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Abstract: Despite years of work, a robust, widely applicable generic “symmetry detector” that
can paral-lel other kinds of computer vision/image processing tools for the more basic structural
charac-teristics, such as a “edge” or “corner” detector, remains a computational challenge. A new
symmetry feature detector with a descriptor is proposed in this paper, namely the Simple Robust
Features (SRF) algorithm. A performance comparison is made among SRF with SRF, Speeded-up
Robust Features (SURF) with SURF, Maximally Stable Extremal Regions (MSER) with SURF, Harris
with Fast Retina Keypoint (FREAK), Minimum Eigenvalue with FREAK, Features from Accelerated
Segment Test (FAST) with FREAK, and Binary Robust Invariant Scalable Keypoints (BRISK) with
FREAK. A visual tracking dataset is used in this performance evaluation in terms of accuracy and
computational cost. The results have shown that combining the SRF detector with the SRF descriptor
is preferable, as it has on average the highest accuracy. Additionally, the computational cost of SRF
with SRF is much lower than the others.

Keywords: feature detection; descriptor; SURF; MSER; Harris detector; FAST; BRISK; SRF

1. Introduction

Various feature detectors and descriptors have been developed to solve computer
vision problems over the last two decades [1,2]. Given its relative simplicity, the identifica-
tion of rotation and translation symmetries and their skewed counterparts from processed
images has been the main emphasis in com-puter vision. The main challenge of feature
detection and description is to obtain features invariant to affine transformation, scale,
rotation, and noise [3,4]. The ideal feature detector can extract similar feature points re-
gardless of the changes of parameters, as mentioned previously. On the other hand, feature
descriptors can characterize the feature points or regions with the most specific information.
These same features can be matched together with other images [5].

SURF is a popular detector among the existing detectors that is partly inspired by
the Scale Invariant Feature Transform (SIFT) [6,7]. It has higher efficiency, especially in
computational cost than SIFT [8,9], making it more suitable for real-time applications.
Still, there is a detector with comparable performance, such as BRISK [5]. MSER [10,11] is
another example that is capable of obtaining good quality features.

The Harris detector is one of the most common corner detectors introduced by Har-
ris and Stephens [12]. This detector’s advantage includes simplicity and invariance of
transformation, rotation, and lighting [13]. The Minimum Eigenvalue detector, another
corner detector, was proposed by Shi and Tomasi [14], which has better stability than the
Harris detector. However, the drawback of this method is that the computational cost is
higher than the Harris detector. FAST, which was developed by Edward and Tom [15],
has high computational efficiency. Additionally, the performance of this detector can
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be increased with machine learning techniques, which makes it a good option for video
processing applications.

The SURF descriptor is the preferred detector, and has a high matching rate and
high-speed performance in terms of the descriptor. FREAK is another excellent example
that was proposed by Alexandre Alahi et al. [3]. This descriptor mimics the saccadic search
of the human eye, and the descriptor matrix is produced by comparing image intensities
over a retinal sampling pattern.

Studies on the performance comparison among feature detectors and descriptors have
been done [16,17]. Yet, the computational cost of the combination of detector and descrip-
tor and accuracy still far from ideal performance. Thus, a new detector with a descriptor
algorithm (SRF) is developed in this paper to tackle the accuracy and computational cost.
It simplifies the process of obtaining feature points without non-maximal suppression.
Besides forming a descriptor matrix with complex calculations, SRF characterizes fea-
tures according to three aspects: location, grayscale intensity, and gradient intensity with
weightage factors. This algorithm can achieve better accuracy with a lower computational
cost than other existing approaches, which can be implemented in real-life applications,
such as surveillance, traffic control, and video communication. In this paper, performance
evaluation is done to justify the performance of SRF with other existing algorithms.

2. Related Work

This section presents the overviews of involved detectors and descriptors, including
SURF, MSER, Harris, Minimum Eigenvalues, FAST, BRISK, and FREAK. Furthermore, the
principle of SRF is introduced.

2.1. SURF

The fundamental concepts of SURF come from SIFT to improve computational effi-
ciency [18]. In this algorithm, the image needs to be converted first to grayscale. Then,
the integral image is formed [19] by cumulative summation for the rows and columns of
the image matrix. The determinant of the Hessian response map is then built, and feature
points are selected from scale-space through non-maximal suppression. Interpolations
increase the sub-pixel accuracy of the feature points.

After obtaining the feature points, Haar wavelet responses can be calculated, as well
as the dominant orientation of each feature point [20]. Figure 1 displays the orientation
search and determination example, whereby the orientation angle is estimated based on
the highest value of summed responses. The descriptor vector of feature points is then
extracted according to the summation of wavelet responses.
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2.2. MSER

MSER claims that certain regions of grayscale intensity in an image are stable over
a high range of thresholds, and these regions will be selected as features [21]. The imple-
mentation of MSER [10,11] is done through several steps. Initially, the threshold value
is changed from maximum (255) to minimum (0) intensity and extracts the connected
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pixels, known as Extremal Regions. Those with the minimum relative growth rate over the
threshold range are ‘maximally stable,’ and these regions can be approximated into ellipse
shapes. In other words, these ellipse regions are the features of the image.

There are some limitations in obtaining features, such as the minimum and maximum
area of a region, area, and similarity. However, since the features are obtained using the
intensity function, the features have several characteristics: high stability, invariance to
the affine transformation of image intensities, and multi-scale detection (when overlap
happens, both fine and large regions are detected).

2.3. Harris Detector

Harris detector is a common and simple corner detector [22]. In this algorithm, the
gradient intensity in the x-direction, y-direction, and xy-direction for every single point of
the image is calculated. Next, a correlation matrix for each image point is formed [23,24].
Then, the Gaussian function is used to smoothen the components in the matrix to enlarge
the robustness of the detection. Eigenvalues are estimated from a hessian matrix to measure
the response of each point using Equation (1) [25], whereby λ1 and λ2 are the eigenvalues
of and k is the sensitivity factor which is normally within [0.04, 0.06]:

H = λ1λ2 − k(λ1 + λ2)
2 (1)

Only the points with high values for both eigenvalues are selected as corner points
or feature points [26]. Nevertheless, computing eigenvalues might lead to severe compu-
tational cost. Hence, an approximation, Equation (2) with determinant and trace of M,
decreases the cost. Lastly, the response value is compared with the threshold value. The
points with a higher value than the threshold are selected as feature points:

H = det(M)− k ∗ trace(M)2 (2)

2.4. Minimum Eigenvalue Detector

This detector has several similar concepts to the Harris detector. Firstly, the gradient
intensity for every image pixel is calculated and forms the correlation matrix. The Gaussian
function is used as well to smoothen the elements of the matrix.

The only difference is that the response equation is using eigenvalues as a benchmark,
which is shown in Equation (3) [14]:

R = min(λ1, λ2) (3)

Again, the image points with higher response values than the threshold will be selected
as feature points.

2.5. FAST

Some concepts from the FAST detector are referred to as the Smallest Univalue Seg-
ment Assimilating Nucleus (SUSAN) detector [15,27]. It identifies feature points using a
circle of 16 pixels with radius 3 [28], shown in Figure 2. In this figure, assuming pixel P is
selected for detection, the 16 pixels around pixel P are labeled from number 1 to 16 in a
clockwise direction.

Suppose that the contiguous pixels in the circle are brighter than the intensity of pixel
P plus a threshold value or all darker than the intensity of pixel P minus the threshold
value. In that case, pixel P will be classified as a feature point [29]. Figure 2 illustrates
three different states of the 16 pixels around pixel P: similar points (grey), darker points
(black), and brighter points (white). This process will be repeated for every single pixel of
the image to complete the detection.
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Multiple features adjacent to each other might be selected; non-maximal suppression
will be carried out after detection to remove those not so ‘significant’ feature points. This is
done by measuring the sum of the absolute difference between pixels in the contiguous
arc and center pixel. Comparing this value with the adjacent feature point, the one with a
smaller value will be neglected.

2.6. BRISK

BRISK is referred to as the FAST detector [30]. The scale-space pyramid layers of the
image are formed with n octaves and intra-octaves, whereby usually n = 4 [3], as shown in
Figure 3. The octave layers are produced by half-sampling the image progressively. The
first intra-octave layer is formed by downsampling the image with a factor of 1.5, then the
rest of the layers are formed using half-sampling.
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Next, potential regions of the feature are classified by applying the FAST method on
all octaves and intra-octave layers individually with the same threshold value. Similar
to FAST, non-maximal suppression is carried out on these feature regions for all layers.
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For example, one of the feature points in the first-octave layer is compared with neighbor
points. If the feature point meets the maximum requirement, it will then be compared with
neighbor points in the above and below layers. However, the layers are formed with various
discretization, and appropriate interpolation needs to be applied to ensure consistency.

2.7. FREAK

FREAK is a binary descriptor and uses a circular pattern in the form of a retinal
sampling grid. The density varies from center to boundary. The points near the center
have a high density, but the value drops exponentially for outer points, as shown in
Figure 4 [3]. The local gradients of the chosen pairs are summed up to ensure the invariance
rotation property.
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Figure 4. The density of ganglion cells over the retina [31].

Similar to the BRISK method, various kernels sizes are used for each sample point
in this model. FREAK differs from BRISK in terms of overlapping receptive fields and
exponential changes in size. It was observed that better performance could be archived by
changing the size based on the log-polar retinal pattern and overlapping receptive fields.

3. Proposed Algorithm

SRF, the proposed algorithm in this paper, has some concepts inspired by the Harris
detector. Compared to other existing feature detectors, the SRF algorithm is more efficient
and faster in speed, which is more suitable for real-time applications.

3.1. Feature Points Detection

The first step of SRF is to obtain feature points from the image. This is done by a series
of steps, as shown below:

• Conversion to grayscale. The SRF algorithm only works with a 2D image grayscale
matrix, and any image format must be converted into a grayscale matrix format before
proceeding to the next step. In this analysis, the grayscale conversion is done through
the MATLAB built-in function, whereby the RGB to grayscale conversion is done
using Equation (4):

Grayscale = 0.2989 × R + 0.5870 × G + 0.1140 × B (4)
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• Reduction of image resolution. This step aims to decrease the computational cost of the
algorithm without affecting the output significantly. Thus, this step is not necessary if
there is no restriction on the computational cost. In this stage, the image resolution is
reduced to half by removing the even rows and columns. This kind of subsampling
will not affect the performance of finding feature points, especially for those large
images. Then, the image resolution is decreased to half again by combining four
adjacent pixels into one and obtaining the average value. This process can decrease
the computational load and image noise simultaneously with the drawback of the
blurring effect.

• Calculation of the gradient intensity. This is used by the Harris detector, whereby
the gradient intensity of every pixel is estimated in the x-direction, y-direction, and
xy-direction using the convolution method with a mask matrix of [−1 0 1] shown in
Equation (5):

M =

∣∣∣∣ I2
x Ix Iy

Ix Iy I2
y

∣∣∣∣ (5)

The only difference compared to the Harris detector is that the Gaussian function is
not used in SRF. Similar to a smoothing operation done using the Gaussian function, the
SRF algorithm has reduced image resolution that has given the added advantage of the
reduced computational time compared to other algorithms. Nevertheless, this process did
not compromise accuracy when compared to other algorithms.

• Obtaining feature points. Only the points with large gradient intensity are selected as
feature points. The average value from the three gradient intensities is measured with
second-order derivatives (I2

x , I2
y , Ixy), and the threshold is set according to the highest

average gradient intensity value to ensure consistent performance regardless of the
light intensity of the image, as shown in Equations (6) and (7):

I average =
(

Ixx + Iyy + Ixy
)
/3 (6)

Threshold = 0.1 × Imax
average (7)

• Filtering the feature points. Feature points within the same region should at least
connect one adjacent point using the SRF algorithm. If the number of connected
feature points is too small, it is assumed that these feature points are image noise and
should be eliminated.

3.2. Features Description

Unlike existing feature descriptors, the SRF algorithm clusters connected feature
points as one feature. This clustering concept is based on the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [32]. The points are grouped together
according to the distance measurement and the minimum number of points. Other common
clustering methods, such as the K-Means Clustering [33], were not used in this paper due
to the number of clusters that need to be predefined. The generated clusters’ region will
be significantly affected by this parameter, which is not robust in dealing with various
scenarios. In order to simplify and minimize the computational load, we proposed to
set the distance between the points to be 1 (adjacent to each other), while the minimum
number of points is set as 4. The feature points from the same region should be adjacent
to each other, while the clusters with less than 4 points are considered image noise. Each
cluster will form a rectangle boundary based on the outermost point of four sides, which is
demonstrated in Figure 5. The characterization also does not use the convention method.
A new descriptor matrix is proposed in this algorithm, formed by three elements: location,
grayscale pixels, and gradient intensity.
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Location: When features in images move from time to time, the distance traveled is
mostly not far from the previous frame, since the time gap between frames is very small.
The identification of location property makes matching easier and more accurate most
of the time. In this algorithm, the center point coordinate of each cluster is stored in the
descriptor matrix.

Grayscale pixels: Not only the distance traveled, but the average value of the grayscale
pixels should be around the same for similar features from two frames, since changing of
scale and rotation is not obvious within two frames in a limited time. By considering the
variants of the scale, the rectangle box of each cluster is divided into 3 × 3 regardless of the
rectangle size, and obtains the average value for each of the nine boxes.

Gradient intensity: As mentioned above, the features’ movement is not significant,
and thus, the gradient intensity will be changed slightly. An average gradient intensity is
calculated from the clusters’ rectangle and stored in the descriptor matrix.

In location, grayscale pixels and gradient intensity, images are autocorrelated based
on overlap method to determine symmetry detection. These approaches assumes that the
evaluated images is either perfectly symmetric or nearly symmetric. Lastly, a weightage
factor is added to these three elements, since the impact of each element might not be the
same to perform well in features matching. This descriptor can be formulated as shown in
Equation (8):

D = c1L + c2G + c3 I (8)

whereby c1, c2, and c3 are the weightage factor for each element. Parameter optimization
for each weightage factor is done based on the accuracy to obtain the suitable value in
features matching. In this parameter optimization, the performance of the weightage
factors is tested within a certain range of value, using various image samples from the
visual tracker benchmark. The final optimized values of the weightage factors are: c1 = 2.4,
c2 = 0.09, c3 = 0.8. Figure 6 illustrates the flowchart of the SRF algorithm.
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3.3. Performance Evaluation

Two main parameters for the performance comparison of feature detection algorithms
are accuracy and computational cost. When capturing image frames, the features of each
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frame should be the same, ideally. This means that when matching between frames is
done, the higher the matching features, the higher the accuracy. In any case, the number of
detected features varies using different methods. Usually, the feature points are detected
first in both frames. Then, the feature matching is done to obtain the correct matches
between the frames. Next, the matching rate is estimated by determining the number of
matched features divided by the average number of features between two frames [34,35].
However, in this work, instead of only two frames of each sample, 98 samples, which
accounts for 58,613 frames, have been analyzed to determine the robustness of the proposed
algorithm compared to other existing ones.

On the other hand, the computational cost in this research is the total run time of
detection and features matching from two frames. The simulation analysis was conducted
using MATLAB software, since it can complete tasks easier than other custom software,
such as Python. The computer’s processor is an Intel i5-4460 64-bit CPU @3.2 GHz,
and the RAM is 16 GB. Prior simulation on the seven algorithms analyzed in this work
was optimized to ensure that each algorithm performed at its optimized condition when
analyzing all 98 image datasets. This ensured that each algorithm was hardware optimized.

4. Results and Discussions

A total of 98 sets of image frames with over 58,000 images in total were used to analyze
the performance of SRF and the other six algorithms (i.e., SURF, MSER, Harris, Minimum
Eigenvalue, FAST, and BRISK). The images were taken from the visual tracker benchmark
online [36,37]. The reason for choosing this database is because of the large number of
image frames and various types of images from low resolution to high resolution. Sufficient
data can be collected in various ranges of light intensities, image blur, rotations, scales, and
viewpoints. Figure 7 presents some of the images from the database.
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Harris, Minimum Eigenvalue, FAST, and BRISK detectors use FREAK for features
description, while SURF and MSER detectors use the SURF descriptor in this performance
comparison analysis. The SRF detector, however, is using its own descriptor. Figure 8
plotted the accuracy and computational cost of the algorithms in various sets of image
frames. In this analysis, the detected features are matched between consecutive frames
in each image dataset. Based on the figures, the accuracy and computational cost are not
constant for all involved algorithms in different case studies. The image data and the
number of detected features are not the same in different images.
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It can be observed that the SRF algorithm mostly has the largest accuracy and smallest
computational cost. In the SRF algorithm, corner feature points are extracted and the
feature points within same region are grouped together to form a cluster. Moreover,
those clusters with a number of feature points less than 4 are considered as image noise
and will be removed, which is different to the methods in this study. Not only can the
accuracy be improved by eliminating the image noise, but the computational cost can
also be reduced through forming the clusters, since less work is needed for the feature
matching. Based on Figure 8, it can be observed that the accuracy of other approaches is
much lower than the SRF method in the 70th image dataset. This is because there are large
illumination changes between frames in the image dataset. Overall, the accuracy of SRF
is more than 60%, and the majority of the computational cost is less than 0.05 s. The bar
graph illustrates the average accuracy of the tested algorithms in these image datasets,
based on changes in illumination, rotation, scale, and translation, using the visual tracker
benchmark image datasets. Compared to other approaches, the SRF algorithm is more
robust to illumination, rotation, scale, and translation changes, with at least 70% of average
accuracy. This is mainly because changes in the pixel location are considered in the SRF
algorithm, in which the correct match can be found more easily, especially when there are
only small changes between frames. Moreover, pixel intensity and gradient intensity with
suitable weightage are included in the proposed algorithm, which can improve the features
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matching further without burdening the computational load. The combination of these
three factors improves the feature matching between two frames significantly, since the
closer cluster with high similarity of pixel intensity and gradient intensity is more likely to
be matched.

Detailed data are shown in Tables 1 and 2 to estimate the algorithms’ average accuracy
and computational cost in various sets of images. Table 1 shows that SRF has the highest
accuracy, which is 73% on average. SURF has the second-highest accuracy, but this was
still almost 20% lower than SRF. The rest of the algorithms have poor accuracy, as they do
not even exceed 40%, especially since the BRISK algorithm only has an accuracy of 17%.

Table 1. Estimation of the average accuracy for each of the algorithms.

Algorithm
Accuracy (%)

1st Set 2nd Set 3rd Set . . . 97th Set 98th Set Average

SURF 60.7 83.1 32.9 . . . 87.2 63.8 55.4
MSER 40.1 65.8 27.0 . . . 82.8 47.7 39.6
Harris 28.9 75.9 12.0 . . . 85.8 53.8 34.7
Eigen 24.1 66.7 9.5 . . . 85.3 42.2 26.7
FAST 22.9 71.5 9.8 . . . 87.8 48.1 31.3
BRISK 7.0 48.8 5.2 . . . 80.1 26.6 17.4

SRF 64.4 95.5 73.2 . . . 93.0 82.1 73.1

Table 2. Estimation of average computational cost for each of the algorithms.

Algorithm
Computational Cost (s)

1st Set 2nd Set 3rd Set . . . 97th Set 98th Set Average

SURF 0.03 0.04 0.06 . . . 0.08 0.11 0.06
MSER 0.07 0.10 0.11 . . . 0.22 0.36 0.14
Harris 0.11 0.11 0.15 . . . 0.17 0.16 0.14
Eigen 0.11 0.11 0.15 . . . 0.25 0.19 0.16
FAST 0.08 0.08 0.09 . . . 0.10 0.10 0.09
BRISK 0.08 0.09 0.10 . . . 0.10 0.10 0.09

SRF 0.01 0.02 0.02 . . . 0.04 0.05 0.03

In terms of computational cost, again, SRF has the best performance, with only 0.01 s.
Using SRF as the benchmark, SURF is at least 100% longer than SRF, while FAST and BRISK
are more than 200% longer. The MSER, Harris, and Minimum Eigenvalue algorithms have a
much higher computational cost, which is at least 400% longer than SRF. Hence, regardless of
the accuracy or computational cost, SRF has the best performance among SURF, MSER, Harris,
Minimum Eigenvalue, FAST, and BRISK. Figures 9 and 10 illustrate some examples of features
detection and matching throughout this analysis. In order to provide a reliable indicator of
the algorithm performance, image transformation, such as rotation and translation, and scale
and luminance are demonstrated in Figures 9 and 10, respectively.
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5. Conclusions

In conclusion, SRF has a 73% average accuracy, which is the highest as compared to
the SURF, MSER, Harris, Minimum Eigenvalue, FAST, and BRISK detectors. The accuracy
is nearly 20% higher than SURF and more compared to other detectors. In terms of
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computational cost, SRF is only half of SURF and even less than the other detectors. Thus,
it can be expected that SRF has a higher performance than the others even when converted
to other languages for applications or analyses. Still, the accuracy of the SRF method
might be affected significantly when there is a large assymmetrical changes in rotation,
translation, scale, or lamination change between frames. This is because it is designed to
perform symmetry detection detect and match feature points between consecutive frames,
where they are expected to show only small changes in pixel location, intensity value, and
gradient intensity.
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