Cylindrical Gravitational Wave: Source and Resonance
Abstract
:1. Introduction
2. Cylindrical Gravitational Wave: General Solution
3. Source in Gravitational Wave
4. Resonance of Gravitational Wave
5. Interference of Gravitational Wave
5.1. Interference Term in Metric
5.2. Interference Term in Energy-Momentum Tensor
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973; Volume 1. [Google Scholar]
- Ohanian, H.C.; Ruffini, R. Gravitation and Spacetime; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Li, W.-D.; Li, S.-L.; Chen, Y.-J.; Chen, Y.-Z.; Dai, W.-S. Gravitational wave scattering theory without large-distance asymptotics. Ann. Phys. 2021, 427, 168424. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: New York, NY, USA, 1972; Volume 1. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Marder, L. Gravitational waves in general relativity I. Cylindrical waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1958, 244, 524–537. [Google Scholar]
- Marder, L. Gravitational waves in general relativity II. The reflexion of cylindrical waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1958, 246, 133–143. [Google Scholar]
- Pirani, F. Gravitational waves in general relativity. IV. The gravitational field of a fast-moving particle. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1959, 252, 96–101. [Google Scholar]
- Marder, L. Gravitational waves in general relativity V. An exact spherical wave. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1961, 261, 91–96. [Google Scholar]
- Marder, L. Gravitational waves in general relativity XI. Cylindrical-spherical waves. Proc. R. Soc. Lond. A Math. Phys. Sci. 1969, 313, 83–96. [Google Scholar]
- Marder, L. Gravitational waves in general relativity. XII. Correspondence between toroidal and cylindrical waves. Proc. R. Soc. Lond. A Math. Phys. Sci. 1972, 327, 123–130. [Google Scholar]
- Thorne, K.S. Energy of infinitely long, cylindrically symmetric systems in general relativity. Phys. Rev. 1965, 138, B251. [Google Scholar] [CrossRef] [Green Version]
- Bini, D.; Geralico, A.; Plastino, W. Cylindrical gravitational waves: C-energy, super-energy and associated dynamical effects. Class. Quantum Gravity 2019, 36, 095012. [Google Scholar] [CrossRef] [Green Version]
- Garecki, J. Do gravitational waves carry energy-momentum? A reappraisal. arXiv 2016, arXiv:1612.07077. [Google Scholar]
- Dominguez, P.; Gallegos, A.; Macias-Diaz, J.; Vargas-Rodriguez, H. Superenergy flux of Einstein–Rosen waves. Int. J. Mod. Phys. D 2018, 27, 1850072. [Google Scholar] [CrossRef]
- Tomizawa, S.; Mishima, T. Nonlinear effects for a cylindrical gravitational two-soliton. Phys. Rev. D 2015, 91, 124058. [Google Scholar] [CrossRef] [Green Version]
- Celestino, J.; de Oliveira, H.; Rodrigues, E. Nonlinear evolution of cylindrical gravitational waves: Numerical method and physical aspects. Phys. Rev. D 2016, 93, 104018. [Google Scholar] [CrossRef] [Green Version]
- Bini, D.; Chicone, C.; Mashhoon, B. Twisted gravitational waves. Phys. Rev. D 2018, 97, 064022. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S.; Ferrari, V. On the dispersion of cylindrical impulsive gravitational waves. Proc. R. Soc. Lond. A Math. Phys. Sci. 1987, 412, 75–91. [Google Scholar]
- Chakraborty, S.; Chakraborty, S. Gravitational collapse of dissipative fluid as a source of gravitational waves. Ann. Phys. 2016, 364, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Stachel, J.J. Cylindrical gravitational news. J. Math. Phys. 1966, 7, 1321–1331. [Google Scholar] [CrossRef]
- Garriga, J.; Verdaguer, E. Cosmic strings and Einstein-Rosen soliton waves. Phys. Rev. D 1987, 36, 2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xanthopoulos, B.C. Cosmic strings coupled with gravitational and electromagnetic waves. Phys. Rev. D 1987, 35, 3713. [Google Scholar] [CrossRef]
- Berger, B.K.; Chrusciel, P.; Moncrief, V. On “Asymptotically Flat” Space-Times with G 2-Invariant Cauchy Surfaces. Ann. Phys. 1995, 237, 322–354. [Google Scholar] [CrossRef] [Green Version]
- Korotkin, D.; Samtleben, H. Canonical quantization of cylindrical gravitational waves with two polarizations. Phys. Rev. Lett. 1998, 80, 14. [Google Scholar] [CrossRef] [Green Version]
- Kuchar, K. Canonical quantization of cylindrical gravitational waves. Phys. Rev. D 1971, 4, 955. [Google Scholar] [CrossRef]
- Ashtekar, A.; Pierri, M. Probing quantum gravity through exactly soluble midi-superspaces I. J. Math. Phys. 1996, 37, 6250–6270. [Google Scholar] [CrossRef] [Green Version]
- Detweiler, S. Black holes and gravitational waves. III-The resonant frequencies of rotating holes. Astrophys. J. 1980, 239, 292–295. [Google Scholar] [CrossRef]
- Hopman, C.; Alexander, T. Resonant relaxation near a massive black hole: The stellar distribution and gravitational wave sources. Astrophys. J. 2006, 645, 1152. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, J.; Strain, K.A.; Nelson, P.; Chen, J.; Schilling, R.; Rüdiger, A.; Winkler, W.; Danzmann, K. Resonant sideband extraction: A new configuration for interferometric gravitational wave detectors. Phys. Lett. A 1993, 175, 273–276. [Google Scholar] [CrossRef] [Green Version]
- Staley, A.; Martynov, D.; Abbott, R.; Adhikari, R.; Arai, K.; Ballmer, S.; Barsotti, L.; Brooks, A.; DeRosa, R.; Dwyer, S.; et al. Achieving resonance in the Advanced LIGO gravitational-wave interferometer. Class. Quantum Gravity 2014, 31, 245010. [Google Scholar] [CrossRef]
- Carmeli, M. Classical Fields: General Relativity and Gauge Theory; World Scientific Publishing Company: Singapore, 2001. [Google Scholar]
- Chen, Y.-Z.; Li, W.-D.; Dai, W.-S. A 1+5-dimensional gravitational-wave solution: Curvature singularity and spacetime singularity. Eur. Phys. J. C 2017, 77, 859. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; American Association of Physics Teachers: College Park, MD, USA, 1999. [Google Scholar]
- Chen, Y.-Z.; Dai, W.-S. Singular vacuum solutions as singular matter solutions: Where do spacetime singularities come from? EPL (Europhys. Lett.) 2017, 120, 10004. [Google Scholar] [CrossRef]
- Ibragimov, N.H. A Practical Course in Differential Equations and Mathematical Modelling: Classical and New Methods. Nonlinear Mathematical Models. Symmetry and Invariance Principles; World Scientific Publishing Company: Singapore, 2009. [Google Scholar]
- Liu, T.; Li, W.-D.; Dai, W.-S. Scattering theory without large-distance asymptotics. J. High Energy Phys. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-D.; Chen, Y.-Z.; Dai, W.-S. Scalar scattering in Schwarzschild spacetime: Integral equation method. Phys. Lett. B 2018, 786, 300–304. [Google Scholar] [CrossRef]
- Li, W.-D.; Chen, Y.-Z.; Dai, W.-S. Scattering state and bound state of scalar field in Schwarzschild spacetime: Exact solution. Ann. Phys. 2019, 409, 167919. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-Z.; Li, S.-L.; Chen, Y.-J.; Dai, W.-S. Cylindrical Gravitational Wave: Source and Resonance. Symmetry 2021, 13, 1425. https://doi.org/10.3390/sym13081425
Chen Y-Z, Li S-L, Chen Y-J, Dai W-S. Cylindrical Gravitational Wave: Source and Resonance. Symmetry. 2021; 13(8):1425. https://doi.org/10.3390/sym13081425
Chicago/Turabian StyleChen, Yu-Zhu, Shi-Lin Li, Yu-Jie Chen, and Wu-Sheng Dai. 2021. "Cylindrical Gravitational Wave: Source and Resonance" Symmetry 13, no. 8: 1425. https://doi.org/10.3390/sym13081425
APA StyleChen, Y. -Z., Li, S. -L., Chen, Y. -J., & Dai, W. -S. (2021). Cylindrical Gravitational Wave: Source and Resonance. Symmetry, 13(8), 1425. https://doi.org/10.3390/sym13081425