Geometric Constants in Banach Spaces Related to the Inscribed Quadrilateral of Unit Balls
Abstract
:1. Introduction
2. Preliminaries
3. Constant
4. The Coefficient of Weak Orthogonality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Komuro, N.; Saito, K.; Tanaka, R. On the class of Banach spaces with James constant . Math. Nachrichten 2016, 289, 1005–1020. [Google Scholar] [CrossRef]
- Alonso, J.; Martin, P.; Papini, P. Wheeling around von Neumann-Jordan constant in Banach spaces. Stud. Math. 2008, 188, 135–150. [Google Scholar] [CrossRef] [Green Version]
- Gao, J. Research on normal structure in a Banach space via some parameters in its dual space. Commun. Korean Math. Soc. 2019, 34, 465–475. [Google Scholar]
- Gao, J. On the generalized Pythagorean parameters and the applications in Banach spaces. Discret. Contin. Dyn. Syst. Ser. B 2007, 8, 557–567. [Google Scholar] [CrossRef]
- Dinarvand, M. On a generalized geometric constant and sufficient conditions for normal structure in Banach spaces. Acta Math. Sci. 2017, 37, 1209–1220. [Google Scholar] [CrossRef]
- Jiménez-Melado, A.; Llorens-Fuster, E.; Saejung, S. The von Neumann-Jordan constant, weak orthogonality and normal structure in Banach spaces. Proc. Am. Math. Soc. 2006, 134, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Cho, D.H.; Choi, Y.S. The Bishop-Phelps-Bollobás theorem on bounded closed convex sets. J. Lond. Math. Soc. 2016, 93, 502–518. [Google Scholar] [CrossRef] [Green Version]
- Fabiano, C.; Vinícius, M.; Elói, M. A generalized Banach—Stone theorem for C0(K, X) spaces via the modulus of convexity of X*. J. Math. Anal. Appl. 2017, 450, 12–20. [Google Scholar]
- Tanaka, R. Tingley’s problem on symmetric absolute normalized norms on . Acta Math. Sin. (Engl. Ser.) 2014, 30, 1324–1340. [Google Scholar] [CrossRef]
- Chmieliński, J. Normed spaces equivalent to inner product spaces and stability of functional equations. Aequationes Math. 2014, 87, 147–157. [Google Scholar] [CrossRef] [Green Version]
- De la Harpe, P. Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space; Lecture Notes in Mathematics; Springer: Berlin, Germany; New York, NY, USA, 1972; Volume 285. [Google Scholar]
- Zettili, N. Quantum Mechanics: Concepts and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2009. [Google Scholar]
- Amir, D. Characterizations of Inner Product Spaces, Operator Theory: Advances and Applications; 20 Birkhäuser Verlag: Basel, Switzerland, 1986. [Google Scholar]
- Alsina, C.; Sikorska, J.; Tomás, M.S. Norm Derivatives and Characterizations of Inner Product Spaces; World Scientific: Hackensack, NJ, USA, 2010. [Google Scholar]
- Moslehian, M.S.; Rassias, J.M. Power and Euler-Lagrange norms. Aust. J. Math. Anal. Appl. 2007, 4, 1–4. [Google Scholar]
- Fréchet, M. Sur la definition axiomatique dune classe d’espaces vectoriels distanciés applicables vectoriellement sur l’espace de Hilbert. Ann. Math. 1935, 36, 705–718. [Google Scholar] [CrossRef]
- Alonso, J.; Ullán, A. Moduli in normed linear spaces and characterization of inner product spaces. Arch. Math. 1992, 59, 487–495. [Google Scholar] [CrossRef]
- Nikodem, K.; Páles, Z.S. Characterizations of inner product spaces by strongly convex functions. Banach J. Math. Anal. 2011, 5, 83–87. [Google Scholar] [CrossRef]
- Day, M.M. Some characterizations of inner–product spaces. Trans. Am. Math. Soc. 1947, 62, 320–337. [Google Scholar] [CrossRef]
- Jordan, P.; von Neumann, J. On inner products in linear metric spaces. Ann. Math. 1935, 36, 719–723. [Google Scholar] [CrossRef]
- Clarkson, J.A. The von Neumann–Jordan constant for the Lebesgue space. Ann. Math. 1937, 38, 114–115. [Google Scholar] [CrossRef]
- Gao, J.; Lau, K.S. On the geometry of spheres in normed linear spaces. J. Aust. Math. Soc. Ser. A 1990, 48, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Kato, M.; Takahashi, Y. On the von Neumann–Jordan constant for Banach spaces. Proc. Am. Math. Soc. 1997, 125, 1055–1062. [Google Scholar] [CrossRef]
- Kato, M.; Maligranda, L.; Takahashi, Y. On James Jordan—Von Neumann constants and the normal structure coefficient of Banach spaces. Stud. Math. 2001, 144, 275–295. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y. Some geometric constants of Banach spaces—A unified approach. In Banach and Function Spaces II; Kato, M., Maligranda, L., Eds.; Yokohama Publishers: Yokohama, Japan, 2007; pp. 191–220. [Google Scholar]
- James, R.C. Uniformly non-square Banach spaces. Ann. Math. 1964, 80, 542–550. [Google Scholar] [CrossRef]
- Kolwicz, P.; Panfil, A. Non-square Lorentz spaces Γp,ω. Indag. Math. (N.S.) 2013, 24, 254–263. [Google Scholar] [CrossRef]
- Baronti, M.; Casini, E.; Papini, P.L. Triangles Inscribed in a Semicircle, in Minkowski Planes, and in Normed Spaces. J. Math. Anal. Appl. 2000, 252, 124–146. [Google Scholar] [CrossRef] [Green Version]
- Alonso, J. Llorens-Fuster, E. Geometric mean and triangles inscribed in a semicircle in Banach spaces. J. Math. Anal. Appl. 2008, 340, 1271–1283. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Liu, Q.; Li, Y. New Geometric Constants in Banach Spaces Related to the Inscribed Equilateral Triangles of Unit Balls. Symmetry 2021, 13, 951. [Google Scholar] [CrossRef]
- Mizuguchi, H. Some geometric constants and the extreme points of the unit ball of Banach spaces. Rev. Roum. Math. Pures Appl. 2015, 60, 59–70. [Google Scholar]
- Olaru, I.M.; Secelean, N.A. A New Approach of Some Contractive Mappings on Metric Spaces. Mathematics 2021, 9, 1433. [Google Scholar] [CrossRef]
- Ersin, G.; Diana, D.; Zoran, D.M.; Dženis, P.; Hassen, A. On Some Recent Results Concerning F-Suzuki-Contractions in b-Metric Spaces. Mathematics 2020, 8, 940. [Google Scholar]
- Jäntschi, L.; Bálint, D.; Bolboaca, S. Multiple Linear Regressions by Maximizing the Likelihood under Assumption of Generalized Gauss-Laplace Distribution of the Error. Comput. Math. Methods Med. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed]
- García-Falset, J.; Llorens-Fuster, E.; Mazcunán-Navarro, E.M. Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings. J. Funct. Anal. 2006, 233, 494–514. [Google Scholar] [CrossRef] [Green Version]
- Brodskii, M.; Milman, D. On the center of a convex Set. Dokl. Akad. Nauk SSSR (N.S.) 1948, 59, 837–840. [Google Scholar]
- Prus, S. Geometrical background of metric fixed point theory. In Handbook of Metric Fixed Point Theory; Kirk, W.A., Sims, B., Eds.; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2001; pp. 93–132. [Google Scholar]
- Sims, B. Orthogonality and fixed points of nonexpansive maps. Proc. Cent. Austral. Nat. Univ. 1988, 20, 179–186. [Google Scholar]
- Sims, B. A class of spaces with weak normal structure. Bull. Austral. Math. Soc. 1994, 50, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Dulst, V. Some more Banach spaces with normal structure. J. Math. Anal. Appl. 1984, 104, 285–289. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.; Liu, Q.; Li, Y. Geometric Constants in Banach Spaces Related to the Inscribed Quadrilateral of Unit Balls. Symmetry 2021, 13, 1294. https://doi.org/10.3390/sym13071294
Ahmad A, Liu Q, Li Y. Geometric Constants in Banach Spaces Related to the Inscribed Quadrilateral of Unit Balls. Symmetry. 2021; 13(7):1294. https://doi.org/10.3390/sym13071294
Chicago/Turabian StyleAhmad, Asif, Qi Liu, and Yongjin Li. 2021. "Geometric Constants in Banach Spaces Related to the Inscribed Quadrilateral of Unit Balls" Symmetry 13, no. 7: 1294. https://doi.org/10.3390/sym13071294
APA StyleAhmad, A., Liu, Q., & Li, Y. (2021). Geometric Constants in Banach Spaces Related to the Inscribed Quadrilateral of Unit Balls. Symmetry, 13(7), 1294. https://doi.org/10.3390/sym13071294