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Abstract: We present a new look at the classification of real low-dimensional Lie algebras based on
the notion of a linear bundle of Lie algebras. Belonging to a suitable family of Lie bundles entails
the compatibility of the Lie–Poisson structures with the dual spaces of those algebras. This gives
compatibility of bi-Hamiltonian structure on the space of upper triangular matrices and with a
bundle at the algebra level. We will show that all three-dimensional Lie algebras belong to two of
these families and four-dimensional Lie algebras can be divided in three of these families.

Keywords: Lie algebra; linear bundle of Lie algebras; quasisimple orthogonal algebra; Poisson
manifold; bi-Hamiltonian structure

1. Introduction

To begin, we recall the definition of a Lie bundle. Let V, W be finite dimensional vector
spaces. If for any X, Y ∈ V and any S ∈W, we can define Lie bracket on V

(X, Y) 7→ [X, Y]S,

which is linear in S, then the pair (V, W) is called a linear bundle of Lie algebras or a
Lie bundle, see [1–3]. A simple consequence of the definition is that the Lie brackets are
compatible in the sense that their linear combination is again a Lie bracket

[·, ·]αS+βT = α[·, ·]S + β[·, ·]T (1)

where S, T ∈W, α, β ∈ R.
A classical example of such a structure is obtained by taking the space of skew-

symmetric matrices n× n as V, which we denote by A(n), and the space of symmetric
matrices as W, which we denote by S(n). A family of compatible brackets for this case is
given by the following formula

[X, Y]S = XSY−YSX, (2)

where X, Y ∈ A(n), S ∈ S(n). As a special case for S = 1, we obtain the standard matrix
commutator and Lie algebra so(n). The Lie bundle (A(n),S(n)) appears in many places
in the theory of integrable systems. Morosi and Pizzocchero, for example, in [4], used those
brackets to construct recursion giving the Mischenko and Manakov integrals of motion for
the Euler equation of an n-dimensional rigid body. In the paper [1], Bolsinov and Borisov
applied those brackets to investigate the problem of multidimensional Euler and Clebsh
equations. Those brackets were also used to analyze Clebsh and Neumann systems in [3].
We recommend the articles [5–7], where the bracket (2) or some of its modification were
used to consider some integrable systems.
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The Lie bundle (A(n),S(n)) also suggests another linear bundle of Lie algebras
(S(n),A(n)) with family of brackets given by

[S, T]X = SXT − TXS, (3)

where T, S ∈ S(n), X ∈ A(n). This structure, for example, was considered in [8].
Brackets of this type were already described by Cantor and Persits in [9]. A detailed

analysis of the situation for Mm×n(R) was done by Dali in [10]. In addition, Kiranagi with
collaborators studied Lie algebra bundles in a general situation, see, e.g., [11].

If we have a Lie algebra (g, [·, ·]), then we can think about its generalization in two
different ways. On one hand, we can deform the Lie bracket [·, ·], see, for example [12],
without changing the set g. On the other hand, we can leave the Lie bracket in the
unchanged form and only deform the set by introducing some parameters, which will give
us new algebra if we let some of those parameters tend to zero, see [13,14]. In our article,
we will consider both of these approaches—contractions and deformations of Lie algebras.

Our base Lie algebra is so(n). We already know that the modification of the Lie bracket
by a symmetric matrix (2) gives us again a Lie algebra. We can expand the set of skew-
symmetric matrices by introducing n− 1 real parameters a1, . . . , an−1, see [15,16]. This
construction gives us a large family of algebras, which are called quasisimple Cayley–Klein
algebras of the orthogonal type. Analysis of this kind of algebras applied to bi-Hamiltonian
structures, which they generate, was given in [6,17]. Articles [18,19] show us those algebras
in consideration with Minkowski spacetime.

Moreover, we will also modify the set of symmetric matrices, for instance, by introduc-
ing parameters a1, . . . , an−1. After that modification, with some given parameters, we will
still have a Lie bundle. We will analyze when (for different parameter systems) those Lie
bundles will be compatible, in the sense that their linear combination will give us a different
Lie bundle, which corresponds to the compatible Poisson structure on the dual space (the
same for all of these algebras). Next, we will show that the notion of bi-Hamiltonian
structure, which is very useful for studying integrable systems, see [20], can also be used
in the classification of Lie algebras. The standard classification of Lie algebras is based
on the Levi–Malcev theorem, which says that any finite-dimensional Lie algebra can be
represented as the semi-direct sum of the radical τ and a semisimple subalgebra a, i.e.,
g = an τ. Then, one needs a classification of all semisimple algebras, all solvable algebras
and all possible linear actions of the semisimple algebras a on the radical τ. The problem
of classifying real Lie algebras is completely solved for Lie algebras up to dimension six.
Bianki [21] first classified the tree-dimensional real Lie algebras. All the possible real Lie
algebras of a dimension up to and including four were listed by Mubarakzyanov [22]. For
more detail, see [23–27] and the references therein. In our considerations, we will look
at this problem from another point of view and attempt the classification according to
membership of suitable Lie bundles.

The paper is organized as follows. In the beginning, we will recall basic facts about
Poisson brackets (in particular, linear structure) and bi-Hamiltonian structure. Next,
we discuss generalizations of the Lie bundle (A(n),S(n)) by the introduction of real
parameters a1, . . . , an−1 and partially replacing the vector space indexing Lie brackets
(symmetric matrices or quasisimple symmetric matrices) by any matrices. Section 3 is
devoted to analysis of families of brackets associated with real three-dimensional Lie
algebras. In the next section, we consider Lie bundles generating real four-dimensional Lie
algebras.

2. Bi-Hamiltonian Structure and Lie Bundles Parametrized by a Finite Sequence
of Parameters

The main aim of this section is to recall basic facts about Lie algebras, Poisson mani-
folds and the relation between those two.
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Let us consider a finite-dimensional manifold M. A Poisson bracket is a bilinear and
skew-symmetric operation that satisfies the following conditions:

{{ f , g}, h}+ {{g, h}, f }+ {{h, f }, g} = 0, { f , gh} = g{ f , h}+ { f , g}h, (4)

for all f , g, h ∈ C∞(M). The first of these conditions is usually called the Jacobi identity,
and the second is the Leibniz rule. A manifold M with this bracket is called a Poisson
manifold (M, {·, ·}).

If x = (x1, . . . , xn) is a system of local coordinates on M, then the Poisson bracket can
be presented in the form

{ f , g}(x) =
n

∑
i,j=1

πij(x)
∂ f
∂xi

∂g
∂xj

, (5)

where π ∈ Γ
(∧2 TM

)
is called a Poisson tensor. The components of this tensor are given by

the formula πij(x) = −πji(x) = {xi, xj}, and it satisfies the following system of equations,
equivalent to the Jacobi identity,

n

∑
s=1

(
∂πij

∂xs
πsk +

∂πki
∂xs

πsj +
∂πjk

∂xs
πsi

)
= 0, (6)

which is equivalent to the vanishing of the Schouten–Nijenhuis bracket.
If π depends on x in a linear way, we say we have a linear Poisson structure on M.
In this paper, an important example of Poisson structure will be the so-called Lie–

Poisson bracket. Let g be a real n-dimensional Lie algebra. It is a well-known fact that
on the dual space g∗, there exists a canonical Poisson structure. This bracket is called
Lie–Poisson, and it is given by the following formula

{ f , g}(x) = 〈x, [d f (x), dg(x)]〉, (7)

where d f (x), dg(x) ∈ (g∗)∗ ∼= g. Let {e1, . . . , en} be a basis of g. Using the structure
constants ck

ij of this Lie algebra [ei, ej] = ∑n
k=1 ck

ijek, one can express the Poisson tensor as a

linear function {xi, xj} = ∑n
k=1 ck

ijxk. This gives a one-to-one correspondence between the
linear Poisson structures and Lie algebras.

We say that two Poisson tensors π1 and π2 are compatible if any linear combination

π = απ1 + βπ2, α, β ∈ R, (8)

is also a Poisson tensor. The Poisson structures π1 and π2 on M are compatible if and only
if their Schouten–Nijenhuis bracket vanishes, which means that

n

∑
s=1

(
π2,sk

∂π1,ij

∂xs
+ π1,sk

∂π2,ij

∂xs
+ π2,sj

∂π1,ki

∂xs
+ π1,sj

∂π2,ki

∂xs
+ π2,si

∂π1,jk

∂xs
+ π1,si

∂π2,jk

∂xs

)
= 0. (9)

The manifold M equipped with two compatible Poisson structures π1 and π2 is called
the bi-Hamiltonian manifold, and we denote it as (M, π1, π2).

Let us consider sets of square matrices

Aa1,...,an−1(n) = {X = (xij) ∈ Mn(R) : xij = −ai . . . aj−1xji f or j > i, xii = 0}

and
Sa1,...,an−1(n) = {S = (sij) ∈ Mn(R) : sij = ai . . . aj−1sji f or j > i},
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where ai, i = 1, . . . , n− 1, are fixed real numbers. Elements of these sets can be represented
as follows

X =


0 −a1x21 −a1a2x31 . . . −a1a2 . . . an−1xn1

x21 0 −a2x32 . . . −a2a3 . . . an−1xn2
x31 x32 0 . . . −a3a4 . . . an−1xn3

...
...

...
. . .

...
xn1 xn2 xn3 . . . 0

, (10)

S =


s11 a1s21 a1a2s31 . . . a1a2 . . . an−1sn1
s21 s22 a2s32 . . . a2a3 . . . an−1sn2
s31 s32 s33 . . . a3a4 . . . an−1sn3
...

...
...

. . .
...

sn1 sn2 sn3 . . . snn

. (11)

It was shown in [15,16] that the set Aa1,...,an−1(n) with the standard commutator is a
Lie algebra. This Lie algebra depends on n− 1 parameters and is called a quasisimple
orthogonal algebra. In the case, when all these parameters are nonzero, it is isomorphic
to the Lie algebra so(n) or so(p, n− p). A more interesting situation is when some of the
parameters are equal to zero. For instance, when a1 = 0 and all others are nonzero, we get
a contraction in the sense of Inönü–Wigner to the Euclidean algebra iso(n) or the Poincaré
algebra iso(n− 1, 1). The infinite dimensional case was considered in papers [6,28].

In our article, we will only be interested in the finite-dimensional case, with the family
of brackets given by

[X, Y]S = XSY−YSX, (12)

where X, Y ∈ Aa1,...,an−1(n), S ∈ Sa1,...,an−1(n). We denote this Lie bundle by(
Aa1,...,an−1(n),Sa1,...,an−1(n)

)
. This case was studied in detail in [29].

The dual space
(
Aa1,...,an−1(n)

)∗ to the algebra Aa1,...,an−1(n) can be identified with the
set of upper triangular matrices

L+(n) = {x = (xij) ∈ Mn(R) : xij = 0, f or i ≥ j}

with the pairing given by the trace

〈x, X〉 = Tr(xX). (13)

Thus, the Lie bundle
(
Aa1,...,an−1(n),Sa1,...,an−1(n)

)
introduces a family of Lie–Poisson

brackets on the dual space L+(n):

{ f , g}S(x) = 〈x, [d f (x), dg(x)]S〉. (14)

This family of brackets is indexed by S ∈ Sa1,...,an−1(n). For fixed a1, . . . , an−1 the Lie
bracket from Equation (12) is linear in S, and consequently, the Lie–Poisson brackets are
compatible.

There are known Casimir functions for the Lie bracket (14) in the case when
a1 = . . . = an−1 = 1 and det S 6= 0 given by

Ck(x) =
1
2k

Tr
(
(x− xT)S−1

)2k
, k = 1, 2, . . . , (15)

see [2]. In the case when parameters a1, . . . , an−1 are non-zero but not equal to one, this
family has to be modified

Ck(x) =
1
2k

Tr
(
(x− δ−1xTδ)S−1

)2k
, (16)
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where δ = diag(1, a1, a1a2, . . . , a1a2 . . . an−1), see [29]. In the situation when it is allowed
that some of the parameters ai are equal to zero, we get

Ck(x) =
(−2)k

2k
Tr
(

xS−1η(S−1x)Tδ
)k

, (17)

where η = diag(a1a2 . . . an−1, a2 . . . an−1, . . . , 1). However, in this case, not all of the func-
tions have to be included.

The Lie bundle
(
Aa1,...,an−1(n),Sa1,...,an−1(n)

)
can be generalized to the case when some

parameters ai are equal to zero. Let us suppose that ak1 = . . . = akN = 0, where k1, . . . , kN
is an increasing sequence, then both of the elements of Aa1,...,an−1(n) and Sa1,...,an−1(n) can
be written in block form as

X =


A0 0 . . . 0
∗ A1 . . . 0
...

...
. . .

...
∗ ∗ . . . AN

, S =


B0 0 . . . 0
∗ B1 . . . 0
...

...
. . .

...
∗ ∗ . . . BN

, (18)

where Ai ∈ Aaki+1,...,aki+1−1(ki+1 − ki), Bi ∈ Saki+1,...,aki+1−1(ki+1 − ki), k0 = 0, and ∗ de-
notes arbitrary matrices of suitable sizes. If blocks Ai, Di ∈ Aaki+1,...,aki+1−1(ki+1 − ki)

and Bi are 2 × 2, then it is easy to see that [Ai, Di]Bi = 0. Then nothing prevents us
from replacing the almost symmetric matrix (we called it quasisimple symmetric matrix)

Bi =

(
s11 aki+1s21
s21 s22

)
with any 2× 2 matrix B̃i =

(
s11 s12
s21 s22

)
because the property

[Ai, Di]B̃i
= 0 is still fulfilled. We will denote by S̃a1,...,an(n) the set of matrices S of the

form (18), where blocks Bi in case 2× 2 can be replaced by B̃i.

Proposition 1. A pair
(
Aa1,...,an(n), ˜Sa1,...,an(n)

)
is a linear bundle of Lie algebras.

In this case, we will allow that matrix elements are complex numbers. It turns out that
for low dimensional Lie algebras, those two families of Lie bundles, which are dependent
on parameters ai, are sufficient for the classification of Lie algebras. In the next sections, it
will be shown on three- and four-dimensional Lie algebras that all of these algebras belong

to the Lie bundle (Aa1,...,an(n),Sa1,...,an(n)) or
(
Aa1,...,an(n), ˜Sa1,...,an(n)

)
.

3. Three-Dimensional Lie Algebras and Lie Bundles

First Lie bundle.
Let us consider the Lie algebra so(3) with the standard commutator. Note that A1,1(3)

as a set coincides with it but carries another Lie bracket

[X1, Y1]S1 = X1S1Y1 − X1S1Y1, (19)

where X1, Y1 ∈ A1,1(3) and S1 ∈ S1,1(3). We assume the forms of X1 and S1 as follows

X1 =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

, S1 =

 s11 s21 s31
s21 s22 s32
s31 s32 s33

. (20)
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From the definition in Equation (14), we get the Lie–Poisson bracket on the dual space
L+(3) to the Lie algebra A1,1(3)

{ f , g}S1(x) = (s31x1 + s32x2 + s33x3)

(
∂ f
∂x1

(x)
∂g
∂x2

(x)− ∂ f
∂x2

(x)
∂g
∂x1

(x)
)

+ (s11x1 + s21x2 + s31x3)

(
∂ f
∂x2

(x)
∂g
∂x3

(x)− ∂ f
∂x3

(x)
∂g
∂x2

(x)
)

(21)

+ (s21x1 + s22x2 + s32x3)

(
∂ f
∂x3

(x)
∂g
∂x1

(x)− ∂ f
∂x1

(x)
∂g
∂x3

(x)
)

.

In our calculation, we took x ∈ L+(3) of the form

x =

 0 x3 −x2
0 0 x1
0 0 0

.

Thus, the matrix of the Poisson tensor assumes the following form

πS1(x) =

 0 s31x1 + s32x2 + s33x3 −s21x1 − s22x2 − s32x3
−s31x1 − s32x2 − s33x3 0 s11x1 + s21x2 + s31x3
s21x1 + s22x2 + s32x3 −s11x1 − s21x2 − s31x3 0

. (22)

Second Lie bundle.
We can also get another Lie–Poisson bracket

[X2, Y2]S2 = X2S2Y2 −Y2S2X2 (23)

by taking X2, Y2 ∈ A1,0(3) and S2 ∈ S̃1,0(3) as follows

X2 =

 0 −x3 0
x3 0 0
−x2 x1 0

, S2 =

 s11 s12 0
s21 s22 0
s31 s32 s33

. (24)

Using a similar calculation as in Equation (21), we get the next Lie–Poisson bracket

{ f , g}S2(x) = (s11x1 + s12x2)

(
∂ f
∂x2

(x)
∂g
∂x3

(x)− ∂ f
∂x3

(x)
∂g
∂x2

(x)
)

(25)

+ (s21x1 + s11x2)

(
∂ f
∂x3

(x)
∂g
∂x1

(x)− ∂ f
∂x1

(x)
∂g
∂x3

(x)
)

.

Thus, the matrix of the Poisson tensor in this case is given by

πS2(x) =

 0 0 −s21x1 − s22x2
0 0 s11x1 + s12x2

s21x1 + s22x2 −s11x1 − s12x2 0

. (26)

Table 1 describes which Lie–Poisson structures that are related to the three-dimensional
Lie algebras gij, according to the classification taken from [30], can be obtained from those
two brackets. An isomorphism is given by mapping (x1, x2, x3) 7→ (e1, e2, e3). It is easy to
see that some of them can be obtained from both Equations (19) and (23). Furthermore,
these brackets split all of these three-dimensional Lie algebras into two families—algebras
in the same family are all compatible with each other but not with those from the other one.
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Table 1. Three-dimensional Lie algebras with their Poisson structure (22) or (26) and corresponding matrices S1, S2 from
Equations (19) and (23).

gi,j
Nonzero

Commutation Relations π S1 S2

g3,1 [e2, e3] = e1

 0 0 0
0 0 x1

0 −x1 0


 1 0 0

0 0 0
0 0 0


 1 0 0

0 0 0
0 0 0



g3,2
[e1, e3] = e1

[e2, e3] = e1 + e2

 0 0 x1

0 0 x1 + x2

−x1 −x1 − x2 0


 1 1 0
−1 0 0
0 0 0



g3,3
[e1, e3] = e1
[e2, e3] = e2

 0 0 x1

0 0 x2

−x1 −x2 0


 0 1 0
−1 0 0
0 0 0



g3,4
[e1, e3] = e1
[e2, e3] = −e2

 0 0 x1

0 0 −x2

−x1 x2 0


 0 −1 0
−1 0 0
0 0 0


 0 −1 0
−1 0 0
0 0 0



ga
3,5

[e1, e3] = e1
[e2, e3] = ae2
(0 < |a| < 1)

 0 0 x1

0 0 ax2

−x1 −ax2 0


 0 a 0
−1 0 0
0 0 0



g3,6
[e1, e3] = −e2
[e2, e3] = e1

 0 0 −x2

0 0 x1

x2 −x1 0


 1 0 0

0 1 0
0 0 0


 1 0 0

0 1 0
0 0 0


ga

3,7

[e1, e3] = ae1 − e2
[e2, e3] = e1 + ae2

(a > 0)

 0 0 ax1 − x2

0 0 x1 + ax2

−ax1 + x2 −x1 − ax2 0


 1 a 0
−a 1 0
0 0 0


g3,8

[e1, e3] = −2e2
[e1, e2] = e1
[e2, e3] = e3

 0 x1 −2x2

−x1 0 x3

2x2 −x3 0


 0 0 1

0 2 0
1 0 0


g3,9

[e1, e2] = e3
[e3, e1] = e2
[e2, e3] = e1

 0 x3 −x2

−x3 0 x1

x2 −x1 0


 1 0 0

0 1 0
0 0 1



We get two families:

family I: g3,1, g3,4, g3,6, g3,8, g3,9,
family II: g3,1, g3,2, g3,3, g3,4, ga

3,5, g3,6, ga
3,7.

Obviously, we would get the same result by analyzing the compatibility of Lie–Poisson
structures related, respectively, to those three-dimensional Lie algebras, see Table 2.

Belonging to the appropriate family of a Lie bundle also requires that Casimirs for the
Poisson bracket (respectively, invariants for Lie algebras) are generally described by one
function. For the first family of Lie algebras, after direct calculation from Equation (15), we
get

C1(x) = −
det S1

2
Tr
((

x− xT
)

S−1
1

)2
(27)

= s11x2
1 + s22x2

2 + s33x2
3 + 2s21x1x2 + 2s31x1x3 + 2s32x2x3.
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Table 3 displays the results in some specific situations. For the second family, the
Casimir functions can be obtained by solving the linear first order partial differential equa-
tion

(s21x1 + s22x2)
∂C1

∂x1
(x)− (s11x1 + s12x2)

∂C1

∂x2
(x) = 0. (28)

Table 2. Three-dimensional Lie algebras and bi-Hamiltonian structures on L+(3). Symbol + means
that the Lie algebras from the corresponding row and column are compatible and symbol − that they
are not compatible.

g3,1 g3,2 g3,3 g3,4 ga
3,5 g3,6 ga

3,7 g3,8 g3,9 Name
+ + + + + + + + + g3,1

+ + + + + + − − g3,2

+ + + + + − − g3,3

+ + + + + + g3,4

+ + + − − ga
3,5

+ + + + g3,6

+ − − ga
3,7

+ + g3,8

+ g3,9

Table 3. Casimir functions for the first family of three-dimensional Lie algebras.

gi,j S1 Invariants

g3,1

 1 0 0
0 0 0
0 0 0

 x2
1

g3,4

 0 −1 0
−1 0 0
0 0 0

 −x1x2

g3,6

 1 0 0
0 1 0
0 0 0

 x2
1 + x2

2

g3,8

 0 0 1
0 2 0
1 0 0

 2x2
2 + 2x1x3

g3,9

 1 0 0
0 1 0
0 0 1

 x2
1 + x2

2 + x2
3

4. Four-Dimensional Lie Algebras and Lie Bundles

Let us consider all real Lie algebras of dimension equal to four. A complete list of these
algebras is given, for example, by Mubarakzyanov [22]. There are twelve real algebras of
dimension four, and five of them depend on parameters. Our list of algebras gathered in
Table 4 is based on the article [30].

On the dual space L+(4) of Lie algebras g4,i, i = 1, . . . , 12, there are Poisson structures
defined by Poisson tensors π4,i.

Table 5 describes if the above structures are compatible in sense (8), i.e., R4 equipped
with these is a bi-Hamiltonian manifold. From this table, we can see that we have three
families of compatible structures, which are:
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family I: g4,1, g4,3, g4,12,
family II: g4,1, ga

4,2, g4,3, g4,4, gab
4,5, gab

4,6,
family III: g4,1, g4,7, g4,8, gb

4,9, g4,10, ga
4,11, g2

4,2, g1−bb
4,5 , g2bb

4,6 .

Table 4. Real Lie algebras of dimension four.

Name Nonzero Commutation Relations
g4,1 [e2, e4] = e1, [e3, e4] = e2

ga
4,2 [e1, e4] = ae1, [e2, e4] = e2, [e3, e4] = e2 + e3, (a 6= 0)

g4,3 [e1, e4] = e1, [e3, e4] = e2

g4,4 [e1, e4] = e1, [e2, e4] = e1 + e2, [e3, e4] = e2 + e3

gab
4,5

[e1, e4] = e1, [e2, e4] = ae2,
[e3, e4] = be3 (ab 6= 0, −1 ≤ a ≤ b ≤ 1)

gab
4,6

[e1, e4] = ae1, [e2, e4] = be2 − e3,
[e3, e4] = e2 + be3, (a 6= 0, b ≥ 0)

g4,7 [e2, e3] = e1, [e1, e4] = 2e1, [e2, e4] = e2, [e3, e4] = e2 + e3

g4,8 [e2, e3] = e1, [e2, e4] = e2, [e3, e4] = −e3

gb
4,9

[e2, e3] = e1, [e1, e4] = (1 + b)e1,
[e2, e4] = e2, [e3, e4] = be3, (−1 < b ≤ 1)

g4,10 [e2, e3] = e1, [e2, e4] = −e3, [e3, e4] = e2

ga
4,11

[e2, e3] = e1, [e1, e4] = 2ae1,
[e2, e4] = ae2 − e3, [e3, e4] = e2 + ae3, (a > 0)

g4,12 [e1, e3] = e1, [e2, e3] = e2, [e1, e4] = −e2, [e2, e4] = e1

Table 5. Four-dimensional Lie algebras and bi-Hamiltonian structures on L+(4). Symbol + means
that the Lie algebras from the corresponding row and column are compatible, symbol − that they are
not compatible; the symbol −∗ means that they are not compatible unless a = 2 for Lie algebra ga

4,2.
Moreover, symbols −∗∗ and −∗∗∗ mean that the corresponding Lie algebras are compatible only if
a + b = 1 for Lie algebra gab

4,5 or a = 2b for Lie algebra gab
4,6, respectively.

g4,1 ga
4,2 g4,3 g4,4 gab

4,5 gab
4,6 g4,7 g4,8 gb

4,9 g4,10 ga
4,11 g4,12 Name

+ + + + + + + + + + + + g4,1

+ + + + + −∗ −∗ −∗ −∗ −∗ − ga
4,2

+ + + + − − − − − + g4,3

+ + + − − − − − − g4,4

+ + −∗∗ −∗∗ −∗∗ −∗∗ −∗∗ − gab
4,5

+ −∗∗∗ −∗∗∗ −∗∗∗ −∗∗∗ −∗∗∗ − gab
4,6

+ + + + + − g4,7

+ + + + − g4,8

+ + + − gb
4,9

+ + − g4,10

+ − ga
4,11

+ g4,12

First Lie bundle.
The first family can be obtain by taking the bracket

[X1, Y1]S1 = X1S1Y1 −Y1S1X1, (29)

where X1, Y1 ∈ A1,0,1(4) and S1 ∈ S̃1,0,1(4) are matrices of the form

X1 =


0 −x3 0 0
x3 0 0 0
−x2 x1 0 y3
−y1 −y2 −y3 0

, S1 =


s11 s12 0 0
s21 s22 0 0
s31 s32 s33 s34
s41 s42 s43 s44

. (30)
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After direct calculation from Equation (14), we get the following formula

{ f , g}S1(x) =
(

∂ f
∂x3

(x)
∂g
∂x1

(x)− ∂ f
∂x1

(x)
∂g
∂x3

(x)
)
(s22x2 + s21x1)

+

(
∂ f
∂x3

(x)
∂g
∂y2

(x)− ∂ f
∂y2

(x)
∂g
∂x3

(x)
)
(s21y2 − s22y1)

+

(
∂ f
∂y2

(x)
∂g
∂y3

(x)− ∂ f
∂y3

(x)
∂g
∂y2

(x)
)
(s34y2 + s44x1)

+

(
∂ f
∂y3

(x)
∂g
∂x1

(x)− ∂ f
∂x1

(x)
∂g
∂y3

(x)
)
(s33y2 + s43x1)

+

(
∂ f
∂x3

(x)
∂g
∂y1

(x)− ∂ f
∂y1

(x)
∂g
∂x3

(x)
)
(s11y2 − s12y1) (31)

+

(
∂ f
∂y1

(x)
∂g
∂y3

(x)− ∂ f
∂y3

(x)
∂g
∂y1

(x)
)
(s34y1 − s44x2)

+

(
∂ f
∂x2

(x)
∂g
∂y3

(x)− ∂ f
∂y3

(x)
∂g
∂x2

(x)
)
(s33y1 − s43x2)

+

(
∂ f
∂x2

(x)
∂g
∂x3

(x)− ∂ f
∂x3

(x)
∂g
∂x2

(x)
)
(s12x2 + s11x1)

+

(
∂ f
∂x3

(x)
∂g
∂y3

(x)− ∂ f
∂y3

(x)
∂g
∂x3

(x)
)
(s42x2 − s32y1 + s31y2 + s41x1),

where x ∈ L+(4) is an upper triangular matrix given by

x =


0 x3 −x2 −y1
0 0 x1 −y2
0 0 0 −y3
0 0 0 0

. (32)

As we can see, we obtained six-dimensional cases. To get our four-dimensional
families, we limit ourselves to variables (x2, x3, y1, y3) by putting x1 = y2 = 0 and s11 =

s31 = s41 = 0. This means restricting to the subspaces V ⊂ A1,0,1(4) and S ⊂ S̃1,0,1(4),
whose elements are given by

X̃1 =


0 −x3 0 0
x3 0 0 0
−x2 0 0 y3
−y1 0 −y3 0

, S̃1 =


0 s12 0 0

s21 s22 0 0
0 s32 s33 s34
0 s42 s43 s44

. (33)

Then we get a four-dimensional Lie subalgebra with bracket

[X̃1, Ỹ1]S̃1
= X̃1S̃1Ỹ1 − Ỹ1S̃1X̃1. (34)

We get the Lie–Poisson structure related to the Lie algebra g4,1 by putting
s44 = s32 = −1 and the other parameters equal to zero in matrix S̃1. To get the Lie–Poisson
structure associated with the Lie algebra g4,3 in matrix S̃1, we put s32 = s43 = −1 and
all others parameters equal to zero. To get the Lie–Poisson structure associated with Lie
algebra g4,12, we put s33 = s44 = −1, s12 = 1 and other parameters equal to zero in matrix
S̃1. In these cases, an isomorphism is given by the mapping (x2, y1, x3, y3) 7→ (e1, e2, e3, e4).

In Table 6, there are Lie–Poisson structures related to four-dimensional Lie algebras
g4,i from the first family that can be obtained from bracket (31) by choosing a suitable
matrix S̃1 and putting x1 = y2 = 0.
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Table 6. First Lie bundle for four-dimensional Lie algebras.

gi,j π S̃1

g4,1


0 0 0 0
0 0 0 x2
0 0 0 y1
0 −x2 −y1 0




0 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 −1



g4,3


0 0 0 x2
0 0 0 0
0 0 0 y1
−x2 0 −y1 0




0 0 0 0
0 0 0 0
0 −1 0 0
0 0 −1 0



g4,12


0 0 x2 −y1
0 0 y1 x2
−x2 −y1 0 0
y1 −x2 0 0




0 1 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1



Second Lie bundle.
The second family can be obtained by taking the bracket

[X2, Y2]S2 = X2S2Y2 −Y2S2X2, (35)

where X2, Y2 ∈ A0,0,1(4), S2 ∈ S̃1,0,1(4) are matrices of the form

X2 =


0 0 0 0
x3 0 0 0
−x2 x1 0 y3
−y1 −y2 −y3 0

, S2 =


s11 s12 0 0
s21 s22 0 0
s31 s32 s33 s34
s41 s42 s43 s44

. (36)

After direct calculation similar to Equation (31), we obtain the following formula

{ f , g}S2(x) =
(

∂ f
∂x3

(x)
∂g
∂y3

(x)− ∂ f
∂y3

(x)
∂g
∂x3

(x)
)
(s42x2 − s32y1)

+

(
∂ f
∂y2

(x)
∂g
∂x3

(x)− ∂ f
∂x3

(x)
∂g
∂y2

(x)
)

s22y1

+

(
∂ f
∂y2

(x)
∂g
∂y3

(x)− ∂ f
∂y3

(x)
∂g
∂y2

(x)
)
(s34y2 + s44x1)

+

(
∂ f
∂y3

(x)
∂g
∂x1

(x)− ∂ f
∂x1

(x)
∂g
∂y3

(x)
)
(s33y2 + s43x1)

+

(
∂ f
∂y1

(x)
∂g
∂x3

(x)− ∂ f
∂x3

(x)
∂g
∂y1

(x)
)

s12y1 (37)

+

(
∂ f
∂y1

(x)
∂g
∂y3

(x)− ∂ f
∂y3

(x)
∂g
∂y1

(x)
)
(s34y1 − s44x2)

+

(
∂ f
∂x2

(x)
∂g
∂y3

(x)− ∂ f
∂y3

(x)
∂g
∂x2

(x)
)
(s33y1 − s43x2)

+

(
∂ f
∂x2

(x)
∂g
∂x3

(x)− ∂ f
∂x3

(x)
∂g
∂x2

(x)
)

s12x2

+

(
∂ f
∂x3

(x)
∂g
∂x1

(x)− ∂ f
∂x1

(x)
∂g
∂x3

(x)
)

s22x2,

where x ∈ L+(4) is defined in Equation (32). As we can see, we obtained a six–dimensional
case.

We recognize in (37) the Lie–Poisson structure related to g4,1 if we put s32 = s44 =
−1 and other parameters equal to zero in matrix S2 given by Equation (36). Similarly,
putting in matrix S2 as nonzero elements only s32 = s43 = −1 and x1 = y2 = 0, we
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get the Lie–Poisson structure associated with g4,3. In both these cases, an isomorphism
is given by the mapping (x2, y1, x3, y3) 7→ (e1, e2, e3, e4). Moreover, in Equation (37), we
can find the Lie–Poisson structures related to ga

4,2 and ga,b
4,5 by a suitable choice of the

matrix S2 and putting x3 = y3, y2 = 0, see Table 7. In these cases, an isomorphism
is given by (x1, x2, y1, y3) 7→ (e1, e2, e3, e4). If we take the isomorphism (e1, e2, e3, e4) 7→
(2x2 + 2y1,−x1 − y1 + y2,−y2, x3 + y3) and as nonzero elements in matrix S2, we put
s22 = s33 = s44 = 1, s43 = −2 and x3 = y3, x1 = −x̃1, x2 = 2x̃2, y1 = 2x̃2− x̃1, y2 = x̃1− ỹ2,
then bracket (35) gives us the algebra g4,4. We get the Lie algebra gab

4,6 taking matrix S2,
as in Table 7, and putting x3 = y3, x2 = x1 + x̃2 + ỹ1, y1 = x1 + i(ỹ1 − x̃2). In this case,
an isomorphism is given by (e1, e2, e3, e4) 7→ (x1 + x2 + y1 − y2, x2 − iy1, x2 + iy1, x3 + y3).
Similar to previous families, we get also matrix representation of these algebras, see the
fourth column of Table 7. We get an analogue of Ado’s theorem, see [31,32].

Table 7. Second Lie bundle for four-dimensional Lie algebras. We put A = a(x1 + x2 + y1 − y2), B = b(x2 − iy1)− x2 − iy1,
C = x2 − iy1 + b(x2 + iy1) and D = −x1 + 2x2 + y1 + y2.

gi,j π S2 X2

g4,1


0 0 0 0
0 0 0 x2
0 0 0 y1
0 −x2 −y1 0




0 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 −1




0 0 0 0
x3 0 0 0
−x2 0 0 y3
−y1 0 −y3 0



ga
4,2


0 0 0 ax1
0 0 0 x2
0 0 0 x2 + y1
−ax1 −x2 −x2 − y1 0




0 1− a 0 0
0 0 0 0
0 0 0 a
0 0 −a −1




0 0 0 0
y3 0 0 0
−x2 x1 0 y3
−y1 0 −y3 0



g4,3


0 0 0 x2
0 0 0 0
0 0 0 y1
−x2 0 −y1 0




0 0 0 0
0 0 0 0
0 −1 0 0
0 0 −1 0




0 0 0 0
x3 0 0 0
−x2 0 0 y3
−y1 0 −y3 0



g4,4


0 0 0 2(x2 + y1)
0 0 0 D
0 0 0 −x1 − y1

−2(x2 + y1) −D x1 + y1 0




0 0 0 0
0 1 0 0
0 0 1 0
0 0 −2 1




0 0 0 0
y3 0 0 0
−2x̃2 −x̃1 0 y3

−2x̃2 + x̃1 ỹ2 − x̃1 −y3 0



gab
4,5


0 0 0 x1
0 0 0 ax2
0 0 0 by1
−x1 −ax2 −by1 0




0 a− 1 0 0
0 0 0 0
0 0 0 1− a + b
0 0 −1 0




0 0 0 0
y3 0 0 0
−x2 x1 0 y3
−y1 0 −y3 0



gab
4,6


0 0 0 A
0 0 0 B
0 0 0 C
−A −B −C 0




0 b− a− i 0 0
0 b− a− i 0 0
0 0 −i a + i
0 0 −a− i i




0 0 0 0
y3 0 0 0

−x1 − x̃2 − ỹ1 x1 0 y3
−x1 + i(x̃2 − ỹ1) x1 −y3 0



Third Lie bundle.
The third family is more complicated. The first part can be obtained by taking bracket

[X3, Y3]S3 = X3S3Y3 −Y3S3X3, (38)

where X3, Y3 ∈ A0,1,1(4) and S3 ∈ S0,1,1(4) assume following forms

X3 =


0 0 0 0
x3 0 −x1 y2
−x2 x1 0 y3
−y1 −y2 −y3 0

, S3 =


s11 0 0 0
s21 s22 s32 s42
s31 s32 s33 s43
s41 s42 s43 s44

. (39)
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After direct calculation from Equation (14), we get the following Lie–Poisson bracket

{ f , g}S3(x) =
(

∂ f
∂y3

(x)
∂g
∂x2

(x)− ∂ f
∂x2

(x)
∂g
∂y3

(x)
)
(s43x2 − s33y1)

+

(
∂ f
∂x2

(x)
∂g
∂y2

(x)− ∂ f
∂y2

(x)
∂g
∂x2

(x)
)
(s32y1 + s43x3)

+

(
∂ f
∂y3

(x)
∂g
∂y1

(x)− ∂ f
∂y1

(x)
∂g
∂y3

(x)
)
(s44x2 − s43y1)

+

(
∂ f
∂x1

(x)
∂g
∂y1

(x)− ∂ f
∂y1

(x)
∂g
∂x1

(x)
)
(s43x3 + s42x2)

+

(
∂ f
∂x3

(x)
∂g
∂y3

(x)− ∂ f
∂y3

(x)
∂g
∂x3

(x)
)
(s42x2 − s32y1)

+

(
∂ f
∂y2

(x)
∂g
∂x3

(x)− ∂ f
∂x3

(x)
∂g
∂y2

(x)
)
(s22y1 + s42x3) (40)

+

(
∂ f
∂y1

(x)
∂g
∂y2

(x)− ∂ f
∂y2

(x)
∂g
∂y1

(x)
)
(s42y1 + s44x3)

+

(
∂ f
∂x1

(x)
∂g
∂x2

(x)− ∂ f
∂x2

(x)
∂g
∂x1

(x)
)
(s32x2 + s33x3)

+

(
∂ f
∂x3

(x)
∂g
∂x1

(x)− ∂ f
∂x1

(x)
∂g
∂x3

(x)
)
(s22x2 + s32x3)

+

(
∂ f
∂x1

(x)
∂g
∂y3

(x)− ∂ f
∂y3

(x)
∂g
∂x1

(x)
)
(s32y3 − s33y2 − s43x1)

+

(
∂ f
∂y3

(x)
∂g
∂y2

(x)− ∂ f
∂y2

(x)
∂g
∂y3

(x)
)
(s42y3 − s43y2 − s44x1)

+

(
∂ f
∂x1

(x)
∂g
∂y2

(x)− ∂ f
∂y2

(x)
∂g
∂x1

(x)
)
(s22y3 − s32y2 − s42x1),

where x ∈ L+(4) is a upper triangular matrix given by Equation (32).
We recognize in (40) the Lie–Poisson structure related to g4,1 if we take S3, as in

Table 8, and put x1 = y2 = 0. An isomorphism is given by the mapping (x2, y1, x3, y3) 7→
(e1, e2, e3, e4). If we take the isomorphism (−x2, x1, y1, y2) 7→ (e1, e2, e3, e4) and as nonzero
element in matrix S3, we put s42 = −1 and x3 = y3 = 0, then the bracket (40) gives us
the algebra g4,8. We obtain the Lie algebra g4,10 by taking matrix S3 as in Table 8. In this
case an isomorphism is given by (e1, e2, e3, e4) 7→ (2x3, x1 + y1, x2 + y2, y3). We put x1 = y1,
x2 = y2, x3 = 2x̃3. Let us also note that using Lie bundles gives matrix representations of
these Lie algebras as subsets of M6(R). Generators of these subsets are presented in the
third column of Table 8.

Lie algebras ga
4,2, gab

4,5, gab
4,6 were obtained in the construction called the second bundle

(see Table 7). If so, we have also their representation for sub-cases when a = 2, a = 1− b,
a = 2b, respectively, see Table 7.

The three remaining Lie algebras, i.e., g4,7, gb
4,9, ga

4,11, can be obtained using the bi-
Hamiltonian construction on the Lie algebras from Tables 7 and 8. Lie algebra g4,11 can be

obtained from algebras g4,10 and g
1
2

1
2

4,5 . We have g4,11 = g4,10 + 2ag
1
2

1
2

4,5 . In a similar way, we
can get gb

4,9 from g4,8 and g01
4,5: gb

4,9 = g4,8 + (1 + b)g01
4,5. The last Lie algebra g4,7 is given by

taking Lie algebras g4,10, g2
4,2, g00

4,6: g4,7 = g4,10 + g2
4,2 − g00

4,6.
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Table 8. The third Lie bundle (first part).

gi,j π S3 X3

g4,1


0 0 0 0
0 0 0 x2
0 0 0 y1
0 −x2 −y1 0




0 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 −1




0 0 0 0
x3 0 0 0
−x2 0 0 y3
−y1 0 −y3 0



g4,8


0 0 0 0
0 0 −x2 x1
0 x2 0 −y1
0 −x1 y1 0




0 0 0 0
0 0 0 −1
0 0 0 0
0 −1 0 0




0 0 0 0
0 0 −x1 y2
−x2 x1 0 0
−y1 −y2 0 0



g4,10


0 0 0 0
0 0 2x3 −x2 − y2
0 −2x3 0 x1 + y1
0 x2 + y2 −x1 − y1 0




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




0 0 0 0
2x̃3 0 −x1 x2
−x2 x1 0 y3
−x1 −x2 −y3 0


5. Conclusions

We proposed a new approach to the classification of low-dimensional Lie algebras
using concepts well known in the theory of integrable systems, such as the bi-Hamiltonian
structure. In the case of three-Dimensional Lie algebras, we were able to describe them
using two families of linear bundles of Lie algebras. In the case of the four-dimensional Lie
algebras, we described them in terms of three such families. In the future, we plan to use
these tools to study higher dimensional Lie algebras.

The bi-Hamilton property is very useful in the study of integrable systems. Let us
consider the well-known Euler equations for n = 3:

dx1

dt
= (s22 − s33)x2x3,

dx2

dt
= (s33 − s11)x1x3, (41)

dx3

dt
= (s11 − s22)x1x2.

The Euler top describes the rotation of a heavy rigid body around its fixed center of mass
without any forces acting on the body. Equation (41) possess a bi-Hamiltonian structure

dxi
dt

= {H1, xi}1 = {H2, xi}2, i = 1, 2, 3. (42)

The Poisson brackets {·, ·}1 and {·, ·}2 are defined by Equation (21), where we restrict
our considerations to diagonal matrices S1 = 1 and S1 = diag(s11, s22, s33). The Casimirs
for these structures assume the following form (see Equation (27))

C1 =
1
2

(
x2

1 + x2
2 + x2

3

)
, C2 = −1

2

(
s11x2

1 + s22x2
2 + s33x2

3

)
, (43)

respectively. Choosing as the Hamiltonian H1 the Casimir C2 and as Hamiltonian H2 the
Casimir C1, we obtain Equation (42). Of course, the first Poisson bracket is associated with
the Lie algebra so(3). We can look at the second Poisson bracket as a collection of three
brackets corresponding to the Lie algebra g3,1 for matrices:

S1 =

 1 0 0
0 0 0
0 0 0

, S1 =

 0 0 0
0 1 0
0 0 0

, S1 =

 0 0 0
0 0 0
0 0 1

, (44)

respectively (see Table 1).
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Now, we discuss another example of a Lie bundle. We now turn to the Clebsch system
of the motion of a rigid body in an ideal fluid

dx1

dt
= (s22 − s33)x2x3,

dx2

dt
= x1x3 − y1y3,

dx3

dt
= y1y2 − x1x2, (45)

dy1

dt
= x2y3 − x3y2,

dy2

dt
= (s44 − s22)x3y1,

dy3

dt
= (s33 − s44)x2y1.

In vector notation, the system hast the form:

d~x
dt

= ~x×~y, (46)

d~y
dt

= ~x×
(
S̃~x
)
, (47)

where ~x = (x3, x2, y1), ~y = (−y3,−y2,−x1) and S̃ =

 s22 0 0
0 s33 0
0 0 s44

.

Equation (45) possesses a bi-Hamiltonian structure

dxi
dt

= {H1, xi}1 = {H2, xi}2,
dyi
dt

= {H1, yi}1 = {H2, yi}2, i = 1, 2, 3. (48)

The Poisson bracket {·, ·}1 is defined by Equation (40), where we restrict our consid-
erations to diagonal matrix S3 = diag(0, 1, 1, 1). However, the same Poisson bracket is
also obtained from Equation (12), where X3, Y3 ∈ A1,1,1(4). The second Poisson bracket
{·, ·}2 is given by Equation (12), where S = diag(−1, s22, s33, s44). We consider the Poisson
pencil {·, ·}λ = {·, ·}1 − λ{·, ·}2, λ ∈ R. This Poisson bracket can also be obtained from
Equation (12) for matrix Sλ = diag(λ, 1− λs22, 1− λs33, 1− λs44). The Casimir (one of the
functions) for this structure assumes the following form (see Equation (15)):

Cλ
1 =

1
2(1− λs22)

x2
3 +

1
2(1− λs33)

x2
2 +

1
2(1− λs44)

y2
1 (49)

+
λ

2(1− λs33)(1− λs44)
y2

3 +
λ

2(1− λs22)(1− λs44)
y2

2 +
λ

2(1− λs22)(1− λs33)
x2

1.

This Casimir function can be expanded into a power series with respect to λ. By using
power series decomposition, we get Cλ

1 = C1 + λH1 + . . . , where

C1 =
1
2

(
x2

3 + x2
2 + y2

1

)
(50)

is the Casimir for the first bracket and

H1 =
1
2

(
s22x2

3 + s33x2
2 + s44y2

1 + y2
3 + y2

2 + x2
1

)
. (51)

Choosing as the first Hamiltonian the function H1 and as Hamiltonian H2 the Casimir
C1, we obtain Equation (48). The first Poisson bracket is associated with the Lie algebra e(3).
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We can look at the second Poisson bracket as a collection of four brackets corresponding to
the nilpotent Lie algebra g6,3 (we use the classification from [30]) for matrices:

S =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, S =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

, (52)

S =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

, S =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

,

respectively.
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