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Abstract: Newton’s third law states that any action is countered by a reaction of equal magnitude
but opposite direction. The total force in a system not affected by external forces is, therefore, zero.
However, according to the principles of relativity, a signal cannot propagate at speeds exceeding
the speed of light. Hence, the action and reaction cannot be generated at the same time due to the
relativity of simultaneity. Thus, the total force cannot be null at a given time. In a previous paper, we
showed that Newton’s third law cannot strictly hold in a distributed system where the different parts
are at a finite distance from each other. This analysis led to the suggestion of a relativistic engine. As
the system is affected by a total force for a finite period, the system acquires mechanical momentum
and energy. The subject of momentum conversation was discussed in another previous paper, while
energy conservation was discussed in additional previous papers. In those works, we relied on the
fact that the bodies were macroscopically natural. Here, we relax this assumption and study charged
bodies, thus analyzing the consequences on a possible electric relativistic engine.

Keywords: Newton’s third law; electromagnetism; relativity

1. Introduction

Special relativity is a theory of the structure of space-time. It was introduced in
Einstein’s famous 1905 paper, “On the Electrodynamics of Moving Bodies” [1]. This theory
was a consequence of empiric observations and the laws of electromagnetism, which were
formulated in the middle of the nineteenth century by Maxwell in his famous four partial
differential equations [2–4] which owe their current form to Oliver Heaviside [5]. One of
the consequences of these equations is that an electromagnetic signal travels at the speed
of light c, which led people to believe that light is an electromagnetic wave. This was later
used by Albert Einstein [1,3,4] to formulate his special theory of relativity, which postulates
that the speed of light in vacuum c is the maximal allowed velocity in nature. According to
the theory of relativity, any object, message, signal (even if not electromagnetic), or field
cannot travel faster than the speed of light in vacuum, hence retardation: if someone at a
distance R from an observer changes something, the observer will not know about it for at
least a retardation time of R

c . This means that action and its reaction cannot be generated
simultaneously because of the signal finite propagation speed.

Newton’s laws of motion are three physical laws that, together, laid the foundation
for classical mechanics. These laws describe the relationship between the body, acting
forces, and motion of body in response to those forces. The three laws of motion were
first compiled by Isaac Newton in his Philosophiae Naturalis Principia Mathematica
(Mathematical Principles of Natural Philosophy), first published in 1687 [6,7]. In this
paper, we are interested only in the third law, which states the following: when one body
exerts a force on a second body, the second body simultaneously exerts a force equal in
magnitude and opposite in direction on the first body.
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According to Newton’s third law, the total sum of forces in a system which is not
affected by external forces is null. This law has a great number of experimental verification
and is thus one of the corner stones of physical sciences. However, it is easy to see that
action and its reaction cannot be generated at exactly the same time because the speed
of signal propagation is not infinite. Hence, the third law cannot be correct in an exact
sense, although it can be assumed to be valid for most practical applications due to the
high velocity of signal propagation. Thus, the total sum of forces cannot be zero at every
given time.

Current locomotive systems are based on coupled material parts; each gains momen-
tum that is equal and opposite to the momentum obtained by the other. A generic example
is a rocket that sheds gas to move itself forward. However, relativistic effects suggest a
different type of motor that is not composed of two material elements but of matter and
field. Ignoring the field, it seems that the material body obtains momentum, thus the total
momentum grows, violating momentum conservation. However, it can be shown that the
opposite amount of momentum is attributed to the field [8], thus the total momentum is
indeed conserved. This is a result of Noether’s theorem, which dictates that a system that
possesses translational symmetry will conserve momentum. The total physical system
composed of matter and field is indeed invariant under translations, while every part of
the system (either matter or field) is not. Feynman [4] describes two orthogonally moving
charges, apparently contradicting Newton’s third law, as the forces that the charges induce
do not cancel (last part of 26-2); this is resolved in 27-6 in which it is noticed that the
momentum gained by the two-charge system is lost to the field.

A relativistic engine is thus defined as a system in which its material center of mass is
in motion, due to the interaction of its material components. Those parts may move with
respect to each other or be held in a rigid frame. This does not matter, as we are interested
in the motion of the center of mass. We underline that a relativistic motor allows three-axis
motion (vertical included). It does not contain moving parts and it does not consume
fuel (and does not emit carbon); it only consumes electromagnetic energy which may be
supplied by solar panels. The relativistic engine is perfect for space travel in which much
of the space vehicle volume is devoted to fuel storage.

In the current paper, we assume that the medium’s magnetization and polarization
are negligible, and therefore we do not consider corrections to the Lorentz force suggested
by [9]. Griffiths and Heald [10] pointed out that the laws of Coulomb and Biot–Savart
determine the electric and magnetic field configurations solely for static sources. Time-
dependent generalizations of these laws described by Jefimenko [11,12] were used to study
the applicability of Coulomb and Biot–Savart formulas outside the static domain.

In an earlier paper, we made use of Jefimenko’s [3,11] equation to study the force
developing between two current loops [13]. This was later generalized to include the forces
between a current carrying loop and a permanent magnet [14,15]. Since the device is forced
for a finite period, the device will posses mechanical momentum and energy. The question
then arises whether we need to abandon the law of momentum and energy conservation.
The subject of momentum conversation was discussed in [8]. In [16–19], the exchange
of energy between the mechanical part of the relativistic engine and the electromagnetic
field were discussed. In particular, it was shown that the total electromagnetic energy
expenditure is six times the kinetic energy gained by the relativistic motor. It was also
shown that some energy might be radiated from the relativistic engine device if the coils
are not configured properly.

The previous analysis relied on the fact that the bodies were macroscopically natural,
which means that the number of electrons and ions is equal in every volume element. Here,
we relax this assumption and study charged bodies, thus analyzing the consequences of
charge on a possible electric relativistic engine.

We shall consider two cases; in the first, we assume an instantaneous action at a
distance, in which Newton’s third law is satisfied, and the total force is equal to zero. Next,
we consider the time-dependent case where the reaction to an action cannot occur before
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having the action-generated information reaches the affected body, thus causing a non-zero
resultant. We stress that the bodies themselves are taken to be stationary; it is only the
charge densities in them that are modified with time.

We highlight the main contributions of the current paper as follows:

• Although the fact that Newton’s third law is not generally respected for electromag-
netic interacting systems is known [4,13], there is no published formula for the force
or the momentum that can be achieved for such a charged system. This deficiency is
amended in the current paper.

• It is found that in a charged system, one may achieve higher forces and momenta with
respect to an uncharged system by many orders of magnitude.

• We study some possible implementations of a charged relativistic engine, and discuss
the engine limitations, which are due to the phenomena of dielectric breakdown and
the maximal amount of current density that one can transfer through a wire, even if
superconducting.

• We suggest a way to overcome those limitations that takes advantage of the high-
charge densities that are available in microscopic structures, such as ionic crystals.

2. The Electro-Static Condition

Consider two bodies having volume elements d3x1, d3x2 located at ~x1,~x2 respectively
and having static charge densities ρ1, ρ2 (see Figure 1).

Figure 1. Two charged bodies.

The electro-static force applied by charged body 2 on charged body 1 is given by
Jackson [3]:

~F12 =
1

4πε0

∫ ∫ d3x1d3x2 ρ1(~x1)ρ2(~x2) ~x12

|~x12|3
. (1)

where, ~x12 = ~x1 − ~x2 and ε0 = 8.85 10−12 Fm−1 is the vacuum permittivity. From the
above, it is easy to calculate the electro-static force applied by current loop 1 on charged
body 2 by changing indices 1↔ 2:

~F21 =
1

4πε0

∫ ∫ d3x1d3x2 ρ1(~x1)ρ2(~x2) ~x21

|~x12|3
. (2)

However,

~x21 = ~x2 −~x1 = −(~x1 −~x2) = −~x12, |~x21| = |~x12| (3)
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We obtain the following:
~F21 = −~F12. (4)

In addition, the total force on the two charged systems is null:

~FT = ~F12 + ~F21 = 0. (5)

The above result is independent of the geometry of the charged bodies and is in
complete agreement with Newton’s third law.

3. The Dynamic Electromagnetic Condition

Consider the generic time-dependent case. According to Maxwell’s equations, one
does not have a magnetic field without the presence of an electric field and vice versa. We
thus consider both the electric and magnetic components of Lorentz force ~F21. The electric
field ~E and magnetic field ~B are created by charged entity 1 and act upon a charged body
2. A charged body may contain ions and free electrons, so we obtain the Lorentz force as
follows:

~F21 =
∫

d3x2ρi2(~E +~vi2 × ~B) +
∫

d3x2ρe2(~E +~ve2 × ~B). (6)

In the above, we integrate over the entire volume of charged body 2. ρi2 and ρe2 are
the ion charge density and electron charge density, respectively. ~vi2 and ~ve2 are the ion
velocity field and electron velocity field, respectively. The total charge density amounts the
sum of the ions charge density and free electrons charge density, hence the following:

ρ2 = ρi2 + ρe2. (7)

Thus, the electric terms in the above force equation cancel and we are left with the
following:

~F21 =
∫

d3x2ρ2~E +
∫

d3x2ρi2~vi2 × ~B +
∫

d3x2ρe2~ve2 × ~B. (8)

In the laboratory frame, with the ions being at rest, we have the following: ~vi2 = 0.
Thus, we arrive at the following:

~F21 =
∫

d3x2ρ2~E +
∫

d3x2ρe2~ve2 × ~B. (9)

Introducing the current density: ~J2 = ρe2~ve2, we obtain the following:

~F21 =
∫

d3x2

(
ρ2~E +~J2 × ~B

)
. (10)

Now, let us consider the coil that generates the magnetic field. The electric and
magnetic fields can be written as follows in terms of the vector and scalar potentials [3]:

~E = −∂t ~A− ~∇Φ. (11)

~B = ~∇× ~A. (12)

Here, ~∇ has the standard definition in vector analysis, t is time and ∂t is a partial
derivative with respect to time. If the field is generated by a charge density ρ1 and current
density~J1 in charged body 1, we can solve for the scalar and vector potentials and obtain
the following result [3]:

Φ(~x2) =
1

4πε0

∫
d3x1

ρ1(~x1, tret)

R
, ~R ≡ ~x12, tret ≡ t− R

c
. (13)

~A(~x2) =
µ0

4π

∫
d3x1

~J1(~x1, tret)

R
. (14)
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Here, c = 1√
ε0µ0

is the speed of light in vacuum. The above solutions satisfy the
Lorentz gauge conditions:

~∇ · ~A +
1
c2 ∂tΦ = 0 (15)

Due to the following conservation of charge:

~∇ ·~J + ∂tρ = 0 (16)

(See Appendix A). Combining Equation (14) with Equation (12), we arrive at the result:

~B(~x2) = ~∇~x2
× ~A(~x2) =

µ0

4π

∫
d3x1~∇~x2

×
(
~J1(~x1, tret)

R

)
. (17)

However, notice the following (we use the notation ∂y ≡ ∂
∂y .):

~∇~x2
×
(
~J1(~x1, tret)

R

)
= ~∇~x2

R× ∂R

(
~J1(~x1, tret)

R

)
. (18)

Since
~∇~x2

R = −
~R
R

(19)

additionally,

∂R

(
~J1(~x1, tret)

R

)
= −

~J1(~x1, tret)

R2 − ∂t~J1(~x1, tret)

Rc
. (20)

Hence,

~∇~x2
×
(
~J1(~x1, tret)

R

)
=

~R
R3 ×

(
~J1(~x1, tret) +

(
R
c

)
∂t~J1(~x1, tret)

)
. (21)

Inserting Equation (21) into Equation (17), we arrive at Jefimenko’s equations [3,11]
for the magnetic field:

~B(~x2) =
µ0

4π

∫
d3x1

~R
R3 ×

(
~J1(~x1, tret) +

(
R
c

)
∂t~J1(~x1, tret)

)
. (22)

For the electric field, we have two contributions according to Equation (11), one from
the scalar potential and a second one from the vector potential:

~E = ~Ea + ~Eb, ~Ea ≡ −∂t ~A, ~Eb ≡ −~∇Φ. (23)

Hence, according to Equation (14),

~Ea(~x2) = −
µ0

4π

∫
d3x1

∂t~J1(~x1, tret)

R
. (24)

According to Equation (13),

~Eb(~x2) = −k
∫

d3x1~∇~x2

(
ρ1(~x1, tret)

R

)
, k ≡ 1

4πε0
' 9 · 109. (25)

The above equation can also be written as follows:

~Eb(~x2) = −k
∫

d3x1

[
1
R
~∇~x2

ρ1(~x1, tret) + ρ1(~x1, tret)~∇~x2

1
R

]
, (26)
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however,

~∇~x2

1
R

=
R̂
R2 , R̂ ≡

~R
R

(27)

in addition:
~∇~x2

ρ1(~x1, tret) = ~∇~x2
R ∂Rρ1(~x1, tret)|~x1

=
R̂
c

∂tρ1(~x1, tret). (28)

It thus follows that

~Eb(~x2) = −k
∫

d3x1
R̂
R2

[
ρ1(~x1, tret) +

(
R
c

)
∂tρ1(~x1, tret)

]
. (29)

Adding ~Eb and ~Ea and taking into account the following,

µ0

4πk
= µ0ε0 =

1
c2 (30)

we arrive at the Jefimenko’s expression [3,11] for the electric field as follows:

~E(~x2) = −k
∫

d3x1
1

R2

[(
ρ1(~x1, tret) +

(
R
c

)
∂tρ1(~x1, tret)

)
R̂

+

(
R
c

)2 ∂t~J1(~x1, tret)

R

]
. (31)

Inserting Equation (22) and Equation (31) into Equation (10), we arrive at a somewhat
lengthy but straightforward expression:

~F21 = −k
∫ ∫

d3x1d3x2
1

R2{
ρ2(~x2, t)

[(
ρ1(~x1, tret) +

(
R
c

)
∂tρ1(~x1, tret)

)
R̂ +

(
R
c

)2 ∂t~J1(~x1, tret)

R

]
(32)

+

(
R
c

)2[ R̂
R2 ×

(
~J1(~x1, tret) +

(
R
c

)
∂t~J1(~x1, tret)

)]
×~J2(~x2, t)

}

3.1. The Quasi-Static Approximation

In the quasi-static approximation, it is assumed that τ = R
c is small and can be

neglected. Under the same approximation tret ' t, neglecting all terms of order τ, Equation
(32) takes the following Coulomb form:

~F21 = −k
∫ ∫

d3x1d3x2 ρ1(~x1, t)ρ2(~x2, t)
R̂
R2 . (33)

The above equation is similar to the Equation (2) with slightly different notation,
but now the charge densities are time dependent and therefore, not static. Newton’s third
law follows trivially, using the same arguments as in Section 2. We notice that for vanishing
charge densities, Equation (32) takes the following form:

~F21 = −k
∫ ∫

d3x1d3x2
1

R2{(
R
c

)2[ R̂
R2 ×

(
~J1(~x1, tret) +

(
R
c

)
∂t~J1(~x1, tret)

)]
×~J2(~x2, t)

}
. (34)
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In this case, the leading term is O(τ2), neglecting higher order terms in τ. This can be
written as follows:

~F21 =
µ0

4π

∫ ∫
d3x1d3x2

{
~J2(~x2, t)×

[
R̂
R2 ×~J1(~x1, t)

]}
. (35)

or as follows:

~F21 =
µ0

4π

∫ ∫
d3x1d3x2

{(
~J2(~x2, t) ·~J1(~x1, t)

) R̂
R2

−
(
~J2(~x2, t) · R̂

R2

)
~J1(~x1, t)

}
. (36)

Notice that according to Equation (27),

~J2(~x2, t) · R̂
R2 = ~J2(~x2, t) · ~∇~x2

1
R

= ~∇~x2
·
(
~J2(~x2, t)

R

)
− 1

R
~∇~x2
·~J2(~x2, t). (37)

However, since we assume that the charge density is null, it follows from Equation (16)
that ~∇~x2

·~J2 = 0, and

~J2(~x2, t) · R̂
R2 = ~∇~x2

·
(
~J2(~x2, t)

R

)
. (38)

Taking the volume integral of the left hand side and using Gauss theorem, we obtain
the following: ∫

d3x2 ~J2(~x2, t) · R̂
R2 =

∮
d~S2 ·

(
~J2(~x2, t)

R

)
, (39)

where d~S2 and the integral is taken over the entire surface encapsulating the volume. If the
surface is taken far from the system in which the current density is non-vanishing, it follows
that the surface integral is null and thus,

∫
d3x2 ~J2(~x2, t) · R̂

R2 = 0. (40)

Thus, Equation (36) will take the following form:

~F21 =
µ0

4π

∫ ∫
d3x1d3x2

(
~J2(~x2, t) ·~J1(~x1, t)

) R̂
R2 . (41)

from which Newton’s third law follows trivially. We notice that this form is a generalization
of a similar result presented in [13] for the case of currents that are restricted to flow on
thin current loops. In the quasi-static approximation, Newton’s third law holds regardless
of the geometry of the system involved, and the total force is null.

The reader should not be surprised by this result since in the quasi-static approxima-
tion, we neglect the duration that it takes a signal to propagate from part 1 to part 2, making
the assumption that this time is null. Significantly different results may be obtained in the
case that τ is taken into account, as we demonstrate in the next subsection.

3.2. The Case of a Finite τ

Considering the charge density ρ(~x′, tret) = ρ(~x′, t− R
c ), if R

c is small but not zero, one
can write a Taylor series expansion around t in the following form:

ρ(~x′, tret) = ρ(~x′, t− R
c
) =

∞

∑
n=0

∂n
t ρ(~x′, t)

n!
(−R

c
)n. (42)
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In the above, ∂n
t ρ(~x′, t) is the partial temporal derivative of order n of ρ(~x′, t). The same

expansion for the current density leads to the following expression:

~J(~x′, tret) = ~J(~x′, t− R
c
) =

∞

∑
n=0

∂n
t
~J(~x′, t)

n!
(−R

c
)n. (43)

In the above, ∂n
t
~J(~x′, t) is the partial temporal derivative of order n of ~J(~x′, t). The

above expansions are valid only for a certain environment of t on the time axis, which
depends on the functions involved; this environment shall be defined using the convergence
radius Tmax, which may be different for each function, that is, Equation (42) and Equation (
43) are valid only in the domain [t− Tmax, t + Tmax]. As we expand in the delay time R

c , it
follows that the expansion is valid only for a limited range:

R < Rmax ≡ c Tmax. (44)

This means that basically, we are dealing with a near field approximation; however,
as c is a large number, Rmax would be quite large for most systems. Now, inserting
Equation (42) into Equation (13) we obtain the following:

Φ1(~x2) = k
∫

d3x1
ρ1(tret)

R
= k

∞

∑
n=0

1
n!

∫
d3x1∂n

t ρ1(~x′, t)
1
R
(−R

c
)n

= k
∞

∑
n=0

1
n!

(
−1

c

)n ∫
d3x1∂n

t ρ1(~x1, t)Rn−1 (45)

Similarly, inserting Equation (43) into Equation (14), we obtain the following:

~A1(~x2) =
µ0

4π

∫
d3x1

~J1(tret)

R
=

µ0

4π

∞

∑
n=0

1
n!

∫
d3x1∂n

t~J1(~x′, t)
1
R
(−R

c
)n

=
µ0

4π

∞

∑
n=0

1
n!

(
−1

c

)n ∫
d3x1∂n

t~J1(~x1, t)Rn−1 (46)

As µ0
4π = µ0ε0

4πε0
= k

c2 it follows that

~A1(~x2) = k
∞

∑
n=0

1
n!

(
−1

c

)n+2 ∫
d3x1∂n

t~J1(~x1, t)Rn−1

= k
∞

∑
n=2

1
(n− 2)!

(
−1

c

)n ∫
d3x1∂n−2

t
~J1(~x1, t)Rn−3 (47)

We are now at a position in which we can calculate the electric and magnetic fields
from the expansions given in Equation (45) and Equation (47). However, before we proceed,
we introduce the following notation. Let G[n] be the contribution of order 1

cn to the quantity
G, thus the following:

G =
∞

∑
n=0

G[n] (48)

Hence,

Φ[n]
1 (~x2) =

k
n!

(
−1

c

)n ∫
d3x1∂n

t ρ1(~x1, t)Rn−1 (49)

~A[n]
1 (~x2) =

k
(n− 2)!

(
−1

c

)n ∫
d3x1∂n−2

t
~J1(~x1, t)Rn−3 for n >= 2

~A[0]
1 = ~A[1]

1 = 0. (50)
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It now follows from Equation (23) that

~E[n]
1a = −∂t ~A

[n]
1 =

− k
(n− 2)!

(
−1

c

)n ∫
d3x1∂n−1

t
~J1(~x1, t)Rn−3 for n >= 2

~E[0]
1a = ~E[1]

1a = 0. (51)

and
~E[n]

1b = −~∇~x2
Φ[n] = − k

n!

(
−1

c

)n ∫
d3x1∂n

t ρ1(~x1, t)~∇~x2
Rn−1. (52)

However, since

~∇~x2
Rn−1 = ~∇~x2

R ∂RRn−1 = −(n− 1)Rn−2R̂. (53)

it follows that
~E[n]

1b =
k(n− 1)

n!

(
−1

c

)n ∫
d3x1∂n

t ρ1(~x1, t)Rn−2R̂. (54)

Zeroth order contribution comes only from the potential part of the electric field and
is the Coulomb contribution:

~E[0]
1 = ~E[0]

1b = −k
∫

d3x1
ρ1(~x1, t)

R2 R̂ (55)

We also deduce that ~E[1]
1b = 0, hence

~E[1]
1 = ~E[1]

1a + ~E[1]
1b = 0 (56)

thus, there is no first order correction to the electric field in a charged system. First
order corrections are also absent in an uncharged system [13]. The first term containing
contributions from both the scalar and vector potentials to the electric field is the second
order term:

~E[2]
1 = ~E[2]

1a + ~E[2]
1b = k

(
1
c

)2 ∫
d3x1

[
1
2

∂2
t ρ1(~x1, t)R̂− ∂t~J1(~x1, t)R−1

]
(57)

As 1
c is quite small, it will suffice to consider contributions until the second order. We

now calculate the magnetic field using Equation (17) and Equation (50) and obtain the
following:

~B[n]
1 (~x2) = ~∇~x2

× ~A[n]
1 (~x2) =

k
(n− 2)!

(
−1

c

)n ∫
d3x1~∇~x2

×
[
∂n−2

t
~J1(~x1, t)Rn−3

]
for n >= 2

~B[0]
1 = ~B[1]

1 = 0. (58)

However,

~∇~x2
×
[
∂n−2

t
~J1(~x1, t)Rn−3

]
= ~∇~x2

Rn−3 × ∂n−2
t

~J1(~x1, t) (59)

and also,
~∇~x2

Rn−3 = ~∇~x2
R ∂RRn−3 = (3− n) Rn−4 R̂ (60)
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Hence, we may write the following:

~B[n]
1 (~x2) =

k
(3− n)
(n− 2)!

(
−1

c

)n ∫
d3x1Rn−4 R̂× ∂n−2

t
~J1(~x1, t) for n >= 2. (61)

in particular,

~B[2]
1 (~x2) = k

(
1
c

)2 ∫
d3x1R−2 R̂×~J1(~x1, t). (62)

Using the expressions of the electric and magnetic fields, we may now calculate the
force nth order contribution through Equation (10) as follows:

~F[n]
21 =

∫
d3x2

(
ρ2(~x2)~E

[n]
1 (~x2) +~J2(~x2)× ~B[n]

1 (~x2)
)

. (63)

It follows that for the zeroth order we obtain the following:

~F[0]
21 =

∫
d3x2ρ2(~x2)~E

[0]
1 (~x2). (64)

Inserting Equation (55), we obtain Coulomb’s force:

~F[0]
21 = −k

∫ ∫
d3x1d3x2ρ1(~x1)ρ2(~x2)

1
R2 R̂ = −~F[0]

12 . (65)

This type of force, which is just the quasi-static force, satisfies Newton’s third law (see
Section 3.1). Hence, the total force on the system is null:

~F[0]
T = ~F[0]

21 + ~F[0]
12 = 0. (66)

The first order force in 1
c is null since the first order electric and magnetic fields are

null, thus
~F[1]

T = ~F[1]
21 = ~F[1]

12 = 0. (67)

We shall now proceed with the calculation of the second order force term; this will
suffice, as 1

c is a rather small number. To do this, we first divide the force given in
Equation (63) into electric and magnetic terms:

~F[2]
21 = ~F[2]

21e +
~F[2]

21m

~F[2]
21e ≡

∫
d3x2 ρ2(~x2)~E

[2]
1 (~x2)

~F[2]
21m ≡

∫
d3x2 ~J2(~x2)× ~B[2]

1 (~x2) (68)

Inserting Equation (57) into Equation (68), we readily obtain the electric force as
follows:

~F[2]
21e =

(
k
c2

) ∫ ∫
d3x1d3x2

[
1
2

ρ2∂2
t ρ1R̂− ρ2∂t~J1R−1

]
(69)

The magnetic force can be obtained by inserting Equation (62) into Equation (68):

~F[2]
21m =

(
k
c2

) ∫ ∫
d3x1d3x2 ~J2 ×

(
R−2R̂×~J1

)
=

(
k
c2

) ∫ ∫
d3x1d3x2

[
R̂
~J1 ·~J2

R2 −~J1R−2(R̂ ·~J2)

]
(70)

However,
R−2R̂ = ~∇~x2

R−1 (71)
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It follows that

~F[2]
21m =

(
k
c2

) ∫ ∫
d3x1d3x2

[
R̂
~J1 ·~J2

R2 −~J1

(
(~∇~x2

R−1) ·~J2

)]
(72)

Let us look at the following integral:

∫
d3x2(~∇~x2

R−1) ·~J2 =
∫

d3x2

[
~∇~x2
·
(
~J2

R

)
− 1

R
~∇~x2
·~J2

]
(73)

Using Gauss theorem and the continuity Equation (16), we arrive at the following
expression: ∫

d3x2(~∇~x2
R−1) ·~J2 =

∮
d~S2 ·

(
~J2

R

)
+
∫

d3x2
1
R

∂tρ2. (74)

The surface integral is performed over a surface encapsulating the volume of the
volume integral. If the volume integral is performed over all space, the surface is at infinity.
Provided that there are no currents at infinity,∫

d3x2(~∇~x2
R−1) ·~J2 =

∫
d3x2

1
R

∂tρ2. (75)

Inserting the result given in Equation (75) into Equation (72), we arrive at the following
expression for the second order magnetic force:

~F[2]
21m =

(
k
c2

) ∫ ∫
d3x1d3x2

[
R̂
~J1 ·~J2

R2 −
~J1

R
∂tρ2

]
. (76)

We remark that for the magnetic field, the second order is the lowest order for the
force, as the zeroth and first order are null. Moreover, we observe that the force is a sum of
two parts. The first one satisfies Newton’s third law (see Section 3.1), and the second does
not. We can now calculate the total electromagnetic force by adding Equation (69) with
Equation (76):

~F[2]
21 = ~F[2]

21e +
~F[2]

21m

=

(
k
c2

) ∫ ∫
d3x1d3x2

[
1
2

ρ2∂2
t ρ1 x̂12 − ∂t(ρ2~J1)R−1 + x̂12

~J1 ·~J2

R2

]
(77)

We now use the notation R̂ = x̂12 for clarity. From the above expressions it is easy to
calculate F[2]

12 by exchanging the indices 1 and 2:

~F[2]
12 =(

k
c2

) ∫ ∫
d3x1d3x2

[
1
2

ρ1∂2
t ρ2 x̂21 − ∂t(ρ1~J2)R−1 + x̂21

~J1 ·~J2

R2

]
(78)

Combining Equation (77) and Equation (78) and taking into account that x̂12 = −x̂21,
it follows that

~F[2]
T = ~F[2]

12 + ~F[2]
21 =(

k
c2

) ∫ ∫
d3x1d3x2

[
1
2

(
ρ2∂2

t ρ1 − ρ1∂2
t ρ2

)
R̂− ∂t(ρ1~J2 + ρ2~J1)R−1

]
(79)
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Now as k
c2 = µ0

4π and since

ρ2∂2
t ρ1 − ρ1∂2

t ρ2 = ∂t(ρ2∂tρ1 − ρ1∂tρ2) (80)

it follows that

~F[2]
T =

µ0

4π
∂t

∫ ∫
d3x1d3x2

[
1
2
(ρ2∂tρ1 − ρ1∂tρ2)R̂− (ρ1~J2 + ρ2~J1)R−1

]
(81)

In the following section, we describe some of the implications of the above formula.
We remark that in some fast changing systems, the second order correction does not suffice
and higher order terms are needed.

3.3. Some Preliminary Observations

According to Newton’s second law, a system with a non zero total force in its center
of mass must have a change in its total linear momentum ~P(t):

~F[2]
T =

d~P
dt

(82)

Assuming that ~P(−∞) = 0 and also that there are not current or charge densities at
t = −∞, it follows from Equation (81) that

~P(t) =
µ0

4π

∫ ∫
d3x1d3x2

[
1
2
(ρ2∂tρ1 − ρ1∂tρ2)R̂− (ρ1~J2 + ρ2~J1)R−1

]
(83)

Comparing Equation (83) with the momentum gain of a non-charged relativistic motor
described by Equation (64) of [8],

~Pmech
∼=

µ0

8π
∂t I1(t)I2(

h
c
)2~K122, ~K122 = − 1

h2

∮ ∮
R̂(d~l2 · d~l1) (84)

where h is a typical scale of the system, I1(t) and I2 are the currents flowing through
two current loops and d~l1, d~l2 are the current loop line elements. We notice some major

differences. First, we notice a factor of
(

h
c

)2
in the case of an uncharged motor. As, for any

practical system, the scale h is of the order of one, this means that the charged relativistic
motor is stronger than the uncharged motor by a factor of c2 ∼ 1017, which is quite a
considerable factor. Second, we notice that for the uncharged motor, the current must
be continuously increased in order to maintain the momentum in the same direction.
Of course, one cannot do this forever; hence the uncharged motor is a type of piston engine
that does a periodic motion backward and forward and can only produce forward motion
by interacting with an external system (the road). This is not the case for the charged
relativistic motor. In fact, we obtain non-vanishing momentum for stationary charge and
current densities:

~P(t) = − µ0

4π

∫ ∫
d3x1d3x2 (ρ1~J2 + ρ2~J1)R−1 (85)

hence the charged relativistic motor can produce forward momentum without interacting
with any external system, except the electromagnetic field. The above expression can be
somewhat simplified using the potential given in Equation (13) such that

~P(t) = − 1
c2

[∫
d3x2 Φ1~J2 +

∫
d3x1 Φ2~J1

]
(86)



Symmetry 2021, 13, 1250 13 of 23

in which we are reminded that µ0
4πk = µ0ε0 = 1

c2 . Another observation is that in a charged
relativistic motor, we do not need both subsystems to be charged, in fact if ρ2 = 0, then

~P(t) = − µ0

4π

∫ ∫
d3x1d3x2 ρ1~J2R−1 = − 1

c2

∫
d3x2 Φ1~J2 (87)

provided that the system has a non vanishing current density ~J2. We underline that as
in [8], the forward momentum gained by the mechanical system will be balanced by a
backward momentum gained by the electromagnetic system. We shall now discuss the
challenges in developing a charged relativistic motor.

3.4. Charge Density

The amount of charge that can be accumulated in a given volume or surface is limited
by the phenomena of electrical breakdown in which the surrounding medium is separated
into electron and ions and becomes a plasma. As the surrounding becomes conductive,
a discharge occurs, and the charge density is reduced. The dielectric strength Emax of air
is 3 MV/m [20], for high vacuum 20–40 MV/m [21] and for diamond 2000 MV/m [22].
For an infinite surface, the surface density σ is the following:

σ = 2εE < σmax = 2εEmax, ε = εrε0 (88)

in which εr is the relative susceptibility. For air σmax ' 53 µC/m2. To estimate the amount
of charge Q, which one can maintain in a given volume, we notice that for a spherical
symmetric charge ball, we obtain at a distance r the radial field E as follows:

E =
kQ
r2 (89)

the stronger field is on the ball itself, that is at r = rs we must have:

kQ
r2

s
< Em ⇒ Q < Qm =

1
k

r2
s Em (90)

For a typical size of 1 m, the maximal charge is 3.3 10−4 C. Hence, regardless of
whether we have surface charge or a volume charge, the maximal charge scales as the
square of the dimension of the system, that is, as h2. A possible approach to increase the
available charge density is to use an electret. Fluorinated parylene (Parylene HT, SCS)
offers an excellent surface charge density of 3.7 mC/m2 found for a 7.3 µm film by Hsi-wen
and Yu-Chong [23]. This material has a dielectric strength of 204.58 MV/m. However,
as the thickness of the material grows, the charge density is reduced.

3.5. Current Density

The amount of current that a device can generate is dependent on its voltage and
internal resistance. Provided that the external impedance is not significant, the resulting
currents are denoted as short currents, being of the order of a few thousand amperes for a
standard domestic electrical installation and as high as hundreds of thousands of amperes
in large industrial power systems. If the current is flowing through a metal conductor, then
heat is generated due to the finite resistivity of the conductor. Large currents require a
thick conductor to avoid excessive heating. This problem can be circumvented by using
a superconductor, although this requires cooling to extremely low temperatures, making
the system quite cumbersome. However, even a superconductor has a critical current
density and superconduction properties losses above that. Jung, S. G. et al. [24] reported
critical current densities as high as 5 kA/cm2. Coil windings enable to reuse the current,
and the number of windings in a given area is also critical to the performance of the
system. The proximity of the current to the charge also affects the amount of generated
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momenta Equation (87) . However, putting a conductor too close to the charge may result
in discharge, hence a balance should be struck.

3.6. Scalability

It is clear from Equation (87) that the larger the relativistic engine, the more powerful
it is. However, since the charge surface density is limited, the momenta generated scales as
the second power of the size of the charged subsystem and as the third power of the size of
the current carrying system.

3.7. Energy

Obviously an engine of mass M will acquire a kinetic energy of the following:

Ek =
~P2

2M
(91)

in which ~P is given by Equation (83). The energy needed to drive the engine may be large
or equal to the kinetic energy of the engine, even in ideal situations where one does not
take into account losses that are due to drag, friction and ohmic resistance. For example,
for a non-charged relativistic motor, the energy removed from the total electromagnetic
energy is equal to E = 6Ek [19], thus the amount of energy that is consumed by a charged
relativistic motor should be also of the same order of magnitude of the kinetic energy given
in Equation (91) (but probably larger). The power needed is equal to dE

dt , thus according
to Equation (83), it will depend on the rise time of the current. Finally, we remark that in
an ideal situation, in the case that there is no drag, no viscosity losses (space travel) and
no ohmic losses (superconducting wires), the efficiency of the relativistic engine is infinite,
and the entire mechanical energy can be converted back to electromagnetic energy as the
engines comes to a stop. This idea is partially implemented in today’s hybrid cars in which
pressing the brakes converts the kinetic energy of the car to electromagnetic energy stored
in a battery.

Notice also that if not configured correctly, a relativistic motor may radiate. This
was shown in previous works for an uncharged relativistic motor [18,19]. The total force
generation given by Equation (81) includes also radiating field configurations; hence, in
this respect it will not affect the reported results.

4. An Example

Considering an electret of thickness d and area of a× b, the electret is put inside a
tight superconductive winded coil (see Figures 2 and 3).

Figure 2. A relativistic engine.



Symmetry 2021, 13, 1250 15 of 23

Figure 3. A cross section of the relativistic engine.

As the current in the x direction is close to the negative charge, it makes a considerable
contribution to the momentum equation Equation (87), while the return current, which is
far away from the negative charge, makes a relatively small contribution. The situation
is reversed with regard to the positive charge; here, the return current makes the main
contribution. Hence, the total momentum contribution is doubled with respect to the
current flowing in the x direction and interacting with negative charge alone. The current
flowing in the y direction does not contribute to the momentum, as the contribution from
the current flowing upwards is exactly balanced by the contribution of the current flowing
downwards. Let us look at the negative charge layer in Figure 3. We shall model this as a
surface charged layer in the plane y = 0 with a surface charge density σ such that

ρ1(x1, y1, z1) = −σδ(y1)

{
1 − a

2 < x1 < a
2 , − b

2 < z1 < b
2

0 else
(92)

in the above δ(y1) is a Kronecker delta.

~J2(x2, y2, z2) = x̂ J0wδ(y2 + ∆)
{

1 − a
2 < x2 < a

2 , − b
2 < z2 < b

2
0 else

(93)

where J0 is the current density, w is the width of the winding, x̂ is a unit vector in the
x direction and ∆ is the distance of the current plane from the negative charge plane.
Obviously, there is a difference between the ∆ of the current, ∆1, and the return current, ∆2.
The integrated current flowing through the system is the following:

I = J0 w b. (94)

However, the current flowing through each single wire depends on the winding
number Nw:

Ic =
I

Nw
(95)

Plugging Equation (92) and Equation (93) into Equation (87), we arrive at the following
momentum equation:

~P =
µ0

4π
σJ0wx̂

∫ + a
2

− a
2

dx1

∫ + b
2

− b
2

dz1

∫ + a
2

− a
2

dx2

∫ + b
2

− b
2

dz2
1
R

. (96)

such that
R =

√
(x1 − x2)2 + (z1 − z2)2 + ∆2. (97)
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Defining the dimensionless variables,

x′1 =
x1

a
, z′1 =

z1

b
, x′2 =

x2

a
, z′2 =

z2

b
, R′ =

R
∆

, a′ =
a
∆

, b′ =
b
∆

. (98)

we may write the following:

~P =
µ0

4π
σJ0wab2Λ̃(a′, b′)x̂. (99)

The function Λ̃(a′, b′) is dimensionless and depends on the dimensionless quantities
a′, b′. It can be evaluated using the quadruple integral:

Λ̃(a′, b′) ≡
∫ + 1

2

− 1
2

dx′1
∫ + 1

2

− 1
2

dz′1
∫ + 1

2

− 1
2

dx′2
∫ + 1

2

− 1
2

dz′2
a′

R′
. (100)

in which
R′ =

√
a′2(x′1 − x′2)

2 + b′2(z′1 − z′2)
2 + 1. (101)

We shall attempt to perform at least part of this integration analytically. For this, we
shall define the auxiliary function:

Γ̃(a′, b′, x′2, z′2) ≡
∫ + 1

2

− 1
2

dx′1
∫ + 1

2

− 1
2

dz′1
a′

R′

⇒ Λ̃(a′, b′) =
∫ + 1

2

− 1
2

dx′2
∫ + 1

2

− 1
2

dz′2Γ̃(a′, b′, x′2, z′2). (102)

We shall now make a change of variables:

x = x′1 − x′2, z = z′1 − z′2, (103)

such that

Γ̃(a′, b′, x′2, z′2) =
∫ + 1

2−x′2

− 1
2−x′2

dx
∫ + 1

2−z′2

− 1
2−z′2

dz
a′

R′

R′ =
√

a′2x2 + b′2z2 + 1. (104)

Finally, we define the following:

Ψ(a′, b′, x, z′2) ≡
∫ + 1

2−z′2

− 1
2−z′2

dz
a′

R′

⇒ Γ̃(a′, b′, x′2, z′2) =
∫ + 1

2−x′2

− 1
2−x′2

dxΨ(a′, b′, x, z′2). (105)

The function Ψ can be integrated analytically by introducing the new variable:

z′′ =
b
a

z√
x2 + a′−2

(106)

in terms of which

Ψ(a′, b′, x, z′2) =
a
b

∫ z′′2

z′′1
dz′′

1√
1 + z′′2

=
a
b
[
arcsinh(z′′2 )− arcsinh(z′′1 )

]
z′′1 =

b
a

(
− 1

2 − z′2√
x2 + a′−2

)
, z′′2 =

b
a

(
+ 1

2 − z′2√
x2 + a′−2

)
. (107)
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Unfortunately, the calculation of Γ̃ and Λ̃ can only be done numerically.
For the case b′ = a′, the function Λ̃ is a single variable function depicted in Figure 4.

Figure 4. The function Λ̃ for the case b′ = a′.

It can be seen that for a′ = 0, the function is null, while for a′ = ∞ it approaches
2.973 ∼ 3. Hence, if the ratio of the size of the engine to the winding width is about 20 and
d ∼ a, one does not lose a significant amount of force and momentum due to the return
current. However, looking at the case b′ 6= a′ depicted in Figure 5, we see an obvious
advantage for a slender relativistic motor in the direction of motion.

Figure 5. The function Λ̃ for the case b′ 6= a′, the color code is shown to the right of the contour plot.
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We also point out that the return current interacts symmetrically with the positive
charge in a beneficial way, as both the sign of the charge and the direction of the current
are reversed (see Figure 3). This doubles the momentum gain such that according to
Equation (99), we have the following:

~PT =
µ0

2π
σJ0wab2

(
Λ̃(

a
∆1

,
b

∆1
)− Λ̃(

a
∆2

,
b

∆2
)

)
x̂. (108)

The quantities ∆1 and ∆2 are defined through Figure 3 and we thus expect the follow-
ing:

∆1 =
w
2

, ∆2 =
w
2
+ d. (109)

The force produced by the relativistic engine depends on the rise time of the current
which can be increased gently or abruptly:

~FT =
d~PT
dt

=
µ0

2π
σ

dJ0

dt
wab2

(
Λ̃(

a
∆1

,
b

∆1
)− Λ̃(

a
∆2

,
b

∆2
)

)
x̂. (110)

We choose three different configurations of a relativistic motor: one is a size of standard
car and its parameters are described in the first column of Table 1, the second describes a
considerably larger motor which may be suitable for space travel is given in the second
column of Table 1, and the third column describes a cube of immense dimensions.

Table 1. Maximal momentum gained by a relativistic motor for three cases of parameters. We assume
an extreme case of charge density σ = 3.7 × 10−3 Coulomb/m2 (see Section 3.4), and current density
J0 = 5 × 107 Ampere/m2 (see Section 3.5).

Car Rocket Size Engine Giant Cube Units

a 6 200 1000 m
b 2 10 1000 m
d 1 10 1000 m
w 0.2 0.4 0.4 m

PT 0.3 868 3.1 × 107 kg m/s

We see that, despite the extreme parameters, the maximum momenta gained are quite
modest. This is a direct result of the phenomena of dielectric breakdown. Nevertheless,
for the purpose of demonstration, the car configuration of Table 1 can be built and measured
in a laboratory to experimentally verify its performance.

5. The Nano Relativistic Motor

In the previous section, we showed that intrinsic parameter limitations, especially
dielectric breakdown, lead to a somewhat modest amount of momenta that can be gained
by a relativistic motor. However, it seams that in the microscopic domain, this limitation
is rather relaxed. For example, consider ionic crystals such as the prevalent table salt:
Na+Cl−. This salt solidifies to a face-centered cubic lattice in which the lattice constant is
l = 564.02 pm. Taking, for example, the 100 plane of this lattice (see Figure 6), we can see
that the charge density is periodical in which in each half unit cell, we have a surface charge
density of ±2 Coulomb/m2. This is, of course, a thousand times larger than the available
macroscopic charge densities (see Section 3.4); however, on the macroscopic average, this
leads to a null charge density.
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Figure 6. The 100 plane of a table salt Na+Cl− lattice, blue circles stand for sodium positive ions and
yellow circles stand for chlorine negative ions.

To see how we can circumvent this unfortunate reality, we investigate Equation (87),
calculating the spatial Fourier transform of the scalar potential and the current density
such that

Φ1(~k) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
Φ1(~x)e−i~k·~xd3x

~J2(~k) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
~J2(~x)e−i~k·~xd3x. (111)

Using the theorem of Parseval [25], we may now write Equation (87) in the following
form:

~P(t) = − 1
c2(2π)3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
d3k Φ∗1(~k)~J2(~k) (112)

In this form, it is obvious that a microscopic distribution of periodic charge density is
beneficial if it is accompanied by a current density distribution of the same period. How
can we obtain such a microscopic charge density distribution? To this end, we remind the
reader that microscopic currents are associated with the electronic motion and electronic
spin. The magnetization ~M is related to the magnetization current ~JM by the following
formula [14,15]:

~JM ≡ ~∇× ~M. (113)

We may replace in Equation (86), Equation (87) and Equation (112)~J by~JM to obtain
a similar effect. Furthermore, the magnetization ~M is related to the microscopic dipole
moments ~mi through the following:

~M ≡ 1
V ∑

i
~mi. (114)

in which we sum over all dipoles and divide by the sample volume V. In known magnetic
materials, for example, iron, magnetic dipole moments are a consequence of the atom spin
configuration . For example, in the case of α-iron, the spins of two unpaired electrons in
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each atom generally align with the spins of its closest neighbors. The reason for this is
that the orbitals of those two electrons (dz2 and dx2−y2) do not point in the direction of
neighboring atoms in the lattice and since this is the case, are not involved in metallic
bonding. We thus hypothesize that the ideal structure of a relativistic motor involves an
ionic lattice in which one species of atom (for example, the positively charged) involve free
spins that can be manipulated by an external magnetic field, thus creating a relativistic
engine effect which can be easily manipulated in three axes. The details of such an engine
are beyond the scope of the current paper.

6. Discussion

In this paper, we have shown that, in general, Newton’s third law is not compatible
with the principles of special relativity, and the total force on a two-charged body system
is not zero. Still, momentum is conserved if one takes the field momentum into account,
and the same is true for energy.

The main results of this paper are given by Equation (82) and Equation (83), which
describe the total relativistic force for charged bodies. Not all configurations of charged
relativistic motors were analyzed here due to space limitations. We have concentrated our
efforts on a system in which one part is charged and the second part carries current. It
is noticed that the charge relativistic motor is many orders of magnitude more powerful
than an uncharged relativistic motor. Still, it is shown that the limitations of dielectric
breakdown and current density lead to a rather modest momentum generated by the
engine at the macroscopic level.

Those limitations can be somewhat relaxed at the atomic level, as the surface charge
density for typical ionic crystals is three orders of magnitude larger than what can be
achieved at the macroscopic level. Thus, future work will concentrate on the development
of nano relativistic engines. Other open subjects are exploring additional possible charged
relativistic configurations, as suggested by Equation (83), and studying in detail momen-
tum and energy transformation from the electromagnetic to the mechanical elements of
the motor.

Obviously, conducting experimental verification of the suggested relativistic engine is
highly desirable in order to corroborate the ideas presented in the current paper. This is
also left as a task for the future.

7. Conclusions

To conclude, we make a comparison between the relativistic motor and other types of
electromagnetic engines. A photon engine emits photons backwards and thus propels itself
forward. It may be a powerful laser or a radio-frequency cavity [26] (the only difference
between those two cases are the energy and momentum of a single photon). To reach
a momentum p, using a photon engine, one needs an energy of Ep = pc, while for a

relativistic engine, an energy of E ∼ 1
2 pv suffices. The ratio is Ep

E = 2c
v , which is a huge

number for non-relativistic speeds.
Of course, standard electric cars today (Tesla, for example) can reach significant

speed and momentum, but unlike the relativistic motor, they need a road to push against;
otherwise, no motion is possible.
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Appendix A. The Consistency of the Gauge Condition

Set ~x = ~x2, ~x′ = ~x1 and R = |~x′ −~x|, thus Equation (14) takes the following form:

~A(~x, t) =
µ0

4π

∫
d3x′

~J(~x′, tret)

R
. (A1)

in which we suppressed the subscript of~J. Taking a divergence of both sides of the above
equation we obtain the following:

~∇ · ~A =
µ0

4π

∫
d3x′~∇ ·

(
~J(~x′, tret)

R

)

=
µ0

4π

∫
d3x′

(
~∇ ·~J(~x′, tret)

R
+~J(~x′, tret) · ~∇

1
R

)
. (A2)

However,
~∇ 1

R
= −~∇′ 1

R
(A3)

Hence,

~∇ · ~A =
µ0

4π

∫
d3x′

(
~∇ ·~J(~x′, tret)

R
−~J(~x′, tret) · ~∇′

1
R

)
. (A4)

This leads to the following:

~∇ · ~A =
µ0

4π

(∫
d3x′

~∇ ·~J(~x′, tret) + ~∇′ ·~J(~x′, tret)

R
−
∮

d~S ·
~J(~x′, tret)

R

)
. (A5)

in which we used Gauss theorem. The surface integral is taken over a closed surface
encapsulating the volume of integration. However, the volume can be infinite and thus the
surface is taken at infinity at which we assume there are no current densities. Hence,

~∇ · ~A =
µ0

4π

∫
d3x′

~∇ ·~J(~x′, tret) + ~∇′ ·~J(~x′, tret)

R
. (A6)

now~J(~x′, tret) depends on ~x′ both directly and through tret, thus,

~∇′ ·~J(~x′, tret) = ~∇′|tret ·~J(~x′, tret) + ∂tret
~J(~x′, tret) · ~∇′tret. (A7)

~∇′|tret ·~J(~x′, tret) means taking a divergence with respect to ~x′ but leaving tret constant.
However,

~∇′tret = ~∇′R ∂Rtret = −~∇R ∂Rtret = −~∇tret (A8)

Hence,
~∇′ ·~J(~x′, tret) = ~∇′|tret ·~J(~x′, tret)− ∂tret

~J(~x′, tret) · ~∇tret. (A9)

We notice the following:

~∇ ·~J(~x′, tret) = ∂tret
~J(~x′, tret) · ~∇tret, (A10)

It now follows that

~∇′ ·~J(~x′, tret) = ~∇′|tret ·~J(~x′, tret)− ~∇ ·~J(~x′, tret). (A11)
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Inserting Equation (A11) into Equation (A6) leads to the following:

~∇ · ~A =
µ0

4π

∫
d3x′

~∇′|tret ·~J(~x′, tret)

R
. (A12)

Let us now look at the scalar potential given in Equation (13), this can be written using
the current notation as follows:

Φ =
1

4πε0

∫
d3x′

ρ(~x′, tret)

R
. (A13)

Taking a partial temporal derivative of Φ and multiplying by 1
c2 = ε0µ0 we arrive at

the following:
1
c2 ∂tΦ =

µ0

4π

∫
d3x′

∂tρ(~x′, tret)

R
. (A14)

Combining Equation (A14) with Equation (A12) it follows that

1
c2 ∂tΦ + ~∇ · ~A =

µ0

4π

∫
d3x′

∂tρ(~x′, t) + ~∇′ ·~J(~x′, t)
R

∣∣∣∣∣
t=tret

. (A15)

However, due to the charge conservation Equation (16) we obtain the following:

1
c2 ∂tΦ + ~∇ · ~A = 0. (A16)
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