The Third-Order Hermitian Toeplitz Determinant for Alpha-Convex Functions
Abstract
:1. Introduction
2. Main Results
- If , then:
- If , then:
- If , then:
- If , then:
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mocanu, P.T. Une propriété de convexité généralisé dans la théorie de la représentation conforme. Mathematica 1969, 11, 127–133. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983. [Google Scholar]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Nevanlinna, R. Über die konforme Abbildung von Sterngebieten. Finska Vetenskaps-Societetens Förhandinger 1921, 53, 1–21. [Google Scholar]
- Study, E. Vorlesungen über ausgewählte Gegenstände der Geometrie, Zweites Heft; Konforme Abbildung Einfach-Zusammenhängender Bereiche; Druck: Leipzig, Germany; Verlag von B.G. Teubner: Berlin, Germany, 1913. [Google Scholar]
- Miller, S.S.; Mocanu, P.T.; Reade, M.O. All α-convex functions are univalent and starlike. Proc. Am. Math. Soc. 1973, 37, 553–554. [Google Scholar] [CrossRef]
- Sakaguchi, K. A note on p-valent functions. J. Math. Soc. Jpn. 1962, 14, 312–321. [Google Scholar] [CrossRef]
- Thomas, D.K.; Tuneski, N.; Vasudevarao, A. Univalent Functions. A Primer; De Gruyter Studies in Mathematics; De Gruyter: Berlin, Germany, 2018; Volume 69. [Google Scholar]
- Ravichandran, V.; Darus, M. On a class of α-convex functions. J. Anal. Appl. 2004, 2, 17–25. [Google Scholar]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha. J. Math. Ineq. 2017, 11, 429–439. [Google Scholar] [CrossRef]
- Cho, N.E.; Kowalczyk, B.; Lecko, A. Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis. Bull. Aust. Math. Soc. 2019, 100, 86–96. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Ali, M.F.; Thomas, D.K.; Vasudevarao, A. Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bull. Aust. Math. Soc. 2018, 97, 253–264. [Google Scholar] [CrossRef]
- Cudna, K.; Kwon, O.S.; Lecko, A.; Sim, Y.J.; Śmiarowska, B. The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α. Bol. Soc. Mat. Mex. 2020, 26, 361–375. [Google Scholar] [CrossRef]
- Jastrzębski, P.J.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Hermitian Toeplitz determinants of the second and third-order for classes of close-to-star functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. 2020, 114, 1–14. [Google Scholar]
- Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J.; Śmiarowska, B. The Third-Order Hermitian Toeplitz Determinant for Classes of Functions Convex in One Direction. Bull. Malays. Math. Sci. Soc. 2020, 43, 3143–3158. [Google Scholar] [CrossRef]
- Carathéodory, C. Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene werte nicht annehmen. Math. Ann. 1907, 64, 95–115. [Google Scholar] [CrossRef] [Green Version]
- Pommerenke, C. Univalent Functions; Vandenhoeck & Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobosz, A. The Third-Order Hermitian Toeplitz Determinant for Alpha-Convex Functions. Symmetry 2021, 13, 1274. https://doi.org/10.3390/sym13071274
Dobosz A. The Third-Order Hermitian Toeplitz Determinant for Alpha-Convex Functions. Symmetry. 2021; 13(7):1274. https://doi.org/10.3390/sym13071274
Chicago/Turabian StyleDobosz, Anna. 2021. "The Third-Order Hermitian Toeplitz Determinant for Alpha-Convex Functions" Symmetry 13, no. 7: 1274. https://doi.org/10.3390/sym13071274
APA StyleDobosz, A. (2021). The Third-Order Hermitian Toeplitz Determinant for Alpha-Convex Functions. Symmetry, 13(7), 1274. https://doi.org/10.3390/sym13071274