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Abstract: In this paper, we propose a novel binary classification method called the kernel-free
quadratic surface minimax probability machine (QSMPM), that makes use of the kernel-free tech-
niques of the quadratic surface support vector machine (QSSVM) and inherits the advantage of
the minimax probability machine (MPM) without any parameters. Specifically, it attempts to find
a quadratic hypersurface that separates two classes of samples with maximum probability. How-
ever, the optimization problem derived directly was too difficult to solve. Therefore, a nonlinear
transformation was introduced to change the quadratic function involved into a linear function.
Through such processing, our optimization problem finally became a second-order cone program-
ming problem, which was solved efficiently by an alternate iteration method. It should be pointed
out that our method is both kernel-free and parameter-free, making it easy to use. In addition, the
quadratic hypersurface obtained by our method was allowed to be any general form of quadratic
hypersurface. It has better interpretability than the methods with the kernel function. Finally, in order
to demonstrate the geometric interpretation of our QSMPM, five artificial datasets were implemented,
including showing the ability to obtain a linear separating hyperplane. Furthermore, numerical
experiments on benchmark datasets confirmed that the proposed method had better accuracy and
less CPU time than corresponding methods.

Keywords: classification; quadratic surface support vector machine; kernel-free; minimax probability
machine; second-order cone programming problem

1. Introduction

Machine learning is an important branch in the field of artificial intelligence, which
has a wide range of applications in various fields of contemporary science [1]. With the de-
velopment of machine learning, the classification problem has been widely concerned and
studied in the fields of pattern recognition [2], text classification [3], image processing [4],
financial time series prediction [5], skin disease [6], intrusion detection systems [7], etc. The
classification problem is a vital task in supervised learning that learns a classification rule
from a training set with known labels and then uses it to assign a new sample to a class.

At present, there are many famous classification methods. Among these existing meth-
ods, Lanckriet et al. [8,9] proposed an excellent classifier, called the minimax probability
machine (MPM). For a given binary classification problem, the MPM not only deals with it
in the linear case, but also in the nonlinear case by the kernel trick. It is worth noting that
the MPM does not have any parameters, which is an important advantage. Therefore, it has
been widely used in computer vision [10], engineering technology [11,12], agriculture [13],
and novelty detection [14]. Moreover, many researchers have proposed a variety of im-
proved versions of the MPM from different perspectives [14–25]. The representative works
can be briefly reviewed as follows. In [15], Thomas and Gregory proposed MPM regression
(MPMR), which transformed the regression problem into a classification problem, and then
used the classifier MPM to obtain a regression function. To further exploit the structural
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information of the training set, Gu et al. [17] proposed the structural MPM (SMPM) by
combining the finite mixture models with the MPM. In addition, Yoshiyama et al. [21]
proposed the Laplacian MPM (Lap-MPM), which improved the performance of the MPM
in semisupervised learning. However, the nonlinear MPM using kernel techniques lacks
interpretability and usually depends heavily on the choice of a proper kernel function
and the corresponding kernel parameters. Furthermore, choosing the appropriate kernel
function and adjusting its parameters may require much computational time and effort.
Therefore, it naturally occurs to us that the study of a kernel-free nonlinear MPM is of great
significance.

For the first time, Dagher [26] proposed a kernel-free nonlinear classifier, namely the
quadratic surface support vector machine (QSSVM), in 2008. It was based on the maximum
margin idea, and the training points were separated by a quadratic hypersurface with-
out a kernel function, avoiding the time-consuming process of selecting the appropriate
kernel function and its corresponding parameters. Furthermore, in order to improve the
classification accuracy and robustness, Luo et al. [27] proposed the soft-margin quadratic
surface support vector machine (SQSSVC). After that, Bai et al. [28] proposed the quadratic
kernel-free least-squares support vector machine for target diseases’ classification. Follow-
ing these leading works, some scholars performed further studies, e.g., see [29–34] for the
classification problem, [35] for the regression problem, and [36] for the cluster problem.
The good performance of these methods demonstrates that the quadratic hypersurface
is an effective method to flexibly capture the nonlinear structure of data. Thus, it can be
seen that it is very interesting to study the kernel-free nonlinear MPM using the above
kernel-free technique.

In this paper, for the binary classification problem, a new kernel-free nonlinear method
is proposed, which is called the kernel-free quadratic surface minimax probability machine
(QSMPM). It was constructed on the basics of the MPM by using the kernel-free techniques
of the QSSVM. Specifically, it tries to seek a quadratic hypersurface that separates two
classes of samples with maximum probability. However, the optimization problem derived
directly was too difficult to solve. Therefore, a nonlinear transformation was introduced to
change the quadratic function involved into a linear function. Through such processing,
our optimization problem finally became a second-order cone programming problem,
which was solved efficiently by an alternate iteration method. It is important to point out
that our QSMPM addresses the following key issues. First, our method directly generates
a nonlinear (quadratic) hypersurface without the kernel function, so there is no need to
select the appropriate kernel. Second, our method does not need to choose any parameters.
Third, the quadratic hypersurface obtained by our method has better interpretability than
the one by the methods with the kernel function. Fourth, it is rather flexible because the
quadratic hypersurface obtained by our method can be any general form of the quadratic
hypersurface. In our experiment, the results of five artificial datasets showed that the
proposed method can find the general form of the quadratic surface and has also the ability
to obtain the linear separating hyperplane. Numerical experiments on 14 benchmark
datasets verified that the proposed method was superior to corresponding methods in both
accuracy and CPU time. What is more gratifying is that when the number of samples or
the dimension is relatively large, our method can obtain good classification performance
quickly. In addition, the results of the Friedman test and Nemenyi post-hoc test indicated
that our QSMPM was statistically the best one compared to other methods.

The rest of this paper is organized as follows. Section 2 briefly reviews the related
works, the QSSVM, and the MPM. Section 3 presents our method QSMPM, gives its algo-
rithm, and analyzes the computational complexity of the QSMPM. In Section 4, we show
the interpretability of our method. In Section 5, the results of the numerical experiments
on the artificial datasets and benchmark datasets are presented, and a further statistical
analysis is performed. Finally, Section 6 gives the conclusion and future work of this paper.

Throughout this paper, we use lower case letters to represent scalars, lower case bold
letters to represent vectors, and upper case bold letters to represent matrices. R denotes
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the set of real numbers. Rd denotes the space of d-dimensional vectors. Rd×d denotes the
space of d× d matrices. Sd denotes the set of d× d symmetric matrices. Sd

+ denotes the
set of d× d symmetric positive semidefinite matrices. Id denotes the d× d identity matrix.
‖x‖2 denotes the two-norm of the vector x.

2. Related Work

In this section, we briefly introduce the QSSVM and the MPM. For a binary classifica-
tion problem, the training set is given as:

T = {(x1, y1), (x2, y2), . . . , (xm++m− , ym++m−)}, (1)

where xi ∈ Rd is the i-th sample and yi ∈ {+1,−1} corresponds to the class label,
i = 1, 2, . . . , m+ + m−. The number of samples in class +1 and class −1 is m+ and m−, re-
spectively. For the training set (1), we want to find a hyperplane or quadratic hypersurface:

g(x) = 0, (2)

and then use a decision function:

f (x) = sign(g(x)) (3)

to determine whether a new sample x ∈ Rd is assigned to class +1 or class −1.

2.1. Quadratic Surface Support Vector Machine

We first shortly outline the quadratic surface support vector machine (QSSVM) [26].
For the given training set (1), the goal of the QSSVM is to seek a quadratic separating
hypersurface:

g(x) =
1
2

xT Ax + bTx + c = 0, (4)

where A ∈ Sd, b ∈ Rd, c ∈ R, which separates the samples into two classes with the
largest margin. In order to obtain the quadratic hypersurface (4), the QSSVM establishes
the following optimization problem:

min
A,b,c

m++m−

∑
i=1

‖Axi + b‖2
2

s.t. yi(
1
2

xT
i Axi + bTxi + c) ≥ 1, i = 1, . . . , m+ + m−.

(5)

The optimization problem (5) is a convex quadratic programming problem.
After obtaining the optimal solution A∗, b∗, and c∗ to the optimization problem (5),

for a given new sample x ∈ Rd, its label is assigned to either class +1 or class −1 by the
decision function:

f (x) = sgn(
1
2

xT A∗x + bT
∗x + c∗). (6)

To allow some samples in the training set (1) to be misclassified, Luo et al. further
proposed the soft-margin quadratic surface support vector machine (SQSSVM); please
refer to [27].

2.2. Minimax Probability Machine

Now, we briefly review the minimax probability machine (MPM) [8,9]. Let us leave the
training set (1) aside for a moment and suppose that these samples have some distribution.
Specifically, assume that the samples in class +1 are drawn from a distribution with the
mean vector µ+ ∈ Rd and the covariance matrix Σ+ ∈ Sd

+, without making other specific
distributional assumptions. A similar assumption is also given for the samples in class
−1 with the mean vector µ− ∈ Rd and the covariance matrix Σ− ∈ Sd

+. Denote the two
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distributions as x+ ∼ (µ+, Σ+) and x− ∼ (µ−, Σ−), respectively. Based on the above
assumptions, the MPM attempts to obtain a separating hyperplane:

g(x) = wTx− b = 0, (7)

where w ∈ Rd, b ∈ R, which separates the two classes of samples with maximal probability
with respect to all distributions having these mean vectors and covariance matrices. This is
expressed as:

max
w,b,α

α

s.t. inf
x+∼(µ+ ,Σ+)

pr{wTx+ − b ≥ 0} ≥ α,

inf
x−∼(µ− ,Σ−)

pr{wTx− − b ≤ 0} ≥ α,

(8)

where α ∈ (0, 1) represents the lower bound of the accuracy for future data, namely the
worst-case accuracy. The infimum “inf” is taken over all distributions having these mean
vectors µ± ∈ Rd and covariance matrices Σ± ∈ Sd

+.
The constraint condition of the above optimization problem (8) is the probabilistic

constraint, which is difficult to solve. In order to convert the probabilistic constraints to
easy, tractable constraints, the following lemma [9] is given:

Lemma 1 ([9]). Let x be a d-dimensional random vector with mean vector µ and covariance matrix
Σ, where Σ ∈ Sd

+. Given w ∈ Rd, b ∈ R, such that wTx ≤ b and α ∈ (0, 1), the condition:

inf
x∼(µ,Σ)

pr{wTx− b ≤ 0} ≥ α (9)

holds if and only if:
b−wTµ ≥ κ(α)

√
wTΣw, (10)

where κ(α) =
√

α
1−α .

Using the above Lemma 1, the optimization problem (8) is equivalent to:

max
w,b,α

α

s.t. − b + wTµ+ ≥ κ(α)
√

wTΣ+w,

b−wTµ− ≥ κ(α)
√

wTΣ−w.

(11)

Then, through a series of algebraic operations (see Theorem 2 in [9], for the details),
the above optimization problem (11) leads to:

min
w

∥∥∥∥Σ
1
2
+w
∥∥∥∥

2
+

∥∥∥∥Σ
1
2
−w
∥∥∥∥

2

s.t. wT(µ+ − µ−) = 1.
(12)

When its optimal solution w∗ is obtained, for the optimization problem (11), the
optimal solution with respect to b is given by:

b∗ = wT
∗µ− +

∥∥∥∥Σ
1
2
−w∗

∥∥∥∥
2∥∥∥∥Σ

1
2
+w∗

∥∥∥∥
2
+

∥∥∥∥Σ
1
2
−w∗

∥∥∥∥
2

, (13)
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or:

b∗ = wT
∗µ+ −

∥∥∥∥Σ
1
2
+w∗

∥∥∥∥
2∥∥∥∥Σ

1
2
+w∗

∥∥∥∥
2
+

∥∥∥∥Σ
1
2
−w∗

∥∥∥∥
2

. (14)

Now, let us return to the training set (1). It is easy to see that these required mean
vectors µ± ∈ Rd and covariance matrices Σ± ∈ Sd

+ are able to be estimated by the training
set (1) as follows:

µ̂± =
1

m±

m±

∑
i=1

xi ∈ Rd,

Σ̂± =
1

m±

m±

∑
i=1

(xi − µ̂±)(xi − µ̂±)
T ∈ Sd

+.

(15)

Therefore, in practice, these mean vectors µ± and covariance matrices Σ± in (12)–(14)
should be replaced by µ̂± and Σ̂±, and the optimal solutions of w and b thus obtained are
denoted as ŵ∗ and b̂∗. Then, for a given new sample x ∈ Rd, its label is assigned to either
class +1 or class −1 by the decision function:

f (x) = sgn(ŵT
∗x− b̂∗). (16)

In addition, for nonlinear cases and more details, please refer to [8,9].

3. Kernel-Free Quadratic Surface Minimax Probability Machine

In this section, we first formulate the kernel-free quadratic surface minimax probability
machine (QSMPM). Then, its algorithm is given.

3.1. Optimization Problem

For the binary classification problem with the training set (1), we attempt to find a
quadratic separating hypersurface:

g(x) =
1
2

xT Ax + bTx− c = 0, (17)

where A ∈ Sd, b ∈ Rd, c ∈ R, which separates the two classes of the samples. Inspired by
the MPM, we construct the following optimization problem:

max
A,b,c,α

α

s.t. inf
x+∼(µ+ ,Σ+)

pr{
1
2

xT
+Ax+ + bTx+ − c ≥ 0} ≥ α,

inf
x−∼(µ− ,Σ−)

pr{
1
2

xT
−Ax− + bTx− − c ≤ 0} ≥ α,

(18)

where α ∈ (0, 1) represents the lower bound of the accuracy for future data, namely the
worst-case accuracy. The notation x+ ∼ (µ+, Σ+) refers to the class distribution that
has the prescribed mean vector µ+ ∈ Rd and covariance matrix Σ+ ∈ Sd

+, but otherwise
arbitrary, and likewise for x−.

The above optimization problem (18) corresponds to the optimization problem (8),
which is used to derive the optimization problem (11). Analogically, the optimization
problem (18) should be used to derive the required optimization problem. Unfortunately,
it does not have a counterpart when the functions in curly braces in the optimization
problem (18) are quadratic because of the lack of the corresponding Lemma 1. In order
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to overcome this difficulty, we change the quadratic functions as a linear function by
introducing a nonlinear transformation from x = ([x]1, [x]2, . . . , [x]d)T ∈ Rd to:

z = z(x) = (
1
2
[x]21, [x]1[x]2, . . . , [x]1[x]d,

1
2
[x]22, . . . , [x]2[x]d, . . . ,

1
2
[x]2d, [x]1, [x]2, . . . , [x]d)

T ∈ R
d2+3d

2 . (19)

By representing the upper triangular entries of the symmetric matrix:

A = AT = (aij)d×d ∈ Sd (20)

as a vector:
a = (a11, a12, . . . , a1d, a22, . . . , a2d, . . . , add)

T ∈ R
d2+d

2 , (21)

and defining:

w = (aT, bT)T ∈ R
d2+3d

2 , (22)

the quadratic function (17) of x in d-dimensional space yields the linear function of z in
d2+3d

2 -dimensional space as follows:

g(x) =
1
2

xT Ax + bTx− c = wTz− c. (23)

Following the transformation (19), the training set (1) in the d-dimensional space
correspondingly becomes:

T̃ = {(z1, y1), (z2, y2), · · · , (zm++m− , ym++m−)}, (24)

where zi = z(xi); in other words, zi ∈ R d2+3d
2 is obtained by replacing x in the formula (19)

with xi = ([xi]1, [xi]2, . . . , [xi]d)
T ∈ Rd, i = 1, 2, · · · , m+ + m−. For the training set (24), it is

naturally assumed that the samples of the two classes are sampled from z+ ∼ (µz+ , Σz+)

and z− ∼ (µz− , Σz−), respectively, where these mean vectors µz± ∈ R d2+3d
2 and covariance

matrices Σz± ∈ S
d2+3d

2
+ can be estimated as:

µ̂z± =
1

m±

m±

∑
i=1

zi ∈ R
d2+3d

2 ,

Σ̂z± =
1

m±

m±

∑
i=1

(zi − µ̂z±)(zi − µ̂z±)
T ∈ S

d2+3d
2

+ .

(25)

Based on the transformation (19), the optimization problem (18) is replaced by:

max
w,c,α

α

s.t. inf
z+∼(µ̂z+

,Σ̂z+ )
pr{wTz+ − c ≥ 0} ≥ α,

inf
z−∼(µ̂z− ,Σ̂z− )

pr{wTz− − c ≤ 0} ≥ α.

(26)

Now, Lemma 1 [9] is applicable to the optimization problem (26). Thus, we have:

max
w,c,α

α

s.t. − c + wTµ̂z+ ≥ κ(α)
√

wTΣ̂z+w,

c−wTµ̂z− ≥ κ(α)
√

wTΣ̂z−w,

(27)
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where κ(α) =
√

α
1−α . Moreover, a series of algebraic operation shows that the above

optimization problem (27) is equivalent to the following second-order cone programming
problem:

min
w

∥∥∥∥Σ̂
1
2
z+w

∥∥∥∥
2
+

∥∥∥∥Σ̂
1
2
z−w

∥∥∥∥
2

s.t. wT(µ̂z+ − µ̂z−) = 1.
(28)

When its optimal solution w∗ is obtained, for the optimization problem (27), the
optimal solution with respect to c is given by:

c∗ = wT
∗ µ̂z− +

∥∥∥∥Σ̂
1
2
z−w∗

∥∥∥∥
2∥∥∥∥Σ̂

1
2
z+w∗

∥∥∥∥
2
+

∥∥∥∥Σ̂
1
2
z−w∗

∥∥∥∥
2

, (29)

or:

c∗ = wT
∗ µ̂z+ −

∥∥∥∥Σ̂
1
2
z+w∗

∥∥∥∥
2∥∥∥∥Σ̂

1
2
z+w∗

∥∥∥∥
2
+

∥∥∥∥Σ̂
1
2
z−w∗

∥∥∥∥
2

. (30)

In the next subsection, we show how to solve the optimization problem (28).

3.2. Algorithm

Now, we present the solving process of the optimization problem (28), which is

achieved by referring to [9]. By constructing an orthogonal matrix F ∈ R d2+3d
2 × d2+3d−2

2

whose columns span the subspace of vectors orthogonal to µ̂z+ − µ̂z− ∈ R d2+3d
2 , the un-

known variable w ∈ R d2+3d
2 is converted into u ∈ R d2+3d−2

2 . Specifically, let w = w0 + Fu,

where w0 =
(µ̂z+

−µ̂z− )∥∥∥µ̂z+
−µ̂z−

∥∥∥2

2

∈ R d2+3d
2 ; the optimization problem (28) is transferred to the

unconstrained optimization problem:

min
u

∥∥∥∥Σ̂
1
2
z+(w0 + Fu)

∥∥∥∥
2
+

∥∥∥∥Σ̂
1
2
z−(w0 + Fu)

∥∥∥∥
2
, (31)

In order to solve the above optimization problem (31), Lanckriet et al. [9] introduced
two extra variables β and η and considered the following optimization problem:

min
u,β,η

β + 1
β

∥∥∥∥Σ̂
1
2
z+(w0 + Fu)

∥∥∥∥2

2
+ η + 1

η

∥∥∥∥Σ̂
1
2
z−(w0 + Fu)

∥∥∥∥2

2
. (32)

This optimization problem (32) is solved by an alternative iteration. The variables are
divided into two sets: one is β and η, and the other is u. At the t-th iteration, first by fixing
β and η to take the derivative of the optimization problem (32) with respect to u, we have
the following updated iteration formula of ut:

( 1
βt

P + 1
ηt

Q)ut = −( 1
βt

p + 1
ηt

q), (33)

where P = FTΣ̂z+ F ∈ R d2+3d−2
2 × d2+3d−2

2 , Q = FTΣ̂z−F ∈ R d2+3d−2
2 × d2+3d−2

2 , p = FTΣ̂z+w0

∈ R d2+3d−2
2 , q = FTΣ̂z−w0 ∈ R d2+3d−2

2 . To ensure the stability, the regularization term
δI d2+3d−2

2
(δ > 0) is added. Therefore, the Equation (33) is replaced by:

( 1
βt

P + 1
ηt

Q + δI)ut = −( 1
βt

p + 1
ηt

q). (34)
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Next, by fixing u to take the derivative of the optimization problem (32) with respect
to β and η, respectively, we have the following updated iteration formula of βt and ηt:

βt =

∥∥∥∥Σ̂
1
2
g+
(w0 + Fut)

∥∥∥∥
2
, ηt =

∥∥∥∥Σ̂
1
2
g−
(w0 + Fut)

∥∥∥∥
2
. (35)

When the optimal solution u∗ is obtained by the above two updated iteration
Formulas (34) and (35), the optimal solution w∗ of the optimization problem (28) is
w∗ = w0 + Fu∗. Then, we summarize the process of finding the optimal solution A∗,
b∗, c∗ of the optimization problem (18) in Algorithm 1.

Algorithm 1 Kernel-free quadratic surface minimax probability machine (QSMPM).

Input: Training set (1), δ = 1× 10−6, number of maximum iterations τ = 100.
1: Initialize β1 = 1, η1 = 1, t = 1.
2: Obtain zi by (19),i = 1, 2, . . . , m+ + m−;

3: Calculate µ̂z± and Σ̂z± by (25), and calculate w0 =
(µ̂z+

−µ̂z− )∥∥∥µ̂z+
−µ̂z−

∥∥∥2

2

;

4: Calculate P = FTΣ̂z+ F, Q = FTΣ̂z−F, p = FTΣ̂z+w0, q = FTΣ̂z−w0, where F is an
orthogonal matrix whose columns span the subspace of vectors orthogonal µ̂z+ − µ̂z− ;

5: while t < τ do
6: Given βt and ηt, update ut by (34);
7: Given ut, update βt and ηt by (35);
8: t← t + 1.
9: end

10: Assign w∗ = w0 + Fut, then obtain A∗, b∗ by (20), (21), and (22); further, obtain c∗ by
(29) or (30).

Output: A∗, b∗, c∗.

After obtaining the optimal solution A∗, b∗ and c∗ to the optimization problem (18),
for a given new sample x ∈ Rd, its label is assigned to either class +1 or class −1 by the
decision function:

f (x) = sgn(
1
2

xT A∗x + bT
∗x− c∗). (36)

It should be pointed out that our QSMPM is kernel-free, which avoids the time-
consuming task of selecting the appropriate kernel function and its corresponding param-
eters. What is more, it does not require any choice of parameter, which makes its use
simpler and convenient. Furthermore, from the geometric point of view, the quadratic
hypersurface (17) determined by our method is allowed to be any general form of quadratic
hypersurface, including hyperplanes, hyperparaboloids, hyperspheres, hyperellipsoids, hy-
perhyperboloids, and so on, which is shown clearly by five artificial examples in Section 5.

3.3. Computational Complexity

Here, we analyze the computational complexity of our QSMPM. Suppose that the
number and the dimension of the samples are N and d, respectively. Before reformulating
the QSMPM as an SOCP problem, all d-dimensional samples need to be projected into the
d2+3d

2 -dimensional space. Therefore, the total computational complexity of the QSMPM is
O(( d2+3d

2 )3 + N( d2+3d
2 )2 + Nd2). In addition, we give the computational complexity of the

MPM and the SVM. Their complexity is O(d3 + Nd2) [9] and O(N3) [19], respectively. Then,
by referencing the computational complexity of SVM, we obtain that the computational
complexity of the QSSVM is O(N3 + Nd2). According to the above analysis, assuming that
N is much larger than d, we can see that the computational complexity of the QSMPM is
higher than that of the MPM, but lower than that of the SVM and the QSSVM.
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4. The Interpretability

In this section, we discuss the interpretability of our method QSMPM. Suppose we
have obtained the optimal solution A∗, b∗, c∗ to the optimization problem (18), then the
quadratic hypersurface (17) has the following component form:

g(x) =
1
2

xT A∗x + bT
∗x− c∗ =

1
2

d

∑
i=1

d

∑
j=1

a∗ij[x]i[x]j +
d

∑
i=1

b∗i [x]i − c∗ = 0, (37)

where [x]i is the i-th component of the vector x ∈ Rd, a∗ij is the i-th row and the j-th column

component of the matrix A∗ ∈ Sd, and b∗i is the i-th component of the vector b∗ ∈ Rd. Each
component of x produces the contribution of a quadratic polynomial function. Specifically,
b∗i is the linear effect coefficient of the i-th component, a∗ii (i = j) is the quadratic effect
coefficient of the i-th component, and a∗ij (i 6= j) is the interaction coefficient between the
i-th component and the j-th component. Therefore, for the i-th component of x, consider
that the larger |a∗ii|+ |a∗ij|+ |b∗i | (j = 1, 2, . . . , d, j 6= i), the greater the contribution of the
i-th component is. In particular, when |a∗ii|+ |a∗ij|+ |b∗i | = 0 (j = 1, 2, . . . , d, j 6= i), the i-th
component of x would not work. Therefore, compared with the methods with the kernel
function, the QSMPM has better interpretability.

5. Numerical Experiments

In this section, we provide some numerical experiments to verify the performance of
our QSMPM. We compared it with the hard-margin support vector machine (H−SVM), the
soft-margin support vector machine (S−SVM), and the MPM with the linear kernel, the
quadratic polynomial kernel, and the RBF kernel (H−SVM−L, H−SVM−P, H−SVM−R,
S−SVM−L, S−SVM−P, S−SVM−R, MPM−L, MPM−P, and MPM−R, respectively). In
addition, we also compared it with the QSSVM and the SQSSVM. In all numerical ex-
periments, the penalty parameter C in the S-SVM and the kernel parameter σ of the RBF
kernel were selected from {2−7, 2−6, · · · , 27} by the 10-fold cross-validation method. All
numerical experiments were conducted using MATLAB R2016 (b) on a computer equipped
with a 2.50 GHz (I5-4210U) CPU, and 4G available memory.

5.1. Artificial Datasets

To show the geometric interpretation of the proposed method QSMPM and to compare
it with the original methods, the MPM−L, the MPM−P, and the MPM−R, we performed
the following numerical experiments on 4 artificial examples. These 5 artificial examples
were all generated in the 2-dimensional space, and each generated 300 samples {xi =
([xi]1, [xi]2)

T}300
i=1, of which the first 150 were samples in class +1 and the last 150 samples

in class −1. Here, we first illustrate the symbols in all figures. The red “+” represents the
samples in class +1, and the blue “o” represents the samples in class −1. The results in the
upper right express the accuracy of each method on the artificial example. The curve in
bold black represents the hyperplane or quadratic hypersurface. Now, let us introduce the
numerical experiments on each artificial example in turn.

Example 1.

[xi]2 = −1
2
[xi]1 + 2 + ξi, i = 1, . . . , 150,

[xi]2 = −1
2
[xi]1 − 3 + ξi, i = 151, . . . , 300,

where [xi]1 ∼ U[−3, 4], ξi ∼ N(0, 1).

Figure 1 illustrates the classification results of the MPM−L, the MPM−P, the MPM−R,
and the QSMPM on Example 1, respectively. We can see from Figure 1 that our QSMPM can
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obtain classification results as good as the other three methods. In addition, the quadratic
hypersurface found by our QSMPM is a straight line, that is a linear separating hyperplane.
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(a) MPM−L
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(b) MPM−P
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(c) MPM−R
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(d) QSMPM

Figure 1. Classification results on Example 1.

Example 2.

[xi]2 =
1
2
[xi]

2
1 + 2 + ξi, i = 1, . . . , 150,

[xi]2 =
1
2
[xi]

2
1 − 3 + ξi, i = 151, . . . , 300,

where [xi]1 ∼ U[−3, 4], ξi ∼ N(0, 1).

Figure 2 presents the classification results on Example 2. We can observe in Figure 2
that the classification result of our QSMPM is superior to the MPM−L and similar to the
MPM−P and the MPM−R. Moreover, the quadratic hypersurface obtained by our QSMPM
is a parabola.

Example 3.

[xi]1 = ri cos(ti), [xi]2 = ri sin(ti), i = 1, . . . , 150,

[xi]1 = 1.3 + ri cos(ti), [xi]2 = 1.3 + ri sin(ti), i = 151, . . . , 300,

where ri ∼ U[0, 1], ti ∼ U[0, 1].

Figure 3 reports the classification results of the MPM−L, the MPM−P, the MPM−R,
and the QSMPM on Example 3, respectively. Obviously, in Figure 3, we can see that the
classification result of our QSMPM is superior to the MPM−L and is the same as the
MPM−P and the MPM−R. Furthermore, the quadratic hypersurface of our QSMPM is a
circle.
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Figure 2. Classification results on Example 2.
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(b) MPM−P
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(c) MPM−R
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Figure 3. Classification results on Example 3.

Example 4.

[xi]1 = 2 + ai cos(ti), [xi]2 = bi sin(ti), i = 1, . . . , 150,

[xi]1 = 3.5 + ai cos(ti), [xi]2 = 1.5 + bi cos(ti), i = 151, . . . , 300,

where ai ∼ U[0, 1], bi ∼ U[0, 1], ti ∼ U[0, 1].
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Figure 4 shows the classification results on Example 4. We can observe in Figure 4
that the QSMPM can obtain the same classification performance as the MPM−P and the
MPM−R and is better than the MPM−L. Our QSMPM can find an ellipse.
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(c) MPM−R

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1.0000

(d) QSMPM

Figure 4. Classification results on Example 4.

Example 5.

[xi]
2
2 = [xi]

2
1 − 1 + ξi, i = 1, . . . , 150,

[xi]1 ∼ U[−0.6, 0.6], [xi]2 ∼ U[−6, 6], i = 151, . . . , 300,

where [xi]1 ∼ U[−4,−1] and U[1, 4], ξi ∼ N(0, 1), i = 1, . . . , 150.

Figure 5 reports the classification results of the MPM−L, the MPM−P, the MPM−R,
and the QSMPM on Example 5, respectively. We can observe in Figure 5 that the classifica-
tion performance of QSMPM is better than the MPM−L and is similar to the MPM−P and
the MPM−R. In addition, our QSMPM finds a hyperbola.

In summary, from Figure 1 to Figure 5, we can see that our QSMPM can find any
general form of the quadratic hypersurface, such as the line, parabola, circle, ellipse,
and hyperbola found in sequence in the above numerical experiments. Moreover, our
method can achieve as good classification performance as the MPM−P and the MPM−R.
In addition, it can be seen from Figure 1d that our method can obtain the linear separating
hyperplane.
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Figure 5. Classification results on Example 5.

5.2. Benchmark Datasets

To verify the classification performance and computational efficiency of our QSMPM,
we performed the following numerical experiments on 14 benchmark datasets. Table 1
summarizes the basic information of the 14 benchmark datasets in the UCI Machine
Learning Repository.

Table 1. Basic information for the 14 benchmark datasets.

Datasets Samples Attributes Class

Iirs 150 4 3
Hepatitis 155 19 2
Wine 178 13 3
Heart 270 13 2
Heart-c 303 14 2
Haberman 306 3 2
Bupa 345 6 2
Pima 768 8 2
QSAR 1055 41 2
Winequality-red 1599 11 6
Wireless 2000 7 4
Image 2310 19 7
Abalone 2649 8 2
Turkiye 5820 32 13

We divided the datasets in Table 1 into two groups for the numerical experiment. The
first group was the first seven datasets, and the second group was the last seven datasets.
All numerical experimental results were obtained through 10-times 10-fold cross-validation,
as well as the numerical experimental results including the mean and standard deviation of
accuracy and the CPU time of one experiment. The best results are highlighted in boldface.
First of all, Table 2 shows the classification results on the first group.
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Table 2. Classification results on the first group.

Methods Iris Hepatitis Wine Heart Heart-c Haberman Bupa

H−SVM−L 0.6413 ± 0.0245 0.5835 ± 0.0185 0.9573 ± 0.0054 0.6174 ± 0.0287 1.0000 ± 0.0000 0.5189 ± 0.0024 0.5573 ± 0.0021
(4.1293) (2.1965) (1.8439) (7.70490) (3.9203) (15.1649) (11.2976)

H−SVM−P 0.9447 ± 0.0055 0.5150 ± 0.0399 0.7571 ± 0.0365 0.6985 ± 0.0126 0.8678 ± 0.0386 0.7351 ± 0.0005 0.5798 ± 0.0003
(1.4087) (1.5304) (2.6005) (3.8797) (4.5568) (10.0121) (13.3459)

H−SVM−R 0.9467 ± 0.0000 0.5858 ± 0.0280 0.9341 ± 0.0116 0.7144 ± 0.0183 1.0000 ± 0.0000 0.7362 ± 0.0022 0.5930 ± 0.0192
(0.8250) (0.8734) (1.0813) (2.8344) (2.4438) (4.0609) (3.7438)

S−SVM−L 0.8693 ± 0.0155 0.6037 ± 0.0206 0.9582 ± 0.0147 0.8259 ± 0.0129 0.9888 ± 0.0156 0.7241 ± 0.0073 0.6812 ± 0.0096
(1.4594) (1.3416) (2.6656) (9.2391) (8.2672) (7.8422) (1 0.7031)

S−SVM−P 0.9653 ± 0.0053 0.6037 ± 0.0234 0.7274 ± 0.0235 0.8296 ± 0.0097 0.8605 ± 0.0087 0.7228 ± 0.0103 0.6788 ± 0.0095
(1.4149) (1.4703) (1.9407) (9.0609) (11.3328) (11.1953) (12.3328)

S−SVM−R 0.9547 ± 0.0061 0.5588 ± 0.0183 0.8921 ± 0.0131 0.7989 ± 0.0058 0.7642 ± 0.0101 0.7261 ± 0.0080 0.6826 ± 0.0088
(0.9406) (0.8656) (1.1641) (2.1344) (2.6000) (2.7719) (3.2813)

MPM−L 0.8280 ± 0.0082 0.6010 ± 0.0114 0.9731 ± 0.0052 0.8133 ± 0.0080 1.0000 ± 0.0000 0.7177 ± 0.0093 0.6220 ± 0.0079
(0.3073) (0.0244) (1.7831) (3.1887) (1.7379) (3.4944) (0.1201)

MPM−P 0.9747 ± 0.0028 0.5954 ± 0.0302 0.9759 ± 0.0046 0.8026 ± 0.0133 0.9681 ± 0.0066 0.7159 ± 0.0075 0.6891 ± 0.0114
(1.9079) (1.7051) (2.9640) (5.6504) (6.6425) (5.9514) (5.5131)

MPM−R 0.9620 ± 0.0063 0.5382 ± 0.0412 0.7860 ± 0.0121 0.6578 ± 0.0105 0.6981 ± 0.0101 0.6879 ± 0.0114 0.7212 ± 0.0088
(4.5256) (9.0683) (4.3758) (10.5238) (5.6452) (11.9107) (8.5723)

QSSVM 0.9533 ± 0.0070 0.5626 ± 0.0342 0.9608 ± 0.0052 0.6989 ± 0.0182 0.9980 ± 0.0023 0.7416 ± 0.0073 0.7203 ± 0.0047
(1.2371) (3.7612) (2.1109) (3.5241) (4.2947) (5.6426) (8.0918)

SQSSVM 0.9527 ± 0.0049 0.5650 ± 0.0117 0.9622 ± 0.0071 0.7970 ± 0.0098 0.9954 ± 0.0024 0.7296 ± 0.0050 0.7220 ± 0.0074
(0.9266) (4.6098) (2.6832) (5.2822) (7.2993) (5.0482) (7.0653)

QSMPM 0.9767 ± 0.0035 0.6069 ± 0.0313 0.9759 ± 0.0053 0.8293 ± 0.0114 1.0000 ± 0.0000 0.7205 ± 0.0069 0.7164 ± 0.0093
(0.3089) (2.0608) (1.3884) (0.8580) (2.5179) (0.2902) (0.2870)

It can be seen from Table 2 that compared with the other methods, our QSMPM
obtained better accuracy on the first group of benchmark datasets, among which the
accuracy was the best on four benchmark datasets. More specifically, except for Haberman
and Bupa, the accuracy of our method was the best compared to the QSSVM and the
SQSSVM. The accuracy of our QSMPM was the best compared to the three original kernel
versions of the MPM except for Bupa. Furthermore, the accuracy of our method was the
best compared to the H−SVM and the S−SVM with three kernel function except for Heart
and Haberman. In addition, we can observe that QSMPM had a short CPU time.

Then, the classification results on the second group are reported in Table 3. The
symbol “−” indicates that the corresponding method cannot obtain the classification
results, because it cannot choose the optimal parameter in a limited amount of time or
because the dimension and the number of the dataset are relatively large, resulting in
insufficient memory.

Table 3. Classification results on the second group.

Methods Pima QSAR Winequality-Red Wireless Image Abalone Turkiye

H−SVM−L 0.6799 ± 0.0035 0.3675 ± 0.0014 0.6156 ± 0.0014 0.7280 ± 0.0094 0.6470 ± 0.0011 0.7357 ± 0.0040 0.5051 ± 0.0005
(128.9255) (223.9172) (813.7250) (3956.2000) (947.0836) (2825.5000) (3013.1000)

H−SVM−P 0.5710 ± 0.0155 0.8133 ± 0.0081 0.4653 ± 0.0000 0.8463 ± 0.0234 0.6979 ± 0.0020 0.4934 ± 0.0000 0.5033 ± 0.0038
(75.1160) (451.2469) (475.2321) (4449.2000) (996.2086) (1429.9000) (23897.0000)

H−SVM−R 0.6919 ± 0.0117 0.8171 ± 0.0069 0.7628 ± 0.0058 0.9877 ± 0.0010 0.9698 ± 0.0019 0.8067 ± 0.0062 −
(14.9234) (110.5313) (3707.5000) (404.7438) (567.4688) (693.4125) −

S−SVM−L 0.7669 ± 0.0076 0.8340 ± 0.0152 0.7291 ± 0.0023 0.9139 ± 0.0044) 0.7531 ± 0.0304 0.8108 ± 0.0009 −
(82.0609) (211.0188) (640.9000) (1793.9000) (2595.7000) (1189.7000) −

S−SVM−P 0.7585 ± 0.0066 0.8677 ± 0.0058 0.7492 ± 0.0021 0.9799 ± 0.0017 0.9602 ± 0.0015 0.8298 ± 0.0018 −
(27.8571) (259.1922) (1123.8000) (3120.7000) (4820.8000) (3120.7000) −

S−SVM−R 0.6941 ± 0.0078 0.8503 ± 0.0031 0.7352 ± 0.0024 0.9853 ± 0.0054 0.9715 ± 0.0020 0.8242 ± 0.0008 −
(16.5313) (103.9438) (294.0688) (717.2984) (506.2984) (984.2250) −

MPM−L 0.7405 ± 0.0048 0.8296 ± 0.0039 0.7409 ± 0.0025 0.9108 ± 0.0008 0.8555 ± 0.0012 0.8144 ± 0.0009 0.5779 ± 0.0026
(0.1014) (0.8377) (0.2683) (0.1560) (0.2969) (0.1266) (0.3167)

MPM−P 0.7442 ± 0.0035 0.8225 ± 0.0061 0.7326 ± 0.0020 0.9361 ± 0.0013 0.8499 ± 0.0011 0.8109 ± 0.0009 0.5780 ± 0.0014
(32.9178) (68.1350) (122.7891) (187.2266) (257.7266) (413.9861) (2669.2000)

MPM−R 0.7356 ± 0.0054 0.8373 ± 0.0037 0.7234 ± 0.0020 0.9850 ± 0.0006 0.9413 ± 0.0018 0.8264 ± 0.0014 0.5689 ± 0.0016
(37.2874) (83.8022) (139.5734) (248.8594) (402.6281) (423.6125) (2386.7000)

QSSVM 0.7663 ± 0.0049 − 0.4722 ± 0.0032 0.6315 ± 0.0078 0.5714 ± 0.0000 0.5125 ± 0.0012 −
(70.7730) − (27.7094) (14.7250) (59.1266) (29.5344) −

SQSSVM 0.7589 ± 0.0036 − 0.7452 ± 0.0036 0.9782 ± 0.0012 0.5714 ± 0.0000 0.8280 ± 0.0015 −
(43.0610) − (36.8234) (45.3036) (63.7109) (50.1641) −

QSMPM 0.7530 ± 0.0049 0.8482 ± 0.0047 0.7470 ± 0.0027 0.9427 ± 0.0012 0.8731 ± 0.0013 0.8299 ± 0.0011 0.5852 ± 0.0018
(0.5585) (16.6328) (1.3525) (1.0608) (3.6953) (1.1984) (14.6360)
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From Table 3, we can see that our QSMPM had good classification results on the
second group of benchmark datasets. Especially on QSAR and Turkiye, the H−SVM−R,
the three kernel versions of the S−SVM, the QSSVM, and the SQSSVM could not obtain the
corresponding classification results, but our QSMPM could obtain good classification per-
formance. Here, we mention the reason for this situation. According to the computational
complexity of each method, we know that when the sample dimension and the number
of samples are relatively large, the SVM and the QSSVM need a larger memory space. In
addition, our QSMPM had the fastest running time except the MPM−L, and it ran quite
fast when the number of samples or the dimension was large.

5.3. Statistical Analysis

To further compare the performance of the above 12 methods, the Friedman test and
the post-hoc test were performed. The ranks of the 12 methods on all benchmark datasets
is shown in Table 4.

First, the Friedman test was used to compare the average ranks of different methods.
The null hypothesis states that all methods have the same performance, that is their average
ranks are the same. Based on the average ranks displayed in Table 4, we can calculate the
Friedman statistic τF by the following formula:

τχ2 = 12N
k(k+1) (∑

k
i=1 ri − k(k+1)2

4 ),

τF =
(N−1)τ

χ2

N(k−1)−τ
χ2

,
(38)

where N and k are the number of datasets and methods, respectively. ri is the average rank
of the i-th method. According to the formula (38), τF = 4.1825. For α = 0.05, we can obtain
Fα = 1.8526. Since τF > Fα, we rejected the null hypothesis. Then, we proceeded with a
post-hoc test (the Nemenyi test) to find out which methods significantly differed. To be
more specific, the performance of two methods was considered to be significantly different
if the difference of their average ranks was larger than the critical difference (CD). The CD
can be calculated by:

CD = qα

√
k(k+1)

6N . (39)

For α=0.05, we know qα = 3.2680. Thus, we obtained CD = 4.4535 by the formula (39).
Figure 6 visually displays the results of the Friedman test and Nemenyi post-hoc test,

where the average ranks of each method are marked along an axis. The axis is turned so
that the lowest (best) ranks are to the right. Groups of methods that are not significantly
different are linked by a red line. In Figure 6, we can see that our QSMPM was the best
one statistically among the compared methods. Furthermore, there was no significant
difference in performance between the QSMPM and the MPM−R.

Critical Distance=4.4535

12 11 10 9 8 7 6 5 4 3 2 1

QSMPM

S-SVM-P

MPM-P

MPM-L

SQSSVM
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Figure 6. Results of the Friedman test and the Nemenyi post-hoc test.
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Table 4. Ranks of accuracy.

Datasets H−SVM−L H−SVM−P H−SVM−R S−SVM−L S−SVM−P S−SVM−R MPM−L MPM−P MPM−R QSSVM SQSSVM QSMPM

Iirs 12 9 8 10 3 5 11 2 4 6 7 1
Hepatitis 7 12 6 2.5 2.5 10 4 5 11 9 8 1
Wine 7 11 8 6 12 9 3 1.5 10 5 4 1.5
Heart 12 10 8 3 1 6 4 5 11 9 7 2
Heart-c 2.5 9 2.5 7 10 11 2.5 8 12 5 6 2.5
Haberman 12 3 2 6 7 5 9 10 11 1 4 8
Bupa Liver 12 11 10 7 8 6 9 5 2 3 1 4
Pima 11 12 10 1 4 9 7 6 8 2 3 5
QSAR 10 9 8 5 1 2 6 7 4 11.5 11.5 3
Winequality-red 10 12 1 8 2 6 5 7 9 11 4 3
Wireless 11 10 1 8 4 2 9 7 3 12 5 6
Image Segmentation 10 9 2 8 3 1 6 7 4 11.5 11.5 5
Abalone 10 12 9 8 2 5 6 7 4 11 3 1
Turkiye 5 6 9.5 9.5 9.5 9.5 3 2 4 9.5 9.5 1

Average ranks 9.3929 9.6429 6.0714 6.3571 4.9286 6.1786 6.0357 5.6786 6.9286 7.6071 6.0357 3.1429
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6. Conclusions

For the binary classification problem, a new classifier, called the kernel-free quadratic
surface minimax probability machine (QSMPM), was proposed by using the kernel-free
techniques of the QSSVM and the classification idea of the MPM. Specifically, our goal
was to find a quadratic hypersurface that separates two classes of samples with maximum
probability. However, the optimization problem derived directly was too difficult to solve.
Therefore, a nonlinear transformation was introduced to change the quadratic function
involved into a linear function. Through such processing, our optimization problem finally
became a second-order cone programming problem, which was solved efficiently by an
alternate iteration method. Here, we clarify the main contributions of this paper. Unlike
the methods realizing nonlinear separation, our method was kernel-free and had better
interpretability. Then, our method was easy to use because it did not have any parameters.
Furthermore, numerical experiments on five artificial datasets showed that the quadratic
hypersurfaces found by our method were rather general, including that it could obtain the
linear separating hyperplane. In addition, numerical experiments on benchmark datasets
confirmed that the proposed method was superior to some relevant methods in both
accuracy and computational time. Especially when the number of samples or dimension
was relatively large, our method could also quickly obtain good classification performance.
Finally, the results of the statistical analysis showed that our QSMPM was statistically the
best one compared with the corresponding methods. Our QSMPM focuses on the standard
binary classification problem, which we will extend to the multiclassification problem.

In our future work, there will be some issues to be address to extend our QSMPM. For
example, we need to investigate further how to add appropriate regularization terms to our
method. Meanwhile, we need to consider that the worst-case accuracies for two classes are
not the same, and that will be interesting. Furthermore, we will pay attention to how the
QSMPM achieves the dual purpose of feature selection and classification simultaneously.
In addition, we can apply our method to practical problems in many fields in the future,
especially image recognition in the medical field.
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