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Abstract: Recently, fractional calculus has been the center of attraction for researchers in mathematical
sciences because of its basic definitions, properties and applications in tackling real-life problems.
The main purpose of this article is to present some fractional integral inequalities of Ostrowski type
for a new class of convex mapping. Specifically, n–polynomial exponentially s–convex via fractional
operator are established. Additionally, we present a new Hermite–Hadamard fractional integral
inequality. Some special cases of the results are discussed as well. Due to the nature of convexity
theory, there exists a strong relationship between convexity and symmetry. When working on either
of the concepts, it can be applied to the other one as well. Integral inequalities concerned with
convexity have a lot of applications in various fields of mathematics in which symmetry has a great
part to play. Finally, in applications, some new limits for special means of positive real numbers and
midpoint formula are given. These new outcomes yield a few generalizations of the earlier outcomes
already published in the literature.

Keywords: Ostrowski inequality; Hölder’s inequality; power mean integral inequality; n-polynomial
exponentially s-convex function

1. Introduction

The theory of inequalities along with convexity property plays an essential part in
present-day mathematical investigation. Numerical analysis relies on numerous mathemat-
ical inequalities such as the Simpson inequality, Hermite–Hadamard inequality, Bullen-type
inequality, Ostrowski inequality, etc. Recently, a broad exploration has been completed on
acquiring different variants of traditional inequalities using different methodologies. An
exceptionally intriguing methodology is to obtain a fractional version of the inequalities.
Inequalities associated with various forms of fractional operator such as Riemann–Liouville
fractional operator, Conformable, Katugampola fractional operator, Tempered fractional
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operator, Generalized proportional fractional, Weighted fractional operator, Caputo frac-
tional operator, etc. assume a critical part in the foundation of the unique solution for
fractional differential equations. For some recent articles on fractional inequalities, see
References [1–8].

The concept of convexity plays a strong role in the field of mathematical inequalities
and mathematical analysis due to the beautiful nature of its classical definition and its
algebraic properties. Recently, many authors have explored the close relationship and
interrelated work on convexity and symmetry. They have also explained that due to the
strong relationship between them, while working on any one of the concepts it can be
applied to the other one as well. Convexity theory has gained a lot of attention in recent
years and many generalizations and refinements of convexity analysis for inequalities have
been found (see, for example [9–15]).

Fractional operator examines the integrals and derivatives of any order α > 0 be
it real or complex valued. It was introduced by Leibniz and Marquis de l’Hospital in
1695 by talking about the differentiation of functions. In any case, it encountered a fast
development throughout the limited time.

In the theory of integral inequalities, Sarikaya et al. [6] introduced the application
of fractional integral operator by establishing the fractional analogues of classical Her-
mite–Hadamard’s inequality using convexity. In [16], Dragomir for the first time estab-
lished fractional versions of Ostrowski-type inequalities.

In 1938, Ostrowski introduced the following useful and interesting integral inequality,
(see [17], page: 468).

Let ϕ : J ⊆ R → R be a differentiable mapping on Jo, the interior of the interval J,
such that ϕ ∈ L[η1, η2], where η1, η2 ∈ J with η2 > η1. If |ϕ′(z)| ≤ K, for all z ∈ [η1, η2],
then the following inequality holds:

∣∣∣∣ϕ(z)− 1
η2 − η1

∫ η2

η1

ϕ(χ)dχ

∣∣∣∣ ≤ K(η2 − η1)

1
4
+

(
z− η1+η2

2

)2

(η2 − η1)
2

 (1)

holds, where K is the Lipschitz constant which is equal to sup
{∣∣∣∣ ϕ(χ)−ϕ(φ)

χ−φ

∣∣∣∣; χ 6= φ

}
. The

above result (1) is famously known as the Ostrowski inequality. For recent results and re-
lated generalizations, variants and extensions about the Ostrowski inequality (see [18–23]).
This inequality gives us an upper bound for the approximation of the integral average

1
η2−η1

∫ η2
η1

ϕ(χ)dχ by the value of ϕ(u) at the point χ ∈ [η1, η2].
The Ostrowski inequality has a great number of applications in different fields of

mathematical analysis such as numerical analysis and especially in the theory of approxi-
mations. This type of analytic inequality and especially the techniques used in this article
have applications in various fields in which symmetry plays a significant role.

In the wake of contemplating writing about convexity theory, propelled and motivated
by the continuous generalizations and exploration in this interesting field, we discovered
that there exists an exceptional class of convexity known as exponential convexity and
recently a great number of researchers are working on this concept for its enhancement.
Antczak [24] and Dragomir [25] presented the class of exponential-type convexity. Con-
sequently, Awan [26] contemplated and examined another class of exponential convex
function. Very recently, Mahir Kadakal and İşcan [27] presented another meaning of
exponential-type convexity. Studying the above-mentioned papers, we have introduced a
new definition in this aspect which is called n–polynomial exponential s–convex function.
Applying this new definition, we have presented our main results as refinements of the
Ostrowski inequality. This is the novelty of our proposed work.

The objective of this paper is to obtain some new novel refinements of Ostrowski’s
inequality basically using n–polynomial exponential s–convex function for fractional cal-
culus. We initially attain a new fractional version of the Hermite–Hadamard inequality
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using a new class of convexity, namely n–polynomial exponential s–convex function. We
additionally investigate some important special cases that can be concluded from the
presented results of the article. In Sections 6 and 7, we present a few applications of the
presented results. We trust that the thoughts and strategies introduced in this paper will
rouse intrigued researchers for further research.

Recently, it has been seen that many scientists are interested in big data analysis,
deep learning and information theory using the concept of exponentially convex functions.
Hence, we believe that the concept of n–polynomial exponentially convex function using
fractional operator can attract the interest of such scientists for further development in the
field of deep learning, data analysis and information theory.

Motivated by the advancement of the theory of fractional calculus, ongoing research
and literature about integral inequality and convexity, the present paper is structured in
the following way: First, in Section 2, we will give some necessary known definitions and
literature. Second, in Section 3, we will explore the concept of n–polynomial exponen-
tially s–convex function. In addition, algebraic properties and examples for the newly
introduced definition are elaborated. In Section 4, we attain a new fractional version
of the Hermite—Hadamard-type inequality. Furthermore, in Section 5, we investigate
some novel refinements of the Ostrowski-type inequality and some special cases via the
Riemann–Liouville fractional integral operator. Finally, in the next Section, we present
some applications to special means and midpoint formula.

2. Preliminaries

In this Section, we recall some known concepts.

Definition 1 ([28]). Let ϕ : I ⊆ R → R be a real-valued function. A function ϕ is said to be
convex, if

ϕ(χη1 + (1− χ)η2) ≤ χϕ(η1) + (1− χ)ϕ(η2), (2)

holds for all η1, η2 ∈ I and χ ∈ [0, 1].

The Hermite–Hadamard inequality states that if a mapping ϕ : J ⊂ R→ R is convex
on J for η1, η2 ∈ J and η2 > η1, then

ϕ

(
η1 + η2

2

)
≤ 1

η2 − η1

∫ η2

η1

ϕ(χ)dχ ≤ ϕ(η1) + ϕ(η2)

2
. (3)

Interested readers can refer to [8,29].

Definition 2 ([30]). A function ϕ : [0,+∞)→ R is said to be s–convex in the second sense for a
real number s ∈ (0, 1] or ϕ belongs to the class of K2

s , if

ϕ(χη1 + (1− χ)η2) ≤ χs ϕ(η1) + (1− χ)s ϕ(η2) (4)

holds for all η1, η2 ∈ [0,+∞) and χ ∈ [0, 1].

Breckner in his article [31] introduced s–convex functions. Hudzik presented several
properties and connections with s–convexity in the first sense in [32]. Usually, when we
put s = 1 for s–convexity, it reduces to usual convexity. In [29], Dragomir et al. proved
a generalized Hadamard’s inequality, which holds for s–convex functions in the second
sense.

Recently, many researchers have investigated the importance and development of
the theory of exponentially convex functions. The fruitful importance of exponential-type
convexity is that it can be used to manipulate for statistical learning, image processing,
stochastic optimization and sequential prediction. In 2020, Kadakal and İşcan investigated
a new class of exponential convexity, which is stated as follows:
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Definition 3 ([27]). A nonnegative real-valued function ϕ : J ⊂ R → R is known to be an
exponential convex function if the following inequality holds:

ϕ(χη1 + (1− χ)η2) ≤ (eχ − 1)ϕ(η1) +
(

e(1−χ) − 1
)

ϕ(η2). (5)

Definition 4 ([33]). A nonnegative real-valued function ψ : I → R is called n–polynomial
convex, if

ψ(χη1 + (1− χ)η2) ≤
1
n

n

∑
i=1

[1− (1− χ)i]ψ(η1) +
1
n

n

∑
i=1

[1− χi]ψ(η2), (6)

holds for every η1, η2 ∈ I, χ ∈ [0, 1], s ∈ [0, 1] and n ∈ N.

Definition 5 (see, for details, [6]). Let ϕ ∈ L[η1, η2]. Then the fractional integrals Jα
η+1

and Jα
η−2

of order α > 0 are defined by

Jα
η+1

ϕ(x) :=
1

Γ(α)

∫ x

η1

(x− z)α−1 ϕ(z)dz (0 5 η1 < x < η2)

and
Jα
η−2

ϕ(x) :=
1

Γ(α)

∫ η2

x
(z− x)α−1 ϕ(z)dz (0 5 η1 < x < η2),

respectively.

3. Generalized Exponentially s–Convex Function

Definition 6. Let n ∈ N and s ∈ (0, 1]. Then the nonnegative real-valued function ϕ : J ⊂ R→ R
is known to be an n–polynomial exponentially s–convex function if the inequality holds:

ϕ(χη1 + (1− χ)η2) ≤
1
n

n

∑
i=1

(esχ − 1)i ϕ(η1) +
1
n

n

∑
i=1

(
es(1−χ) − 1

)i
ϕ(η2). (7)

We represent the class of all n–polynomial exponentially type convex functions on the interval
J as POLEXPC(J) for each η1, η2 ∈ J and χ ∈ [0, 1].

Remark 1. In Definition 6, if n = s = 1, then the 1-polynomial exponentially s- convex function
reduces to the classical exponential-type convexity given by İşcan in [27].

Remark 2. The range of the exponentially s–convex functions for some fixed s ∈ [ln 2.4, 1]
is [0,+∞).

Lemma 1. For all χ ∈ [0, 1] and for some fixed s ∈ [ln 2.4, 1] the following inequalities
1
n

n
∑

i=1
(esχ − 1)i ≥ χs and 1

n

n
∑

i=1
(es(1−χ) − 1)i ≥ (1− χ)s hold.

Proof. Now, we will prove the first inequality i.e., 1
n

n
∑

i=1
(esχ − 1)i ≥ χs for all χ ∈ [0, 1] and

s ∈ [ln 2.4, 1] and n ∈ N.
The following inequality is well-known as Bernoulli inequality in mathematical analysis

(−1 + esχ)i ≥ 1 + iesχ

=⇒ −1 + (−1 + esχ)i ≥ iesχ

=⇒ −1 + (−1 + esχ)i

iesχ
≤ 1
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Thus, we have
1
n

n

∑
i=1

(esχ − 1)i−1 =
1− (−1 + esχ)n

nesχ
≤ 1

n(esχ − 1)
[
− 1 +

1
n

n

∑
i=1

(esχ − 1)i−1
]
= −n(esχ − 1) +

1
n

n

∑
i=1

(esχ − 1)i ≤ 0

Hence,

χs ≤ 1
n

n

∑
i=1

(esχ − 1)i

Consequently, similar computation proves

(1− χ)s ≤ 1
n

n

∑
i=1

(es(1−χ) − 1)i.

Proposition 1. Every nonnegative s–convex function is an n–polynomial exponentially s–convex
function for s ∈ [ln 2.4, 1].

Proof. Applying Lemma 1 and s ∈ [ln 2.4, 1], we have

ϕ(χη1 + (1− χ)η2) ≤ χs ϕ(η1) + (1− χ)s ϕ(η2)

≤ 1
n

n

∑
i=1

(esχ − 1)i ϕ(η1) +
1
n

n

∑
i=1

(
e(1−χ)s − 1

)i
ϕ(η2).

Remark 3. If in the above proposition s = 1, then every nonnegative convex function is an
n–polynomial exponentially s–convex function for s ∈ [ln 2.4, 1].

Now, we will make some examples in the support of the newly introduced function.

Example 1. Since, ϕ(x) = ex is a nonnegative convex function f or all x > 0. Using Remark 3,
it is also an n–polynomial exponentially s–convex function for s ∈ [ln 2.4, 1].

Example 2. Since, ϕ(x) = c is a nonnegative convex function on R for any c ≥ 0, using Remark 3,
it is also an n–polynomial exponentially s–convex function for s ∈ [ln 2.4, 1].

Example 3. Since ϕ(x) = 1
x for all x > 0, is a nonnegative convex function, using Remark 3, it is

also an n–polynomial exponentially s–convex function for s ∈ [ln 2.4, 1].

Example 4. Since ϕ(x) = q
m+q x

m
q +1 for m > 1 and q ≥ 1, is a nonnegative convex function.

Using Proposition 3, it is also an n–polynomial exponentially s–convex function for s ∈ [ln 2.4, 1].

Example 5. Dragomir [29] clearly investigated and proved that the function ϕ(x) = xls, x > 0
is an s–convex function, for the above-mentioned conditions s ∈ (0, 1) and 1 ≤ l ≤ 1

s . In addition,
using Proposition 1, it is also an n–polynomial exponentially s–convex function for s ∈ [ln 2.4, 1].

Remark 4. If we assign n = 2 in Definition 7, we obtain the following definition for 2-polynomial
exponentially s-convex function.
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ϕ(χη1 + (1− χ)η2) ≤
(

e2sχ − esχ

2

)
ϕ(η1) +

(
e2s(1−χ)−es(1−χ)

2

)
ϕ(η2). (8)

4. Hermite–Hadamard Type Inequality via Fractional Operator

In this Section, we present one Hermite—Hadamard-type inequality for the n–polynomial
exponentially s−convex function.

Theorem 1. Let ϕ : A = [η1, η2]→ R be a positive function with 0 ≤ η1 ≤ η2 and ϕ be an inte-
grable function on the closed interval sets η1 and η2. If ϕ is an n–polynomial exponentially s–convex
function, then the following inequality for fractional integral with α > 0 and s ∈ [ln 2.4, 1] holds:

1

1
n ∑n

i=1

(
e

s
2 − 1

)i ≤
Γ(α + 1)
(η2 − η1)α

[
Jα
η+1

ϕ(η2) + Jα
η−2

ϕ(η1)

]
(9)

≤ α[ϕ(η1) + ϕ(η2)]
∫ 1

0
χα−1

{
1
n

n

∑
i=1

(esχ − 1)i +
1
n

n

∑
i=1

(
es(1−χ) − 1

)i
}

dχ.

Proof. Let z1, z2 ∈ A. Then, using the definition of n–polynomial exponentially s−convex
function ϕ on A, we have

ϕ

(
z1 + z2

2

)
≤ 1

n

n

∑
i=1

(
e

s
2 − 1

)i
[ϕ(z1) + ϕ(z2)] (10)

Suppose z1 = χη2 + (1− χ)η1 and z2 = χη1 + (1− χ)η2.

Then (10) leads to

ϕ

(
η1 + η2

2

)
≤ 1

n

n

∑
i=1

(
e

s
2 − 1

)i
[ϕ(χη2 + (1− χ)η1 ) + ϕ(χη1 + (1− χ)η2)]. (11)

Now, multiplying both sides of (11) by χα−1 and then, integrating the resultant in-
equality with respect to χ over [0,1] and, we obtain

1
α

ϕ

(
η1 + η2

2

)
≤ 1

n

n

∑
i=1

(
e

s
2 − 1

)i
[∫ 1

0
χα−1 ϕ(χη2 + (1− χ)η1 )dχ +

∫ 1

0
χα−1 ϕ(χη1 + (1− χ)η2) dχ

]

Hence, we obtain

1

1
n ∑n

i=1

(
e

s
2 − 1

)i ϕ

(
η1 + η2

2

)
≤ Γ(α + 1)

(η2 − η1)α

[
Jα
η+1

ϕ(η2) + Jα
η−2

ϕ(η1)

]
.

The proof of the first part of the inequality (9) is complete.
Next, we prove the second part of the inequality (9) using the fact that ϕ is an expo-

nentially s–convex function, we obtain

ϕ(χη2 + (1− χ)η1 ) ≤ 1
n

n

∑
i=1

(esχ − 1)
i
ϕ(η2) +

1
n

n

∑
i=1

(
es(1−χ) − 1

)i
ϕ(η1) (12)

and

ϕ(χη1 + (1− χ)η2 ) ≤ 1
n

n

∑
i=1

(esχ − 1)i ϕ(η1) +
1
n

n

∑
i=1

(
es(1−χ) − 1

)i
ϕ(η2). (13)
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Upon adding the above inequalities, we obtain

ϕ(χη2 + (1− χ)η1 ) + ϕ(χη1 + (1− χ)η2 ) (14)

≤ [ϕ(η1) + ϕ(η2)]

{
1
n

n

∑
i=1

(esχ − 1)i +
1
n

n

∑
i=1

(
es(1−χ) − 1

)i
}

.

Now, multiplying both sides of (14) by χα−1, integrating the resultant inequality with
respect to χ over [0,1] and then using the change of variable technique, we obtain

Γ(α)
(η2 − η1)α

[
Jα
η+1

ϕ(η2) + Jα
η−2

ϕ(η1)

]
≤ [ϕ(η1) + ϕ(η2)]

∫ 1

0
χα−1

{
1
n

n

∑
i=1

(esχ − 1)i +
1
n

n

∑
i=1

(
es(1−χ) − 1

)i
}

dχ,

Consequently,

Γ(α + 1)
(η2 − η1)α

[
Jα
η+1

ϕ(η2) + Jα
η−2

ϕ(η1)

]
≤ α[ϕ(η1) + ϕ(η2)]

∫ 1

0
χα−1

{
1
n

n

∑
i=1

(esχ − 1)i +
1
n

n

∑
i=1

(
es(1−χ) − 1

)i
}

dχ.

This completes rest of the proof.

Remark 5. Exclusively, in Theorem 1, If we assign α = 1, then we attain

1

2 1
n ∑n

i=1
(
e

s
2 − 1

)i ϕ

(
η1 + η2

2

)
≤ 1

η2 − η1

∫ η2

η1

ϕ(χ) dχ (15)

≤ 1
n

n

∑
i=1

(
es − s− 1

s

)i[
ϕ(η1) + ϕ(η2)

]
.

Remark 6. Exclusively, in Theorem 1, If we assign n = s = α = 1, then it reduces to
[Theorem 3.1, [27]].

In the next section, we establish new Ostrowski-type inequalities for n–polynomial
exponentially s−convexity via Riemann–Liouville fractional integral. A useful and inter-
esting feature of our results is that they provide new estimates on these type of inequalities
for fractional integrals.

5. Ostrowski-Type Inequalities for n–Polynomial Exponentially s−Convexity via
Fractional Integral

To prove our results, we need the following identity (see [34,35]).

Lemma 2. Suppose a mapping ϕ : J ⊆ R → R is differentiable on Jo, where η1, η2 ∈ J with
η1 < η2. If ϕ′ ∈ L[η1, η2], for all z ∈ [η1, η2] and α > 0, then the following equality holds:(

(z− η1)
α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

=
(z− η1)

α+1

η2 − η1

∫ 1

0
χα ϕ′(χz + (1− χ)η1) dχ− (η2 − z)α+1

η2 − η1

∫ 1

0
χα ϕ′(χz + (1− χ)η2) dχ, (16)

where Γ is the Euler gamma function.
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Theorem 2. Suppose a mapping ϕ : J ⊆ R → R is differentiable on Jo, where η1, η2 ∈ J
with η1 < η2. If |ϕ′| is n–polynomial exponentially s−convex on [η1, η2] for some s ∈ (0, 1],
ϕ′ ∈ L[η1, η2] and |ϕ′(z)| ≤ K, for all z ∈ [η1, η2], α > 0, then the following inequality holds:∣∣∣∣( (z− η1)

α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

∣∣∣∣
≤ K

n
(
η2 − η1

)
×
[
(z− η1)

α+1
{ n

∑
i=1

(
γ(α + 1,−s)− Γ(α + 1)

(−s)αs
− 1

α + 1

)i

−
n

∑
i=1

(
(γ(α + 1, s)− Γ(α + 1))es

sα+1 +
1

α + 1

)i}

+ (η2 − z)α+1
{ n

∑
i=1

(
γ(α + 1,−s)− Γ(α + 1)

(−s)αs
− 1

α + 1

)i

−
n

∑
i=1

(
(γ(α + 1, s)− Γ(α + 1))es

sα+1 +
1

α + 1

)i}]
. (17)

Proof. From Lemma 2, n–polynomial exponentially s−convexity of |ϕ′| and |ϕ′(z)| ≤ K,
we have∣∣∣∣( (z− η1)

α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

∣∣∣∣
≤ (z− η1)

α+1

η2 − η1

∫ 1

0
χα
∣∣ϕ′(χz + (1− χ)η1)

∣∣dχ +
(η2 − z)α+1

η2 − η1

∫ 1

0
χα
∣∣ϕ′(χz + (1− χ)η2)

∣∣dχ.

≤ (z− η1)
α+1

η2 − η1

∫ 1

0
χα

{
1
n

n

∑
i=1

(esχ − 1)i∣∣ϕ′(z)∣∣+ 1
n

n

∑
i=1

(
es(1−χ) − 1

)i∣∣ϕ′(η1)
∣∣}dχ

+
(η2 − z)α+1

η2 − η1

∫ 1

0
χα

{
1
n

n

∑
i=1

(esχ − 1)i∣∣ϕ′(z)∣∣+ 1
n

n

∑
i=1

(
es(1−χ) − 1

)i∣∣ϕ′(η1)
∣∣}dχ

≤ (z− η1)
α+1

η2 − η1

{∣∣ϕ′(z)∣∣ ∫ 1

0
χα 1

n

n

∑
i=1

(esχ − 1)idχ +
∣∣ϕ′(η1)

∣∣ ∫ 1

0
χα 1

n

n

∑
i=1

(
es(1−χ) − 1

)i
dχ

}

+
(η2 − z)α+1

η2 − η1

{∣∣ϕ′(z)∣∣ ∫ 1

0
χα 1

n

n

∑
i=1

(esχ − 1)idχ +
∣∣ϕ′(η2)

∣∣ ∫ 1

0
χα 1

n

n

∑
i=1

(
es(1−χ) − 1

)i
dχ

}
≤ K

n
(
η2 − η1

)
× (z− η1)

α+1
{ n

∑
i=1

(
γ(α + 1,−s)− Γ(α + 1)

(−s)αs
− 1

α + 1

)i

−
n

∑
i=1

(
(γ(α + 1, s)− Γ(α + 1))es

sα+1 +
1

α + 1

)i}
+

K
n
(
η2 − η1

)
× (η2 − z)α+1

{ n

∑
i=1

(
γ(α + 1,−s)− Γ(α + 1)

(−s)αs
− 1

α + 1

)i

−
n

∑
i=1

(
(γ(α + 1, s)− Γ(α + 1))es

sα+1 +
1

α + 1

)i}
.

After further simplifications, proof of Theorem 17 will be completed.
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Corollary 1. If we assign n = 1 in Theorem 2, then∣∣∣∣( (z− η1)
α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

∣∣∣∣
≤ K(

η2 − η1
)

×
[
(z− η1)

α+1
{(

γ(α + 1,−s)− Γ(α + 1)
(−s)αs

− 1
α + 1

)
−
(
(γ(α + 1, s)− Γ(α + 1))es

sα+1 +
1

α + 1

)}
+ (η2 − z)α+1

{(
γ(α + 1,−s)− Γ(α + 1)

(−s)αs
− 1

α + 1

)
−
(
(γ(α + 1, s)− Γ(α + 1))es

sα+1 +
1

α + 1

)}]
.

Corollary 2. If we assign s = 1 in Theorem 2, then∣∣∣∣( (z− η1)
α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

∣∣∣∣
≤ K

n
(
η2 − η1

)
×
[
(z− η1)

α+1
{ n

∑
i=1

(
γ(α + 1,−1)− Γ(α + 1)

(−1)α − 1
α + 1

)i

−
n

∑
i=1

(
(γ(α + 1, 1)− Γ(α + 1))e +

1
α + 1

)i}

+ (η2 − z)α+1
{ n

∑
i=1

(
γ(α + 1,−1)− Γ(α + 1)

(−1)α − 1
α + 1

)i

−
n

∑
i=1

(
(γ(α + 1, 1)− Γ(α + 1))e +

1
α + 1

)i}]
.

Corollary 3. If we assign α = 1 in Theorem 2, then∣∣∣∣ϕ(z)− 1
η2 − η1

∫ η2

η1

ϕ(χ)dχ

∣∣∣∣
≤ K

(η2 − η1)n

[
(z− η1)

2
{ n

∑
i=1

(
2 + 2(s− 1)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i}

+ (η2 − z)2
{ n

∑
i=1

(
2 + 2(s− 1)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i} ]
.

Corollary 4. If we assign α = 1 and z = η1 in Theorem 2, then∣∣∣∣ϕ(η1)−
1

η2 − η1

∫ η2

η1

ϕ(χ)dχ

∣∣∣∣
≤ K

(η2 − η1)n

[
(η2 − η1)

2
{ n

∑
i=1

(
2 + 2(s− 1)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i} ]
.
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Corollary 5. If we assign α = 1 and z = η2 in Theorem 2, then∣∣∣∣ϕ(η2)−
1

η2 − η1

∫ η2

η1

ϕ(χ)dχ

∣∣∣∣
≤ K

(η2 − η1)n

[
(η2 − η1)

2
{ n

∑
i=1

(
2 + 2(s− 1)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i} ]
.

Theorem 3. Suppose a mapping ϕ : J ⊆ R → R is differentiable on Jo, where η1, η2 ∈ J with
η1 < η2. If |ϕ′|q is n–polynomial exponentially s−convex on [η1, η2] for some s ∈ (0, 1], q > 1,
q−1 = 1− p−1, ϕ′ ∈ L[η1, η2] and |ϕ′(z)| ≤ K, for all z ∈ [η1, η2], with α > 0, then the
following inequality holds:∣∣∣∣( (z− η1)

α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

∣∣∣∣
≤ 2

1
q K

q
√

n(η2 − η1)

(
1

αp + 1

) 1
p

×
[
(z− η1)

α+1
{ n

∑
i=1

(
es − s− 1

s

)i} 1
q

+ (η2 − z)α+1
{ n

∑
i=1

(
es − s− 1

s

)i} 1
q
]

. (18)

Proof. Applying Lemma 2 and the well-known Hölder’s inequality, we have∣∣∣∣( (z− η1)
α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

∣∣∣∣
≤ (z− η1)

α+1

η2 − η1

∫ 1

0
χα
∣∣ϕ′(χz + (1− χ)η1)

∣∣ dχ +
(η2 − z)α+1

η2 − η1

∫ 1

0
χα
∣∣ϕ′(χz + (1− χ)η2)

∣∣ dχ

≤ (z− η1)
α+1

η2 − η1

(∫ 1

0
χαpdχ

) 1
p
(∫ 1

0

∣∣ϕ′(χz + (1− χ)η1)
∣∣qdχ

) 1
q

+
(η2 − z)α+1

η2 − η1

(∫ 1

0
χαpdχ

) 1
p
(∫ 1

0

∣∣ϕ′(χz + (1− χ)η2)
∣∣qdχ

) 1
q

. (19)

Since |ϕ′|q is n–polynomial exponentially s−convex and |ϕ′(z)| ≤ K, we obtain

∫ 1

0

∣∣ϕ′(χz + (1− χ)η1)
∣∣qdχ =

∫ 1

0

{
1
n

n

∑
i=1

(esχ − 1)i∣∣ϕ′(z)∣∣q + 1
n

n

∑
i=1

(
es(1−χ) − 1

)i∣∣ϕ′(η1)
∣∣q}dχ

≤ Kq 1
n

n

∑
i=1

(
es − s− 1

s

)i
+ Kq 1

n

n

∑
i=1

(
es − s− 1

s

)i

≤ 2Kq 1
n

n

∑
i=1

(
es − s− 1

s

)i
(20)

and∫ 1

0

∣∣ϕ′(χz + (1− χ)η2)
∣∣qdχ =

∫ 1

0

{
1
n

n

∑
i=1

(esχ − 1)i∣∣ϕ′(z)∣∣q + 1
n

n

∑
i=1

(
es(1−χ) − 1

)i∣∣ϕ′(η2)
∣∣q}dχ

≤ Kq 1
n

n

∑
i=1

(
es − s− 1

s

)i
+ Kq 1

n

n

∑
i=1

(
es − s− 1

s

)i

≤ 2Kq 1
n

n

∑
i=1

(
es − s− 1

s

)i
. (21)

By connecting (20) and (21) with (19), we have the desired inequality (18).



Symmetry 2021, 13, 1429 11 of 18

Corollary 6. If we assign n = 1 in Theorem 3, then∣∣∣∣( (z− η1)
α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

∣∣∣∣
≤ 2

1
q K

(η2 − η1)

(
1

αp + 1

) 1
p

×
[
(z− η1)

α+1
(

es − s− 1
s

) 1
q
+ (η2 − z)α+1

(
es − s− 1

s

) 1
q
]

.

Corollary 7. If we assign s = 1, in Theorem 3, then∣∣∣∣( (z− η1)
α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

∣∣∣∣
≤ 2

1
q K

q
√

n(η2 − η1)

(
1

αp + 1

) 1
p
[
(z− η1)

α+1
{ n

∑
i=1

(e− 2)i
} 1

q

+ (η2 − z)α+1
{ n

∑
i=1

(e− 2)i
} 1

q
]

.

Corollary 8. If we assign α = 1, in Theorem 3, then∣∣∣∣ϕ(z)− 1
η2 − η1

∫ η2

η1

ϕ(χ)dχ

∣∣∣∣
≤ 2

1
q K

(η2 − η1)
q
√

n

(
1

p + 1

) 1
p
[
(z− η1)

2
{ n

∑
i=1

(
es − s− 1

s

)i} 1
q
+ (η2 − z)2

{ n

∑
i=1

(
es − s− 1

s

)i} 1
q
]

. (22)

Corollary 9. If we assign α = 1 and z = η1 in Theorem 3, then∣∣∣∣ϕ(η1)−
1

η2 − η1

∫ η2

η1

ϕ(χ)dχ

∣∣∣∣
≤ 2

1
q K

(η2 − η1)
q
√

n

(
1

p + 1

) 1
p
[
(η2 − η1)

2
{ n

∑
i=1

(
es − s− 1

s

)i} 1
q
]

. (23)

Corollary 10. If we assign α = 1 and z = η2 in Theorem 3, then∣∣∣∣ϕ(η2)−
1

η2 − η1

∫ η2

η1

ϕ(χ)dχ

∣∣∣∣
≤ 2

1
q K

(η2 − η1)
q
√

n

(
1

p + 1

) 1
p
[
(η2 − η1)

2
{ n

∑
i=1

(
es − s− 1

s

)i} 1
q
]

. (24)

Theorem 4. Suppose a mapping ϕ : J ⊆ R → R is differentiable on Jo, where η1, η2 ∈ J with
η1 < η2. Let q ≥ 1 and q−1 = 1− p−1. If |ϕ′|q is n–polynomial exponentially s−convex on
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[η1, η2] for some s ∈ (0, 1], ϕ′ ∈ L[η1, η2] and |ϕ′(z)| ≤ K, for all z ∈ [η1, η2], with α > 0, then
the following inequality holds:∣∣∣∣( (z− η1)

α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

∣∣∣∣
≤ K

q
√

n(η2 − η1)

(
1

α + 1

)1− 1
q

×
[
(z− η1)

α+1
{ n

∑
i=1

(
γ(α + 1,−s)− Γ(α + 1)

(−s)αs
− 1

α + 1

)i

−
n

∑
i=1

(
(γ(α + 1, s)− Γ(α + 1))s−α−1es − 1

α + 1

)i} 1
q

+ (η2 − z)α+1
{ n

∑
i=1

(
γ(α + 1,−s)− Γ(α + 1)

(−s)αs
− 1

α + 1

)i

−
n

∑
i=1

(
(γ(α + 1, s)− Γ(α + 1))s−α−1es − 1

α + 1

)i} 1
q
]

. (25)

Proof. Using Lemma 2 and power mean inequality, we have∣∣∣∣( (z− η1)
α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

∣∣∣∣
≤ (z− η1)

α+1

η2 − η1

∫ 1

0
χα
∣∣ϕ′(χz + (1− χ)η1)

∣∣ dχ +
(η2 − z)α+1

η2 − η1

∫ 1

0
χα
∣∣ϕ′(χz + (1− χ)η2)

∣∣ dχ

≤ (z− η1)
α+1

η2 − η1

(∫ 1

0
χαdχ

)1− 1
q
(∫ 1

0
χα
∣∣ϕ′(χz + (1− χ)η1)

∣∣qdχ

) 1
q

+
(η2 − z)α+1

η2 − η1

(∫ 1

0
χαdχ

)1− 1
q
(∫ 1

0
χα
∣∣ϕ′(χz + (1− χ)η2)

∣∣qdχ

) 1
q

(26)

Since, |ϕ′|q is n–polynomial exponentially s−convexity and |ϕ′(z)| ≤ K, we obtain∫ 1

0
χα
∣∣ϕ′(χz + (1− χ)η1)

∣∣q dχ

=
∫ 1

0
χα

{
1
n

n

∑
i=1

(esχ − 1)i∣∣ϕ′(z)∣∣q + 1
n

n

∑
i=1

(
es(1−χ) − 1

)i∣∣ϕ′(η1)
∣∣q}dχ

≤ Kq

n

{ n

∑
i=1

(
γ(α + 1,−s)− Γ(α + 1)

(−s)αs
− 1

α + 1

)i

−
n

∑
i=1

(
(γ(α + 1, s)− Γ(α + 1))s−α−1es − 1

α + 1

)i}
(27)

Consequently, similar computation gives∫ 1

0
χα
∣∣ϕ′(χz + (1− χ)η2)

∣∣q dχ

=
∫ 1

0
χα

{
1
n

n

∑
i=1

(esχ − 1)i∣∣ϕ′(z)∣∣q + 1
n

n

∑
i=1

(
es(1−χ) − 1

)i∣∣ϕ′(η2)
∣∣q}dχ

≤ Kq

n

{ n

∑
i=1

(
γ(α + 1,−s)− Γ(α + 1)

(−s)αs
− 1

α + 1

)i

−
n

∑
i=1

(
(γ(α + 1, s)− Γ(α + 1))s−α−1es − 1

α + 1

)i}
. (28)
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By connecting (27) and (28) with (26), we obtain the desired result (25).

Corollary 11. If we assign n = 1 in Theorem 4, then∣∣∣∣( (z− η1)
α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

∣∣∣∣
≤ K

(η2 − η1)

(
1

α + 1

)1− 1
q

×
[
(z− η1)

α+1
{

γ(α + 1,−s)− Γ(α + 1)
(−s)αs

− (γ(α + 1, s)− Γ(α + 1))s−α−1es − 2
α + 1

} 1
q

+ (η2 − z)α+1
{

γ(α + 1,−s)− Γ(α + 1)
(−s)αs

− (γ(α + 1, s)− Γ(α + 1))s−α−1es − 2
α + 1

} 1
q
]

.

Corollary 12. If we assign s = 1, in Theorem 4, then∣∣∣∣( (z− η1)
α + (η2 − z)α

η2 − η1

)
ϕ(z)− Γ(α + 1)

η2 − η1
{Jα

z− ϕ(η1) + Jα
z+ ϕ(η2)}

∣∣∣∣
≤ K

q
√

n(η2 − η1)

(
1

α + 1

)1− 1
q

×
[
(z− η1)

α+1
{ n

∑
i=1

(
γ(α + 1,−1)− Γ(α + 1)

(−1)α − 1
α + 1

)i

−
n

∑
i=1

(
(γ(α + 1, 1)− Γ(α + 1))e− 1

α + 1

)i} 1
q

+ (η2 − z)α+1
{ n

∑
i=1

(
γ(α + 1,−1)− Γ(α + 1)

(−1)α − 1
α + 1

)i

−
n

∑
i=1

(
(γ(α + 1, 1)− Γ(α + 1))e− 1

α + 1

)i} 1
q
]

.

Corollary 13. If we assign α = 1, in Theorem 4, then∣∣∣∣ϕ(z)− 1
η2 − η1

∫ η2

η1

ϕ(χ)dχ

∣∣∣∣
≤ K

q
√

n(η2 − η1)2
1− 1

q

[
(z− η1)

2
{ n

∑
i=1

(
2 + (2s− 2)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i} 1
q

+ (η2 − z)2
{ n

∑
i=1

(
2 + (2s− 2)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i} 1
q
]

.

Corollary 14. If we assign α = 1 and z = η1 in Theorem 4, then∣∣∣∣ϕ(η1)−
1

η2 − η1

∫ η2

η1

ϕ(χ)dχ

∣∣∣∣
≤ K

q
√

n(η2 − η1)2
1− 1

q

[
(η2 − η1)

2
{ n

∑
i=1

(
2 + (2s− 2)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i} 1
q
]

.
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Corollary 15. If we assign α = 1 and z = η2 in Theorem 4, then∣∣∣∣ϕ(η2)−
1

η2 − η1

∫ η2

η1

ϕ(χ)dχ

∣∣∣∣
≤ K

q
√

n(η2 − η1)2
1− 1

q

[
(η2 − η1)

2
{ n

∑
i=1

(
2 + (2s− 2)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i} 1
q
]

.

6. Applications

We recall the following special means for different positive real numbers η1, η2 and
η1 < η2 as follows:

1. The arithmetic mean:

A(η1, η2) =
η1 + η2

2
.

2. The Harmonic mean:

H(η1, η2) =
2η1η2

η1 + η2
, η1, η2 > 0.

3. The logarithmic mean:

L = L(η1, η2) =
η2 − η1

ln η2 − ln η1
, η1 6= η2.

4. The generalized logarithmic mean:

Lr(η1, η2) =

[
ηr+1

2 − ηr+1
1

(r + 1)(η2 − η1)

] 1
r

; r ∈ R \ {−1, 0}.

5. The Identric mean:

I(η1, η2) =


η1 η1 = η2

1
e

(
η

η2
2

η
η1
1

) 1
η2−η1

η1 6= η2

.

Proposition 2. Let 0 < η1 < η2. Then for some fixed s ∈ [ln 2.4, 1), we obtain

|ln I(η1, η2)− ln A(η1, η2)|

≤ (η2 − η1)
K
2n

{ n

∑
i=1

(
2 + 2(s− 1)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i}
.

Proof. The assertion follows from Corollary 3 by letting z = η1+η2
2 and ϕ(z) = − ln z.

Note: Estimation of “K” for the above Proposition 2 is as follows:

ϕ(z) = − ln z =⇒ |ϕ′(z)| = 1
z
≤ K = |ϕ′(η1)| =

1
η1

Proposition 3. Let 0 < η1 < η2 and q > 1. Then for some fixed s ∈ [ln 2.4, 1), we obtain

∣∣∣H(η1, η2)− L−1(η1, η2)
∣∣∣ ≤ 2

1
q−1 K

q
√

n
(η2 − η1)

(
1

p + 1

) 1
p
{ n

∑
i=1

(
es − s− 1

s

)i} 1
q

.

Proof. The assertion follows from Corollary 8 by letting z = η1+η2
2 and ϕ(z) = 1

z .
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Note: Estimation of “K” for the above Proposition 3 is as follows:

ϕ(z) =
1
z

=⇒ |ϕ′(z)| = 1
z2 ≤ K = |ϕ′(η1)| =

1
η2

1

Proposition 4. Let 0 < η1 < η2. Then for some fixed s ∈ [ln 2.4, 1), we obtain∣∣∣Als(η1, η2)− Lls
ls(η1, η2)

∣∣∣
≤ (η2 − η1)

K
2n

{ n

∑
i=1

(
2 + 2(s− 1)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i}
.

Proof. The assertion follows from Corollary 3 by letting z = η1+η2
2 and ϕ(z) = zls.

Note: Estimation of “K” for the above Proposition 4 is as follows:

ϕ(z) = zls =⇒ |ϕ′(z)| = ls(z)ls−1 ≤ K = |ϕ′(η2)| = ls(η2)
ls−1

Proposition 5. Let 0 < η1 < η2. Then for some fixed s ∈ [ln 2.4, 1), we obtain∣∣∣Als(η1, η2)− Lls
ls(η1, η2)

∣∣∣
≤ 2

1
q−1 K

q
√

n
(η2 − η1)

(
1

p + 1

) 1
p
{ n

∑
i=1

(
es − s− 1

s

)i} 1
q

.

Proof. The assertion follows from Corollary 8 by letting z = η1+η2
2 and ϕ(z) = zls.

Note: Similarly, one can estimate the value of “K” as estimated in the above propositions
(see Propositions 2–4).

Proposition 6. Let 0 < η1 < η2. Then for some fixed s ∈ [ln 2.4, 1), we obtain

|Gs(α, β)− L(αs, βs)|

≤ (η2 − η1)
K
2n

{ n

∑
i=1

(
2 + 2(s− 1)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i}
.

Proof. The assertion follows from Corollary 3 by letting z = η1+η2
2 , ϕ(z) = esz, z > 0 and

α = eη1 , β = eη2 .

Note: Similarly, one can estimate the value of "K" as estimated in the above propositions
(see Propositions 2–4).

7. Midpoint Formula

Since in [36], suppose d is the division η1 = x0 < x1 < x2 < ... < xn = η2 of the
interval [η1, η2] and consider the quadrature formula∫ η2

η1

ϕ(χ)dχ = T(ϕ, d) + E(ϕ, d), (29)

where T(ϕ, d) = ∑n−1
j=1 ϕ

( xj+xj+1
2

)
hj, is the midpoint version and E(ϕ, d) denotes the

approximation error and hj = xj+1 − xj, for j = 0, 1, 2, ..., n− 1.
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Proposition 7. Suppose a mapping ϕ : I ⊂ [0, ∞) → R is differentiable on Io such that
ϕ′ ∈ L[η1, η2], where η1, η2 ∈ I with η2 > η1. If |ϕ′| is n−polynomial exponentially s−convex
on [η1, η2], then for every division d of [η1, η2], the midpoint error satisfy

|E(ϕ, d)| ≤ K
2n

n−1

∑
j=0

h2
j

{ n

∑
i=1

(
2 + 2(s− 1)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i}
.

Proof. Since applying Corollary 3 with n–polynomial exponentially s−convexity and
z = η1+η2

2 on the subinterval [xi, xj+1]∣∣∣∣∣hj ϕ

( xj + xj+1

2

)
−
∫ xj+1

xj

ϕ(x)dx

∣∣∣∣∣ ≤ h2
j K

2n

×
{ n

∑
i=1

(
2 + 2(s− 1)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i}
.

Summing over j from 0 to n−1 and taking into account that |ϕ′| is n−polynomial
exponentially s−convex, we obtain, by the triangle inequality∣∣∣∣ ∫ η2

η1

ϕ(χ)dχ− T(ϕ, d)
∣∣∣∣

≤
∣∣∣∣ n−1

∑
j=0

{ ∫ xj+1

xj

ϕ(x)dx− ϕ

( xj + xj+1

2

)
hj

}∣∣∣∣
≤

n−1

∑
j=0

∣∣∣∣{ ∫ xj+1

xj

ϕ(x)dx− ϕ

( xj + xj+1

2

)
hj

}∣∣∣∣
≤ K

2n

n−1

∑
j=0

h2
j ×

{ n

∑
i=1

(
2 + 2(s− 1)es − s2

2s2

)i

+
n

∑
i=1

(
2es − s2 − 2s− 2

2s2

)i}
.

which completes the proof.

Note: Similarly, one can estimate the value of "K" as estimated in the above propositions
(see Propositions 2–4).

Proposition 8. Suppose a mapping ϕ : I ⊂ [0, ∞) → R is differentiable on Io such that
ϕ′ ∈ L[η1, η2], where η1, η2 ∈ I with η2 > η1, q > 1, f or s ∈ [ln 2.4, 1) in (29), for every division
d of [η1, η2]. If |ϕ′|q is n−polynomial exponentially s−convex on [η1, η2], then the midpoint
error satisfy

|E(ϕ, d)| ≤ 2
1
q−1 K

q
√

n

n−1

∑
j=0

h2
j ×

(
1

p + 1

) 1
p
{ n

∑
i=1

(
es − s− 1

s

)i} 1
q

.

Proof. By applying the same technique as in proposition (7) but using the Corollary 8 with
z = η1+η2

2 .

Note: Similarly, one can estimate the value of "K" as estimated in the above propositions
(see Propositions 2–4).

8. Conclusions

In this article, we have taken into consideration a critical extension of convexity
that is referred to as n-polynomial exponentially s-convex functions and acquired a new
Hermite–Hadamard-type inequality and some novel refinements of Ostrowski-type in-
equalities. We also presented some applications of our established results to special means
of two positive real numbers and midpoint formula. In the future, new inequalities for
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other n-polynomial convex functions can be obtained by using the techniques used in
this article.

Author Contributions: Conceptualization, S.K.S., M.T., H.A. (Hijaz Ahmad), J.N., H.A. (Hassen
Aydi); methodology, S.K.S., M.T., H.A. (Hijaz Ahmad), J.N., H.A. (Hassen Aydi); validation, S.K.S.,
M.T., H.A. (Hijaz Ahmad), J.N., H.A. (Hassen Aydi), A.M.; investigation, S.K.S., M.T., H.A. (Hijaz
Ahmad), J.N., H.A. (Hassen Aydi); writing— original draft preparation, S.K.S., M.T.; writing—review
and editing, S.K.S., M.T., H.A. (Hijaz Ahmad), J.N., H.A. (Hassen Aydi), A.M.; supervision, S.K.S.,
M.T., H.A. (Hassen Aydi). All authors have read and agreed to the final version of the manuscript.

Funding: Research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group
number RG-DES-2017-01-17, Prince Sultan University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data and materials were used to support this study.

Acknowledgments: The last author would like to thank Prince Sultan University for funding this
work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM)
group number RG-DES-2017-01-17.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Mohammed, P.O.; Brevik, I. A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals.

Symmetry 2020, 12, 610. [CrossRef]
2. Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite–Hadamard inequalities via the tempered fractional

integrals. Symmetry 2020, 12, 595. [CrossRef]
3. Mohammed, P.O.; Abdeljawad, T. Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ.

2020, 2020, 1–22. [CrossRef]
4. Vivas-Cortez, M.; Kashuri, A.; Hernández, J.E.H. Trapezium–type inequalities for Raina’s fractional integrals operator using

generalized convex functions. Symmetry 2020, 12, 1034. [CrossRef]
5. Butt, S.I.; Nadeem, M.; Qaisar, S.; Akdemir, A.O.; Abdeljawad, T. Hermite–Jensen–Mercer type inequalities for conformable

integrals and related results. Adv. Differ. Equ. 2020, 1, 1–24. [CrossRef]
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