NMR Properties of the Cyanide Anion, a Quasisymmetric Two-Faced Hydrogen Bonding Acceptor
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Effect of Hydrogen Bonding on the NMR Parameters of NCH and CNH
3.2. Proton Bound Dimers of Cyanide
3.3. Solvation by the Cyanide Anions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015, 7, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Perrin, Z.; Carrasco, N.; Chatain, A.; Jovanovic, L.; Vettier, L.; Ruscassier, N.; Cernogora, G. An Atmospheric Origin for HCN-Derived Polymers on Titan. Processes 2021, 9, 965. [Google Scholar] [CrossRef]
- Akimov, M.G.; Fomina-Ageeva, E.V.; Dudina, P.V.; Andreeva, L.A.; Myasoyedov, N.F.; Bezuglov, V.V. ACTH(6–9)PGP Peptide Protects SH-SY5Y Cells from H2O2, tert-Butyl Hydroperoxide, and Cyanide Cytotoxicity via Stimulation of Proliferation and Induction of Prosurvival-Related Genes. Molecules 2021, 26, 1878. [Google Scholar] [CrossRef] [PubMed]
- Leavesley, H.B.; Li, L.; Prabhakaran, K.; Borowitz, J.L.; Isom, G.E. Interaction of Cyanide and Nitric Oxide with Cytochrome c Oxidase: Implications for Acute Cyanide Toxicity. Tox. Sci. 2008, 101, 101–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donato, D.B.; Nichols, O.; Possingham, H.; Moore, M.; Ricci, P.F.; Noller, B.N. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Environ. Int. 2007, 33, 974–984. [Google Scholar] [CrossRef]
- Meot-Ner, M. The ionic hydrogen bond. Chem. Rev. 2005, 105, 213–284. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-Y.; Yoo, C.-S. Physical and chemical transformations of sodium cyanide at high pressures. J. Chem. Phys. 2009, 131, 144507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, N.; Eichele, K.; Steimann, M.; Al-Sheikh, A.; Doser, B.; Ochsenfeld, C. Hydrogen bonds with cyanide ions? The structures of 1,3-diisopropyl-4,5-dimethylimidazolium cyanide and 1-isopropyl-3,4,5-trimethylimidazolium cyanide. Z. Anorg. Allg. Chem. 2006, 632, 2268–2275. [Google Scholar] [CrossRef]
- Černák, J.; Orendáč, M.; Potočňák, I.; Chomič, J.; Orendáčová, A.; Skoršepa, J.; Feher, A. Cyanocomplexes with one-dimensional structures: Preparations, crystal structures and magnetic properties. Coord. Chem. Rev. 2002, 224, 51–66. [Google Scholar] [CrossRef]
- Markley, T.J.; Toby, B.H.; Pearlstein, R.M.; Ramprasad, D. New Synthesis Routes to Lithium and Cesium Cyanide Salts. Inorg. Chem. 1997, 36, 3376–3378. [Google Scholar] [CrossRef]
- Lely, J.A.; Bijvoet, J.M. The crystal structure of lithium cyanide. Recl. Trav. Chim. Pays Bas 1942, 61, 244–252. [Google Scholar] [CrossRef]
- Ruiz-Bermejo, M.; de la Fuente, J.L.; Pérez-Fernández, C.; Mateo-Martí, E. A Comprehensive Review of HCN-Derived Polymers. Processes 2021, 9, 597. [Google Scholar] [CrossRef]
- Fernández, A.; Ruiz-Bermejo, M.; de la Fuente, J.L. Modelling the kinetics and structural property evolution of a versatile reaction: Aqueous HCN polymerization. Phys. Chem. Chem. Phys. 2018, 20, 17353–17366. [Google Scholar] [CrossRef]
- Mamajanov, I.; Herzfeld, J. HCN polymers characterized by SSNMR: Solid state reaction of crystalline tetramer (diaminomaleonitrile). J. Chem. Phys. 2009, 130, 134504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamajanov, I.; Herzfeld, J. HCN polymers characterized by solid state NMR: Chains and sheets formed in the neat liquid. J. Chem. Phys. 2009, 130, 134503. [Google Scholar] [CrossRef] [Green Version]
- Bläsing, K.; Bresien, J.; Labbow, R.; Schulz, A.; Villinger, A. A Dimer of Hydrogen Cyanide Stabilized by a Lewis Acid. Angew. Chem. Int. Ed. 2018, 57, 9170–9175. [Google Scholar] [CrossRef] [PubMed]
- Alfredsson, M.; Ojamäe, L.; Hermansson, K.G. A comparison of Hartree—Fock, MP2, and DFT results for the HCN dimer and crystal. Int. J. Quantum Chem. 1996, 60, 767–778. [Google Scholar] [CrossRef]
- Buxton, L.W.; Campbell, E.J.; Flygare, W.H. The vibrational ground state rotational spectroscopic constants and structure of the HCN dimer. Chem. Phys. 1981, 56, 399–406. [Google Scholar] [CrossRef]
- de Oliveira, P.M.C.; Silva, J.A.; Longo, R.L. Benchmark, DFT assessments, cooperativity, and energy decomposition analysis of the hydrogen bonds in HCN/HNC oligomeric complexes. J. Mol. Model. 2017, 23, 1–10. [Google Scholar] [CrossRef]
- King, B.F.; Weinhold, F. Structure and spectroscopy of (HCN)n clusters: Cooperative and electronic delocalization effects in C–H⋅⋅⋅ N hydrogen bonding. J. Chem. Phys. 1995, 103, 333–347. [Google Scholar] [CrossRef]
- Dulmage, W.J.; Lipscomb, W.N. The crystal structures of hydrogen cyanide, HCN. Acta Cryst. 1951, 4, 330–334. [Google Scholar] [CrossRef] [Green Version]
- Bläsing, K.; Harloff, J.; Schulz, A.; Stoffers, A.; Stoer, P.; Villinger, A. Salts of HCN-Cyanide Aggregates: [CN(HCN)2]− and [CN(HCN)3]−. Angew. Chem. Int. Ed. 2020, 59, 10508–10513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabowski, S.J. Hydrogen Bonds with BF4− Anion as a Proton Acceptor. Crystals 2020, 10, 460. [Google Scholar] [CrossRef]
- Szatyłowicz, H.; Krygowski, T.M.; Fonseca Guerra, C.; Bickelhaupt, F.M. Complexes of 4-substituted phenolates with HF and HCN: Energy decomposition and electronic structure analyses of hydrogen bonding. J. Comput. Chem. 2013, 34, 696–705. [Google Scholar] [CrossRef]
- McDowell, S.A.; Buckingham, A.D. Cooperative and diminutive hydrogen bonding in Y⋯ HCN⋯ HCN and NCH⋯ Y⋯ HCN trimers (Y= BF, CO, N2). J. Chem. Phys. 2010, 132, 064303. [Google Scholar] [CrossRef] [PubMed]
- Clutter, D.R.; Thompson, W.E. Infrared spectroscopic study of polycrystalline NH4CN. J. Chem. Phys. 1969, 51, 153–159. [Google Scholar] [CrossRef]
- Şahin, Ö.; Özdemir, Ü.Ö.; Seferoğlu, N.; Aydıner, B.; Sarı, M.; Tunç, T.; Seferoğlu, Z. A highly selective and sensitive chemosensor derived coumarin–thiazole for colorimetric and fluorimetric detection of CN− ion in DMSO and aqueous solution: Synthesis, sensing ability, Pd(II)/Pt(II) complexes and theoretical studies. Tetrahedron 2016, 72, 5843–5852. [Google Scholar] [CrossRef]
- Li, J.J.; Wei, W.; Qi, X.L.; Xu, X.; Liu, Y.C.; Lin, Q.H.; Dong, W. Rational design, synthesis of reaction-based dual-channel cyanide sensor in aqueous solution. Spectrochim. Acta A 2016, 152, 288–293. [Google Scholar] [CrossRef]
- Rybarczyk-Pirek, A.J.; Małecka, M.; Palusiak, M. Use of Quantum Theory of Atoms in Molecules in the Search for Appropriate Hydrogen Atom Locations in X-ray Diffraction Based Studies. Cryst. Growth Des. 2016, 16, 6841–6848. [Google Scholar] [CrossRef]
- Li, J.; Qi, X.; Wei, W.; Liu, Y.; Xu, X.; Lin, Q.; Dong, W. A “donor-two-acceptor” sensor for cyanide detection in aqueous solution. Sens. Actuators B Chem. 2015, 220, 986–991. [Google Scholar] [CrossRef]
- Le Questel, J.Y.; Berthelot, M.; Laurence, C. Hydrogen-bond acceptor properties of nitriles: A combined crystallographic and ab initio theoretical investigation. J. Phys. Org. Chem. 2000, 13, 347–358. [Google Scholar] [CrossRef]
- Herail, M.; Berthelot, M.; Proutiere, A. Prediction of hydrogen bond basicity in nitriles from dipole moments, mesomeric effects and electrostatic potentials. J. Phys. Org. Chem. 1995, 8, 421–428. [Google Scholar] [CrossRef]
- Bechtel, H.A.; Steeves, A.H.; Wong, B.M.; Field, R.W. Evolution of chemical bonding during HCN⇄HNC isomerization as revealed through nuclear quadrupole hyperfine structure. Angew. Chem. Int. Ed. 2008, 47, 2969–2972. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.M. Nuclear quadrupole hyperfine structure in HC14N/H14NC and DC15N/D15NC isomerization: A diagnostic tool for characterizing vibrational localization. Phys. Chem. Chem. Phys. 2008, 10, 5599–5606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stokes, H.T.; Ailion, D.C.; Case, T.A. Molecular reorientations in the ordered phases of KCN and NaCN studied by NMR. Phys. Rev. B 1984, 30, 4925. [Google Scholar] [CrossRef] [Green Version]
- Geisheimer, A.R.; Wren, J.E.; Michaelis, V.K.; Kobayashi, M.; Sakai, K.; Kroeker, S.; Leznoff, D.B. Aggregation of [Au(CN)4]− Anions: Examination by Crystallography and 15N CP-MAS NMR and the Structural Factors Influencing Intermolecular Au··· N Interactions. Inorg. Chem. 2011, 50, 1265–1274. [Google Scholar] [CrossRef]
- Seliman, A.A.; Altaf, M.; Kawde, A.N.; Wazeer, M.I.; Isab, A.A. NMR and kinetic studies of the interactions of [Au(cis-DACH)Cl2]Cl and [Au(cis-DACH)2]Cl3 with potassium cyanide in aqueous solution. J. Coord. Chem. 2014, 67, 3431–3443. [Google Scholar] [CrossRef]
- He, C.; Smith, M.A. A comprehensive NMR structural study of Titan aerosol analogs: Implications for Titan’s atmospheric chemistry. Icarus 2014, 243, 31–38. [Google Scholar] [CrossRef]
- Werner-Zwanziger, U.; Chapman, K.W.; Zwanziger, J. Multinuclear NMR study of zinc dicyanide. Z. Phys. Chem. 2012, 226, 1205–1218. [Google Scholar] [CrossRef]
- Shaikh, M.N.; Al-Maythalony, B.A.; Monim-Ul-Mehboob, M.; Fettouhi, M.; Wazeer, M.I.; Isab, A.A.; Ahmad, S. Mercury (II) cyanide complexes with alkyldiamines: Solid-state/solution NMR, computational, and antimicrobial studies. J. Coord. Chem. 2012, 65, 2074–2086. [Google Scholar] [CrossRef]
- He, C.; Lin, G.; Upton, K.T.; Imanaka, H.; Smith, M.A. Structural investigation of HCN polymer isotopomers by solution-state multidimensional NMR. J. Phys. Chem. A 2012, 116, 4751–4759. [Google Scholar] [CrossRef]
- Cabral, B.J. Born-Oppenheimer molecular dynamics, hydrogen bond interactions and magnetic properties of liquid hydrogen cyanide. J. Mol. Liq. 2018, 272, 778–786. [Google Scholar] [CrossRef]
- Alkorta, I.; Rozas, I.; Elguero, J. Isocyanides as hydrogen bond acceptors. Theor. Chem. Acc. 1998, 99, 116–123. [Google Scholar] [CrossRef]
- Lorente, P.; Shenderovich, I.G.; Golubev, N.S.; Denisov, G.S.; Buntkowsky, G.; Limbach, H.-H. 1H/15N NMR Chemical Shielding, Dipolar 15N,2H Coupling and Hydrogen Bond Geometry Correlations in a Novel Serious of Hydrogen-Bonded Acid-Base Complexes of Collidine with Carboxylic Acids. Magn. Reson. Chem. 2001, 39, S18–S29. [Google Scholar] [CrossRef]
- Solum, M.S.; Altmann, K.L.; Strohmeier, M.; Berges, D.A.; Zhang, Y.; Facelli, J.C.; Pugmire, R.J.; Grant, D.M. 15N Chemical Shift Principal Values in Nitrogen Heterocycles. J. Am. Chem. Soc. 1997, 119, 9804–9809. [Google Scholar] [CrossRef]
- Gurinov, A.A.; Rozhkova, Y.A.; Zukal, A.; Čejka, J.; Shenderovich, I.G. Mutable Lewis and Brønsted Acidity of Aluminated SBA-15 as Revealed by NMR of Adsorbed Pyridine-15N. Langmuir 2011, 27, 12115–12123. [Google Scholar] [CrossRef]
- Gräfenstein, J. Efficient calculation of NMR isotopic shifts: Difference-dedicated vibrational perturbation theory. J. Chem. Phys. 2019, 151, 244120. [Google Scholar] [CrossRef]
- Golubev, N.S.; Melikova, S.M.; Shchepkin, D.N.; Shenderovich, I.G.; Tolstoy, P.M.; Denisov, G.S. Interpretation of H/D Isotope Effects on NMR Chemical Shifts of [FHF]− Ion Based on Calculations of Nuclear Magnetic Shielding Tensor Surface. Z. Phys. Chem. 2003, 217, 1549–1563. [Google Scholar] [CrossRef]
- Shenderovich, I.G.; Limbach, H.-H.; Smirnov, S.N.; Tolstoy, P.M.; Denisov, G.S.; Golubev, N.S. H/D Isotope Effects on the Low-Temperature NMR Parameters and Hydrogen Bond Geometries of (FH)2F− and (FH)3F− Dissolved in CDF3/CDF2Cl. Phys. Chem. Chem. Phys. 2002, 4, 5488–5497. [Google Scholar] [CrossRef]
- Shenderovich, I.G.; Denisov, G.S. Solvent effects on acid-base complexes. What is more important: A macroscopic reaction field or solute-solvent interactions? J. Chem. Phys. 2019, 150, 204505. [Google Scholar] [CrossRef]
- Gurinov, A.A.; Denisov, G.S.; Borissova, A.O.; Goloveshkin, A.S.; Greindl, J.; Limbach, H.-H.; Shenderovich, I.G. NMR Study of Solvation Effect on the Geometry of Proton-Bound Homodimers of Increasing Size. J. Phys. Chem. A 2017, 121, 8697–8705. [Google Scholar] [CrossRef] [Green Version]
- Lesnichin, S.B.; Tolstoy, P.M.; Limbach, H.-H.; Shenderovich, I.G. Counteranion-Dependent Mechanisms of Intramolecular Proton Transfer in Aprotic Solution. Phys. Chem. Chem. Phys. 2010, 12, 10373–10379. [Google Scholar] [CrossRef]
- Shenderovich, I.G. Electric field effect on 31P NMR magnetic shielding. J. Chem. Phys. 2020, 153, 184501. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Denisov, G.S. A review with comprehensive data on experimental indirect scalar NMR spin–spin coupling constants across hydrogen bonds. Magn. Res. Chem. 2008, 46, 599–624. [Google Scholar] [CrossRef] [PubMed]
- Del Bene, J.E.; Elguero, J. Probing the proton-transfer coordinate of complexes with F−H…P hydrogen bonds using one-and two-bond spin–spin coupling constants. Magn. Res. Chem. 2007, 45, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Alkorta, I.; Elguero, J. Review on DFT and ab initio Calculations of Scalar Coupling Constants. Int. J. Mol. Sci. 2003, 4, 64–92. [Google Scholar] [CrossRef]
- Golubev, N.S.; Shenderovich, I.G.; Smirnov, S.N.; Denisov, G.S.; Limbach, H.-H. Nuclear Scalar Spin-Spin Coupling Reveals Novel Properties of Low-Barrier Hydrogen Bonds in a Polar Environment. Chem. Eur. J. 1999, 5, 492–497. [Google Scholar] [CrossRef]
- Dingley, A.J.; Grzesiek, S. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings. J. Am. Chem. Soc. 1998, 120, 8293–8297. [Google Scholar] [CrossRef]
- Shenderovich, I.G.; Smirnov, S.N.; Denisov, G.S.; Gindin, V.A.; Golubev, N.S.; Dunger, A.; Reibke, R.; Kirpekar, S.; Malkina, O.L.; Limbach, H.-H. Nuclear Magnetic Resonance of Hydrogen Bonded Clusters between F− and (HF)n: Experiment and Theory. Ber. Bunsenges. Phys. Chem. Chem. Phys. 1998, 102, 422–428. [Google Scholar] [CrossRef]
- Golubev, N.S.; Detering, C.; Smirnov, S.N.; Shenderovich, I.G.; Denisov, G.S.; Limbach, H.-H.; Tolstoy, P.M. H/D Isotope Effects on NMR Chemical Shifts of Nuclei Involved in a Hydrogen Bridge of Hydrogen Isocyanide Complexes with Fluoride Anion. Phys. Chem. Chem. Phys. 2009, 11, 5154–5159. [Google Scholar] [CrossRef]
- Begimova, G.U.; Tupikina, E.Y.; Yu, V.K.; Denisov, G.S.; Bodensteiner, M.; Shenderovich, I.G. Effect of Hydrogen Bonding to Water on the 31P Chemical Shift Tensor of Phenyl- and Trialkylphosphine Oxides and a-Amino Phosphonates. J. Phys. Chem. C 2016, 120, 8717–8729. [Google Scholar] [CrossRef]
- Shenderovich, I.G. Effect of Noncovalent Interactions on the 31P Chemical Shift Tensor of Phosphine Oxides, Phosphinic, Phosphonic, and Phosphoric Acids, and Their Complexes with Lead(II). J. Phys. Chem. C 2013, 117, 26689–26702. [Google Scholar] [CrossRef]
- Shenderovich, I.G. For Whom a Puddle Is the Sea? Adsorption of Organic Guests on Hydrated MCM-41 Silica. Langmuir 2020, 36, 11383–11392. [Google Scholar] [CrossRef] [PubMed]
- Shenderovich, I.G.; Buntkowsky, G.; Schreiber, A.; Gedat, E.; Sharif, S.; Albrecht, J.; Golubev, N.S.; Findenegg, G.H.; Limbach, H.-H. Pyridine-15N—A Mobile NMR Sensor for Surface Acidity and Surface Defects of Mesoporous Silica. J. Phys. Chem. B 2003, 107, 11924–11939. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Cheeseman, J.R.; Trucks, G.W.; Keith, T.A.; Frisch, M.J. A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors. J. Chem. Phys. 1996, 104, 5497–5509. [Google Scholar] [CrossRef]
- Deng, W.; Cheeseman, J.R.; Frisch, M.J. Calculation of Nuclear Spin-Spin Coupling Constants of Molecules with First and Second Row Atoms in Study of Basis Set Dependence. J. Chem. Theory Comput. 2006, 2, 1028–1037. [Google Scholar] [CrossRef]
- Jensen, F. Segmented contracted basis sets optimized for nuclear magnetic shielding. J. Chem. Theory Comput. 2015, 11, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab initio study of solvated molecules: A new implementation of the polarizable continuum model. Chem. Phys. Lett. 1996, 255, 327–335. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Scalmani, G.; Frisch, M.J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132, 114110. [Google Scholar] [CrossRef]
- Shenderovich, I.G. Experimentally Established Benchmark Calculations of 31P NMR Quantities. Chem. Methods 2021, 1, 61–70. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Shenderovich, I.G. Simplified Calculation Approaches Designed to Reproduce the Geometry of Hydrogen Bonds in Molecular Complexes in Aprotic Solvents. J. Chem. Phys. 2018, 148, 124313. [Google Scholar] [CrossRef] [PubMed]
- Filarowski, A.; Koll, A. Integrated intensity of OH absorption bands in bent hydrogen bonds in ortho-dialkylaminomethyl phenols. Vibr. Spectrosc. 1996, 12, 15–24. [Google Scholar] [CrossRef]
- Pápai, I. Theoretical study of the Cu(H2O) and Cu(NH3) complexes and their photolysis products. J. Chem. Phys. 1995, 103, 1860–1870. [Google Scholar] [CrossRef]
- Borisenko, V.E.; Filarovski, A.I. The electrooptical parameters of aniline and its halogen derivatives in hydrogen bonded complexes. J. Mol. Struct. 1989, 196, 353–370. [Google Scholar] [CrossRef]
- Hok, L.; Mavri, J.; Vianello, R. The Effect of Deuteration on the H2 Receptor Histamine Binding Profile: A Computational Insight into Modified Hydrogen Bonding Interactions. Molecules 2020, 25, 6017. [Google Scholar] [CrossRef] [PubMed]
- Shenderovich, I.G.; Denisov, G.S. Adduct under Field—A Qualitative Approach to Account for Solvent Effect on Hydrogen Bonding. Molecules 2020, 25, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominikowska, J.; Palusiak, M. Tuning Aromaticity of para-Substituted Benzene Derivatives with an External Electric Field. ChemPhysChem 2018, 19, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Pylaeva, S.A.; Elgabarty, H.; Sebastiani, D.; Tolstoy, P.M. Symmetry and Dynamics of FHF− Anion in Vacuum, in CD2Cl2 and in CCl4. Ab Initio MD Study of Fluctuating Solvent–Solute Hydrogen and Halogen Bonds. Phys. Chem. Chem. Phys. 2017, 19, 26107–26120. [Google Scholar] [CrossRef] [Green Version]
- Balevicius, V.; Maršalka, A.; Klimavičius, V.; Dagys, L.; Gdaniec, M.; Svoboda, I.; Fuess, H. NMR and XRD study of hydrogen bonding in picolinic acid N-oxide in crystalline state and solutions: Media and temperature effects on potential energy surface. J. Phys. Chem. A 2018, 122, 6894–6902. [Google Scholar] [CrossRef] [PubMed]
- Bora, R.P.; Mills, M.J.; Frushicheva, M.P.; Warshel, A. On the challenge of exploring the evolutionary trajectory from phosphotriesterase to arylesterase using computer simulations. J. Phys. Chem. B 2015, 119, 3434–3445. [Google Scholar] [CrossRef] [PubMed]
- Shenderovich, I.G.; Limbach, H.-H. Solid State NMR for Nonexperts: An Overview of Simple but General Practical Methods. Solids 2021, 2, 139–154. [Google Scholar] [CrossRef]
- Bryce, D.L.; Bernard, G.M.; Gee, M.; Lumsden, M.D.; Eichele, K.; Wasylishen, R.E. Practical Aspects of Modern Routine Solid-State Multinuclear Magnetic Resonance Spectroscopy: One-Dimensional Experiments. Can. J. Anal. Sci. Spectrosc. 2001, 46, 46–82. [Google Scholar] [CrossRef]
- Duer, M.J. (Ed.) Solid-State NMR Spectroscopy. Principles and Applications; Blackwell Science Ltd.: Oxford, UK, 2002. [Google Scholar]
- Shahi, A.; Arunan, E. Hydrogen bonding, halogen bonding and lithium bonding: An atoms in molecules and natural bond orbital perspective towards conservation of total bond order, inter-and intra-molecular bonding. Phys. Chem. Chem. Phys. 2014, 16, 22935–22952. [Google Scholar] [CrossRef]
- Ramabhadran, R.O.; Hua, Y.; Flood, A.H.; Raghavachari, K. C vs N: Which end of the cyanide anion is a better hydrogen bond acceptor? J. Phys. Chem. A 2014, 118, 7418–7423. [Google Scholar] [CrossRef]
- Ramabhadran, R.O.; Hua, Y.; Li, Y.J.; Flood, A.H.; Raghavachari, K. From Atomic to Molecular Anions: A Neutral Receptor Captures Cyanide Using Strong C−H Hydrogen Bonds. Chem. Eur. J. 2011, 17, 9123–9129. [Google Scholar] [CrossRef]
- Hinchliffe, A. Hydrogen bonding in HCN…HF, HCN…HCl, CH3CN…HF and CH3CN…HCl; an ab initio SCF-MO study. Adv. Mol. Relax. Int. Pr. 1981, 19, 227–237. [Google Scholar] [CrossRef]
- Andreeva, D.V.; Ip, B.; Gurinov, A.A.; Tolstoy, P.M.; Denisov, G.S.; Shenderovich, I.G.; Limbach, H.-H. Geometrical Features of Hydrogen Bonded Complexes Involving Sterically Hindered Pyridines. J. Phys. Chem. A 2006, 110, 10872–10879. [Google Scholar] [CrossRef] [PubMed]
- Tupikina, E.Y.; Bodensteiner, M.; Tolstoy, P.M.; Denisov, G.S.; Shenderovich, I.G. P=O Moiety as an Ambidextrous Hydrogen Bond Acceptor. J. Phys. Chem. C 2018, 122, 1711–1720. [Google Scholar] [CrossRef]
- Arp, F.F.; Bhuvanesh, N.; Blümel, J. Hydrogen peroxide adducts of triarylphosphine oxides. Dalton Trans. 2019, 48, 14312–14325. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.H.; Lindhardt, D.; Bhuvanesh, N.; Blümel, J. Di(hydroperoxy)cycloalkanes Stabilized via Hydrogen Bonding by Phosphine Oxides: Safe and Efficient Baeyer−Villiger Oxidants. ACS Sustainable Chem. Eng. 2018, 6, 6829–6840. [Google Scholar] [CrossRef]
- Brotherton, T.K.; Lynn, J.W. The synthesis and chemistry of cyanogen. Chem. Rev. 1959, 59, 841–883. [Google Scholar] [CrossRef]
- Provasi, P.F.; Aucar, G.A.; Sanchez, M.; Alkorta, I.; Elguero, J.; Sauer, S.P. Interaction Energies and NMR Indirect Nuclear Spin− Spin Coupling Constants in Linear HCN and HNC Complexes. J. Phys. Chem. A 2005, 109, 6555–6564. [Google Scholar] [CrossRef]
- Del Bene, J.E.; Alkorta, I.; Elguero, J. Ab initio study of ternary complexes X:(HCNH)+: Z with X, Z= NCH, CNH, FH, ClH, and FCl: Diminutive cooperative effects on structures, binding energies, and spin–spin coupling constants across hydrogen bonds. J. Phys. Chem. A 2011, 115, 12677–12687. [Google Scholar] [CrossRef]
- Sanchez, M.; Provasi, P.F.; Aucar, G.A.; Alkorta, I.; Elguero, J. Theoretical study of HCN and HNC neutral and charged clusters. J. Phys. Chem. B 2005, 109, 18189–18194. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.; Del Bene, J.E.; Radom, L. What factors determine whether a proton-bound homodimer has a symmetric or an asymmetric hydrogen bond? Mol. Phys. 2009, 107, 1095–1105. [Google Scholar] [CrossRef]
- Chan, B.; Del Bene, J.E.; Radom, L. Proton-Bound Homodimers: How Are the Binding Energies Related to Proton Affinities? J. Am. Chem. Soc. 2007, 129, 12197–12199. [Google Scholar] [CrossRef]
- Shenderovich, I.G. Actual Symmetry of Symmetric Molecular Adducts in the Gas Phase, Solution and in the Solid State. Symmetry 2021, 13, 756. [Google Scholar] [CrossRef]
- Kong, S.; Borissova, A.O.; Lesnichin, S.B.; Hartl, M.; Daemen, L.L.; Eckert, J.; Antipin, M.Y.; Shenderovich, I.G. Geometry and Spectral Properties of the Protonated Homodimer of Pyridine in the Liquid and Solid States. A Combined NMR, X-ray Diffraction and Inelastic Neutron Scattering Study. J. Phys. Chem. A 2011, 115, 8041–8048. [Google Scholar] [CrossRef] [PubMed]
- Gurinov, A.A.; Lesnichin, S.B.; Limbach, H.-H.; Shenderovich, I.G. How Short is the Strongest Hydrogen Bond in the Proton-Bound Homodimers of Pyridine Derivatives? J. Phys. Chem. A 2014, 118, 10804–10812. [Google Scholar] [CrossRef] [PubMed]
- Alkorta, I.; Blanco, F.; Elguero, J. A theoretical structural analysis of the factors that affect 1JNH, 1hJNH and 2hJNN in N–H··· N hydrogen-bonded complexes. Mag. Res. Chem. 2009, 47, 249–256. [Google Scholar] [CrossRef]
- Krivdin, L.B. Calculation of 15N NMR chemical shifts: Recent advances and perspectives. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 102, 98–119. [Google Scholar] [CrossRef]
- Benedict, H.; Limbach, H.-H.; Wehlan, M.; Fehlhammer, W.P.; Golubev, N.S.; Janoschek, R. Solid State 15N NMR and Theoretical Studies of Primary and Secondary Geometric H/D Isotope Effects on Low-Barrier NHN−Hydrogen Bonds. J. Am. Chem. Soc. 1998, 120, 2939–2950. [Google Scholar] [CrossRef]
- Bulychev, V.P.; Buturlimova, M.V.; Tokhadze, K.G. Calculation of interaction of the stretching and bending vibrations of HF in the hydrogen-bonded complex [F(HF)2]−. Opt. Spectrosc. 2012, 113, 588–592. [Google Scholar] [CrossRef]
- Grabowski, S.J. Cooperativity of hydrogen and halogen bond interactions. In Highlights in Theoretical Chemistry, Proceedings of the 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012), Barcelona, Spain, 26–29 June 2012; Novoa, J., Ruiz López, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 5. [Google Scholar] [CrossRef]
Compound | N≡C, Å | 15N, ppm | 13C, ppm | 1J(15N13C), Hz | J(15N1H), Hz | J(13C1H), Hz | ||
---|---|---|---|---|---|---|---|---|
σiso | Ω | σiso | Ω | |||||
15N≡13C− | 1.1664 | −46 | 585 | 10 | 403 | −7 | - | - |
15N≡13C1H | 1.1436 | −24 | 548 | 65 | 302 | −25 | −11 | 267 |
13C≡15N1H | 1.1585 | 78 | 401 | 13 | 392 | −14 | −121 | 23 |
Base (X) | NCH···X | CNH···X | ||||
---|---|---|---|---|---|---|
N≡C, Å | C···H, Å | H···X, 1 Å | C≡N, Å | N···H, Å | H···X, 1 Å | |
F− | 1.1599 | 1.5754 | 1.0093 | 1.1636 | 1.5202 | 0.9875 |
H3N | 1.1461 | 1.1072 | 1.9093 | 1.1646 | 1.6310 | 1.0790 |
pyridine | 1.1458 | 1.1034 | 1.9051 | 1.1594 | 1.0886 | 1.5705 |
4AP | 1.1463 | 1.1109 | 1.8543 | 1.1650 | 1.7032 | 1.0515 |
ABCO | 1.1471 | 1.1282 | 1.7753 | 1.1650 | 1.6868 | 1.0578 |
P=O | 1.1448 | 1.087 | 1.90 | 1.1583 | 1.029 | 1.70 |
Base (X) | NCH···X | CNH···X | ||||||
---|---|---|---|---|---|---|---|---|
15N, ppm | 13C, ppm | 15N, ppm | 13C, ppm | |||||
σiso | Ω | σiso | Ω | σiso | Ω | σiso | Ω | |
F− | −33 | 566 | 25 | 383 | −17 | 546 | 14 | 397 |
H3N | −17 | 538 | 57 | 335 | −27 | 560 | 13 | 398 |
pyridine | −20 | 560 | 57 | 334 | 39 | 461 | 17 | 388 |
4AP | −19 | 541 | 56 | 336 | −28 | 561 | 11 | 401 |
ABCO | −21 | 546 | 55 | 341 | −24 | 559 | 11 | 403 |
P=O | −20 | 544 | 60 | 331 | 59 | 434 | 17 | 389 |
Base (X) | 1J(15N13C), Hz | 2J(15N1H), Hz | 1J(13C1H), Hz | 1hJ(1HX), Hz | 2hJ(13CX), Hz | 3hJ(15NX), Hz |
---|---|---|---|---|---|---|
F− | −10 | −2 | 31 | 291 1 | 314 1 | −22 1 |
H3N | −22 | −12 | 258 | 4 2 | 20 2 | 1 2 |
pyridine | −22 | −12 | 259 | 4 2 | −21 2 | 1 2 |
4AP | −22 | −12 | 255 | 4 2 | −24 2 | 1 2 |
ABCO | −20 | −12 | 243 | 2 2 | −23 2 | 1 2 |
P=O | −24 | −12 | 266 | −2 3 | 7 3 | 0 3 |
Base (X) | 1J(15N13C), Hz | 1J(15N1H), Hz | 2J(13C1H), Hz | 1hJ(1HX), Hz | 3hJ(13CX), Hz | 2hJ(15NX), Hz |
---|---|---|---|---|---|---|
F− | −8 | −5 | 3 | 371 1 | 27 1 | −93 1 |
H3N | −7 | 1 | 1 | −66 2 | −2 2 | 12 2 |
pyridine | −13 | −94 | 22 | −5 2 | −3 2 | 16 2 |
4AP | −8 | 3 | 1 | −97 2 | −2 2 | 11 2 |
ABCO | −8 | 4 | 1 | −73 2 | −2 2 | 9 2 |
P=O | −15 | −114 | 25 | −2 3 | 0 3 | −3 3 |
PCM | NCH···FLi | CNH···FLi | ||||
---|---|---|---|---|---|---|
N≡C, Å | C···H, Å | H···F, Å | C≡N, Å | N···H, Å | H···F, Å | |
gas | 1.1460 | 1.0980 | 1.6935 | 1.1602 | 1.0438 | 1.5239 |
water | 1.1484 | 1.1461 | 1.4666 | 1.1605 | 1.2079 | 1.1738 |
PCM | NCH···FLi | CNH···FLi | ||||||
---|---|---|---|---|---|---|---|---|
15N, ppm | 13C, ppm | 15N, ppm | 13C, ppm | |||||
σiso | Ω | σiso | Ω | σiso | Ω | σiso | Ω | |
gas | −32 | 561 | 61 | 330 | 57 | 436 | 12 | 395 |
water | −16 | 538 | 52 | 344 | 16 | 497 | 18 | 361 |
Complex | 1J(15N13C), Hz | J(15N1H), Hz | J(13C1H), Hz | 1hJ(1H19F), Hz | hJ(13C19F), Hz | hJ(15N19F), Hz |
---|---|---|---|---|---|---|
gas | ||||||
NCH···FLi | −22 | −12 | 256 | −66 | 146 | −7 |
CNH···FLi | −13 | −110 | 24 | −72 | 15 | −79 |
water | ||||||
NCH···FLi | −20 | −12 | 232 | −109 | 252 | −17 |
CNH···FLi | −11 | −57 | 16 | 47 | 42 | −153 |
Parameter | [NC···H···CN]− | [CN]−···H-CN | [CN]−···H-NC |
---|---|---|---|
ΔE, kJ/mol | 0 | 51 | 64 |
Base: N≡C, Å | 1.1515 | 1.1655 | 1.1611 |
Base: X···H, Å | 1.2220 1 | 1.1756 2 | 1.4362 2 |
Acid: H-Y, Å | 1.2220 3 | 1.2917 3 | 1.0847 4 |
Acid: N≡C, Å | 1.1515 | 1.1528 | 1.1532 |
Base: σiso (15N), ppm | −6 | −17 | −22 |
Base: Ω(15N), ppm | 525 | 548 | 555 |
Acid: σiso (15N), ppm | −6 | −19 | 28 |
Acid: Ω(15N), ppm | 525 | 544 | 481 |
Base: σiso (13C), ppm | 32 | 21 | 16 |
Base: Ω(13C), ppm | 377 | 385 | 394 |
Acid: σiso (13C), ppm | 32 | 32 | 23 |
Acid: Ω(13C), ppm | 377 | 376 | 382 |
Base: 1J(15N13C), Hz | −13 | −8 | −9 |
Acid: 1J(15N13C), Hz | −13 | −13 | −14 |
Base: J(13C1H), Hz | 95 | 14 | 5 |
Acid: J(13C1H), Hz | 95 | 95 | 24 |
Base: J(15N1H), Hz | −8 | −44 | −9 |
Acid: J(15N1H), Hz | −8 | −8 | −87 |
2hJ(XHY), Hz | 113 5 | −57 6 | 20 7 |
n | ΔE 1 kJ/mol | (NCH)n··· F− | (CNH)n···F− | ||||
---|---|---|---|---|---|---|---|
N≡C, Å | C···H, Å | H···F, Å | C≡N, Å | N···H, Å | H···F, Å | ||
1 | 4 | 1.1599 | 1.5754 | 1.0093 | 1.1636 | 1.5202 | 0.9875 |
2 | 48 | 1.1485 | 1.1488 | 1.4674 | 1.1590 | 1.1086 | 1.3338 |
3 | 93 | 1.1469 | 1.1197 | 1.5819 | 1.1584 | 1.0612 | 1.4651 |
4 | 143 | 1.1461 | 1.1062 | 1.6621 | 1.1583 | 1.0412 | 1.5588 |
n | (NCH)n···F− | (CNH)n···F− | ||||||
---|---|---|---|---|---|---|---|---|
15N, ppm | 13C, ppm | 15N, ppm | 13C, ppm | |||||
σiso | Ω | σiso | Ω | σiso | Ω | σiso | Ω | |
1 | −33 | 566 | 25 | 383 | −17 | 546 | 14 | 397 |
2 | −15 | 537 | 51 | 344 | 34 | 470 | 20 | 386 |
3 | −16 | 539 | 55 | 339 | 47 | 451 | 29 | 387 |
4 | −18 | 540 | 57 | 336 | 55 | 440 | 18 | 389 |
Complex | 1J(15N13C), Hz | J(15N1H), Hz | J(13C1H), Hz | 1hJ(1H19F), Hz | hJ(13C19F), Hz | hJ(15N19F), Hz |
---|---|---|---|---|---|---|
(NCH)···19F− | −10 | −2 | 31 | 291 | 314 | −22 |
(NCH)2···19F− | −20 | −12 | 230 | −108 | 228 | −16 |
(NCH)3···19F− | −22 | −12 | 250 | −87 | 171 | −11 |
(NCH)4···19F− | −22 | −12 | 257 | −68 | 132 | −8 |
(CNH)···19F− | −8 | −5 | 3 | 371 | 27 | −93 |
(CNH)2···19F− | −13 | −87 | 22 | −67 | 29 | −109 |
(CNH)3···19F− | −14 | −103 | 25 | −73 | 19 | −80 |
(CNH)4···19F− | −15 | −110 | 25 | −61 | 13 | −58 |
B | ΔE 1 kJ/mol | ([BNC]−)4···(NH4)+ | ([BCN]−)4···(NH4)+ | ||||
---|---|---|---|---|---|---|---|
N≡C, Å | C···H, Å | N-H, Å | C≡N, Å | N···H, Å | N-H, Å | ||
No | −6 | 1.1644 | 2.0233 | 1.0400 | 1.1655 | 1.8751 | 1.0374 |
Li+ | 10 | 1.1624 | 2.0295 | 1.0382 | 1.1615 | 1.8834 | 1.0359 |
B | ([B15N≡13C]−)4···(NH4)+ | ([B13C≡15N]−)4···(NH4)+ | ||||||
---|---|---|---|---|---|---|---|---|
15N, ppm | 13C, ppm | 15N, ppm | 13C, ppm | |||||
σiso | Ω | σiso | Ω | σiso | Ω | σiso | Ω | |
No | −37 | 572 | 15 | 398 | −39 | 579 | 13 | 399 |
Li+ | −109 | 691 | 27 | 384 | 4 | 520 | 35 | 378 |
Complex | 1J(15N13C), Hz | hJ(15N1H), Hz | hJ(13C1H), Hz | hJ(13C15N), Hz | hJ(15N15N), Hz |
---|---|---|---|---|---|
([15N≡13C]−)4···(H415N)+ | −9 | 0 | −7 | −15 | 1 |
(Li15N≡13C)4···(H415N)+ | −5 | −1 | −6 | −15 | 0 |
([13C≡15N]−)4···(H415N)+ | −7 | 5 | 0 | −1 | 6 |
(Li13C≡15N)4···(H415N)+ | −17 | 4 | 0 | −1 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenderovich, I.G.; Denisov, G.S. NMR Properties of the Cyanide Anion, a Quasisymmetric Two-Faced Hydrogen Bonding Acceptor. Symmetry 2021, 13, 1298. https://doi.org/10.3390/sym13071298
Shenderovich IG, Denisov GS. NMR Properties of the Cyanide Anion, a Quasisymmetric Two-Faced Hydrogen Bonding Acceptor. Symmetry. 2021; 13(7):1298. https://doi.org/10.3390/sym13071298
Chicago/Turabian StyleShenderovich, Ilya G., and Gleb S. Denisov. 2021. "NMR Properties of the Cyanide Anion, a Quasisymmetric Two-Faced Hydrogen Bonding Acceptor" Symmetry 13, no. 7: 1298. https://doi.org/10.3390/sym13071298
APA StyleShenderovich, I. G., & Denisov, G. S. (2021). NMR Properties of the Cyanide Anion, a Quasisymmetric Two-Faced Hydrogen Bonding Acceptor. Symmetry, 13(7), 1298. https://doi.org/10.3390/sym13071298