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Abstract: A fault diagnosis system with the ability to recognize many different faults obviously has
a certain complexity. Therefore, improving the performance of similar systems has attracted much
research interest. This article proposes a system of feature ranking and differential evolution for
feature selection in BLDC fault diagnosis. First, this study used the Hilbert–Huang transform (HHT)
to extract the features of four different types of brushless DC motor Hall signal. When there is a fault,
the symmetry of the Hall signal will be influenced. Second, we used feature selection based on a
distance discriminant (FSDD) to calculate the feature factors which base on the category separability
of features to select the features which have a positive correlation with the types. The features were
entered sequentially into the two supervised classifiers: backpropagation neural network (BPNN)
and linear discriminant analysis (LDA), and the identification results were then evaluated. The
feature input for the classifier was derived from the FSDD, and then we optimized the feature
rank using differential evolution (DE). Finally, the results were verified from the BLDC motor’s
operating environment simulation with the same features by adding appropriate signal-to-noise ratio
magnitudes. The identification system obtained an accuracy rate of 96% when there were 14 features.
Additionally, the experimental results show that the proposed system has a robust anti-noise ability,
and the accuracy rate is 92.04%, even when 20 dB of white Gaussian noise is added to the signal.
Moreover, compared with the systems established from the discrete wavelet transform (DWT) and a
variety of classifiers, our proposed system has a higher accuracy with fewer features.

Keywords: fault detection; feature selection; backpropagation neural network

1. Introduction

In response to global environmental issues, environmental awareness and carbon
emissions issues have received much attention. The demand for hybrid electric vehicles
(HEVs) and electric vehicles (EVs) has gradually increased [1]. Attempts have been made
to use HEVs and EVs instead of traditional vehicles, in order to reduce carbon emissions.
The following topics need to be paid attention: the brushless DC motor (BLDC) that acts
as a core piece of equipment in EVs [2], the range anxiety issue [3] and energy storage
systems [4,5]. As time passes by, and with more research and development invested in EVs,
such as sensitivity analysis of a rolling stock hydrogen hybrid powertrain [6], and a battery
thermal management system [4,5], the work in this article constructed a system to identify
the BLDC fault types. In order to detect the operation status of the BLDC, Hall sensors
or sensorless algorithms based on back electromotive force are commonly used [7]. The
three Hall sensors are installed into the BLDC motor with 120-degree phase differ-ences,
so the Hall signals are 120 electrical degree phase differences in normal. When there is
a fault, the symmetry of the Hall signal will be affected. A Hall sensor has the obvious
advantages of a low cost and simple structure [8]. Additionally, DC motors using Hall
sensors have been widely used in commercial and industrial applications [9]. Therefore, this
article uses the Hall signal, which is an electrical technology, to establish an identification
system. The motor may suffer from different failures, including stator failure [10–12], rotor
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failure [13,14], bearing failure [15,16], eccentricity fault [17] and inverter fault [18]. Stator
failure accounts for 30% to 40% of the total failures in motors; rotor failure accounts for 5%
to 10% of the total failures; and bearing failure accounts for 40% to 50% of total failures [19].
If the motor is running in a fault condition for a long time, it may cause operation economic
losses due to poor performance, which may affect driving safety.

The comprehensive description of the proposed fault diagnosis system includes signal
analysis, feature selection, optimization and classifiers. Signal analysis has been developed
for decades, and the Hilbert–Huang transform (HHT) is based on the intrinsic mode
functions (IMFs) of the original signal to calculate the instantaneous frequency, and then
perform spectrum analysis [20]. It is necessary to calculate the IMF before fault diagnosis.
When adding more IMFs, the calculation cost will be increased. If the IMF is insufficient, the
representative information may be neglected [21]. However, since there is no need to choose
the mother wavelet, it is not affected by the resolution of the time domain and frequency
domain, and this can more accurately decompose the signal in the high-frequency domain.
This technique is commonly used for fault detection in the fields of biomedical applications,
structural testing and rotating machinery [22].

After signal analysis, the original signal can provide features with a good identification
rate through feature selection. Feature selection can be divided into filter, wrapper, hybrid
approach and embedded feature selection [23]. The filter type is based on the relationship
between features as the criterion [24], and the wrapper type is based on the relationship
between features and the target variable as the criterion [25]. The embedded type is usually
used for high-dimensional data features [26,27]. The wrapper and hybrid approach types
can obtain better results [28], but the filter type is usually used when considering the
computational cost and a large number of features [26,27]. Therefore, this study used
the filter feature selection to calculate feature weights, such as the FSDD, belonging to a
clustering algorithm [29].

The FSDD calculates the distance discriminant factor of features that are based on
the variance distance between feature clusters and within clusters. Due to the low com-
putational complexity of the FSDD, it is suitable for high-dimensional problems or online
feature selection [30]. The feature cannot obtain high numerical factors if they have good
separation features, but there is a large distance within clusters. The features were obtained
through signal analysis in this study, and then the factors of each feature were obtained
from the FSDD. The features were entered into the classifier in the order of factors, and
then the types of motor failures were identified by the classifier.

This article combines DE with feature factors after feature selection to optimize the
feature ranking. DE is an effective and simple global optimization algorithm. The conver-
gence speed and robustness of common benchmark functions and practical problems are
better than those of many algorithms [31]. Finally, the recognition results of the BPNN
were compared with the result of LDA. An artificial neural network (ANN) is a common
nonlinear function processor that imitates the structure and pattern of the human brain [32].
The performance of the learning process of the neural network depends on the weights of
the neural network in the training phase. A BPNN [33] is a supervised machine learning
technique that adjusts its weights to minimize the error of the calculated output [33], and
it is suitable for identifying nonlinear relationships [34]. In a feedforward ANN, the data
flow has no feedback paths [35]. A BPNN is used in the fault diagnosis problem of NPC
inverters [36], high-impedance faults [37] and virtual speed sensors for DC motors [38],
while LDA is often used for supervised feature extraction and can also maximize the
variance between classes based on linear projections, minimize the intra-class variance and
finally obtain the largest separation between the feature sets in each class [39]. LDA can be
used as a supervised classifier, through different types of data to maximize separation [40].

Based on the above-mentioned related literature, this research proposes a fault iden-
tification system for a BLDC established by Hall signals, which includes signal analysis
selection, feature selection and classifiers.
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2. Experimental Setup and Hardware Design
2.1. Experimental Design

This section introduces the experimental equipment, experimental architecture and
signal samples in this research and studies the healthy and three different types of faults
in a BLDC to build a fault classification system. A total of 750 samples of Hall signal
data records for each motor and the measured signals were analyzed by the HHT in
Matlab. After the analysis, the extracted features that can reflect the motor conditions were
normalized so that the feature values of the 4 motor types were between 0 and 1, which
avoids the gradient explosion problem in the classifier. Additionally, we will discuss the
signals of the four conditions to grasp the operating conditions of the motor.

The BLDC (420 W/3020 rpm/DC 24 V/60 Hz) had the following three fault conditions
in this experiment: bearing fault, stator winding fault and rotor fault. The data acquisition
system (NI PXIe-1073) was used to acquire the Hall signal of the DC brushless motor, and
the sampling rate was 1000 Hz, and the measurement time was 1500 s. There was a total
of 1500 s of measurement records for BLDC motors in each condition, and the 1500-s data
were divided into 750 samples of data, every sample having 2000 points. The load was
simulated by an AC servo motor (11 kW/2000 rpm/69 Hz). Through the above equipment,
the measurement data of the BLDC Hall signal can be obtained.

2.2. Experimental Architecture

The process of this research is that the servo motor of the dynamometer generates the
opposite torque to the BLDC as the load, and then the BLDC motor drives the operation.
The BLDCM rated voltage was 24 V, and the motor rate speed was configured as 3020 RPM.
The BLDCM parameters are listed in Table 1. A total of four BLDCs were tested in this
experiment. One motor was normal, whereas the other three motors were faulty. The
faulty types included bearing damage in the inner raceway, winding short circuit and rotor
damage. The bearing inner raceway had a 1 mm physical crack. The winding short circuit
was set by exfoliating a part of the 2-coil insulation. The rotor damage was set by digging a
hole. The NI PXIe-1073 was used to capture the Hall signal during operation. The data from
the measurement were analyzed by Matlab for signal analysis, and then feature selection
was used to calculate the factor of the features. The rank of features was optimized by
DE after the features were ranked in descending order by the feature factors. Finally, the
results of the fault type identification from classifiers were returned. The experimental
process and configuration are shown in Figure 1.

Table 1. BLDC parameters.

Type Rated Current Rated Torque Rated Speed Rated Output Power Rated Efficiency

BL5K35030D 22.07 A 13.5 Kg-cm 3020 RPM 418.7 W 81.2%
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3. Proposed Method
3.1. Signal Analysis and Feature Extraction

The signal can be expressed in the time and frequency domains. In some cases, the
frequency domain of the signal can be presented in a clearer way than the time domain [41].
Additionally, the signals are usually significantly different elements. These scores cannot
be expressed in the same base function, meaning two or more base functions are required
to analyze the signal separately [42].

Dr. Norden E. Huang proposed the HHT in 1998, and it has since been widely
used in speech analysis and nonlinear and unstable signal analysis [43]. Empirical mode
decomposition is the basic theory of the HHT. IMFs through the Hilbert transform can be
used to obtain the Hilbert spectrum of the analysis data.

The original function of the input is represented by x(t), which can be decomposed
into n IMFs and trend functions through EMD. EMD is modeled as

x(t) =
n

∑
l=1

hl(t) + rn(t) (1)

Then, IMFs are brought into the Hilbert transform (HT) to obtain the instantaneous ampli-
tude and instantaneous frequency of the signals. The HT is modeled as

Hl(t) =
1
π

Pv
∞∫
−∞

hl(τ)

t− τ
dτ (2)
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where Pv is the caution principal value, which is to avoid the singularity of τ = t and
τ = ±∞. The Hilbert spectrum is formulated as

Zl(t) = hl(t) + jHl(t) = al(t)ejθl(t) (3)

where hl(t) represents the IMF, and Hl (t) can be obtained through Hilbert transforma-
tion. Among them, al(t) is the instantaneous amplitude, and θl (t) is the instantaneous
phase angle.

The four types of motor Hall signals were decomposed through empirical mode de-
composition, which separates the signal from the first to eighth layers (IMF1 to IMF8), and
the instantaneous amplitude and instantaneous frequency of each layer were obtained
through the Hilbert–Huang transform. Additionally, we then captured the maximum
(Tmax), average (Tmean), mean square error (Tmse), standard deviation (Tstd), maxi-
mum/mean (Tmax/Tmean) and maximum/root mean square (Tmax/Trms) of the time
domain, and the maximum (Fmax), average (Fmean), mean square error (Fmse), standard
deviation (Fstd), maximum/average (Fmax/Fmean) and maximum/root mean square
(Fmax/Frms) of the frequency domain. Each IMF took 12 features and normalized them so
that the feature values of the 4 motor types were distributed between 0 and 1. This step
obtained a total of 96 features, as shown in Table 2.

Table 2. Feature extraction of the HHT.

Max Mean Mse Std Max/Mean Max/Rms

Time
domain

IMF1 F1 F2 F3 F4 F5 F6
IMF2 F7 F8 F9 F10 F11 F12
IMF3 F13 F14 F15 F16 F17 F18
IMF4 F19 F20 F21 F22 F23 F24
IMF5 F25 F26 F27 F28 F29 F30
IMF6 F31 F32 F33 F34 F35 F36
IMF7 F37 F38 F39 F40 F41 F42
IMF8 F43 F44 F45 F46 F47 F48

Frequency
domain

IMF1 F49 F50 F51 F52 F53 F54
IMF2 F55 F56 F57 F58 F59 F60
IMF3 F61 F62 F63 F64 F65 F66
IMF4 F67 F68 F69 F70 F71 F72
IMF5 F73 F74 F75 F76 F77 F78
IMF6 F79 F80 F81 F82 F83 F84
IMF7 F85 F86 F87 F88 F89 F90
IMF8 F91 F92 F93 F94 F95 F96

The normal BLDC Hall signal was decomposed by the empirical mode, and it gener-
ated the IMF waveform, as shown in Figure 2a. The transform first extracted a signal of a
high frequency, and the subsequent layers of the IMF were low-frequency waveforms.

The feature map is a schematic of the features from 3000 pieces of data, and the feature
map was drawn by Matlab. The vertical axis of the feature map is the number of features,
and the horizontal axis is the number of data. As it is shown in Figure 2b, the features from
the four types of motors are highly similar, and there is no obvious difference.
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3.2. Feature Selection

The system includes feature selection in order to pick out the few critical features
from the signal. The feature selection was implemented using the FSDD of the clustering
algorithm to calculate the category separability of features. The high value of the factor
represents an important feature. Additionally, the features were ranked in descending
order by feature factors after feature selection. The features of the Hall signal extracted after
signal analysis can reduce the recognition rate of the classifier or not affect the recognition
result by feature selection and deletion, which can save the cost of the calculation of the
recognition system.

The feature distance discriminant factor λm is based on the Euclidean distance between
the features of the same category dm

w and the Euclidean distance between the features of
different classes dm

b . The flow chart of the FSDD is shown in Figure 3. The Euclidean
distance of the feature was calculated by the center of the category feature gm

c and the
center of the sample feature gm

i , where C, m and i are the category number, feature number
and sample number. qm

i is the feature of the sample. The compensation factor ηm was
calculated by the distance variance um

b and vm
w . The calculation procedure is as follows:

Step 1. Calculate the variance and average of all the samples in the mth feature.

σ2
m =

1
N

N

∑
i=1

(
qm

i − qm
)2 (4)

qm =
1
N

N

∑
i=1

qm
i (5)

Step 2. Calculate the variance and the average of the sample of class C in the mth feature.

σ2
m(C) =

1
NC

NC

∑
i=1

(
qm

i − qm
C

)2
(6)

qC
m =

1
NC

NC

∑
i=1

qm
i (7)
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Step 3. Calculate the weighted variance of the class center gC at the mth feature.

σ′′ 2m =
C

∑
C=1

ρC(gm
C − gm)2 (8)

gm =
C

∑
C=1

ρCgm
C (9)

Step 4. Calculate the inter-class distance db of the mth feature and the intra-class distance
dw of the mth feature.

dm
b =

σ′′ 2m
σ2

m
(10)

dm
w = 2

C
∑

C=1
ρCσ2

m(C)

σ2
m

(11)

ρC =
NC

∑
C=1

NC
(12)

Step 5. Calculate the variance factor vm
b of dm

b in the mth feature and the variance factor vm
w

of dm
w in the mth feature.

vm
b =

max‖gm
i − gm

C ‖
min‖gm

i − gm
C ‖

(13)

‖gm
i − gm

C ‖ =
gm

i − gm
C

σ2
m

(14)

vm
w =

max(dm
w)

min(dm
w)

(15)

Step 6. Calculate the compensation factor of the mth feature.

ηm =
1

vm
w
+

1
vm

b
(16)

Step 7. Calculate the distance discrimination factor of the mth feature.

λm = dm
b − ηmdm

w (17)

Step 8. Normalize the distance discriminant factor.

λm′ =
λm −min(λm)

max(λm)−min(λm)
(18)



Symmetry 2021, 13, 1291 8 of 15
Symmetry 2021, 13, 1291 8 of 15 
 

Start

Calculate       and        of all the 
samples in the 𝑚th feature

Calculate        and        of the sample 
of class C in the 𝑚th feature

Calculate      factor of the 𝑚th 
feature

Calculate       of the 𝑚th feature 
and       of the 𝑚th feature

Calculate       and       in the 𝑚th 
feature, respectively

Calculate       of the 𝑚th feature

Normalize the distance 
discriminant factors

End

Calculate       of the class center at 
the 𝑚th feature

Input the features set of C classes 
consists of N samples

 
Figure 3. Flow chart of the FSDD. 

3.3. Differential Evolution 
The differential evolution proposed by Storn and Price is an optimization technology 

used to solve various complex problems [31]. The calculation principle is similar to the 
genetic algorithm (GA), including three mechanisms of mutation, crossover and selection. 
The offspring are derived from random parental parameter mutations, as shown in Figure 
4. At the same time, this algorithm refers to particle swarm optimization (PSO) to make 
the evolution direction approach the best particle. DE is a random search algorithm, and 
the randomness used in this algorithm prevents the algorithm from falling into the local 
optimum. Therefore, it can be used for many important problems that need to be opti-
mized, including neural network training, and Bayesian network inference [44]. The algo-
rithms are combined with the DE algorithm to improve the computational efficiency or im-
prove the recognition rate [45,46]. In this article, the identification result was set as the fitness 
value, the input was the feature rank and the output was the new feature ranking, and the 
feature ranking order was optimized by DE after features were ranked to improve the iden-
tification. The calculation procedure of the differential evolution algorithm is as follows: 
Step 1. Initially, set the parameters including the number of particles and the number of 

iterations j. G1,0  is the first generation input of the first particle of the particle 
group initially. 

Step 2. Calculate the fitness value of the first generation of the first particle. 
Step 3. Randomly select the parameters in the offspring G1,j , G2,j and G3,j to produce 

mutations. 

Figure 3. Flow chart of the FSDD.

3.3. Differential Evolution

The differential evolution proposed by Storn and Price is an optimization technology
used to solve various complex problems [31]. The calculation principle is similar to the
genetic algorithm (GA), including three mechanisms of mutation, crossover and selection.
The offspring are derived from random parental parameter mutations, as shown in Figure 4.
At the same time, this algorithm refers to particle swarm optimization (PSO) to make the
evolution direction approach the best particle. DE is a random search algorithm, and
the randomness used in this algorithm prevents the algorithm from falling into the local
optimum. Therefore, it can be used for many important problems that need to be optimized,
including neural network training, and Bayesian network inference [44]. The algorithms
are combined with the DE algorithm to improve the computational efficiency or improve
the recognition rate [45,46]. In this article, the identification result was set as the fitness
value, the input was the feature rank and the output was the new feature ranking, and
the feature ranking order was optimized by DE after features were ranked to improve
the identification. The calculation procedure of the differential evolution algorithm is
as follows:
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Step 1. Initially, set the parameters including the number of particles and the number of
iterations j. G1,0 is the first generation input of the first particle of the particle
group initially.

Step 2. Calculate the fitness value of the first generation of the first particle.
Step 3. Randomly select the parameters in the offspring G1,j , G2,j and G3,j to produce mutations.

Vr,j+1 = G1,j + F
(
G2,j − G3,j

)
(19)

Step 4. The step of crossover is a random operation that bases on rand and CR. If CR is
smaller, it means vectors U and G are more similar.

Ur,j+1 =

{
Vr,j+1 i f rand ≤ CR
Gr,j+1 i f rand > CR

}
(20)

Step 5. The step of elimination obtains a better fitness value through the greedy algorithm.

Ur,j+1 =

{
Ur,j+1 i f Ur,j+1 ≤ Gr,j

Gr,j

}
(21)

Step 6. The stopping rule is whether the fitness value has converged, meaning the optimal
value. The fitness value is one minus the accuracy rate (1-ACC). If the number of
calculations reaches the iterations j, it stops. Otherwise, repeat steps 3 to 5.

Step 7. Finally, all particles converge to obtain the best global solution. After the optimiza-
tion, a set of solutions can be obtained as the best particle coordinate Gbest which
is the optimized importance of the feature.
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3.4. Classifier

The feature rank is obtained by feature selection, which is conducive to the classifier of
the neural network model. The nonlinear classifier BPNN will be compared with the linear
projection classifier LDA. The classifier randomly selects 70% of the data from the motor
samples, and the features are brought into the classifier for training, and the remaining 30%
of data are used as test samples.

3.4.1. Backpropagation Neural Network

A BPNN imitates the capabilities of neural system resource processing data and dis-
criminant analysis by simulating the structure of biological data processing. Among them,
neurons are used for message transmission and backpropagation to correct errors in order
to achieve the best identification result. A BPNN has three structures that are composed of
an input layer, a hidden layer and an output layer. The model structure is shown in Figure 5.
By entering the input value X = (X 1, X2. . . Xn) and weights W = (W 1, W2. . . Wn) in the
input layer, the expected output result Y = (Y 1, Y2, Y3, Y4) will be obtained after the hid-
den layer H = (H 1, H2, H3. . . Hk). Then, the error will be corrected by backpropagation,
and the new weight will be brought into the forward propagation to obtain the output
result O = (O 1, O2, O3, O4).
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3.4.2. Linear Discriminant Analysis

LDA is used to obtain the new coordinate position of the best distance between the
classes and minimize the distance within the class through the projection coordinate axis,
which is used to judge different classes. First, one must calculate the intra-class distance
matrix Sw and the inter-category distance matrix Sb as

Sw =
1
N

C

∑
c=1

N

∑
x∈XN

(x− µc)(x− µc)
T (22)

Sb =
1
C

C

∑
c=1

(µc − µ)(µc − µ)T (23)

Secondly, the projection matrix W = S−1
w Sb must be calculated by Sw and Sb, where the

maximum W is the final projection matrix, and the sample features and projection matrix
should be converted into new sample features for classification.
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4. Method Efficiency and Robustness
4.1. Dataset Results

We unified the UCI dataset identification results when the initial factor was the
same [47]. Then, the feature rank of the dataset was optimized so the features were sequen-
tially entered into the classifier. From Table 3, it can be observed that the identification rate
of the BPNN can be significantly improved when the factors are optimized by DE.

Table 3. The accuracy rate of the different recognition systems.

Dataset Optimize Classifier Number
of Feature Accuracy (%)

segmentation

– BPNN

19

85.62
DE BPNN 91.77
– LDA 78.35

DE LDA 78.42

sonar

– BPNN

60

84.66
DE BPNN 87.21
– LDA 71.20

DE LDA 72.24

wine

– BPNN

13

77.96
DE BPNN 89.81
– LDA 98.30

DE LDA 98.90

vowel

– BPNN

10

44.52
DE BPNN 49.61
– LDA 58.10

DE LDA 60.60

WDBC

– BPNN

30

62.74
DE BPNN 66.98
– LDA 95.30

DE LDA 95.63

4.2. Identification System Validation Results

The work in this article built a system, and an original signal was brought into the
system. In the classifier part of the system, the signal was separately brought into the
BPNN and LDA to compare different classifiers which can obtain better results in BLDC
fault diagnosis. The features from 2100 samples of data were brought into the classifier
for training, whilst the features from the remaining 900 samples of data were used as test
samples, and this was repeated 100 times to calculate the average accuracy rate in order
to know the resolution of the degree of the type of motor failure. Initially, the input was
96 features, and then the number of inputs decreased after the feature selection. The data
matrix was 96 × 3000, which means 96 features and 3000 samples from four types of motor.

The signal was directly recognized by the classifier after the feature analysis by the
HHT. Although the number of features was the largest, there may be more features that
cannot clearly distinguish the fault, which led to an accuracy rate for the BPNN of 95.70%,
and an accuracy rate for LDA of 74.89%. Feature selection can reduce computational costs
by determining the features of less influence and redundancy.

In Figure 6, the accuracy rate is 93.96% when the FSDD selects 14 features. When the
data are brought into the linear classifier LDA, the best accuracy rate is 74.57% in the FSDD
feature selection, as shown in Figure 6. Of the two methods, the BPNN can obtain a higher
recognition rate and smooth accuracy rate, as when the number of features is 14 in the
BPNN, the accuracy rate is 93.96%, as shown in Table 4. From Table 3, it can be observed
that the identification rate of the BPNN can be significantly improved when the factors are
optimized by DE. However, the result of LDA would not obviously improve. Therefore, it
is concluded that the BPNN is a better classifier in this identification system.
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Table 4. The accuracy rate of the better recognition results in two systems.

Signal Analysis Feature Selection Classifier Number of Features Accuracy (%)

HHT FSDD BPNN 14 93.96
HHT FSDD LDA 56 74.57

In Figure 6, we know that the accuracy rate starts to stabilize when the number of
features is 14. From this finding, the work in this article used a differential evolution to
optimize the factor of the first 14 important features. The first 14 features are F36, F33, F81,
F18, F61, F57, F87, F94, F62, F93, F59, F12, F37 and F28.

This research used DE to optimize the factor of the first 14 features that were intro-
duced into the BPNN and LDA. The accuracy rate was increased from 93.96% to 96.00%,
and the recognition rate was improved by 3%, as shown in Table 5. The factor of features
selected by the FSDD that were optimized by DE can effectively increase the recognition
rate and reduce the number of features by 85%.

Table 5. The accuracy rate of the different recognition systems.

Signal
Analysis

Feature
Selection Optimizer Classifier Number

of Features Accuracy (%)

HHT – – BPNN 96 95.70
HHT FSDD – BPNN 14 93.96
HHT FSDD DE BPNN 14 96.00

The systems conducted signal analysis by the DWT, and the features that were brought
into the various classifiers [48] compare with those of the identification system presented in
this article. The result of the initial system that just has the HHT and the BPNN was 95.70%,
already better than the other systems. The result of the systems established from a variety
of classifiers with the DWT were not higher than 90%, and the result of the identification
system proposed in this article was 96.00%, as shown in Table 6.

Table 6. The accuracy rate of the different recognition systems.

Signal
Analysis

Feature
Selection Optimizer Classifier Number

of Features
Accuracy

(%)

HHT – – BPNN 96 95.70
HHT FSDD DE BPNN 14 96.00
DWT – – Fine Gaussian SVM [48] 112 74.40
DWT – – Fine KNN [48] 112 76.30
DWT – – Bagged Trees [48] 112 89.90
DWT – – Subspace KNN [48] 112 76.30
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The Hall signal was analyzed by the HHT, and then the FSDD was used for feature
selection, which was combined with DE to optimize the importance of features. Finally, fea-
tures were brought into the BPNN to obtain the identification result. In Table 7, the original
signal is added with different proportions of white noise. After the feature importance was
optimized, the noise-free accuracy rate was 96.00%, which is better than the non-optimized
accuracy rate of 93.96%. The accuracy rate was 92.04% when the SNR was 20 dB, which is
still better than the non-optimized accuracy rate of 90.84% when the SNR was 20 dB. It is
confirmed that this method has a robust anti-noise ability.

Table 7. The accuracy rate in the different SNRs.

Signal
Analysis

Feature
Selection Optimizer Classifier Number

of Features ∞ dB 30 dB 25 dB 20 dB

HHT – – BPNN
14

93.96 92.66 92.13 90.84
HHT FSDD DE BPNN 96.00 94.28 92.42 92.04

5. Conclusions

In fault types, bearing damage, stator winding failure and rotor damage make up the
majority. The complexity of fault detection is reduced through this system in executing
the preliminary diagnosis. This article presented a fault classification system for BLDCs.
This system includes four subsystems which are signal analysis, feature selection, ranking
optimization and classifiers. In this article, the proposed system reduced the number
of features to 14, which significantly eliminated 85% of the redundant features, and the
final accuracy rate reached 96.00%, which is higher than the result of the identification of
96 features. In terms of the anti-noise ability, the original signal was added with different
white Gaussian noise SNRs = 20 dB. The accuracy rate was 92.04% in the same 14 features;
thus, the identification system has a robust anti-noise ability.

Author Contributions: Conceptualization, C.-Y.L. and C.-H.H.; methodology, C.-Y.L. and C.-H.H.;
software, C.-Y.L. and C.-H.H.; validation, C.-Y.L. and C.-H.H.; formal analysis, C.-Y.L. and C.-H.H.;
investigation, C.-Y.L. and C.-H.H.; resources, C.-Y.L. and C.-H.H.; data curation, C.-Y.L. and C.-H.H.;
writing-original draft preparation, C.-Y.L. and C.-H.H.; writing-review and editing, C.-Y.L. and C.-
H.H.; visualization, C.-Y.L. and C.-H.H.; supervision, C.-Y.L.; project administration, C.-Y.L.; funding
acquisition, C.-Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Choi, J.H.; Chun, Y.D.; Han, P.W.; Kim, M.J.; Koo, D.H.; Lee, J.; Chun, J.S. Design of high power permanent magnet motor with

segment rectangular copper wire and closed slot opening on electric vehicles. IEEE Trans. Magn. 2010, 46, 2070–2073. [CrossRef]
2. Usman, A.; Rajpurohit, B.S. Time-efficient fault diagnosis of a BLDC motor drive deployed in electric vehicle applications. In Pro-

ceedings of the 2020 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 29 October–1 November 2020;
pp. 2377–6919.

3. Tran, M.K.; Bhatti, A.; Vrolyk, R.; Wong, D.; Panchal, S.; Fowler, M.; Fraser, R. A Review of Range Extenders in Battery Electric
Vehicles: Current Progress and Future Perspectives. World Electr. Veh. J. 2021, 12, 54. [CrossRef]

4. Panchal, S. Experimental Investigation and Modeling of Lithium-Ion Battery Cells and Packs for Electric Vehicles. Ph.D. Thesis,
University of Ontario Institute of Technology, Oshawa, ON, Canada, 2016.

5. Panchal, S. Impact of Vehicle Charge and Discharge Cycles on the thermal Characteristics of Lithium-Ion Batteries. Master’s
Thesis, University of Waterloo, Waterloo, ON, Canada, 2014.

6. Akhoundzadeh, M.H.; Panchal, S.; Samadani, E.; Raahemifar, K.; Fowler, M.; Fraser, R. Investigation and simulation of electric
train utilizing hydrogen fuel cell and lithium-ion battery. Sustain. Energy Technol. Assess. 2021, 46, 101234.

http://doi.org/10.1109/TMAG.2010.2041908
http://doi.org/10.3390/wevj12020054


Symmetry 2021, 13, 1291 14 of 15

7. Viaene, J.D.; Verbelen, F.; Derammelaere, S.; Stockman, K. Energy-efficient sensorless load angle control of a BLDC motor using
sinusoidal currents. IET Electr. Power Appl. 2018, 12, 1378–1389. [CrossRef]

8. Mousmi, A.; Abbou, A.; Houm, Y.E. Binary diagnosis of hall effect sensors in brushless dc motor drives. IEEE Trans. Power
Electron. 2020, 35, 3859–3868. [CrossRef]

9. Zhang, Q.; Feng, M. Fast fault diagnosis method for hall sensors in brushless DC motor drives. IEEE Trans. Power Electron. 2019,
34, 2585–2596. [CrossRef]

10. Grubic, S.; Aller, J.M.; Lu, B.; Habetler, T.G. A survey on testing and monitoring methods for stator insulation systems of
low-voltage induction machines focusing on turn insulation problems. IEEE Trans. Ind. Electron. 2008, 55, 4127–4136. [CrossRef]

11. Shamsi-Nejad, M.A.; Nahid-Mobarakeh, B.; Pierfederici, S.; Meibody-Tabar, F. Fault tolerant and minimum loss control of
double-star synchronous machines under open phase conditions. IEEE Trans. Ind. Electron. 2008, 55, 1956–1965. [CrossRef]

12. Zidani, F.; Diallo, D.; Benbouzid, M.E.H.; Nait-Said, R. A fuzzy-based approach for the diagnosis of fault modes in a voltage-fed
PWM inverter induction motor drive. IEEE Trans. Ind. Electron. 2008, 55, 586–593. [CrossRef]

13. Rajagopalan, S.; Aller, J.M.; Restrespo, J.A.; Habetler, T.G.; Harley, R.G. A analytic-wavelet-ridge-based detection of dynamic
eccentricity in brushless direct current (BLDC) motors functioning under dynamic operating conditions. IEEE Trans. Ind. Electron.
2007, 54, 1410–1419. [CrossRef]

14. Roux, W.I.; Harley, R.G.; Habetler, T.G. Detecting rotor faults in low power permanent magnet synchronous machines. IEEE
Trans. Power Electron. 2007, 22, 322–328. [CrossRef]

15. Kang, M.; Kim, J.; Kim, J.M. High-performance and energy-efficient fault diagnosis using effective envelope analysis and
denoising on a general-purpose graphics processing unit. IEEE Trans. Power Electron. 2015, 30, 2763–2776. [CrossRef]

16. Kang, M.; Kim, J.; Kim, J.M.; Tan, A.C.C.; Kim, E.Y.; Choi, B.K. Reliable fault diagnosis for low-speed bearings using individually
trained support vector machines with kernel discriminative feature analysis. IEEE Trans. Power Electron. 2015, 30, 2786–
2797. [CrossRef]

17. Ebrahimi, B.M.; Faiz, J.; Roshtkhari, M.J. Static-, dynamic-, and mixed-eccentricity fault diagnoses in permanent-magnet
synchronous motors. IEEE Trans. Ind. Electron. 2009, 56, 4727–4739. [CrossRef]

18. Zhang, J.H.; Zhao, J.; Zhou, D.; Huang, C. High-performance fault diagnosis in PWM voltage-source inverters for vector-controlled
induction motor drives. IEEE Trans. Power Electron. 2014, 11, 6087–6099. [CrossRef]

19. Nandi, S.; Toliyat, H.A.; Li, X. Condition monitoring and fault diagnosis of electrical motors—A review. IEEE Trans. Energy
Convers. 2005, 20, 719–729. [CrossRef]

20. Herrera, A.L.M.; Carrillo, L.M.L.; Ramirez, M.L.; Colores, S.S.; Yepez, E.C. Gabor and the Wigner-Ville transforms for broken
rotor bars detection in induction motors. In Proceedings of the International Conference on Electronics, Communications and
Computers, Cholula, Mexico, 26–28 February 2014.

21. Osman, S.; Wang, W. A morphological hilbert-huang transform technique for bearing fault detection. IEEE Instrum. Meas. Mag.
2016, 65, 2646–2656. [CrossRef]

22. Goharrizi, A.Y.; Sepehri, N. Internal leakage detection in hydraulic actuators using empirical mode decomposition and hilbert
spectrum. IEEE Trans. Instrum. Meas. 2012, 61, 368–378. [CrossRef]

23. Song, Q.; Ni, J.; Wang, G. A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Trans. Knowl.
Data Eng. 2013, 25, 1–14. [CrossRef]

24. Estevez, P.A.; Tesmer, M.; Perez, C.A.; Zurada, J.M. Normalized mutual information feature selection. IEEE Trans. Neural Netw.
2009, 20, 189–201. [CrossRef]

25. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]

26. Lin, F.J.; Chen, C.I.; Lin, J.R. Detection of mechanical resonance frequencies for interior permanent magnet synchronous motor
servo drives based on wavelet multiresolution filter. IET J. Eng. 2020, 2020, 827–833. [CrossRef]

27. Liu, X.Y.; Liang, Y.; Wang, S.; Yang, Z.Y.; Ye, H.S. A hybrid genetic algorithm with wrapper-embedded approaches for feature
selection. IEEE Access 2018, 6, 22863–22874. [CrossRef]

28. Liu, H.; Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005,
17, 491–502.

29. Liu, C.; Wu, C.; Jiang, L. Evolutionary clustering framework based on distance matrix for arbitrary-shaped data sets. IET Signal
Process. 2016, 10, 478–485. [CrossRef]

30. Liang, J.; Yang, S.; Winstanley, A. Invariant optimal feature selection: A distance discriminant and feature ranking based solution.
Pattern Recognit. 2008, 41, 1429–1439. [CrossRef]

31. Fan, Q.; Yan, X. Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation
strategies. IEEE Trans. Cybern. 2016, 46, 219–232. [CrossRef]

32. Filippetti, F.; Franceschini, G.; Tassoni, C.; Vas, P. Recent developments of induction motor drives fault diagnosis using AI
techniques. IEEE Trans. Ind. Electron. 2000, 47, 994–1004. [CrossRef]

33. Chen, D.; Liu, Y.; Zhou, J. Optimized neural network by genetic algorithm and its application in fault diagnosis of three-level
inverter. In Proceedings of the 2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes
(SAFEPROCESS), Xiamen, China, 5–7 July 2019.

http://doi.org/10.1049/iet-epa.2018.5059
http://doi.org/10.1109/TPEL.2019.2934794
http://doi.org/10.1109/TPEL.2018.2844956
http://doi.org/10.1109/TIE.2008.2004665
http://doi.org/10.1109/TIE.2008.918485
http://doi.org/10.1109/TIE.2007.911951
http://doi.org/10.1109/TIE.2007.894699
http://doi.org/10.1109/TPEL.2006.886620
http://doi.org/10.1109/TPEL.2014.2356207
http://doi.org/10.1109/TPEL.2014.2358494
http://doi.org/10.1109/TIE.2009.2029577
http://doi.org/10.1109/TPEL.2014.2301167
http://doi.org/10.1109/TEC.2005.847955
http://doi.org/10.1109/TIM.2016.2598019
http://doi.org/10.1109/TIM.2011.2161938
http://doi.org/10.1109/TKDE.2011.181
http://doi.org/10.1109/TNN.2008.2005601
http://doi.org/10.1109/TPAMI.2005.159
http://doi.org/10.1049/joe.2019.1114
http://doi.org/10.1109/ACCESS.2018.2818682
http://doi.org/10.1049/iet-spr.2015.0335
http://doi.org/10.1016/j.patcog.2007.10.018
http://doi.org/10.1109/TCYB.2015.2399478
http://doi.org/10.1109/41.873207


Symmetry 2021, 13, 1291 15 of 15

34. Lin, J.W.; Chao, C.T.; Chiou, J.S. Determining neuronal number in each hidden layer using earthquake catalogues as training
data in training an embedded back propagation neural network for predicting earthquake magnitude. IEEE Access 2018, 6,
52582–52597. [CrossRef]

35. Amrutha, J.; Ajai, A.S.R. Performance analysis of backpropagation algorithm of artificial neural networks in verilog. In
Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication
Technology (RTEICT), Bangalore, India, 18–19 May 2018.

36. Abohagar, A.A.; Mustafa, M.W. Back propagation neural network aided wavelet transform for high impedance fault detection
and faulty phase selection. In Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota
Kinabalu, Malaysia, 2–5 December 2012.

37. Gaxiola, F.; Melin, P.; Valdez, F.; Castillo, O. Backpropagation learning method with interval type-2 fuzzy weights in neural net-
works. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013.

38. Montesdeoca-Contreras, J.C.; Zambrano-Abad, J.C.; Morales-Garcia, J.A.; Ávila-Campoverde, R.S. Virtual speed sensor for dc
motor using back-propagation artificial neural networks. In Proceedings of the 2014 IEEE international autumn meeting on
power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 5–7 November 2014.

39. Niu, G.; Son, J.D.; Widodo, A.; Widodo, A.; Yang, B.S.; Hwang, D.H.; Kang, D.S. A comparison of classifier performance for fault
diagnosis of induction motor using multi-type signals. Struct. Health Monit. 2007, 6, 215–229.

40. Dhir, C.S.; Lee, S.Y. Discriminant independent component analysis. IEEE Trans. Neural Netw. 2011, 22, 845–857. [CrossRef] [PubMed]
41. Stankovic, L.; Thayaparan, T.; Dakovic, M. Signal decomposition by using the S-method with application to the analysis of hf

radar signals in sea-clutter. IEEE Trans. Signal Process. 2006, 54, 4332–4342. [CrossRef]
42. Kowalski, M.; Torresani, B. Random models for sparse signals expansion on unions of bases with application to audio signals.

IEEE Trans. Signal Process. 2008, 56, 3468–3481. [CrossRef]
43. Zão, L.; Coelho, R. On the estimation of fundamental frequency from nonstationary noisy speech signals based on the Hilbert–

Huang transform. IEEE Signal Process Lett. 2018, 25, 248–252. [CrossRef]
44. Strasser, S.; Sheppard, J.; Fortier, N.; Goodman, R. Factored Evolutionary Algorithms. IEEE Trans. Evol. Comput. 2017, 21,

281–293. [CrossRef]
45. Hu, K.; Liu, Z.; Huang, K.; Dai, C.; Gao, S. Improved differential evolution algorithm of model-based diagnosis in traction

substation fault diagnosis of high-speed railway. IET Electr. Syst. Transp. 2016, 6, 163–169. [CrossRef]
46. Secmen, M.; Tasgetiren, M.F. Ensemble of differential evolution algorithms for electromagnetic target recognition problem. IET

Radar Sonar Navig. 2013, 7, 780–788. [CrossRef]
47. UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml (accessed on 5 September 2019).
48. Ali, M.Z.; Shabbir, M.N.S.K.; Liang, X.; Zhang, Y.; Hu, T. Machine learning-based fault diagnosis for single- and multi-faults in

induction motors using measured stator currents and vibration signals. IEEE Trans. Ind. Appl. 2019, 55, 2378–2391. [CrossRef]

http://doi.org/10.1109/ACCESS.2018.2870189
http://doi.org/10.1109/TNN.2011.2122266
http://www.ncbi.nlm.nih.gov/pubmed/21521666
http://doi.org/10.1109/TSP.2006.880248
http://doi.org/10.1109/TSP.2008.920144
http://doi.org/10.1109/LSP.2017.2782267
http://doi.org/10.1109/TEVC.2016.2601922
http://doi.org/10.1049/iet-est.2015.0003
http://doi.org/10.1049/iet-rsn.2012.0212
http://archive.ics.uci.edu/ml
http://doi.org/10.1109/TIA.2019.2895797

	Introduction 
	Experimental Setup and Hardware Design 
	Experimental Design 
	Experimental Architecture 

	Proposed Method 
	Signal Analysis and Feature Extraction 
	Feature Selection 
	Differential Evolution 
	Classifier 
	Backpropagation Neural Network 
	Linear Discriminant Analysis 


	Method Efficiency and Robustness 
	Dataset Results 
	Identification System Validation Results 

	Conclusions 
	References

