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Abstract: We summarize the status of the theory of resummed quantum gravity. In the context of the
Planck scale cosmology formulation of Bonanno and Reuter, we review the use of our resummed
quantum gravity approach to Einstein’s general theory of relativity to estimate the value of the
cosmological constant as ρΛ = (0.0024 eV)4. Constraints on susy GUT models that follow from the
closeness of the estimate to experiment are noted. Various consistency checks on the calculation are
discussed. In particular, we use the Heisenberg uncertainty principle to remove a large part of the
remaining uncertainty in our estimate of ρΛ.
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1. Introduction

We use the well-known elementary example of “summation”:

1
1− x

=
∞

∑
n=0

xn, (1)

to illustrate why resummation can be worth its pursuit. Even though the mathematical tests
for convergence of the series would only guarantee convergence for |x| < 1, this geometric
series is summed to infinity to yield the analytic result that is well-defined except for a pole
at x = 1. The result of the summation yields a function that is well-defined in the entire
complex plane except for the simple pole at x = 1—infinite order summation has yielded
behavior very much improved from what one sees order-by-order in the respective series.

We are thus motivated to ‘resum’ series that are already being summed to seek
improvement in our knowledge of the represented function. This we illustrate as follows:

∞

∑
n=0

Cnαn
s

{
= FRES(αs)∑∞

n=0 Bnαn
s , EXACT

∼= GRES(αs)∑N
n=0 B̃nαn

s , APPROX.
(2)

On the LHS (left-hand side) we have the original Feynman series for a process under study.
On the RHS (right-hand side) are two versions of resumming this original series. One,
labeled exact, is an exact re-arrangement of the original series. The other, labeled approx.,
only agrees with the LHS to some fixed order N in the expansion parameter αs. For some
time now, discussion has occurred as to which version is to be preferred [1]. Recently, a
related more general version of this discussion occurs for quantum gravity.

Whether quantum gravity is even calculable in relativistic quantum field theory is
a fair but difficult question. Answers vary. According to string theory [2,3], the answer
is no, the true fundamental theory entails a one-dimensional Planck scale superstring. If
we accept loop quantum gravity [4–7] we also find that the answer is no, the fundamental
theory entails a space-time foam with a Planck scale loop structure. The answer is also no
in the Horava–Lifshitz theory [8] because the fundamental theory requires Planck scale
anisoptropic scaling for space and time. Kreimer [9,10] suggests that quantum gravity
is leg-renormalizable, such that the answer is yes. Weinberg [11] suggests that quantum
gravity may be asymptotically safe, with an S-matrix that depends only on a finite number
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of observable parameters, due to the presence of a non-trivial UV fixed point, with a finite
dimensional critical surface; this is equivalent to an answer of yes. We would note that the
authors in Refs. [12–23], using Wilsonian [24–28] field-space exact renormalization group
methods, obtain results which support Weinberg’s UV fixed-point. The results in Ref. [29]
also give support to Weinberg’s asymptotic safety suggestion.

In what follows, the YFS [30–45] version (YFS-type soft resummation and its extension
to quantum gravity were also worked-out by Weinberg in Ref. [46]) of the exact example is
extended to resum the Feynman series for the Einstein–Hilbert Lagrangian for quantum
gravity. In conformity with the example in Equation (1), the resultant resummed theory,
resummed quantum gravity (RQG), is very much better behaved in the UV compared to
what one would estimate from that Feynman series. What we present here is a short review
of the resummed theory and its predictions.

Specifically, as we show in Refs. [47–50] the RQG realization of quantum gravity leads
to Weinberg’s UV fixed-point behavior for the dimensionless gravitational and cosmological
constants. The resummed theory is actually UV finite—the non-perturbative resummation
in RQG changes the naive disperison relation for particle propagation in the deep UV so
that the theory becomes UV finite. RQG and the latter UV fixed-point results are reviewed
in Section 2.

The RQG theory, taken together with the Planck scale inflationary [51–53] cosmol-
ogy formulation in Refs. [54,55] (the authors in Ref. [56] also proposed the attendant
choice of the scale k ∼ 1/t used in Refs. [54,55]) from the asymptotic safety approach to
quantum gravity in Refs. [12–23], allows us to predict [57] the cosmological constant Λ.
See Refs. [58,59] for recent reviews of the status of the prediction. The prediction’s closeness
to the observed value [60,61] motivates us to discuss its reliability and we argue [62] that
its uncertainty is at the level of a factor of O(10). Constraints on susy GUT’s follow [58,59].
We present the Planck scale cosmology that we use and the latter results in Section 3.

Section 4 gives an outlook.

2. Overview of Resummed Quantum Gravity

As the Standard Theory (we follow D.J. Gross [63] and call the Standard Model
the Standard Theory henceforth) of elementary particles contains many point particles,
to investigate their graviton interactions, we consider (we treat spin as an inessential
complication [64]) the Higgs-gravition extension of the Einstein–Hilbert theory, already
studied in Refs. [65,66]:

L(x) = − 1
2κ2 R

√
−g +

1
2

(
gµν∂µ ϕ∂ν ϕ−m2

o ϕ2
)√
−g

=
1
2

{
hµν,λ h̄µν,λ − 2ηµµ′ηλλ′ h̄µλ ,λ′η

σσ′ h̄µ′σ,σ′
}

+
1
2

{
ϕ,µ ϕ,µ −m2

o ϕ2
}
− κhµν

[
ϕ,µ ϕ,ν +

1
2

m2
o ϕ2ηµν

]
− κ2

[
1
2

hλρ h̄ρλ
(

ϕ,µ ϕ,µ −m2
o ϕ2
)
− 2ηρρ′h

µρ h̄ρ′ν ϕ,µ ϕ,ν

]
+ · · · .

(3)

R is the curvature scalar, g is the determinant of the metric of space-time gµν ≡ ηµν + 2κhµν(x),
and κ =

√
8πGN. We expand [65,66] about Minkowski space with ηµν = diag{1,−1,−1,−1}.

ϕ(x), our representative scalar field for matter, is the physical Higgs field and ϕ(x),µ ≡ ∂µϕ(x).
We have introduced Feynman’s notation ȳµν ≡ 1

2
(
yµν + yνµ − ηµνyρ

ρ
)

for any tensor yµν (our
conventions for raising and lowering indices in the second line of (3) are the same as those
in Ref. [66]). In (3) and in what follows, mo(m) is the bare (renormalized) scalar boson
mass. We set presently the small observed [60,61] value of the cosmological constant to
zero so that our quantum graviton, hµν, has zero rest mass in (3). The Feynman rules
for (3) were essentially worked out by Feynman [65,66], including the rule for the famous
Feynman–Faddeev–Popov [65,67,68] ghost contribution required for unitarity with the
fixing of the gauge (we use the gauge in Ref. [65], ∂µ h̄νµ = 0).
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As we have shown in Refs. [47–49], the large virtual IR effects in the respective loop
integrals for the scalar propagator in quantum general relativity can be resummed to the
exact result:

i∆′F(k) =
i

k2 −m2 − Σs(k) + iε

=
ieB′′g (k)

k2 −m2 − Σ′s + iε

(4)

for (∆ = k2 −m2) where:

B′′g (k) =
κ2|k2|
8π2 ln

(
m2

m2 + |k2|

)
.

The form for B′′g (k) holds for the UV (deep Euclidean) regime (by Wick rotation, the identi-
fication −|k2| ≡ k2 in the deep Euclidean regime gives immediate analytic continuation to
the result for B′′g (k) when the usual −iε, ε ↓ 0, is appended to m2), so that ∆′F(k)|resummed

falls faster than any power of |k2|. See Ref. [47] for the analogous result for m = 0. Here,
−iΣs(k) is the 1PI scalar self-energy function so that i∆′F(k) is the exact scalar propagator.
The residual Σ′s starts in O(κ2). We may drop it in calculating one-loop effects. When the
respective analogs of i∆′F(k)|resummed (these follow from the spin independence [46,47,69]
of a particle’s coupling to the graviton in the infrared regime) are used for the elementary
particles, all quantum gravity loops are UV finite [47–49].

Specifically, we extend our resummed propagator results to all the particles in the ST
Lagrangian and to the graviton itself and show in the Refs. [47–49] that (we use GN for
GN(0)):

GN(k) = GN/(1 +
c2,e f f k2

360πM2
Pl
), g∗ = lim

k2→∞
k2GN(k2) =

360π

c2,e f f
∼= 0.0442. (5)

In arriving at Equation (5), we used the result from Refs. [47–49] that the denominator
for the propagation of transverse-traceless modes of the graviton becomes (MPl is the
Planck mass):

q2 + ΣT(q2) + iε ∼= q2 − q4 c2,e f f

360πM2
Pl

, (6)

where c2,e f f
∼= 2.56× 104 is defined in Refs. [47–49].

For the dimensionless cosmological constant λ∗ we use the VEV of Einstein’s equation
Gµν + Λgµν = −κ2Tµν, in a standard notation, to isolate [57] Λ. In this way, we find the
deep UV limit of Λ then becomes, allowing GN(k) to run,

Λ(k) −→
k2→∞

k2λ∗, λ∗ = −
c2,e f f

2880 ∑
j
(−1)Fj nj/ρ2

j
∼= 0.0817 (7)

where Fj is the fermion number of particle j, nj is the effective number of degrees of
freedom of j, and ρj = ρ(λc(mj)). λ∗ vanishes in an exactly supersymmetric theory. Here,
we have used the results that a scalar makes the contribution to Λ given by (we note the
use here in the integrand of 2k2

0 rather than the 2(~k2 + m2) in Ref. [50], to be consistent with
ω = −1 [70] for the vacuum stress-energy tensor) Λs ∼= −8πGN [

1
G2

N64ρ2 ] and that a Dirac

fermion contributes −4 times Λs to Λ, where ρ = ln 2
λc

with λc(j) =
2m2

j

πM2
Pl

for particle j

with mass mj.
We note that the UV fixed-point calculated here, (g∗, λ∗) ∼= (0.0442, 0.0817), and the

estimate (g∗, λ∗) ≈ (0.27, 0.36) in Refs. [54,55] are similar in that in both of them g∗ and λ∗
are positive and are less than 1 in size. Further discussion of the relationship between the
two fixed-point predictions can be found in Ref. [47].
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3. Review of Planck Scale Cosmology and an Estimate of Λ

The authors in Refs. [54,55], using the exact renormalization group for the
Wilsonian [24–28] coarse grained effective average action in field space in the Einstein–
Hilbert theory, as discussed in Section 1, have argued that the dimensionless Newton and
cosmological constants approach UV fixed points as the attendant scale k goes to infinity in
the deep Euclidean regime. This is also in agreement with what we have found in RQG.
The contact with cosmology one may facilitate via a connection between the momentum
scale k, characterizing the coarseness of the Wilsonian graininess of the average effective
action and the cosmological time t. The authors in Refs. [54,55], using this latter connection,
arrive at the following extension of the standard cosmological equations:

(
ȧ
a
)2 +

K
a2 =

1
3

Λ +
8π

3
GNρ,

ρ̇ + 3(1 + ω)
ȧ
a

ρ = 0, Λ̇ + 8πρĠN = 0,

GN(t) = GN(k(t)), Λ(t) = Λ(k(t)). (8)

Here, ρ is the density and a(t) is the scale factor with the Robertson–Walker metric given as:

ds2 = dt2 − a(t)2
(

dr2

1− Kr2 + r2(dθ2 + sin2 θdφ2)

)
(9)

where K = 0, 1,−1 correspond respectively to flat, spherical, and pseudo-spherical 3-spaces
for constant time t. The attendant equation of state is:

p(t) = ωρ(t), (10)

where p is the pressure. The aforementioned relationship between k and the cosmological
time t is:

k(t) =
ξ

t
(11)

with the constant ξ > 0 determined from constraints on physical observables. Note that
the physical meaning of this scale k(t) is the causal limit for the respective Wilsonian
field-space coarse graining as explained in Ref. [54].

Using the UV fixed points for k2GN(k) ≡ g∗ and Λ(k)/k2 ≡ λ∗ obtained indepen-
dently, the authors in Refs. [54,55] solve the cosmological system in Equation (8). They find,
for K = 0, a solution in the Planck regime where 0 ≤ t ≤ tclass, with tclass a “few” times
the Planck time tPl , which joins smoothly onto a solution in the classical regime, t > tclass,
which coincides with standard Friedmann–Robertson–Walker phenomenology but with
the horizon, flatness, scale free Harrison–Zeldovich spectrum, and entropy problems all
solved purely by Planck scale quantum physics. We now recapitulate how to use the Planck
scale cosmology of Refs. [54,55] and the UV limits {g∗, λ∗} in RQG [47–49] in Ref. [50] to
predict [57] the current value of Λ.

Specifically, the transition time between the Planck regime and the classical Friedmann–
Robertson–Walker (FRW) regime is determined as ttr ∼ 25tPl in the Planck scale cosmology
description of inflation in Ref. [55]. In Ref. [57], we show that, starting with the quantity
ρΛ(ttr) ≡ Λ(ttr)

8πGN(ttr)
, we get, following the arguments in Ref. [71] (teq is the time of matter-

radiation equality),

ρΛ(t0) ∼=
−M4

Pl(1 + c2,e f f k2
tr/(360πM2

Pl))
2

64 ∑
j

(−1)Fnj

ρ2
j
× t2

tr
t2
eq
× (

t2/3
eq

t2/3
0

)3

∼=
−M2

Pl(1.0362)2(−9.194× 10−3)

64
(25)2

t2
0

∼= (2.4× 10−3eV)4.

(12)
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t0 ∼= 13.7× 109 yrs. is the age of the universe. The estimate in (12) is close to the experi-
mental result [61] (the analysis in Ref. [72] also gives a value for ρΛ(t0) that is qualitatively
similar to this experimental result) ρΛ(t0)|expt ∼= ((2.37± 0.05)× 10−3 eV)4.

In Ref. [57], detailed discussions are given of the three issues of the effect of various
spontaneous symmetry breaking energies on Λ, the effect of our approach to Λ on big
bang nucleosynthesis (BBN) [73], and the effect of the time dependence of Λ and GN on
the covariance [74–76] of the theory. We refer the reader to the respective discussions in
Ref. [57].

In Ref. [62], we have argued, regarding the issue of the error on our estimate, that the
structure of the solutions of Einstein’s equation [77–80], taken together with the Heisenberg
uncertainty principle,

∆p∆q ≥ 1
2

, (13)

implies the constraint:

k ≥
√

5
2w0
≡
√

5
2

1√
3/Λ(k)

(14)

where Λ(k) follows from (12) (see Equation (52) in Ref. [57]). For, in a de Sitter universe,
which we describe here with the metric [77,81]:

gµνdxµdxν = dt2 − e2t/b
[
dw2 + w2(dθ2 + sin2 θdφ2)

]
in an obvious notation, with b =

√
3/Λ, a light ray starting at the orign w = 0 never gets

past w = w0 ≡ b if travels uninterruptedly along its geodesic. Taking q = w cos θ where
θ is the polar angle when~k ≡ kẑ, we may identify ∆p as our effective k, as k represents
the size of the mean squared momentum fluctuations in the universe that are effective
for the running of the universe observables GN(k), Λ(k). For the universe in the Planck
regime, from the explicit solutions of the field equations in Refs. [78–80], we arrive at the
estimate [62], at any given time, using an obvious notation,

(∆q)2 ∼=
∫ w0

0 dww2w2 < cos2 θ >∫ w0
0 dww2

=
1
5

w2
0. (15)

From this estimate and Equation (13), we get the Einstein–Heisenberg consistency condition
in Equation (14). This constraint’s equality gives the estimate [57,62] of the transition time,
ttr = α/MPl = 1/ktr, from the Planck scale inflationary regime [54,55] to the Friedmann–
Robertson–Walker regime via the implied value of α. On solving this equality for α we
get α ∼= 25.3, in agreement with the value α ∼= 25 implied by the numerical studies in
Refs. [54,55]. This agreement suggests an error on ttr at the level of a factor O(3) or less
and an uncertainty on Λ reduced from a factor of O(100) [57] to a factor of O(10).

One may ask what would happen to our estimate if there were a susy GUT theory
at high scales. Even though the LHC has yet to see [82,83] any trace of susy, it may still
appear. In Ref. [57], for definiteness and purposes of illustration, we use the susy SO(10)
GUT model in Ref. [84] to illustrate how such a theory might affect our estimate of Λ. We
show that either one needs a very high mass for the gravitino or one needs twice the usual
particle content with the susy partners of the new quarks and leptons at masses much lower
than their partners’ masses. This allows for the cancellation of the respective contributions
to the cosmological constant—see Ref. [57].

4. Outlook

We have presented a review and update of the current status of the resummed quan-
tum gravity approach to the quantum theory of general relativity. It can be seen as what
Prof. John Wheeler has called a radically conservative approach [85]: It is conservative
because it is based on well-established exact resummation methods in relativistic quantum
field theory. It is radical because it applies these methods in a completely new and different
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way: The respective resummation in the infrared (IR) is based on the part of the quantum
amplitudes that would be IR divergent if it were on-shell but it is not actually IR divergent
because it is still off-shell. This tames the UV regime in quantum general relativity. It also
allows us to predict the value of the cosmological constant with a good accuracy.

There may be connections with the quantum cosmology approach in Ref. [86] where a
similar dependence of ρΛ on t0 and the transition time ttr is found. In addition, the relation
of the running scale k to the cosmological time via k = ξ/t as given in Equation (11) may
well be related to the phenomenologically successful scale invariant vacuum paradigm
exhibited and used in Refs. [87,88], where we also note that the latter paradigm may very
well be connected with the behavior of the quantum gravity in the conformal sector as
presented in Refs. [89–91]. These connections and relations are ripe for further theoretical
and phenomenological investigation.
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