =
zω2

(
ω1 x̂03 −√ω1ω4 x̂14)[

h
(3)
⊥,ω , h(3)⊥,ω ] ⊂ h

(3)
⊥,ω

[
h
(3)
⊥,ω , t(3)⊥,ω ] ⊂ t

(3)
⊥,ω

[
t
(3)
⊥,ω , t(3)⊥,ω

]
⊂ ω3ω4h

(3)
⊥,ω

• Noncommutative CK space of 3-hyperplanes S(4)z,ω ≡ h
(4)
⊥,ω = 〈x̂04, x̂14, x̂24, x̂34〉

[x̂i4, x̂04] = zx̂i4 [x̂i4, x̂j4] = 0 i, j = 1, 2, 3[
h
(4)
⊥,ω , h(4)⊥,ω ] ⊂ h

(4)
⊥,ω

[
h
(4)
⊥,ω , t(4)⊥,ω ] ⊂ t

(4)
⊥,ω + ω1ω4h

(4)
⊥,ω

[
t
(4)
⊥,ω , t(4)⊥,ω

]
⊂ ω4h

(4)
⊥,ω + ω1ω4t

(4)
⊥,ω

Now, we analyse the structure and properties of such noncommutative CK spaces,
which do strongly depend on the contraction/curvature parameters. The four noncommu-
tative spaces close on a Lie subalgebra h

(m)
⊥,ω, in agreement with the coisotropy condition

(96), and the noncommutative spaces of lines and 2-planes are both reductive and symmet-
ric as it was also the case for so(5)∗ (see (60)). Furthermore, the explicit presence of the
curvature parameters allows us to highlight some properties for the contracted noncom-
mutative spaces straightforwardly. In particular, if we set ω4 = 0 in the noncommutative
space of points, we find that

ω4 = 0 :
[
h
(1)
⊥,ω, h(1)⊥,ω ] ⊂ h

(1)
⊥,ω ,

[
h
(1)
⊥,ω, t(1)⊥,ω ] ⊂ t

(1)
⊥,ω ,

[
t
(1)
⊥,ω, t(1)⊥,ω

]
⊂ ω1h

(1)
⊥,ω.

Likewise, taking ω1 = 0 in the noncommutative space of 3-hyperplanes, we obtain that

ω1 = 0 :
[
h
(4)
⊥,ω, h(4)⊥,ω ] ⊂ h

(4)
⊥,ω ,

[
h
(4)
⊥,ω, t(4)⊥,ω ] ⊂ t

(4)
⊥,ω ,

[
t
(4)
⊥,ω, t(4)⊥,ω

]
⊂ ω4h

(4)
⊥,ω.
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Thus, both contracted noncommutative spaces are reductive and symmetric (to be
compared with (84)). A remarkable common property for the four noncommutative spaces
is that, when ωm = 0, the subspace t

(m)
⊥,ω becomes an abelian subalgebra (m = 1, 2, 3, 4):

ωm = 0 :
[
h
(m)
⊥,ω, h(m)

⊥,ω ] ⊂ h
(m)
⊥,ω ,

[
h
(m)
⊥,ω, t(m)

⊥,ω ] ⊂ t
(m)
⊥,ω ,

[
t
(m)
⊥,ω, t(m)

⊥,ω

]
= 0.

Such relations can be applied, for instance, to the Poincaré and Euclidean algebras with
ω1 = 0 (75) for the noncommutative space of points, to the Newton–Hooke-type algebras
with ω2 = 0 (80) for the noncommutative space of lines, to the twice inhomogeneous
algebras (Galilei) with ω1 = ω2 = 0 (77) for the noncommutative spaces of points and
lines, and so on up to the flag algebra (81) for the four noncommutative spaces.

The dual polarity dz (62) also holds for so(5)∗ω interchanging the noncommutative
CK spaces as in (63) and the curvature parameters in the form ω1 ↔ ω4 and ω2 ↔ ω3.
Moreover, if we consider the z-maps θ

(m)
z (61) in the dual CK algebra soω(5)∗, we again

find that only θ
(2)
z and θ

(3)
z are always involutive automorphisms of the commutation rules

(98) and (99) (as for so(5)∗). However both θ
(1)
z and θ

(4)
z become involutions whenever the

product ω1ω4 = 0. Consequently, when at least either ω1 = 0 or ω4 = 0, the four maps
θ
(m)
z (61) span a Z⊗4

2 -grading for soω(5)∗, and the four noncommutative CK spaces (100) are
all reductive and symmetric; recall that these 45 cases correspond to the inhomogeneous
algebras iso(p, q) with p + q = 4 with curvature coefficients (0, ω2, ω3, ω4) (75) or
(ω1, ω2, ω3, 0) (76) and their further contractions.

Finally, as we advanced at the end of Section 2.2, it is worth stressing that the structure
of the first-order noncommutative CK space of points S(1)z,ω, shown in Table 3, is shared by

the 63 CK real Lie bialgebras with ω1ω4 ≥ 0 of Table 2 since no ωm appears within S(1)z,ω , and
this is formally similar to the κ-Minkowski spacetime (25). Furthermore, the commutation
relations of S(1)z,ω are kept linear under full quantization for the 27 CK bialgebras with the
parameters (0, ω2, ω3, ω4), while higher-order terms in the quantum coordinates are
expected for the CK bialgebras with ω1 6= 0.

Similar properties hold for the first-order noncommutative CK space of 3-hyperplanes
S(4)z,ω, which remains as a linear full noncommutative space for the 27 CK bialgebras with
parameters (ω1, ω2, ω3, 0). Nevertheless, if one looks at the four first-order noncommu-
tative CK spaces in Table 3 altogether, then one finds that the four contraction parameters
appear explicitly. Thus, the set of four noncommutative spaces S(m)

z,ω is different for each
specific CK bialgebra except for the nine cases with ω1 = ω4 = 0, for which all the terms
involving any ωm vanish.

Consequently, this observation suggests the necessity of constructing other noncom-
mutative spaces beyond the usual noncommutative spacetime for a given quantum defor-
mation. To the best of our knowledge, there are very scarce results that concern noncom-
mutative spaces of lines in this research direction [99,100].

A physical (kinematical) analysis on the noncommutative CK spaces of points and
lines will be addressed in Section 6.

4.4. Drinfel’d Double Structures for Cayley–Klein Algebras

Let us consider the classical r-matrix r̃D (66) coming from the Drinfel’d double struc-
ture of so(5). We apply the composition of the contraction maps (68) and (91) in the form

rD =
(
Φ−1 ⊗Φ−1) ◦Ψ−1(r̃D), ∀ωm 6= 0,
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obtaining that

rD = z
(

J14 ∧ J01 + J24 ∧ J02 + J34 ∧ J03 +
√

ω1ω4 J23 ∧ J12 +
1√

ω2ω3
J13 ∧ J04

)
= r +

z√
ω2ω3

J13 ∧ J04, ∀ωm 6= 0,
(101)

which is a superposition of the classical CK r-matrix r (92) with a Reshetikhin twist J13 ∧ J04
formed by the two commuting primitive generators. We remark that, by construction, rD is
a classical r-matrix coming from the Drinfel’d double structure for the simple Lie algebras
contained in the CK family soω(5). Moreover, rD leads to the same Schouten bracket as
for r (93) (there are no twist contributions) so that it is a solution of the modified classical
Yang–Baxter Equation (14).

If we now require rD (101) to define a real Lie bialgebra, (soω(5), δD(rD)), we have to
impose the restriction corresponding to r (97) together with the new one determined by
the twist:

ω1ω4 > 0 and ω2ω3 > 0, (102)

which leads to four possible cases as shown in Table 4, where we have named them
according with their kinematical interpretation that we shall show in Section 6.

Table 4. Simple Lie algebras with a real r-matrix rD (101) coming from a Drinfel’d double structure
according to the sign of the graded contraction parameters ω = (ω1, ω2, ω3, ω4) and bilinear form
Iω (74), along with their contractions to non-simple Lie algebras endowed with a real Lie bialgebra
(soω(5), δD(rD)).

Simple Lie algebras with a Drinfel’d double real structure

(I) Spherical so(5) ω = (+,+,+,+) Iω = (+,+,+,+,+)

(II) De Sitter so(4, 1) ω = (+,−,−,+) Iω = (+,+,−,+,+)

(III) Anti-de Sitter so(3, 2) ω = (−,+,+,−) Iω = (+,−,−,−,+)

(IV) Anti-de Sitter so(3, 2) ω = (−,−,−,−) Iω = (+,−,+,−,+)

Non-simple Lie algebras with a real Lie bialgebra via contraction

(Ia) Euclidean iso(4) ω = (0,+,+,+)

(Ia′) Para-Euclidean i′so(4) ω = (+,+,+, 0)

(IIa) Poincaré iso(3, 1) ω = (0,−,−,+)

(IIa′) i′so(3, 1) ω = (+,−,−, 0)

(IIIa) Poincaré iso(3, 1) ω = (0,+,+,−)
(IIIa′) Para-Poincaré i′so(3, 1) ω = (−,+,+, 0)

(IVa) iso(2, 2) ω = (0,−,−,−)
(IVa′) i′so(2, 2) ω = (−,−,−, 0)

(Ib) Carroll ii′so(3) ω = (0,+,+, 0) (Ib)≡ (Ib′)≡ (IIIb)≡ (IIIb′)

(IIb) ii′so(2, 1) ω = (0,−,−, 0) (IIb)≡ (IIb′)≡ (IVb)≡ (IVb′)

In order to obtain the possible graded contractions of rD (101), we first indicate that
this diverges under the limits ω2 → 0 and ω3 → 0, so that the restriction ω2ω3 > 0 must
be kept. Secondly, both contractions ω1 → 0 and ω4 → 0 are well-defined and consistent
with the condition (97). This, in turn, means that there are ten possible contractions for rD
that provide an r-matrix generating a real Lie bialgebra for non-simple Lie algebras (see
Table 2).

These are also displayed in Table 4 (with the kinematical terminology for the cases
that will appear in Section 6), where the notation indicates the sequence of contractions
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of the real Lie bialgebra (soω(5), δD(rD)), with the “prime” corresponding to ω4 = 0.
For instance:

(I)
ω1= 0−−−→ (Ia)

ω4= 0−−−→ (Ib′) Spherical → Euclidean → Carroll
so(5) −→ iso(4) −→ ii′so(3) (+,+,+,+)→ (0,+,+,+)→ (0,+,+, 0)

(III)
ω4= 0−−−→ (IIIa′)

ω1= 0−−−→ (IIIb) Anti-de Sitter → Para-Poincaré → Carroll
so(3, 2) −→ i′so(3, 1) −→ ii′so(3) (−,+,+,−)→ (−,+,+, 0)→ (0,+,+, 0)

Recall the Lie algebra isomorphisms provided by D (44): i′so(4) ' iso(4), i′so(3, 1) '
iso(3, 1) and i′so(2, 2) ' iso(2, 2). Hence, any contraction sequence ends on either the
Carroll bialgebra (cases (I) and (III)) or on the ii′so(2, 1) one (cases (II) and (IV)).

The effect of the twist J13 ∧ J04 in rD (101) with respect to the CK r-matrix (92) can be
highlighted by associating it with a second deformation parameter ϑ in a similar form to
(67), that is,

rD = r + ϑJ13 ∧ J04, (103)

such that the r-matrix coming from a Drinfel’d double structure corresponds to the one-
parametric deformation with

ϑ ≡ z√
ω2ω3

, ω2ω3 > 0. (104)

The cocommutator δD, obtained with (12), is just the CK cocommutator δ (94) plus new
terms coming from the twist, which are denoted δϑ. Hence, δD = δ + δϑ with δϑ given by

δϑ(J04) = 0, δϑ(J13) = 0,

δϑ(J12) = ϑ ω2 J23 ∧ J04, δ(J23) = ϑ ω3 J04 ∧ J12,

δ(J01) = ϑ(J04 ∧ J03 + ω1 J13 ∧ J14),

δ(J02) = ϑ ω1ω2 J13 ∧ J24, (105)

δ(J03) = ϑ ω2ω3(J01 ∧ J04 + ω1 J13 ∧ J34),

δ(J14) = ϑ ω2ω3(J04 ∧ J34 + ω4 J01 ∧ J13),

δ(J24) = ϑ ω3ω4 J02 ∧ J13,

δ(J34) = ϑ(J14 ∧ J04 + ω4 J03 ∧ J13).

Consequently, (soω2,ω3(3), δD) with generators 〈J12, J13, J23〉 does not remain as a Lie
sub-bialgebra of (soω(5), δD(rD)). However, if this is enlarged with the primitive generator
J04, then it provides the Lie sub-bialgebra (soω2,ω3(3)⊕ soω04(2), δD).

The polarity Dz (50) and the involutions Θ(2)
z and Θ(3)

z (49) also hold for the two-
parametric deformation determined by (103) provided that ϑ is unchanged. Nevertheless,
in the proper Drinfel’d double case with a single deformation parameter z, with the
identification (104), the above maps do not remain since z→ −z.

As far as the first-order noncommutative spaces associated to (soω(5), δD(rD)) is
concerned, it is straightforward to prove that the coisotropy condition (22) is only fulfilled
for the subalgebras h(1)ω and h

(4)
ω (see (105)):

δD(h
(l)
ω ) ⊂ h

(l)
ω ∧ soω(5), l = 1, 4, δD(h

(k)
ω ) 6⊂ h

(k)
ω ∧ soω(5), k = 2, 3,

for any of the 14 Lie algebras displayed in Table 4. Therefore, only the twisted noncommutative
CK spaces of points and 3-hyperplanes S(l)z,ϑ,ω (l = 1, 4) can consistently be constructed.
In particular, from (105) and applying the quantum duality (10) with pairing (52), we
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directly obtain the defining commutation relations for the twisted noncommutative CK
space of points S(1)z,ϑ,ω:

[x̂01, x̂04] = zx̂01 + ϑω2ω3 x̂03, [x̂02, x̂04] = zx̂02,

[x̂03, x̂04] = zx̂03 − ϑx̂01, [x̂0i, x̂0j] = 0, i, j = 1, 2, 3.
(106)

In the same way, S(4)z,ϑ,ω can also be obtained. Clearly S(1)z,ϑ,ω (106) is not isomorphic to

S(1)z,ω given in Table 3. Moreover, since ω2ω3 > 0, this factor can be scaled to +1 within the
commutators (106) via the scalings

x̂03 →
√

ω2ω3 x̂03, ϑ→
√

ω2ω3 ϑ,

which shows that S(1)z,ϑ,ω is the common first-order twisted noncommutative CK space of
points for the 14 Lie bialgebras shown in Table 4; clearly, higher-order terms in the quantum
coordinates may arise for each specific case.

Finally, we stress that it is not ensured at all that a given contracted Drinfel’d double
r-matrix rD gives rise to a Drinfel’d double structure for a non-semisimple Lie algebra
and, in fact, this problem should be studied case by case. Nevertheless, we can answer
negatively to this question for the contracted r-matrices of Table 4. It was established
in [127], from the results given in [145], that there does not exist any Drinfel’d double
structure for Poincaré, Euclidean and Carroll algebras at this dimension.

In contrast, as we commented at the end of Section 2.3, in lower dimensions, such
structures do exist and the classification of Drinfel’d doubles was recently performed for
the (2 + 1)D Poincaré [127] and 3D Euclidean algebras [128]. Moreover, to the best of our
knowledge, the classification of Drinfel’d doubles for the (anti-)de Sitter algebras has only
been carried out in (2 + 1) dimensions [115].

In (3 + 1) dimensions, there is no such classification for the simple Lie algebras so(p, q),
and there has only been constructed the Drinfel’d double structure here considered for
so(5), reviewed in Section 3.4, and from it a Drinfel’d double for the anti-de Sitter algebra
so(3, 2) [129], that we advance, which is just the case (III) in Table 4. Therefore, we have
obtained two new r-matrices coming from Drinfel’d doubles, one for the de Sitter so(4, 1)
and another for the anti-de Sitter so(3, 2) (cases (II) and (IV)), although our results do not
convey a complete classification.

The physical (kinematical) interpretation of the CK r-matrices r (92) and rD (101)
along with their associated first-order noncommutative spaces will be described in detail
in Section 6.

5. Kinematical Algebras and Homogeneous Spaces

As we already mentioned in the previous section, the kinematical algebras introduced
in [14] arise as particular cases of graded contractions of so(5) [20,152], and thus they
appear within the CK family soω(5) for some specific values of the contraction parameters
ω = (ω1, ω2, ω3, ω4) (except for the static algebra, which does not belong to the CK
family). These kinematical algebras have recently been derived from deformation theory
in [145,155]; in this respect, recall that Lie algebra deformations [156] can be regarded as
the opposite processes to Lie algebra contractions [13,138,157,158].

In order to deal with kinematical algebras, let us introduce a physical basis denoting by
P0, P = (P1, P2, P3), K = (K1, K2, K3) and J = (J1, J2, J3) the generators of time translations,
spatial translations, boosts and rotations, respectively. These ten generators are isometries
of a (3 + 1)D spacetime of constant curvature. The 11 kinematical algebras [14] are contained
within a three-parametric Lie algebra, here denoted soΛ,c,λ(5), with commutation relations
given by

[Ji, Jj] = εijk Jk, [Ji, Pj] = εijkPk, [Ji, Kj] = εijkKk, [Ji, P0] = 0, (107)
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[Ki, P0] = λPi, [Ki, Pj] =
1
c2 δijP0, [Ki, Kj] = −λ

1
c2 εijk Jk,

[P0, Pi] = −ΛKi, [Pi, Pj] = Λ
1
c2 εijk Jk,

(108)

where, from now on, the indices i, j, k = 1, 2, 3 and sum over repeated indices will be un-
derstood. Recall also that the commutators (107) are a consequence of 3-space isotropy [14],
and they are shared by any Lie algebra in soΛ,c,λ(5), while the Lie brackets (108) distinguish
the specific kinematical algebra according to the values of the real parameters Λ, c and λ.

The family soΛ,c,λ(5) has two Casimir operators: a quadratic one, coming from the
Killing–Cartan form, which is given by

C = 1
c2 P2

0 − λP2 + Λ
(

K2 − λ
1
c2 J2

)
, (109)

and a fourth-order Casimir [18] (with the exception of the static algebra [14] corresponding
to set Λ = λ = 0 and c→ ∞ in (108), so all of these brackets vanish).

Moreover, soΛ,c,λ(5) is endowed with the parity P and the time-reversal T involutive
automorphisms defined by [14]

P(P0, P, K, J) = (P0,−P,−K, J),

T (P0, P, K, J) = (−P0, P,−K, J),

PT (P0, P, K, J) = (−P0,−P, K, J).

(110)

Each of them provides a type of contraction: the composition PT corresponds to the
(flat) spacetime contraction (Λ→ 0), the parity P to the speed-space contraction (c→ ∞)
and the time-reversal T to the speed-time contraction (λ→ 0) (see [135] for the (2 + 1)D
kinematical algebras and contractions within the CK family soω(4) and their Drinfel’d–
Jimbo quantum deformation). In other words, the quantities Λ, 1/c2 and λ behave as
graded contraction parameters, each of them corresponding to the Z2-grading of soΛ,c,λ(5)
determined by PT , P and T , respectively.

From the Lie group SOΛ,c,λ(5) of soΛ,c,λ(5), we construct the (3 + 1)D spacetime and
the 6D space of lines as the coset spaces

ST3+1 = SOΛ,c,λ(5)/Hst, Hst = 〈K, J〉,
L6 = SOΛ,c,λ(5)/Hline, Hline = 〈P0〉 ⊗ 〈J〉 = 〈P0〉 ⊗ SO(3),

(111)

such that Hst and Hline are the isotropy subgroups of an event and a line, respectively. Thus,
these are symmetric homogeneous spaces associated, in this order, with the composition
PT and parity P involutions.

Similarly to the discussion on the curvature of the CK spaces (86)–(89) in Section 4.1,
we remark that the (3 + 1)D spacetime ST3+1 is a rank-one homogeneous space such
that all their sectional curvatures K are equal and constant. However, the 6D space of
lines L6 is of rank-two, and only the sectional curvatures K of any two-plane direction
spanned by any two tangent vectors (Pi, Pj), (Ki, Kj) and (Pi, Ki) (i, j = 1, 2, 3) are equal
among themselves and constant, with the remaining ones, (Pi, Kj) with i 6= j, as generically
non-constant (or zero).

Furthermore, when SOΛ,c,λ(5) is a non-simple Lie group, the metric on either space (111)
could be degenerated, and, in this case, an invariant foliation arises so that an additional
metric defined on each leaf of the foliation is necessary to determine completely the metric
structure of the space [132]. Moreover, it is important to take into account that, in principle,
the (3 + 1)D spacetime ST3+1 does not necessarily coincide with the CK space of points S(1)ω

(86) (in most cases it does) and, likewise, with the 6D space of lines L6 with respect to the
CK space of lines S(2)ω (87). Nevertheless, they can always be identified with another CK
space, as for instance (90) for the space of lines. This fact will depend on the kinematical
assignation of the geometrical CK generators that we shall study next in Section 6.
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In what follows, we describe the 11 kinematical algebras although we shall only
focus on the homogeneous spaces (111) for nine of them: the Lorentzian, Newtonian and
Carrollian cases. Additionally, we shall show how the three classical Riemannian algebras
(and their homogenous spaces) can also be recovered from the family soΛ,c,λ(5). These nine
kinematical algebras/spaces plus the three Riemannian ones are those that will appear in
Section 6, and they are summarized in Table 5.

Table 5. Kinematical algebras with commutation relations (107) and (108) together with their cor-
responding symmetric homogeneous (3 + 1)D spacetimes and 6D spaces of lines (111) of sectional
curvature K according to the values of the graded contraction parameters (Λ, c, λ). The same results
for the three Riemannian cases are similarly displayed.

Lorentzian algebras and homogeneous spaces

• De Sitter • Poincaré • Anti-de Sitter

l+ = so(4, 1): Λ > 0, c finite, λ = 1 l0 = iso(3, 1): Λ = 0, c finite, λ = 1 l− = so(3, 2): Λ < 0, c finite, λ = 1

dS3+1 = SO(4, 1)/SO(3, 1),
K = −Λ < 0 M3+1 = ISO(3, 1)/SO(3, 1), K = 0 AdS3+1 = SO(3, 2)/SO(3, 1),

K = −Λ > 0
LdS6 = SO(4, 1)/

(
SO(1, 1)⊗ SO(3)

)
,

K = − 1
c2

LM6 = ISO(3, 1)/
(
R⊗ SO(3)

)
,

K = − 1
c2

LAdS6 = SO(3, 2)/
(
SO(2)⊗ SO(3)

)
,

K = − 1
c2

Newtonian algebras and homogeneous spaces

• Expanding Newton–Hooke • Galilei • Oscillating Newton–Hooke

n+ = i6
(
so(1, 1)⊕ so(3)

)
: Λ > 0,

c = ∞, λ = 1 n0 = iiso(3): Λ = 0, c = ∞, λ = 1 n− = i6
(
so(2)⊕ so(3)

)
: Λ < 0,

c = ∞, λ = 1

N3+1
+ = N+/ISO(3), K = −Λ < 0 N3+1

0 ≡ G3+1 = IISO(3)/ISO(3),
K = 0 N3+1

− = N−/ISO(3), K = −Λ > 0

LN6
+ = N+/

(
SO(1, 1)⊗ SO(3)

)
,

K = 0 LG6 = IISO(3)/
(
R⊗ SO(3)

)
, K = 0 LN6

− = N−/
(
SO(2)⊗ SO(3)

)
, K = 0

Carrollian algebras and homogeneous spaces

• Para-Euclidean • Carroll • Para-Poincaré

c+ = i′so(4): Λ > 0, c = 1, λ = 0 c0 = ii′so(3): Λ = 0, c = 1, λ = 0 c− = i′so(3, 1): Λ < 0, c = 1, λ = 0

C3+1
+ = I′SO(4)/ISO(3), K = Λ > 0 C3+1

0 ≡ C3+1 = II′SO(3)/ISO(3),
K = 0 C3+1

− = I′SO(3, 1)/ISO(3), K = Λ < 0

LC6
+ = I′SO(4)/

(
R⊗ SO(3)

)
,

K = Λ > 0 LC6 = II′SO(3)/
(
R⊗ SO(3)

)
, K = 0 LC6

− = I′SO(3, 1)/
(
R⊗ SO(3)

)
,

K = Λ < 0

Riemannian algebras and homogeneous spaces

• Hyperbolic • Euclidean • Spherical

so(4, 1): Λ > 0, c = i, λ = 1 or iso(4): Λ = 0, c = i, λ = 1 or so(5): Λ < 0, c = i, λ = 1 or

Λ < 0, c = 1, λ = −1 Λ = 0, c = 1, λ = −1 Λ > 0, c = 1, λ = −1

H4 = SO(4, 1)/SO(4), K < 0 E4 = ISO(4)/SO(4), K = 0 S4 = SO(5)/SO(4), K > 0

LH6 = SO(4, 1)/
(
SO(1, 1)⊗ SO(3)

)
,

K = +1 LE6 = ISO(4)/
(
R⊗ SO(3)

)
, K = +1 LS6 = SO(5)/

(
SO(2)⊗ SO(3)

)
,

K = +1

5.1. Lorentzian Algebras

If we set the parameter λ = 1 and consider c finite, we find that soΛ,c,λ(5) covers the
three Lorentzian algebras lΛ of relativistic (3 + 1)D spacetimes such that the Lie brackets
(108) now read

[Ki, P0] = Pi, [Ki, Pj] =
1
c2 δijP0, [Ki, Kj] = −

1
c2 εijk Jk,

[P0, Pi] = −ΛKi, [Pi, Pj] = Λ
1
c2 εijk Jk,

(112)

where c is the speed of light and Λ is the cosmological constant. Then, we obtain the
de Sitter (dS) l+ = so(4, 1), anti-de Sitter (AdS) l− = so(3, 2) and Poincaré l0 = iso(3, 1)
algebras. The quadratic Casimir (109) for lΛ reads

C = 1
c2 P2

0 − P2 + Λ
(

K2 − 1
c2 J2

)
, (113)
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and the fourth-order Casimir, related to the Pauli–Lubanski 4-vector, can be found in [18].
The Lorentz subalgebra corresponds to so(3, 1) = 〈K, J〉, which is the Lie algebra

of the isotropy subgroup Hst = SO(3, 1) (111). The constant sectional curvature of the
(3 + 1)D spacetime is K = −Λ. Notice that the cosmological constant can be expressed in
terms of a time universe radius τ through Λ = ±1/τ2, so that to take Λ = 0 corresponds to
the limit τ → ∞, which is simply the spacetime contraction providing the flat Minkowskian
spacetime M3+1 from the (3 + 1)D (A)dS spacetimes. The isotropy subgroup of a line is
Hline = SO−Λ(2)⊗ SO(3), and the homogeneous space of (time-like) lines (111) is, in the
three cases, of negative constant sectional curvature K = −1/c2 [132]. Recall that the
notation SO−Λ(2) means that SO+(2) = SO(2), SO−(2) = SO(1, 1) and SO0(2) = R.

5.2. Newtonian Algebras

The non-relativistic limit c→ ∞ (or speed-space contraction) of lΛ (112) gives rise to
three Newtonian algebras nΛ with Lie brackets

[Ki, P0] = Pi, [Ki, Pj] = 0, [Ki, Kj] = 0,

[P0, Pi] = −ΛKi, [Pi, Pj] = 0,

where Λ = ±1/τ2 and τ is again the time universe radius. The second-order Casimir (113)
reduces to

C = −P2 + ΛK2,

and the corresponding fourth-order Casimir can be found in [18]. This non-relativistic
limit is obtained by setting λ = 1 and c → ∞ in (108) and (109). In this way, we find
the expanding Newton–Hooke (NH) n+, oscillating NH n− and the Galilei n0 ≡ iiso(3)
algebras, which have the following structure (see (80) and (77), respectively):

n+ ≡ i6
(
so(1, 1)⊕ so(3)

)
≡ R6⊕S

(
so(1, 1)⊕ so(3)

)
: R6 = 〈P, K〉, so(1, 1) = 〈P0〉, so(3) = 〈J〉.

n− ≡ i6
(
so(2)⊕ so(3)

)
≡ R6⊕S

(
so(2)⊕ so(3)

)
: R6 = 〈P, K〉, so(2) = 〈P0〉, so(3) = 〈J〉.

n0 ≡ iiso(3) ≡ R4⊕S
(
R3 ⊕S so(3)

)
: R4 = 〈P0, P〉, R3 = 〈K〉, so(3) = 〈J〉.

The isotropy subgroup Hst (111) is now the 3D Euclidean subgroup ISO(3) spanned
by rotations and (commuting) Newtonian boosts, and the (3 + 1)D spacetime has the same
sectional curvature as in the Lorentizan spacetimes: K = −Λ. The metric is degenerate
and corresponds to an “absolute-time”, so that there exists an invariant foliation under the
action of the Newtonian group NΛ, whose leaves are defined by a constant time, which
is determined by a 3D non-degenerate Euclidean spatial metric restricted to each leaf of
the foliation [132,147]. The isotropy subgroup of a line is again Hline = SO−Λ(2)⊗ SO(3),
but the homogeneous space of lines (111) is flat, i.e., K = 0 [132].

5.3. Carrollian Algebras

We set λ = 0 and c = 1 in the commutators (108) yielding the three Carrollian algebras
cΛ with Lie brackets and second-order Casimir given by

[Ki, P0] = 0, [Ki, Pj] = δijP0, [Ki, Kj] = 0,

[P0, Pi] = −ΛKi, [Pi, Pj] = Λεijk Jk,
(114)

C = P2
0 + ΛK2.

Notice that now the parameter Λ has dimensions of length−2 instead of time−2, and
the Carrollian boosts have dimensions of speed instead of speed−1 (which were the cases
in the Lorentizan and Newtonian algebras).
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The algebra cΛ comprises the para-Euclidean algebra c+ ≡ i′so(4) (isomorphic to the
Euclidean iso(4)), the para-Poincaré algebra c− ≡ i′so(3, 1) (isomorphic to the Poincaré
iso(3, 1)) and the proper Carroll algebra c0 ≡ ii′so(3) ≡ i′iso(3), which have the following
structure [147] (see (76), (78) and (79)):

c+ ≡ i′so(4) = R′4 ⊕S so(4) : R′4 = 〈P0, K〉, so(4) = 〈P, J〉.
c− ≡ i′so(3, 1) = R′4 ⊕S so(3, 1) : R′4 = 〈P0, K〉, so(3, 1) = 〈P, J〉.
c0 ≡ i′iso(3) = R′4⊕S

(
R3 ⊕S so(3)

)
: R′4 = 〈P0, K〉, R3 = 〈P〉, so(3) = 〈J〉,

c0 ≡ ii′so(3) = R4⊕S
(
R′3 ⊕S so(3)

)
: R4 = 〈P0, P〉, R′3 = 〈K〉, so(3) = 〈J〉.

The isotropy subgroup Hst (111) is, again, the 3D Euclidean subgroup ISO(3) spanned
by rotations and (commuting) Carrollian boosts, but the (3 + 1)D spacetime has sectional
curvature K = +Λ (instead of K = −Λ as in the Lorentizan and Newtonian spacetimes).
The metric is degenerate corresponding to an “absolute-space”, and there exists an invariant
foliation under the action of the Carrollian group characterized by a 1D time metric
restricted to each leaf of the foliation [147]. The isotropy subgroup of a line is Hline = R⊗
SO(3) and the homogeneous space of lines (111) has the same curvature as the spacetimes,
thus, equal to +Λ.

5.4. The Two Remaining Kinematical Algebras

For the sake of completeness, we also mention that the para-Galilei algebra [14] arises
for λ = 0 and c→ ∞, that is, the commutators (108) reduce to

[Ki, P0] = 0, [Ki, Pj] = 0, [Ki, Kj] = 0,

[P0, Pi] = −ΛKi, [Pi, Pj] = 0,

for any value of Λ 6= 0 (apply the map P0 → ±P0/Λ), while the second-order Casimir
(109) simply reads C = ΛK2. The static algebra [14] corresponds to the most contracted
algebra within the kinematical family for Λ = λ = 0 and c→ ∞,

[Ki, P0] = 0, [Ki, Pj] = 0, [Ki, Kj] = 0,

[P0, Pi] = 0, [Pi, Pj] = 0,
(115)

with trivial second-order Casimir C = 0. In fact, the static algebra is the only kinematical
one that does not appear within the CK family soω(5) [17]; however, it can be obtained
from the general solution of the grading equations for so(5) [20,152]. Observe that the
static algebra is not a quasisimple Lie algebra in the sense that it does not have the same
number of Casimir invariants as the simple Lie algebra so(5).

When one compares the commutation relations of the static algebra (115) with those
for the Carroll one (114) with Λ = 0, one finds that the Carroll algebra can be regarded as a
centrally extended algebra, with non-trivial central extension P0, from the static algebra,
and there cannot be added any other central extension to the Carroll algebra [14] (see [19]
for the central extensions of the CK algebras in any dimension).

In this respect, we remark that, in [145], the (3 + 1)D kinematical algebras were
constructed from the static algebra through deformation theory (see [155] for higher di-
mensions). We also recall that twist deformations for the para-Galilei, static and Carroll
algebras were obtained in [146].

Neither the para-Galilei nor the static algebra will appear within the deformations
that we shall describe in Section 6; therefore, they are omitted in Table 5.
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5.5. Riemannian Algebras

Additionally, but not kinematically, we can set λ = 1 and the speed of light equal to
the imaginary unit c = i in (108) finding the commutators

[Ki, P0] = Pi, [Ki, Pj] = −δijP0, [Ki, Kj] = εijk Jk,

[P0, Pi] = −ΛKi, [Pi, Pj] = −Λεijk Jk,
(116)

with second-order Casimir (109) given by

C = −P2
0 − P2 + Λ

(
K2 + J2

)
.

In this way, we obtain so(5) for Λ < 0, iso(4) for Λ = 0 and so(4, 1) for Λ > 0.
The generator P0 now behaves as another space translation, while the generators K are
no longer boosts but rotations. The isotropy subgroup Hst (111) is SO(4) = 〈K, J〉, such
that we recover the three classical 4D Riemannian spaces of constant sectional curvature
K = −Λ: spherical (K > 0), Euclidean (K = 0) and hyperbolic (K < 0) spaces. The isotropy
subgroup of a line is Hline = SO−Λ(2)⊗ SO(3), and the corresponding 6D space of lines
has positive curvature K = +1 for any value of Λ [132].

Alternatively, we can set λ = −1 and c = 1 in (108) obtaining that

[Ki, P0] = −Pi, [Ki, Pj] = δijP0, [Ki, Kj] = εijk Jk,

[P0, Pi] = −ΛKi, [Pi, Pj] = Λεijk Jk,

C = P2
0 + P2 + Λ

(
K2 + J2

)
,

which are equivalent to the Lie brackets (116) by means of the maps P0 → −P0 and
Λ→ −Λ. Therefore, we again obtain the same Riemannian algebras (and homogeneous
spaces), but now so(5) for Λ > 0, iso(4) for Λ = 0 and so(4, 1) for Λ < 0.

6. Kinematical Lie Bialgebras and Noncommutative Spaces

Our aim now is to interpret in the kinematical framework the Lie bialgebras coming
from the classical CK r-matrix r (92) and the Drinfel’d doubles further provided by rD (101)
together with the corresponding first-order noncommutative spaces of points and lines
displayed in Table 3 and the twisted one (106). With this in mind, we perform different
identifications between the “geometrical” generators Jab of soω(5) (71) and the kinematical
ones of soΛ,c,λ(5) (107) and (108), which will convey physical correspondences between
the contraction/curvature CK parameters ω and Λ, c, λ.

According to [102], the main idea is to start with the main primitive generator J04
and to identify it either with a spatial translation Pi or with the time translation P0. Since
the product zJ04 must be dimensionless, we shall obtain the so-called [135] “space-like”
deformations J04 ≡ Pi, with the deformation parameter z being a fundamental length scale,
and the “time-like” deformations J04 ≡ P0, with z being a fundamental time scale.

In particular, we shall study first three classes of kinematical deformations, called
A, B and C, such that their properties are determined by the two primitive (undeformed)
generators (J04, J13) corresponding to (P3, K2), (P2, J2) and (P0, J2), respectively. We remark
that, in these three classes, the time translation generator P0 ≡ J0l for l = 1, 2, 4, and the
remaining case P0 ≡ J03 would provide results that are equivalent, under certain Lie
algebra automorphisms, to those already contained in the class A, and thus we omit it.

Therefore, the classes A and B will give rise to space-like deformations, while the class
C will lead to time-like ones. Additionally, we shall construct an AdS Lie bialgebra for
which z is dimensionless with primitive generators (J2, P0), and it will correspond to the
new Drinfel’d double of case (IV) in Table 4; we shall call it class D. We point out that such
four classes of kinematical deformations will contain the four Drinfel’d doubles for the
simple Lie algebras of Table 4.
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The main results that will be obtained along Sections 6.1–6.4 concerning the kine-
matical r-matrices are presented in Table 6. From them, their corresponding first-order
noncommutative spacetimes and spaces of lines will be computed as summarized in Table 7.
Comments on these results will be presented in Sections 6.5 and 6.6.

Table 6. Four classes of real classical r-matrices for the kinematical and Riemannian algebras with commutation relations
(107) and (108). For each class, we display the dimensions of the quantum deformation parameter z and the primitive
generators (determined by (J04, J13)), the r-matrix, the specific Lie algebras according to the values of the graded contraction
parameters (Λ, c, λ) as in Table 5, the CK parameters ω and the Drinfel’d double r-matrix rD together with the corresponding
case given in Table 4.

Class z & (J04 , J13) Kinematical Real r-Matrices and Lie Algebras ω = (ω1 , ω2 , ω3 , ω4) Drinfel’d Double rD

A Length r = z
(
K3 ∧ P0 + J1 ∧ P2 − J2 ∧ P1 +

√
−Λ J3 ∧ K1

)
rD = r + zK2 ∧ P3

(P3, K2) AdS so(3, 2) Λ < 0, c, λ = 1 ω = (+,−,+,+) No

Poincaré iso(3, 1) Λ = 0, c, λ = 1 ω = (0,−,+,+) No

Oscillating NH n− Λ < 0, c = ∞, λ = 1 ω = (+, 0,+,+) No

Galilei iiso(3) Λ = 0, c = ∞, λ = 1 ω = (0, 0,+,+) No

Spherical so(5) Λ < 0, c = i, λ = 1 ω = (+,+,+,+) (I)

Euclidean iso(4) Λ = 0, c = i, λ = 1 ω = (0,+,+,+) (Ia)

B Length r = z
(
K2 ∧ P0 + J3 ∧ P1 − J1 ∧ P3 +

√
Λ K3 ∧ K1

)
rD = r− zJ2 ∧ P2

(P2, J2) dS so(4, 1) Λ > 0, c = 1, λ = 1 ω = (+,−,−,+) (II)

Poincaré iso(3, 1) Λ = 0, c = 1, λ = 1 ω = (0,−,−,+) (IIa)

C Time r = z
(
K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3 +

√
−λ Λ J1 ∧ J3

)
rD = r− zJ2 ∧ P0

(P0, J2) AdS so(3, 2) Λ < 0, c = 1, λ = 1 ω = (−,+,+,−) (III)

Poincaré iso(3, 1) Λ = 0, c = 1, λ = 1 ω = (0,+,+,−) (IIIa)

Para-Euclidean i′so(4) Λ > 0, c = 1, λ = 0 ω = (+,+,+, 0) (Ia′)

Para-Poincaré i′so(3, 1) Λ < 0, c = 1, λ = 0 ω = (−,+,+, 0) (IIIa′)

Carroll ii′so(3) Λ = 0, c = 1, λ = 0 ω = (0,+,+, 0) (Ib) ≡ (IIIb)

Spherical so(5) Λ > 0, c = 1, λ = −1 ω = (+,+,+,+) (I)

Euclidean iso(4) Λ = 0, c = 1, λ = −1 ω = (0,+,+,+) (Ia)

D None r = z
(
K1 ∧ K3 + K2 ∧ P2 + P1 ∧ P3 + J3 ∧ J1

)
rD = r + zP0 ∧ J2

(J2, P0) AdS so(3, 2) Λ = −1, c = 1, λ = 1 ω = (−,−,−,−) (IV)
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Table 7. The first-order noncommutative spacetimes ST3+1
z = 〈x̂0, x̂1, x̂2, x̂3〉 and spaces of lines L6

z = 〈x̂1, x̂2, x̂3, ξ̂1, ξ̂2, ξ̂3〉
for the classes A, B and C of kinematical and Riemannian Lie bialgebras shown in Table 6 with the notation of Table 5;
the case D has no associated noncommutative space. First-order twisted noncommutative spacetimes coming from the
Drinfel’d double structures and their contractions presented in Table 4 are also written in terms of the twist deformation
parameter ϑ such that ϑ ≡ z corresponds to the proper (or contracted) Drinfel’d double.

Class A • Noncommutative spacetimes with Λ ≤ 0, λ = 1: AdS3+1
z , M3+1

z , N3+1
−,z , G3+1

z , S4
z , E4

z

[x̂0, x̂3] = zx̂0 [x̂1, x̂3] = zx̂1 [x̂2, x̂3] = zx̂2 [x̂0, x̂1] = [x̂0, x̂2] = [x̂1, x̂2] = 0

• Twisted noncommutative spaces of points with Λ ≤ 0, λ = 1, c = i: S4
z,ϑ , E4

z,ϑ

[x̂0, x̂3] = zx̂0 + ϑx̂2 [x̂1, x̂3] = zx̂1 [x̂2, x̂3] = zx̂2 − ϑx̂0 [x̂0, x̂1] = [x̂0, x̂2] = [x̂1, x̂2] = 0

• Noncommutative space of lines with Λ < 0, λ = 1: LAdS6
z , LN6

−,z , LS6
z

[x̂1, x̂2] = 0 [x̂1, x̂3] = zx̂1 [x̂2, x̂3] = zx̂2

[ξ̂1, ξ̂2] = z
√
−Λ ξ̂1 [ξ̂1, ξ̂3] = −zΛx̂1 [ξ̂2, ξ̂3] = −zΛx̂2

[x̂1, ξ̂1] = z(
√
−Λ x̂2 − ξ̂3) [x̂2, ξ̂1] = −z

√
−Λ x̂1 [x̂3, ξ̂1] = 0

[x̂1, ξ̂2] = 0 [x̂2, ξ̂2] = −zξ̂3 [x̂3, ξ̂2] = 0

[x̂1, ξ̂3] = 0 [x̂2, ξ̂3] = 0 [x̂3, ξ̂3] = −zξ̂3

• Noncommutative space of lines with Λ = 0, λ = 1: LM6
z , LG6

z , LE6
z

[x̂1, x̂2] = 0 [x̂1, x̂3] = zx̂1 [x̂2, x̂3] = zx̂2

[ξ̂ i , ξ̂ j ] = 0 [x̂i , ξ̂ j ] = −zδij ξ̂
3

Class B • Noncommutative spacetimes with Λ ≥ 0, c = 1, λ = 1: dS3+1
z , M3+1

z

[x̂0, x̂2] = zx̂0 [x̂1, x̂2] = zx̂1 [x̂3, x̂2] = zx̂3 [x̂0, x̂1] = [x̂0, x̂3] = [x̂1, x̂3] = 0

• Twisted noncommutative spacetimes with Λ ≥ 0, c = 1, λ = 1: dS3+1
z,ϑ , M3+1

z,ϑ

[x̂0, x̂2] = zx̂0 [x̂1, x̂2] = zx̂1 + ϑx̂3 [x̂3, x̂2] = zx̂3 − ϑx̂1 [x̂0, x̂1] = [x̂0, x̂3] = [x̂1, x̂3] = 0

• Noncommutative space of lines with Λ = 0, c = 1, λ = 1: LM6
z

[x̂1, x̂2] = zx̂1 [x̂1, x̂3] = 0 [x̂3, x̂2] = zx̂3

[ξ̂ i , ξ̂ j ] = 0 [x̂i , ξ̂ j ] = −zδij ξ̂
2

Class C • Noncommutative spacetimes with −λΛ ≥ 0, c = 1: AdS3+1
z , M3+1

z , C3+1
+,z , C3+1

−,z , C3+1
z , S4

z , E4
z

[x̂1, x̂0] = zx̂1 [x̂2, x̂0] = zx̂2 [x̂3, x̂0] = zx̂3 [x̂1, x̂2] = [x̂1, x̂3] = [x̂2, x̂3] = 0

• Twisted noncommutative spacetimes with −λΛ ≥ 0, c = 1: AdS3+1
z,ϑ , M3+1

z,ϑ , C3+1
+,z,ϑ , C3+1

−,z,ϑ , C3+1
z,ϑ , S4

z,ϑ , E4
z,ϑ

[x̂1, x̂0] = zx̂1 + ϑx̂3 [x̂2, x̂0] = zx̂2 [x̂3, x̂0] = zx̂3 − ϑx̂1 [x̂0, x̂1] = [x̂0, x̂3] = [x̂1, x̂3] = 0

• Noncommutative space of lines with −λΛ ≥ 0, c = 1: LAdS6
z , LM6

z , LC6
+,z , LC6

−,z , LC6
z , LS6

z , LE6
z

[x̂i , x̂j ] = 0 [ξ̂ i , ξ̂ j ] = 0 [x̂i , ξ̂ j ] = 0

6.1. Class A: Space-Like Deformations with Primitive Generators (P3, K2)

We consider the following kinematical assignation [102]

P0 = J01, P = (J02, J03, J04), K = (J12, J13, J14), J = (J34,−J24, J23), (117)

which, in the array form used in Section 3.1, gives

J01 J02 J03 J04
J12 J13 J14

J23 J24
J34

≡

P0 P1 P2 P3
K1 K2 K3

J3 −J2
J1

(118)

which shows that the spaces S(1)ω (86) and S(2)ω (87) coincide with the spacetime ST3+1 and
the space of (time-like) lines L6 (111), respectively (see (40) and (41)).
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When we impose, under the identification (117), that the commutation rules of soω(5)
(71) fulfil the common Lie brackets of any kinematical algebra (107), we find that ω3 =
ω4 = +1. Next, the remaining specific kinematical commutation relations (108) imply that
ω1 = −Λ, ω2 = −1/c2 and λ = 1. In this way, we find a set of six kinematical algebras in
soω(5) with graded contraction parameters

(ω1, ω2, ω3, ω4) =
(
−Λ,−1/c2,+1,+1

)
, λ = 1, (119)

and bilinear form Iω (74) given by

Iω =

(
+1,−Λ,

Λ
c2 ,

Λ
c2 ,

Λ
c2

)
.

These are the three Lorentzian (c finite) and the three Newtonian (c = ∞) algebras
described in Sections 5.1 and 5.2. Moreover, the three Riemannian algebras of Section 5.5
also appear for c = i, that is, ω2 = +1. Thus, this class A covers nine of the Lie algebras
shown in Table 5. Recall that, in the Lorentzian cases, the sectional curvature of the (3 + 1)D
spacetime ST3+1 is minus the cosmological constant ω1 = −Λ, while the 6D space of
(time-like) lines L6 is of negative curvature ω2 = −1/c2. In the Newtonian cases, L6 is a
flat space with ω2 = 0 (c = ∞). The kinematical automorphisms (110) are related to the
CK ones Θ(m) (33) through

P = Θ(2), T = Θ(1)Θ(2), PT = Θ(1).

Now, we apply the geometrical-kinematical identification (118) to the CK r-matrix r
(92) and to the Drinfel’d double one rD (101), thus, obtaining the following kinematical
r-matrices

r = z
(
K3 ∧ P0 + J1 ∧ P2 − J2 ∧ P1 +

√
−Λ J3 ∧ K1

)
, rD = r + z

√
−c2 K2 ∧ P3, (120)

with primitive generators P3 ≡ J04 and K2 ≡ J13, so that z has dimensions of a length with
dimensionless product zP3. Next, the constraint (97) ω1ω4 = −Λ ≥ 0 excludes three cases
in order to deal with real bialgebras: dS, expanding NH and hyperbolic algebras, all of
them with Λ > 0 (first column in Table 5). The Drinfel’d double r-matrix rD subjected
to the additional condition (102) ω2ω3 = −1/c2 > 0 only holds for c = i, that is, for the
spherical and Euclidean algebras, thereby, recovering the cases (I) and (Ia) in Table 4. Thus,
these results finally comprise six real Lie bialgebras as shown in Table 6.

The cocommutator δ for r (120) can then be deduced by applying (12), or by introduc-
ing directly the kinematical assignations (118) and (119) into the CK cocommutator (94).
It can be checked that the isotropy subalgebras of an event hst and a line hline given by
(see (111))

hst = 〈K, J〉, hline = 〈P0〉 ⊕ 〈J〉, (121)

both satisfy the coisotropy condition (22).
Now, we proceed to obtain the corresponding first-order noncommutative spacetimes

ST3+1
z and spaces of (time-like) lines L6

z associated with the homogeneous spaces (111).
For this purpose, we introduce the quantum coordinates (x̂0, x̂i, ξ̂ i, θ̂i) dual, in this order,
to the generators (P0, Pi, Ki, Ji) (i = 1, 2, 3) via the canonical pairing (11), so with non-
zero entries:

〈x̂0, P0〉 = 〈x̂i, Pi〉 = 〈ξ̂ i, Ki〉 = 〈θ̂i, Ji〉 = 1. (122)

Hence, the first-order noncommutative spaces are defined as the annihilators of the
vector subspaces hst and hline (121):

ST3+1
z = 〈x̂0, x̂1, x̂2, x̂3〉, L6

z = 〈x̂1, x̂2, x̂3, ξ̂1, ξ̂2, ξ̂3〉. (123)
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Notice that, for the Riemannian cases, the quantum time coordinate x̂0 corresponds to
a spatial one, while the noncommutative rapidities ξ̂ i become quantum angular coordinates.
The corresponding defining commutation relations for these noncommutative spaces can
be deduced either from the dual of the cocommutator δ for r (120), or by introducing the
following identification between the quantum CK coordinates x̂ab and the kinematical ones
(122) in S(1)z,ω and S(2)z,ω given in Table 3:

x̂01 x̂02 x̂03 x̂04

x̂12 x̂13 x̂14

x̂23 x̂24

x̂34

≡

x̂0 x̂1 x̂2 x̂3

ξ̂1 ξ̂2 ξ̂3

θ̂3 −θ̂2

θ̂1

(which is the dual counterpart of (118)), together with (119). Likewise, the first-order
twisted noncommutative spaces of points can be obtained from S(1)z,ϑ,ω (106) by taking into
account that it only covers the spherical and Euclidean spaces with c = i (ω2ω3 = +1)
so that x̂0 is another quantum spatial coordinate; recall that the proper Drinfel’d double
structure corresponds to set ϑ ≡ z (104). All of these noncommutative spaces are explicitly
presented in Table 7.

6.2. Class B: Space-Like Deformations with Primitive Generators (P2, J2)

We perform the identification [102]

P0 = J02, P = (J01, J04, J03), K = (J12, J24, J23), J = (−J34,−J13, J14), (124)

that is,
J01 J02 J03 J04

J12 J13 J14
J23 J24

J34

≡

P1 P0 P3 P2
K1 −J2 J3

K3 K2
−J1

(125)

The fulfilment of the kinematical commutators (107) from the CK ones (71) requires
fixing ω2 = ω3 = −1 and ω4 = +1. The remaining commutation relations (108) lead to
λ = 1, c = 1 and ω1 = Λ. Hence, we obtain the three Lorentzian algebras of Section 5.1
within soω(5) with the contraction parameters

(ω1, ω2, ω3, ω4) =
(
Λ,−1,−1,+1

)
, λ = 1, c = 1, (126)

and bilinear form Iω (74) given by

Iω =
(
+1, Λ,−Λ, Λ, Λ

)
.

In terms of Θ(m) (33), the kinematical automorphisms (110) read

P = Θ(1)Θ(2)Θ(3), T = Θ(2)Θ(3), PT = Θ(1).

With the assignations (124) and (126), we find that the space S(1)ω (86) is related to the
spacetime ST3+1 (since PT = Θ(1)); however, the former has curvature K = ω1, while
the latter has K = −ω1 = −Λ. The space of (time-like) lines L6 (111) cannot be identified
with S(2)ω (87) (now P 6= Θ(2)), but it can be with the rank-2 CK space associated with the
composition of involutions P = Θ(1)Θ(2)Θ(3) (see the comments at the end of Section 4.1).

The r-matrices (92) and (101) turn out to be

r = z
(
K2 ∧ P0 + J3 ∧ P1 − J1 ∧ P3 +

√
Λ K3 ∧ K1

)
, rD = r− zJ2 ∧ P2. (127)
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The primitive generators are P2 ≡ J04 and J2 ≡ −J13, and z has dimensions of a length
since the product zP2 is dimensionless; notice that (127) is written in units with c = 1.
The constraint ω1ω4 = Λ ≥ 0 excludes the AdS algebra. Moreover, since ω2ω3 = +1,
the r-matrix rD is well defined for the dS and Poincaré cases, which correspond to the cases
(II) and (IIa) in Table 4, as shown in Table 6. The cocommutator for r (127) can be obtained
straightforwardly showing that the coisotropy condition (22) is satisfied for hst (121) in
both cases, but only for hline for the Poincaré bialgebra, thus, precluding the construction
of the noncommutative dS space of (time-like) lines L6

z (123).
We stress that to set c = 1 in (126) implies that the r-matrices (127) are neither well-

defined for the non-relativistic algebras with c → ∞, nor for the Riemannian ones with
c = i (λ = 1). In fact, the speed of light can be introduced explicitly in r and rD (127)
providing the commutation rules (108) by means of the scalings

P̃ =
1
c

P, K̃ =
1
c

K, z̃ = c z, (128)

(that preserve the product zP2 = z̃P̃2) yielding the classical r-matrices

r̃ = z̃
(
K̃2 ∧ P0 + J3 ∧ P̃1 − J1 ∧ P̃3 + c

√
Λ K̃3 ∧ K̃1

)
, r̃D = r̃− z̃ J2 ∧ P̃2,

showing the above exclusions. It is possible to transform the deformation parameter as
z̃ = c2 z (without preserving zP2) obtaining that

r̃ =
z̃
c
(
K̃2 ∧ P0 + J3 ∧ P̃1 − J1 ∧ P̃3

)
+ z̃
√

Λ K̃3 ∧ K̃1, r̃D = r̃− z̃
c

J2 ∧ P̃2,

which is not real for c = i; however, both of them have a well-defined limit c→ ∞ reducing
to a Reshetikhin twist r̃ ≡ r̃D = z̃

√
Λ K̃3 ∧ K̃1.

Next, we construct the two first-order noncommutative spacetimes ST3+1
z and the

noncommutative Minkowskian space of (time-like) lines L6
z (123) by means of the dual of

the cocommutator for r (127) or, alternatively, by introducing the kinematical identification

x̂01 x̂02 x̂03 x̂04

x̂12 x̂13 x̂14

x̂23 x̂24

x̂34

≡

x̂1 x̂0 x̂3 x̂2

ξ̂1 −θ̂2 θ̂3

ξ̂3 ξ̂2

−θ̂1

dual to (125), together with the contraction parameters (126) in the commutation relations
of the dual CK algebra (98) and (99). Similarly, the first-order twisted noncommutative dS
and Minkowskian spacetimes can be deduced from S(1)z,ϑ,ω (106) (ω2ω3 = +1). All of these
structures are presented in Table 7.

6.3. Class C: Time-Like Deformations with Primitive Generators (P0, J2)

We consider the kinematical assignation [102]

P0 = J04, P = (J01, J02, J03), K = (J14, J24, J34), J = (J23,−J13, J12),

that is,
J01 J02 J03 J04

J12 J13 J14
J23 J24

J34

≡

P1 P2 P3 P0
J3 −J2 K1

J1 K2
K3

(129)
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Starting from the CK algebra (71), we find that the Lie brackets (107) imply that
ω2 = ω3 = +1, while the commutators (108) give rise to ω1 = Λ, ω4 = −λ and c = 1.
Thus, the contraction parameters and the bilinear form Iω (74) are given by

(ω1, ω2, ω3, ω4) =
(
Λ,+1,+1,−λ

)
, c = 1, (130)

Iω =
(
+1, Λ, Λ, Λ,−λΛ

)
.

Therefore, we find nine algebras in the CK family soω(5): the three Lorentzian algebras
of Section 5.1 for λ = 1, the three Carrollian algebras of Section 5.3 for λ = 0 and the three
Riemannian ones of Section 5.5 for λ = −1 (see Table 5). The kinematical automorphisms
(110) turn out to be

P = Θ(1)Θ(4), T = Θ(4), PT = Θ(1).

In this case, the spacetime ST3+1 is again related to the CK space S(1)ω (86) (since
PT = Θ(1)), while the space of lines L6 cannot be associated with S(2)ω , but it can with the
rank-2 symmetric CK space (90) with automorphism P = Θ(1)Θ(4).

The CK r-matrices (92) and (101) now become

r = z
(
K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3 +

√
−λΛ J1 ∧ J3

)
, rD = r− zJ2 ∧ P0, (131)

which lead to primitive generators P0 ≡ J04 and J2 ≡ −J13, thus, with z having dimensions
of a time (recall that c = 1) provided that the product zP0 is dimensionless. The constraint
ω1ω4 = −λΛ ≥ 0 excludes the dS algebra (λ = 1, Λ > 0) and the hyperbolic one (λ = −1,
Λ < 0). Since ω2ω3 = +1, any real r-matrix r always provides a real rD in this class.

Consequently, the resulting seven real Lie bialgebras given in Table 6 also appear in
Table 4 with the simple algebra AdS corresponding to the case (III). The spherical and
Euclidean algebras (cases (I) and (Ia)) are again recovered as in class A, but here for different
values for the parameters (Λ, c, λ). Once the cocommutator for r (131) has been computed,
it can be checked that the coisotropy condition (22) is fulfilled for both subalgebras hst and
hline (121) allowing the construction of the two noncommutative spaces (123).

It is worth stressing that this class of time-like deformations cover the so-called kappa-
deformations such that the deformation parameters z and κ are related through z ∼ 1/κ.
Hence, the r-matrix for the Poincaré algebra of case (IIIa) in Table 4 underlies the well
known κ-Poincaré deformation [64–68] and that, for the AdS algebra of case (III), provides
the κ-AdS algebra [129,136].

As far as the non-relativistic limit c→ ∞ is concerned, we remark that the condition
c = 1, in principle, precludes it. To be precise, if we apply the same scalings (128) to the Lie
generators keeping z unchanged and so the product zP0 as well, then c appears explicitly
in the commutators (108), and the r-matrices (131) now read

r̃ = z c2(K̃1 ∧ P̃1 + K̃2 ∧ P̃2 + K̃3 ∧ P̃3) + z
√
−λΛ J1 ∧ J3, r̃D = r̃− zJ2 ∧ P0,

which diverge under the limit c→ ∞. Nevertheless, we can introduce the scalings (128) but
with the transformed deformation parameter z̃ = c2z (not preserving zP0) finding that [71]

r̃ = z̃(K̃1 ∧ P̃1 + K̃2 ∧ P̃2 + K̃3 ∧ P̃3) +
z̃
c2

√
−λΛ J1 ∧ J3, r̃D = r̃− z̃

c2 J2 ∧ P0,

thus, allowing one to apply the limit c→ ∞ obtaining that

r̃ ≡ r̃D = z̃(K̃1 ∧ P̃1 + K̃2 ∧ P̃2 + K̃3 ∧ P̃3),

which coincides with the κ-Poincaré r-matrix. The remarkable point is that the correspond-
ing cocommutator is trivial, that is, δ(X) = 0 for all X, so that there is no deformation for
the (contracted) Newtonian algebras. In other words, the scheme of contractions for the CK
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r-matrix (92) and cocommutator δ (94) ensures to always obtain both a non-trivial r-matrix
and cocommutator.

In this respect, it is worth stressing that it is possible to apply a Lie bialgebra con-
traction in such a manner that the initial r-matrix diverges but the initial cocommutator
gives a non-trivial result [31] (this is called fundamental but non-coboundary Lie bialge-
bra contraction). This contraction process was applied in [65,159] in order to obtain the
κ-Galilei algebra by contracting κ-Poincaré and finding a non-coboundary quantum Galilei
algebra, which explains its absence in our approach. In fact, such a non-coboundary Lie
bialgebra contraction was recently applied in [71] in order to deduce the κ-Newtonian
algebras containing both κ-NH algebras (Λ 6= 0) together with the above κ-Galilei one
(Λ = 0).

The first-order noncommutative spacetimes and spaces of lines for the seven Lie
bialgebras contained in this class can be obtained by introducing the identification dual to
(129) given by

x̂01 x̂02 x̂03 x̂04

x̂12 x̂13 x̂14

x̂23 x̂24

x̂34

≡

x̂1 x̂2 x̂3 x̂0

θ̂3 −θ̂2 ξ̂1

θ̂1 ξ̂2

ξ̂3

together with the contraction parameters (130) in the commutation rules (98) and (99).
In the same way, the first-order twisted noncommutative spacetimes are deduced from
S(1)z,ϑ,ω (106) for the seven cases since, for all of them, ω2ω3 = +1. The explicit expressions
for all of these noncommutative spaces can be found in Table 7.

6.4. Class D: Dimensionless Deformation with Primitive Generators (J2, P0)

As the last class, we study how to obtain the AdS deformation of case (IV) in Table 4
in a kinematical basis. With this aim we consider the identification (not considered in [102])
given by

P0 = J13, P = (J14,−J12, J01), K = (J34,−J23, J03), J = (J02, J04, J24). (132)

Then, the Lie brackets (107) gives that ω1 = ω2 = ω3 = ω4 = −1, and the commuta-
tors (108) lead to set Λ = −1, c = 1 and λ = 1. Therefore, we obtain a single Lie algebra in
this class, AdS ' so(3, 2), such that

(ω1, ω2, ω3, ω4) = (−1,−1,−1,−1
)
, Λ = −1, c = 1, λ = 1,

Iω =
(
+1,−1,+1,−1,+1

)
.

The kinematical automorphisms (110) read

P = Θ(1)Θ(2)Θ(3)Θ(4), T = Θ(3)Θ(4), PT = Θ(1)Θ(2).

The CK r-matrices (92) and (101) turn out to be

r = z
(
K1 ∧ K3 + K2 ∧ P2 + P1 ∧ P3 + J3 ∧ J1

)
, rD = r + zP0 ∧ J2. (133)

The primitive generators are J2 ≡ J04 and P0 ≡ J13, while z is dimensionless like
the product zJ2 (we are working with units with Λ = −1 and c = 1). The constraints
ω1ω4 = +1 and ω2ω3 = +1 are automatically satisfied, so that rD is the kinematical
expression of the new Drinfel’d double r-matrix of case (IV) in Table 4.

By computing the cocommutator for r (133) (or from (94) with the identification (132)),
it can be checked that the coisotropy condition (22) is not satisfied for any subalgebra (121),
so that there do not exist noncommutative spacetime and space of lines (123) associated
with this bialgebra.
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It is rather natural to analyse whether there may exist some possible contraction
from this AdS deformation, although, by following our approach, the answer is negative
whenever one requires to keep a non-trivial r-matrix and cocommutator. Starting from the
AdS commutation relations (108) with Λ = −1, c = 1 and λ = 1, it is possible to explicitly
introduce such parameters by means of the scalings (coming from the automorphisms (110))

P̃0 =
√
−Λ
√

λ P0, P̃ =
√
−Λ

1
c

P, K̃ =
√

λ
1
c

K, J̃ = J, (134)

keeping the dimensionless parameter z. By introducing (134) in r (133), we obtain that

r̃ = − z c2

Λλ

(
−ΛK̃1 ∧ K̃3 +

√
−Λ
√

λ K̃2 ∧ P̃2 + λP̃1 ∧ P̃3 −
Λλ

c2 J̃3 ∧ J̃1

)
,

so that this diverges under the contractions Λ→ 0, c→ ∞ and λ→ 0. If we transform the
deformation parameter as

z̃ = − z c2

Λλ
,

then the above contractions are well defined but only provide twisted r-matrices

lim
Λ→0

r̃ = z̃ λ P̃1 ∧ P̃3, lim
λ→0

r̃ = −z̃ Λ K̃1 ∧ K̃3,

lim
c→∞

r̃ = z̃
(
−ΛK̃1 ∧ K̃3 +

√
−Λ
√

λ K̃2 ∧ P̃2 + λP̃1 ∧ P̃3

)
,

whose terms are all formed by commuting generators.

6.5. Quantum Kinematical Algebras

Tables 6 and 7 highlight the main results so far obtained from a global kinematical
viewpoint; the former covers all the information of kinematical bialgebras, while the
latter shows their corresponding first-order noncommutative spacetimes and spaces of
lines. We now make some observations and also comment on known results as well as on
some open problems concerning the kinematical bialgebras and their complete quantum
deformation. Similarly, some remarks for the full noncommutative spaces will be addressed
in Section 6.6.

All the kinematical r-matrices presented in Table 6 underlie quantum kinematical alge-
bras Uz(soΛ,c,λ(5)) with real Lie bialgebras (soΛ,c,λ(5), δ(r)) of quasitriangular or standard
type as it was described in Section 2.1. If we focus on the Poincaré bialgebra, we obtain
three sequence of coboundary contractions:

Class A: space-like AdS Λ→ 0−−−→ Poincaré c→∞−−−→ Galilei
(No Drinfel’d double) so(3, 2) iso(3, 1) iiso(3)

Class B: space-like dS Λ→ 0−−−→ Poincaré
(With Drinfel’d double) so(4, 1) iso(3, 1)

Class C: time-like AdS Λ→ 0−−−→ Poincaré λ→ 0−−−→ Carroll
(With Drinfel’d double) so(3, 2) iso(3, 1) ii′so(3)

(135)

Recall that the class D only contains an isolated AdS bialgebra. From this approach,
the non-relativistic contraction leading to a Galilei bialgebra can only be performed within
the space-like deformations belonging to the class A; however, none of the three bialgebras
in this sequence can be endowed with a (contracted) Drinfel’d double structure. The only
possibility to obtain a space-like Poincaré bialgebra with associated contracted Drinfel’d
double structure is provided by the class B, but now coming from a dS bialgebra, instead
of the AdS one of class A.
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Notice that the difference between the classical r-matrices rD of classes A and B
can clearly been appreciated in the kinematical basis. In class A, there appears the term
zK2 ∧ P3, which only holds for the Riemannian bialgebras (with c = i and K2 becoming a
rotation generator), while in class B, the Drinfel’d double structure requires adding the
term −zJ2 ∧ P2 with a proper rotation generator. The sequence for the class B corresponds
to perform (II)→ (IIa) in Table 4.

The class C deserves a special mention since it corresponds to the kappa-deformation.
The sequence (135) starts with the κ-AdS bialgebra [129,136], continues with the κ-Poincaré
bialgebra [64–68] and ends in the κ-Carroll one [71,102] while keeping a (contracted)
Drinfel’d double structure through the process, which is denoted (III)→ (IIIa)→ (IIIb’) in
Table 4.

The complete Hopf algebra structure for the quantum inhomogeneous kinematical
algebras and their further contractions can be found in [102], which belong to the quantum
CK family Uz(soω(5)) with arbitrary ω = (0, ω2, ω3, ω4). Thus, such results comprise
the quantum deformations of the Poincaré, Galilei and Euclidean bialgebras of class A,
the Poincaré bialgebra of class B, along with the κ-Poincaré and κ-Carroll ones of class C;
observe that the Euclidean bialgebra of class C is equivalent to that of class A, being just
case (Ia) in Table 4.

The κ-deformation for the curved Carrollian bialgebras (with Λ 6= 0) of class C, κ-
para-Euclidean and κ-para-Poincaré, can be deduced from the results given in [102] by
applying the z-polarity Dz (50) since this map interchanges the CK bialgebras as in (95),
(0, ω2, ω3, ω4)↔ (ω4, ω3, ω2, 0), providing their explicit expressions, which are given
in [71]. Generalized results on twisted (space- and time-like) Poincaré algebras can be
found in [87]. For twist deformations of κ-Poincaré and their contractions to κ-Galilei
algebras, we refer to [86], and, for twist deformations of the Carroll algebra, see [146].

Nevertheless, quantum deformations for the simple AdS and dS bialgebras have only
been achieved for the κ-AdS of class C in [136], as a Poisson–Hopf algebra, showing the
hard difficulties of this task. Consequently, the obtention of the quantum algebras for AdS
of class A, dS of class B and AdS of class D remain as open problems.

In contrast to this (3 + 1)D case, quantum Drinfel’d–Jimbo deformations for the
semisimple (A)dS algebras, so(3, 1) and so(2, 2), are well known, and their space- and
time-like deformations were formerly obtained in [135] within a CK framework. Later
on, the (2 + 1)D κ-(A)dS algebras were considered in a quantum gravity context in [160],
and their twisted deformations, with underlying Drinfel’d double structures [115], were
studied in [161].

By taking into account the above comments, it is worth comparing the (2 + 1)D case
with the (3 + 1)D one with more detail, since they are quite different. In fact, the former
is somewhat “special”, as it is very well known in quantum gravity. In particular, the six
generators {Jab} (a < b; a, b = 0, 1, . . . , 3) span the CK family soω1,ω2,ω3(4), which turns out
to be a Lie subalgebra of soω(5) with non-vanishing Lie brackets included in (71). It was
proven in [31] that the Drinfel’d–Jimbo r-matrix for the family soω1,ω2,ω3(4) simply reads

r = z(J13 ∧ J01 + J23 ∧ J02), (136)

which is ω-independent in contrast to (92). Moreover, the r-matrix (136) gives rise to a
cocommutator δ through (12) determining a real Lie bialgebra for any value of the three
contraction parameters (ω1, ω2, ω3). The pair of main and secondary primitive generators
is (J03, J12). Therefore, the family of CK bialgebras (soω1,ω2,ω3(4), δ(r)) contains all the
33 = 27 possibilities at this dimension [135].

Next, we consider the family of kinematical algebras soΛ,c,λ(4) spanned by the six
generators {P0, P1, P2, K1, K2, J3} in such a manner that the commutation rules are given by
(107) and (108) setting the indices i, j = 1, 2 and fixing k = 3. Starting with the CK r-matrix
(136), we look for space- and time-like soΛ,c,λ(4) bialgebras, which would be the (2 + 1)D
counterparts of the classes A, B and C in Table 6. Clearly, the class B, with commuting
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primitive generators (P2, J2), has no (2 + 1)D counterpart since, at this dimension, there
does not exist a spatial generator Pi commuting with J3.

Hence, we are led to the two classes A and C for soΛ,c,λ(4) such that the former
requires setting λ = 1, while the latter obliges fixing c = 1. Each of them covers nine real
Lie bialgebras, which are displayed in Table 8.

Table 8. Space- and time-like real classical r-matrices for the (2 + 1)D kinematical and 3D Riemannian algebras with
commutation relations (107) and (108) with indices i, j = 1, 2 and k = 3.

Space-like class A: λ = 1 Primitive (P2, K1) r = z(K2 ∧ P0 + J3 ∧ P1)

• Lorentzian (c finite): dS so(3, 1) Λ > 0 Poincaré iso(2, 1) Λ = 0 AdS so(2, 2) Λ < 0

• Newtonian (c = ∞): Expanding NH n+ Λ > 0 Galilei iiso(2) Λ = 0 Oscillating NH n− Λ < 0

• Riemannian (c = i): Hyperbolic so(3, 1) Λ > 0 Euclidean iso(3) Λ = 0 Spherical so(4) Λ < 0

Time-like class C: c = 1 Primitive (P0, J3) r = z(K1 ∧ P1 + K2 ∧ P2)

• Lorentzian (λ = 1 ): dS so(3, 1) Λ > 0 Poincaré iso(2, 1) Λ = 0 AdS so(2, 2) Λ < 0

• Carrollian (λ = 0): Para-Euclidean i′so(3) Λ > 0 Carroll ii′so(2) Λ = 0 Para-Poincaré i′so(2, 1)
Λ < 0

• Riemannian (λ = −1): Hyperbolic so(3, 1) Λ < 0 Euclidean iso(3) Λ = 0 Spherical so(4) Λ > 0

The (2 + 1)D NH algebras are n+ = i4(so(1, 1)⊕ so(2)) and n− = i4(so(2)⊕ so(2)).
Clearly, there exists a second class of space-like deformations with primitive generators
(P1, K2); however, this leads to equivalent results already contained within the class A [135].
The time-like class C, corresponding to the kappa-deformation, shows not only the known
fact that the (2 + 1)D κ-Poincaré r-matrix is shared by its curved neighbours (see [161]
and references therein) but also that it holds for the three Carrollian and Riemannian
deformations. The strong differences between the (2 + 1)D and (3 + 1)D deformations
become evident when comparing the expressions of Table 8 with those given in Table 6.

Finally, we would like to point out that the CK approach to kinematical deformations
may appear to be rather restrictive since this starts with the specific Drinfel’d–Jimbo r-
matrix (47) for so(5) and, from it, the CK r-matrix (92) is introduced, which, together with
rD (101), become the cornerstones of this work. However, we stress that this is not the case
provided that one searches for deformations with a fundamental scale determined by the
quantum deformation parameter. In particular, the problem of finding time-like classical
r-matrices for (3 + 1)D (A)dS algebras was addressed in [36].

There, it was initially considered the Lorentzian algebras, with commutation relations
(107) and (108) (set λ = 1), together with the most generic classical r-matrix depending
on 45 deformation parameters. Then, it was required to keep underformed the time
translation generator P0 and another commuting generator, which was chosen J3, that is,
δ(P0) = δ(J3) = 0 (recall that P0 only commutes with generators of rotations). Under these
conditions, the solution of the modified classical Yang–Baxter equation (14) gave rise to
two two-parametric classical r-matrices.

One of them was formed by the superposition of the κ-AdS r-matrix with the twist
P0 ∧ J3, which turns out to be just rD of the class C in Table 6 by identifying the two
deformation parameters in [36] and interchanging the indices 3 ↔ 2 in the generators
(so J3 ↔ J2) through the appropriate Lie algebra automorphism. Likewise, the second
solution can be identified with rD of the class D by identifying again the two deformation
parameters and applying the permutation of indices 3→ 2→ 1→ 3 with another algebra
automorphism. We remark that no analysis on real Lie bialgebras and Drinfel’d doubles
was carried out in [36].

Moreover, although it was claimed that the second solution (rD of class D) was
determined by a dimensionful deformation parameter, this is not exactly correct if one
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requires a dimensionless classical r-matrix. In fact, from a dimensionless deformation
parameter (like z in class D), a dimensionful one can be introduced by trivially multiplying
it by a global factor.

6.6. Noncommutative Spacetimes and Spaces of Lines

The first-order noncommutative spaces for the kinematical bialgebras of Table 6 are
shown in Table 7. There are several different situations among the four classes, ranging
from class D, where there is no noncommutative space (and which is, thus, omitted), to the
classes A and C, for which there exist both noncommutative spacetimes and spaces of lines
for all the bialgebras. In this sense, the latter classes can be regarded as the prototypes for
space- and time-like noncommutative spaces. However, when Drinfel’d double structures
are taken into account, the classes B and C become the relevant ones, also providing twisted
noncommutative spacetimes.

Although these results do not convey, in general, the full noncommutative spaces,
for which all orders in the quantum coordinates must be considered, in some cases they do.
Concerning the (3 + 1)D noncommutative spacetimes, which are those commonly studied
in the literature, the first-oder noncommutative spacetimes in Table 7 are the complete ones
for all the cases associated with a flat classical spacetime ST3+1 (111), so with vanishing
sectional curvature K; these are just the four spaces displayed in the middle column of
Table 5.

Consequently, Table 7 comprises the following full (3 + 1)D (linear) noncommutative
spacetimes: the space-like Minkowskian and Galilean ones together with the 4D Euclidean
space in the class A; another space-like Minkowskian spacetime of class B, which is equiva-
lent to that of class A under the automorphism corresponding to the permutation of indices
1→ 2→ 3→ 1; and the (time-like) κ-Minkowski and κ-Carroll spacetimes of class C (the
Euclidean case is equivalent to that of class A).

Additionally, complete twisted noncommutative spacetimes coming from contracted
Drinfel’d doubles cover the 4D Euclidean space of class A, the space-like Minkowskian one
of class B and the time-like Minkowskian and Carroll spaces of class C (again the Euclidean
space here is equivalent to that of class A). We remark that more general results on twisted
space- and time-like Minkowskian noncommutative spacetimes can be found in [87].

To the best of our knowledge, results for (3 + 1)D noncommutative spacetimes related
to curved spacetimes ST3+1 (111) (so with Λ 6= 0) only comprise the (nonlinear) κ-AdS
space (and its twisted version) [70], as well as the κ-para-Euclidean and κ-para-Poincaré [71]
of class C. In such noncommutative spaces, there appear higher-order terms in the quantum
coordinates governed by the cosmological constant/curvature parameter Λ. This fact
allows one to distinguish them from the linear (flat) κ-Minkowski and κ-Carroll spaces
with Λ = 0; however, the latter share the same linear structure.

Hence, the construction of the space-like noncommutative AdS (class A) and dS (class
B) spacetimes remain as open problems, which could be faced by computing their Poisson–
Lie structure by means of the Sklyanin bracket (20) and, next, studying their quantization
(similarly to the κ-AdS spacetime [70]).

Noncommutative spaces of lines have scarcely been explored, and they have only been
constructed for the κ-Minkowski of class C in [100] and in lower dimensions for the 4D
(A)dS noncommutative spaces of worldlines in [99]; recall that the three classical Lorentzian
spaces of worldlines are of non-zero curvature equal to−1/c2, while both NH and Galilean
spaces of lines are flat. Although the first-order noncommutative Minkowskian space of
lines of class C has vanishing commutators, we stress that the brackets defining its full
quantum space are not trivial at all, and, in fact, it can be endowed with a symplectic
structure everywhere but in the origin.

By contrast, observe that the structure of the first-order noncommutative spaces of
lines of class A is not trivial (see Table 7). From this viewpoint, noncommutative spaces
of lines deserve a deeper study, and moreover it would be necessary to construct more
noncommutative spaces of lines, which, when read altogether with their corresponding
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noncommutative spacetimes, could allow for a deeper insight into the structure of each
precise quantum deformation.

7. Conclusions and Outlook

This paper can be seen as a two-fold work with two interlinked parts that we comment
on separately.

In the first part of the work (Sections 3 and 4), we considered the CK formalism for qua-
siorthogonal Lie algebras and their associated symmetric homogeneous spaces in order to
next study their Drinfel’d–Jimbo quantum deformations. The CK approach conveys a built-
in scheme of Lie algebra contractions in terms of explicit graded contraction/curvature
parameters ω, in such a manner that semisimple together with non-semisimple Lie algebras
and their homogeneous spaces can be described in a unified setting, which ranges from the
semisimple so(p, q) algebras (providing curved spaces) to the most contracted case in the
CK family, the flag algebra (with associated flat spaces).

In all the contraction sequences, the same number of Casimir invariants (two, in our
case) is preserved which, in turn, implies that these CK algebras share many structural
properties as we have shown in the paper. As a novelty, we stress that we did not only
consider the usual space of points (i.e., spacetimes) but also the symmetric homogeneous
CK spaces of lines, 2-planes and 3-hyperplanes. In this global framework, Drinfel’d–Jimbo
CK bialgebras were obtained from the one corresponding to so(5) in a rotational basis,
by always requiring the condition of obtaining a real Lie bialgebra, which finally led to the
63 real Lie bialgebras shown in Table 2.

From these results, their dual quantum counterparts were also deduced giving rise to
their corresponding first-order noncommutative spaces of points, lines, etc., for which the
coisotropy condition was imposed, thus, ensuring always obtaining a noncommutative
space as a subalgebra of the dual Lie bialgebra; the final results are summarized in Table 3.
Furthermore, r-matrices coming from Drinfel’d double structures were studied in detail as
well. In particular, starting with the one corresponding to the real compact form so(5) in
the rotational CK basis, three classical r-matrices for the so(p, q) algebras together with ten
contracted r-matrices were explicitly achieved and are displayed in Table 4.

New results correspond to the dS so(4, 1) algebra of case (II) and the AdS so(3, 2)
one of case (IV), along with the contractions from the four classical r-matrices rD for the
simple Lie algebras. We remark that such r-matrices, coming from Drinfel’d doubles, have
provided, in a natural way, first-order twisted noncommutative CK spaces of points and of
3-hyperplanes for the 14 real Lie bialgebras given in Table 4.

Concerning this first part of the paper, there are, at least, two research lines that we
plan to face in the future:

1. To construct new dual homogeneous CK spaces with isotropy subalgebras corre-

sponding to the first-order noncommutative CK spaces S(m)
z,ω ≡ h

(m)
⊥,ω (m = 1, . . . , 4)

(100) in a similar form to that followed in [60], but moreover considering their sym-
metric character according to the z-involutions θ

(m)
z (61), which, in some cases, would

provide a Z⊗4
2 -grading in this dual framework as well as to study their mathemati-

cal/physical properties.
2. To perform a similar construction to the one here developed for the Drinfel’d–Jimbo

quantum deformations of quasiorthogonal CK algebras for other families of CK
algebras [162]. Among them, we remark the quasiunitary CK algebras [163,164]
(starting with the su(p, q) algebras) since they are naturally related to the physical
quantum space of states for any quantum system [165,166].

In the second part of the work, we focused on the kinematical algebras together
with their associated symmetric homogeneous spacetimes and spaces of lines displayed in
Table 5. Then, we applied the previous CK approach in order to deduce their corresponding
classical r-matrices, r and rD, given in Table 6, thus, providing kinematical bialgebras,
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and, from them, we constructed the first-order noncommutative spacetimes and spaces of
lines shown in Table 7.

A detailed physical discussion on the known results and open problems concerning
their full quantum algebra deformation and complete quantum spaces was carried out
in Sections 6.5 and 6.6, respectively. Therefore, to end with, we summarize the main
conclusions and open lines of research on this issue:

1. In this paper, we only considered coboundary Lie bialgebra contractions—that is, those
Lie bialgebras coming from a contracted classical r-matrix. However, there also exist
fundamental Lie bialgebra contractions, under which the r-matrix diverges but the
cocommutator δ is well defined [31] (thus ensuring the existence of the well-defined
coproduct ∆z).
Hence, a systematic study of all the possible fundamental but non-coboundary Lie
bialgebra contractions starting with the four classical r-matrices for so(3, 2) and
so(4, 1) in Table 6 is still lacking. These could give rise to new quantum deformations
for non-simple kinematical algebras as was the case for the κ-Newtonian ones already
obtained in [71].

2. The quantum algebra deformations for the simple algebra AdS so(3, 2) of the classes
A and D, and for dS so(4, 1) of the class B are still unknown. Such structures would
be useful in order to obtain the corresponding contracted quantum algebras for
the kinematical algebras with Λ 6= 0 covering the NH, para-Euclidean and para-
Poincaré algebras. In this contraction process, both coboundary and fundamental
non-coboundary Lie bialgebra contractions may be applied.

3. From Table 7, it directly follows that quantum deformations for different kinematical
algebras share the same underlying first-order noncommutative spacetime structure.
When dealing with the curved cases with Λ 6= 0, differences among them could
arise when higher-orders in the quantum coordinates are taken into account (as
happened for the κ-spacetimes of class C obtained in [70,71]). Nevertheless, the linear
noncommutative spacetime structure remains the same for the flat cases with Λ = 0,
and this fact holds for the Minkowkian, Galilean and Carroll spaces.
Consequently, the construction of the “accompanying” noncommutative spaces of
lines may be of interest in order to distinguish them. New physical consequences
could be extracted from such new structures. In this respect, we would like to
emphasize that the noncommutative space of worldlines already constructed for the
κ-Poincaré algebra in [100] constitutes a prototype example in this direction.

Work on the above lines is currently in progress.
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