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Abstract: In this paper, we present a complete proof of the so-called First On-Shell Theorem
that determines dynamical content of the unfolded equations for free symmetric massless fields of
arbitrary integer spin in any dimension and arbitrary integer or half-integer spin in four dimensions.
This is achieved by calculation of the respective σ− cohomology both in the tensor language in
Minkowski space of any dimension and in terms of spinors in AdS4. In the d-dimensional case
Hp(σ−) is computed for any p and interpretation of Hp(σ−) is given both for the original Fronsdal
system and for the associated systems of higher form fields.
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1. Introduction

Higher-spin (HS) gauge theory is based on works of Fronsdal [1] and Fang and
Fronsdal [2], where the action and equations of motion for massless gauge fields of any
spin were originally obtained in flat four-dimensional Minkowski space. Even earlier,
important restrictions on low-energy HS vertices were obtained by Weinberg in [3,4] and
so-called no-go theorems restricting S-matrix possessing too high symmetries in flat space-
time were proven in [5,6]. (For a review see [7].) The no-go theorems implied the existence
of the s = 2 barrier suggesting that the construction of an interacting local HS theory in
Minkowski space-time is impossible. The proof of these theorems essentially uses the
specific form of the algebra of isometries of Minkowski space. The s = 2 barrier in flat
space can be overcome in the space-time with non-zero sectional curvature, for example, in
the anti-de Sitter space [8]. In these spaces it becomes possible to formulate a consistent
nonlinear theory of fields of all spins [9,10].

The construction of a nonlinear HS theory is essentially based on the so-called un-
folded approach [11,12], which is a far-going generalization of the Cartan formulation of
gravity (s = 2) in terms of differential forms to fields of any spin s > 2. Via introducing
appropriate auxiliary variables, the unfolding procedure allows one to replace the system
of partial differential equations of any order on a smooth manifold by a larger system of
first-order equations on vector-valued differential forms. One of the essential features of
this approach, which is very useful for analysing symmetries of a given system, is that the
variables in the equations are valued in one or another representation of the underlying
symmetry algebra.

The dynamical content of the HS theory can be reconstructed from its unfolded
formulation using the σ− cohomology technique [13]. As is recalled below, the dynamical
data of the theory are in one-to-one correspondence with the cohomology of certain linear
nilpotent operator σ− that can be read of the unfolded equations in question. The statement
that unfolded equations of free HS fields are equivalent to the Fronsdal equations was
made in the original papers in the spinor [14] and tensor [15] formalisms. In the tensor
formulation of HS theory the idea of the proof was illustrated in [16], where however
the analysis of the trace part of the Fronsdal equations was not completed, while general
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arguments for mixed-symmetry HS fields were given in [17]. In [18] the unfolded equations
for massless fields were derived from the Fronsdal theory by the BRST methods. To the
best of our knowledge, no detailed analysis of the problem in the spinor formalism was
available in the literature.

In this paper we present a complete proof of the so called First On-Shell Theorem
by computation of the cohomology rings of σ− for the physically important cases of the
integer-spin symmetric fields both in flat space-time of any dimension and AdSd as well
as for the fields of any integer and half-integer spin in AdS4. The computation technique
analogous to the Hodge theory for differential forms is performed in terms of so-called
σ− cohomology and provides a complete analysis of the dynamical content of the free
unfolded equations for symmetric massless fields of any spin. Giving a direct proof of the
equivalence between the Fronsdal formulation of the HS gauge theory and its unfolded
formulation this paper fills in some gaps in the literature also illustrating a general approach
applicable to a broad class of unfolded systems. In addition, in the tensor case we compute
higher σ− cohomology groups and interpret them in terms of higher Bianchi identities
and more general dynamical systems. In particular, we discuss the matching between the
Bianchi identities in terms of one-form gauge fields and zero-form field strengths.

The rest of the paper is organized as follows. In Section 2 we briefly recall different
approaches to the description of HS massless fields. Main idea of the σ− cohomology
approach is explained in Section 3. Cohomology calculation method used in this paper
is discussed in Section 4. Section 5 contains derivation of Hp(σ−) in Minkowski space of
any dimension. In particular, the cases of GL(d) and O(d) representations are analysed
here. In Section 6 calculation of the low-order cohomology groups in AdS4 is performed.
Obtained results are discussed in Section 7. Index conventions and normalisations of the
tensor Young diagrams are presented in the Appendix A.

2. Fronsdal Theory
2.1. Metric Formulation

According to Fronsdal [1], a spin-s massless symmetric field can be described in terms
of two symmetric traceless tensors (for index conventions see Appendix A)

ϕa(s) ≡ ϕa1..as , ϕa(s−2) ≡ ϕa1..as−2 , ηb1b2 ϕb1b2a3..as ≡ ϕa(s−2)b
b = 0, ϕa(s−4)b

b = 0 . (1)

These two fields can be combined into a single rank-s totally symmetric tensor

φa(s) = ϕa(s) + ηaaϕa(s−2) (2)

obeying the double-tracelessness condition

φa(s−4)bc
bc = 0 . (3)

The field equations in Fronsdal theory have the form

Ra(s)(φ) = □φa(s) − s∂a∂k φka(s−1) +
s(s− 1)

2
∂a∂a φa(s−2)k

k = 0 , (4)

where ∂a =
∂

∂xa .
The tensor Ra(s)(φ) is invariant under the gauge transformations with a rank-(s− 1)

traceless gauge parameter ε(x)

δφa(s) = ∂aεa(s−1), εa(s−3)k
k = 0 . (5)

Fronsdal Equation (4) is a generalization of the well-known equations of fields with
spins s = 0, 1, 2. For the case of s = 1 the last term in the Fronsdal tensor disappears and
Equation (4) reproduces Maxwell equations for the field Aa. Without the last two terms
at s = 0 it gives Klein-Gordon equation for a massless scalar field. The case of s = 2



Symmetry 2021, 13, 1498 3 of 40

reproduces the equations of linearized gravity [19]. Gauge transformation (5) gives the
known gauge transformations of low-spin fields and its absence for a scalar field.

2.2. Frame-Like Formulation
2.2.1. Tensor Formalism

The unified description of massless fields of arbitrary spin can be given in the so-
called frame-like formalism that generalizes Cartan formulation of gravity, operating in
terms of differential forms [14,15,20]. Frame-like formulation of the HS gauge theory
in any dimension is given in terms of the one-form fields ωa(s−1),b(t) = dxνω

a(s−1),b(t)
ν

valued in two-row Young diagrams corresponding to irreducible o(d− 1, 1) (i.e., traceless)
modules [15], obeying conditions

ωa(s−1),ab(t−1) = 0, (6)

ωa(s−3)k
k

,b(t) = 0 . (7)

(For index conventions see Appendix A).
By introducing auxiliary fields it is possible to put a system of partial differential

equations into the first-order unfolded form [11,12]. Generally, unfolded equations read as

dWA =
∞

∑
n=1

GA
B1,..,Bn

WB1 ∧ ...∧WBn , d := dxν∂ν . (8)

Here WA is a set of differential forms over some manifold. (Indices are treated
formally and can take an infinite number of values.) The coefficients GA

B1,..,Bn
satisfy the

(anti)symmetry condition

GA
B1,..,Bi ,..,Bj ,..,Bn

= (−1)|Bi ||Bj |GA
B1,..,Bj ,..,Bi ,..,Bn

, (9)

where |Bi| denotes the form-degree of WBi . Also GA
B1,..,Bn

are restricted by the integrability
conditions expressing that d2 = 0.

In the tensor language the unfolded HS equations in Minkowski space proposed
in [15] read as

DLωa(s−1),b(t) + hm ∧ωa(s−1),b(t)m = 0, t ∈ {0, .., s− 2}, (10)

DLωa(s−1),b(s−1) = hn ∧ hm ∧ Ca(s−1)n,b(s−1)m, (11)

where hn is a soldering form (vielbein, frame field, tetrad) and DL = d + ϖ is the back-
ground Lorentz covariant derivative that satisfies relations

DLha = 0, D2
L = 0 . (12)

In the Cartesian coordinate system with ϖ = 0 the equations simplify to

dωa(s−1),b(t) + hm ∧ωa(s−1),b(t)m = 0, t ∈ {0, .., s− 2}, (13)

dωa(s−1),b(s−1) = hn ∧ hm ∧ Ca(s−1)n,b(s−1)m , (14)

where C satisfies the Lorentz irreducibility conditions

Ca(n),ab(m−1) = 0 , Ca(n−2)k
k

,b(m) = 0 . (15)

The traceless tensor C on the r.h.s. of (14) is a generalized Weyl tensor. There are also
unfolded equations on C and on additional auxiliary fields [10] (for reviews see [16,21]).
This system constitutes an infinite chain of zero-form equations. Zero-form sector, that
contains equations on spin-zero and spin-one fields, will not be considered in this paper.



Symmetry 2021, 13, 1498 4 of 40

Equations (13) are invariant under the gauge transformations

δωa(s−1),b(t) = dεa(s−1),b(t) + hmεa(s−1),b(t)m, t ∈ {0, .., s− 2} (16)

and Equation (14) is invariant under

δωa(s−1),b(s−1) = dεa(s−1),b(s−1), (17)

δCa(s),b(s) = 0, (18)

where ε are zero-forms valued in the appropriate two-row irreducible o(d− 1, 1)-modules
obeying conditions analogous to (15).

The Fronsdal field is embedded into the frame-like one-form ea(s−1) ≡ ωa(s−1) in the
following manner. Converting the form index into the fiber one using vielbein h,

ea(s−1)|b = ea(s−1)
µ hµb , (19)

the resulting tensor (19) can be decomposed into irreducible o(d− 1, 1)-modules. In terms
of traceless Young diagrams this decomposition is

⊗so
s− 1 ∼= s ⊕ s− 2 ⊕ s− 1 . (20)

The first two components give the Fronsdal field, while the third one is an excess of
the components of the frame-like field in comparison with the Fronsdal field. At the tensor
level, this decomposition is represented as:

ea(s−1)|b = ψ
a(s−1)b
1 + β1ηaaψ

a(s−3)b
2 + β2ηabψ

a(s−2)
2 + ψ

a(s−1),b
3 , (21)

where ψi are traceless and correspond to the i-th diagram. The relative coefficient β2
β1

is
fixed by the tracelessness condition with respect to indices a.

This decomposition shows that the Fronsdal field identifies with the symmetric part
of the frame-like field, since the contribution of the third diagram disappears upon sym-
metrization. The resulting field

φa(s) := ea(s−1)|a (22)

is symmetric and double-traceless. The extra term ψ
a(s−1),b
3 is pure gauge. Its contribution

can be canceled by the gauge transformation δea(s−1)|b = εa(s−1)|b with suitable gauge
parameter. For detailed discussion of Fronsdal field embedding see [16,20,21].

It is not difficult to check [15,20] (for reviews see [16,21]) that the Fronsdal equations
and gauge transformations follow from the unfolded system (13), (14). A more complicated
question is whether the Fronsdal fields and equations are the only ones that result from
(13), (14). The answer can be obtained via the σ− cohomology technique [13].

2.2.2. Spinor Language in AdS4

The physically important case of the unfolded system for HS connection (13), (14) is
that of AdS4 space-time in which case the language of two-component spinors is most
appropriate. In this language instead of using Lorentz indices a, b, ... = 0, 1, 2, 3, one uses
two pairs of dotted and undotted spinor indices α, β, ... and α̇, β̇, ... taking values {1, 2}. The
two languages are related via Pauli matrices. The AdS4 background geometry is described
in terms of the Lorentz connection ϖ and frame field h, that satisfy equations

dhαβ̇ + ϖα
γ ∧ hγβ̇ + ϖβ̇

γ̇ ∧ hαγ̇ = 0 ,
dϖαβ + ϖα

γ ∧ϖγβ = −λ2hα
γ̇ ∧ hβγ̇ ,

dϖα̇β̇ + ϖα̇
γ̇ ∧ϖγ̇β̇ = −λ2hγ

α̇ ∧ hγβ̇ ,
(23)
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where λ2 is proportional to the curvature of AdS4 and we adopt the following rules

Aα = Aβϵβα , Aα = ϵαβ Aβ , ϵαβϵγβ = ϵα
γ = δ

γ
α = −ϵγ

α , (24)

where
ϵαβ = −ϵβα , ϵ12 = 1 . (25)

The spinor version of the unfolded system for one-form ω reads as follows. First, the
HS curvatures in the spinor language are [14]

Rα(n),α̇(m) = DLωα(n),α̇(m) + λ2(nhα
γ̇ ∧ωα(n−1),γ̇α̇(m) + mh α̇

γ ∧ωγα(n),α̇(m−1)) (26)

and DL = d + ϖ + ϖ is a Lorentz-covariant derivative with Cartan’s spin-connection
(ϖ⊕ϖ)

DLωα(n),α̇(m) = dωα(n),α̇(m) + nϖ
β

α ∧ωβα(n−1),α̇(m) + mϖ
β̇

α̇ ∧ωα(n),β̇α̇(m−1) .

The AdS4 deformation of the unfolded Equations (13) and (14) then takes the form [12]

Rα(n),α̇(m) = δ0,n hβα̇ ∧ hβ
α̇Cα̇(m+2)

+ δ0,m hαβ̇ ∧ h β̇
α Cα(n+2). (27)

The main advantage of the two-component spinor notation is that it makes the rep-
resentation theory of the Lorentz group very simple. Namely, every Lorentz irreducible
multispinor representing a traceless tensor is totally symmetric in its spinor indices. Since
the only Lorentz invariant objects are antisymmetric bispinors ϵαβ and ϵα̇β̇ irreducible

multispinors Xα(n),α̇(m) are necessarily symmetric with respect to the indices in the groups
α(n) and α̇(m) separately. Thus, working with the two-component spinor notation one can
happily forget about painful calculations with the traces of Lorentz-tensors.

3. The Idea of σ− Cohomology Analysis: Example of Integer Spin Massless Fields

The l.h.s. ’s of unfolded HS equations and gauge transformations in d-dimensional
Minkowski space are [15,16]

Ra(s−1),b(k) = DLωa(s−1),b(k) + σ−(ω)a(s−1),b(k), (28)

δωa(s−1),b(k) = DLεa(s−1),b(k) + σ−(ε)
a(s−1),b(k), (29)

where

(σ−ω)a(s−1),b(k) := hc ∧ωa(s−1),b(k)c , (σ−ε)a(s−1),b(k) := hc ∧ εa(s−1),b(k)c. (30)

Ra(s−1),b(k) is referred to as (linearized) HS curvature. For simplicity we study the Minkowski
case. Since σ− in AdSd is defined analogously, our analysis applies to that case as well.

Due to their definition, HS curvatures obey the Bianchi identities

DLRa(s−1),b(k) + σ−(R)a(s−1),b(k) = 0 . (31)

The appearance of σ− allows one to clarify the role of the fields ωa(s−1),b(k) and
gauge parameters εa(s−1),b(k). Working with the zero-forms εa(s−1),b(k) and one-forms
ωa(s−1),b(k) valued in two-row Young diagrams, we consider the space Vp of p-forms
valued in two-row Young diagrams with any p. Defining σ− to annihilate the forms with
an empty second row, we find that σ−Vp ⊂ Vp+1 and σ− σ− = 0. As originally proposed
in [13], the σ− cohomology H(σ−) = ker(σ−)/im (σ−) classifies fields, their equations and
gauge symmetries.

Indeed, those components of the fields ωa(s−1),b(t), that are not annihilated by σ−, can
be expressed via derivatives of the fields with lower t by setting suitable components of
the HS curvatures to zero. Such fields are called auxiliary. Conversely, those components
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of the fields ωa(s−1),b(t), that cannot be expressed in terms of derivatives of lower fields
via zero-curvature conditions, are in ker(σ−). By Stueckelberg fields we mean σ−-exact
fields (i.e., fields of the form σ−χ) as they can be eliminated by an appropriate σ−-exact
term in the gauge transformation (29). Fields that are not expressed via derivatives of other
fields and are not Stueckelberg are called dynamical. These describe the physical degrees
of freedom of the theory. Thus, the dynamical HS fields are associated with H1(σ−).

The classification for the gauge parameters is analogous. The parameters, that are
not annihilated by σ−, describe algebraic Stueckelberg shifts. The leftover symmetries are
described by the parameters in ker(σ−). σ−-exact parameters correspond to the so called
gauge for gauge transformations. Parameters, which are σ−-closed and not σ−-exact, are
referred to as genuine differential gauge parameters. Note that since in the HS example
in question the gauge parameters are zero-forms there is no room for gauge for gauge
symmetries in that case.

Let V be a graded vector space, C be an element of Λp(Md)⊗V over some smooth
d-dimensional manifoldMd. We demand the grading of V to be bounded from below,
that is V is N-graded. Let σ± be operators that act ”vertically”, i.e., do not affect the
space-time coordinates, and shift grading by ±1, DL be the Grassmann-odd operator
that does not affect the grading and is allowed to act non-trivially on the space-time
coordinates. Consider the covariant constancy condition of a general form along with the
zero-curvature condition

DC = (DL + σ− + σ+)C = 0, D2 = 0. (32)

Notice that Equation (32) remains invariant under the gauge transformations

δC = Dε, (33)

where ε ∈ Λp−1(Md)⊗V.
One can prove the following proposition [13] (see also [16,22–24]):

Theorem 1. The following is true:

(1) Differential gauge symmetry parameters ε span Hp−1(σ−)
(2) Nontrivial dynamical fields C span Hp(σ−)
(3) Physically distinguishable differential field equations on the nontrivial dynamical fields,

contained in DC = 0, span Hp+1(σ−)

Thus, taking into account that HS gauge fields are described by the one-forms ω, to
prove that the Fronsdal metric formulation is equivalent to the unfolded one, we have to
calculate H0(σ−), H1(σ−) and H2(σ−). More generally, higher cohomology Hk(σ−) with
k > p + 1 describes Bianchi identities for dynamical equations at k = p + 2 and Bianchi for
Bianchi identites at k > p + 2 [24]. Similarly, the lower cohomology Hk(σ−) with k < p− 1
describes gauge for gauge differential symmetries.

4. A Method for Calculating Cohomology

Calculation of σ− cohomology is of utter importance for the analysis of unfolded
systems of the general form (32). The straightforward calculation of the cohomology can
be quite involved. In this paper we find cohomology using a standard homotopy approach
recalled below, that is a generalization of the Hodge theory for de Rham cohomology
extendable to a more general class of (co)chain complexes. Main details of the construction
used in this paper follow those of [24], where the σ− cohomology analysis was applied to
the conformal HS theories of the bosonic fields of any symmetry type. Unfortunately, some
of the methods of [24], based on the fact that σ− in conformal theories has the clear meaning
in terms of the conformal algebra, are not directly applicable to the non-conformal HS
theories discussed in this paper, which makes the analysis of the latter a bit more involved.
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Let V be a graded vector space and d be a linear operator of degree +1 on V (that
is, it raises the grading of a homogeneous element by 1) such that d2 = 0. Then H(d) =
ker(d)/im (d). Let ∂ be another operator of degree −1 on V (i.e., it lowers the grading by
1) such that ∂2 = 0. The operators d and ∂ can be used to compose the degree 0 operator ∆

∆ := {d, ∂} = d ∂ + ∂ d. (34)

It is easy to see that ∆ satisfies

[d, ∆] = [∂, ∆] = 0 . (35)

Lemma 1. If ∆ is diagonalizable on the (graded) vector space V, then H(d) ↪→ ker(∆).

Proof. First of all we should show that ker(d) is an invariant subspace of ∆. Suppose
f ∈ ker(d). Then

∆ f = (d∂ + ∂d) f = d∂ f ⇒ ∆ f ∈ ker(d) , ∀ f ∈ ker(d) . (36)

Therefore, ker(d) is an invariant subspace of ∆, because linearity is obvious.
Since the operator ∆ is diagonalizable by assumption, we can consider eigenvectors of

∆. Let g be d-closed and ∆g = λg, λ ̸= 0. Then

g =
1
λ

∆g =
1
λ

d ∂g . (37)

Hence, g is also d-exact for λ ̸= 0, representing a trivial element of H(d). Thus, every
d-closed form annihilated by ∆ is not d-exact. In other words, every d-closed form f can be
written as f = h + dα with some h ∈ ker(∆).

If V is a Hilbert space with inner product ⟨ , ⟩, there exists such ∂ that the converse
inclusion H(d)←↩ ker(∆) takes place as well, which means that H(d) = ker(∆).

Lemma 2. Let (V, ⟨ , ⟩) be a Hilbert space, let d∗ be the operator conjugated to d in the usual sense
⟨α, dβ⟩ = ⟨d∗α, β⟩ and ∆ = {d , d∗}. Then ker(∆) ↪→ H(d).

Proof. Take any f ∈ ker(∆). Then

0 = ⟨ f , ∆ f ⟩ = ⟨d f , d f ⟩+ ⟨d∗ f , d∗ f ⟩ ⇔ d f = 0 and d∗ f = 0 . (38)

Hence, f ∈ ker(d). To show that f /∈ im (d) suppose the opposite. Let f = dg. Then
due to (38)

d∗dg = 0⇒ 0 = ⟨g, d∗dg⟩ = ⟨dg, dg⟩ ⇒ dg = 0 . (39)

Thus, ker(∆) ↪→ H(d)

From Lemmas 1 and 2, it follows that, if all the requirements are met,

H(d) = ker(∆) . (40)

Thus, in a Hilbert space with a diagonalizable Laplace operator ∆ := {d , d∗}, finding
the cohomology is equivalent to finding ker(∆). Further calculations of σ− cohomology
will rely on this fact.

The following important comment [24] is now in order. In the case of interest, for
every unfolded subsystem associated with a fixed spin

V = ⊕nVn

with finite-dimensional grade-n subspaces Vn. In that case ∆ leaves invariant every Vn and,
being self-adjoint in the finite-dimensional Hilbert space, is diagonalizable.
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It is worth noting the similarity of the above analysis with the Hodge theory mentioned
at the beginning of this section. Indeed, consider the (finite-dimensional) vector space V
endowed with some nilpotent operators d and ∂, d2 = ∂2 = 0. The condition of disjointness
is also imposed (see [25] for details), that is, im(d) ∩ ker(∂) = im(∂) ∩ ker(d) = {0}. In
other words, it is demanded that

d∂x = 0 implies ∂x = 0 , (41a)

∂dx = 0 implies dx = 0. (41b)

Define the Laplacian ∆ by (34). Under these assumptions it can be shown that

1. ker(∆) = ker(d)∩ ker(∂). The harmonic cocycles annihilated by ∆ are those and only
those, that are d-closed and ∂-closed simultaneously;

2. V = im(d)⊕ im(∂)⊕ ker(∆). In other words, for any vector x ∈ V there exists a
unique Hodge decomposition x = dα + ∂β + h, where α and β are some vectors in V,
and h is harmonic ∆h = 0.

Since by (41a) ∂β ̸= 0 implies d∂β ̸= 0, the kernel of d consists of vectors of the type
dα + h, where h is harmonic,

ker(d) =
{

x ∈ V
∣∣∣ x = dα + h, ∆h = 0

}
. (42)

This implies that the harmonic cocycles and cohomology classes of d are isomorphic
as vector spaces, that is (40) is true.

In the subsequent sections the operators σ− and σ+ := (σ−)∗ will play the roles of
d and ∂. Moreover, in the following calculations one can spot which Young diagram or
multispinor belongs to im(σ−), im(σ+) or ker(∆) due to the equivariance of the constructed
Laplace operators ∆ with respect to the action of GL(d) or O(d) or SL(2;C), depending on
the problem in question.

5. σ− Cohomology in Minkowski Space of Any Dimension
5.1. Generating Functions

The problem of finding the σ− cohomology in tensor spaces of one or another type
can be conveniently reformulated in terms of differential operators. To this end two-row
Young diagrams in the symmetric basis can be described as a subset of polynomial ring
R[Y, Z] generated by the set of 2d commuting variables Ya, Zb (see [16] for detail). Consider
the ring Λp(Md)⊗R[Y, Z]. Its homogeneous elements are differential p-forms valued in
R[Y, Z]

ωn,m(x, dx, Y, Z) = ωa(n),b(m)(x, dx)Ya(n)Zb(m) . (43)

Consider the generating function

ω(x, dx |Y, Z) = ∑
n,m≥0

ωn,m(x, dx |Y, Z) = ∑
n,m≥0

ωa(n),b(m)(x, dx)Ya(n)Zb(m) . (44)

Its expansion in powers of Y and Z yields the tensor-valued forms ωa(n),b(m) as the
Taylor coefficients. In this language the Young irreducibility condition reads as

Ya ∂ω

∂Za = 0 ⇐⇒ ωa(n),ab(m−1) = 0 . (45)

The tracelessness condition takes the form

ηab∂Ya∂Ybω = 0⇐⇒ ωk
ka(n−2),b(m) = 0 . (46)

Note that all other traces are also zero as a consequence of (45) and (46),

ηab∂Ya∂Zbω = 0⇐⇒ ωk
a(n−1),b(m−1)k = 0 , (47)
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ηab∂Za∂Zbω = 0⇐⇒ ωa(n),b(m−2)k
k = 0 . (48)

The generators of u(d) and so(d) (Following [24], in this section we do not distinguish
between different real forms of the same complex algebra freely going to their compact
real (Euclidean) form since, not affecting the final results, this choice simplifies the analysis
by allowing a positive-definite invariant scalar product on the space of tensors. Results of
the Euclidean case coincide with those of the Lorentz one due to the equivalence of their
representation theory on finite-dimensional modules. Indeed, suppose that some Lorentz-
irreducible tensor TL represented σ− cohomology in the Lorentz case. Then analogous
o(d)-irreducible tensor TE represents σ− cohomology in the compact case and vice versa.
The only potential difference could be related to (anti)self-dual tensors that may exist in
one signature but not in the other. However, these do not play a role in our analysis where
(anti)self-dual tensors always appear in pairs or do not appear at all in sufficiently high
dimensions d > 4.) are now realized by the first-order differential operators(

tgl(d)
)a

b
= Ya∂Yb + Za∂Zb + θa∂θb ,

(
tso(d)

)
ab

=
1
2

(
ηactglc

b − ηbctglc
a

)
, (49)

where θc is a Grassmann-odd element of the exterior algebra associated with the frame
one-form ea.

In these terms σ− acts as

σ−ω = θa ∂ω

∂Za = mθcωa(n),cb(m−1)(x, θ)Ya(n)Zb(m−1) . (50)

It differs from the definition of Section 3 by an additional numerical factor introduced
for future convenience. In the sequel we sometimes do not write variables Y, Z, θ explicitly,
that are always assumed to be present implicitly. We adopt the convention that index a is
contracted with Y, b with Z and ci with θci with θs ordered as c1, ..., cp.

The space Λ(Md)⊗R[Y, Z] can be equipped with the scalar product

⟨ f , g⟩ = 1
π2n

∫
Cd×Cd

d2dZ d2dY ddθ ddθ f (Z, Y, θ) g(Z, Y, θ) e−|Z|
2−|Y|2−θθ , (51)

where f , g ∈ Λ(Md)⊗R[Y, Z] with complex Y, Z, θ and Berezin integral over anticommut-
ing variables. (We work with the polynomials of complex variables with real coefficients).
The space Λ(Md) ⊗ R[Y, Z] with the scalar product (51) is a Hilbert space in the Eu-
clidean metric signature case used in this section. This scalar product yields the following
conjugation rules:

(Za)∗ = ∂Za , (Ya)∗ = ∂Ya , (θa)∗ = ∂θ a . (52)

5.2. GL(d) Example

To illustrate the idea of our construction let us first consider a simpler case where
fields and gauge parameters take values in the irreps of gl(d) described by two-row Young
diagrams (no tracelessness conditions are imposed). Define the following operators, that
form gl(2)

t1 = Ya ∂

∂Za , t2 = Za ∂

∂Ya , t0 = Ya ∂

∂Ya − Za ∂

∂Za , (53)

[t1, t2] = t0, [t0, t1] = 2t1, [t0, t2] = −2t2, (54)

h1 = Ya ∂

∂Ya , h2 = Za ∂

∂Za . (55)

Namely, ti form sl(2) while h1 + h2 is central.
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In terms of these operators the space of p-forms valued in two-row Young diagrams is
identified as ker(t1)

Vp = {F ∈ Λp(Md)⊗R[Y, Z]|t1F = 0} . (56)

Here Λp(Md) is generated by the Grassmann variables θa.
Let us introduce auxiliary operators

Zθ = Za ∂

∂θa , Yθ = Ya ∂

∂θa , D = θa ∂

∂θa , θY = θa ∂

∂Ya , θZ = θa ∂

∂Za . (57)

Among the auxiliary operators D plays the most important role as it gives differential
form degree. Now we should construct σ+ : σ2

+ = 0 on Vp and Im(σ+) ⊂ Vp. Consider
the following operator:

σ+ = f (t0)Zθ + g(t0)Yθt2 , (58)

where f (t0) = ∑∞
n=0 fntn

0 and g(t0) = ∑∞
n=0 gntn

0 . Functions f and g have to be found from
the conditions

σ2
+F = 0 , t1σ+F = 0 , ∀F ∈ Vp . (59)

After some re-ordering of operators this yields two equations

0 = Yθ

(
f (t0 − 1)F + g(t0 − 1)t0F

)
, (60)

0 = ZθYθ

(
f (t0)g(t0 + 1)t2F− g(t0) f (t0 + 1)t2F− g(t0)g(t0 + 1)t2F

)
(61)

verified by
f (t0) = −(t0 + 1)g(t0) (62)

giving
σ+ = −(t0 + 1)g(t0)Zθ + g(t0)Yθt2 . (63)

The free coefficient g(t0) is determined from the conjugacy requirement:

( f , σ+g) = −(θZ

(
g(t0)(t0 + 1) + g(t0)

)
f , g) = (σ− f , g) (64)

giving

g(t0) = −
1

t0 + 2
(65)

and hence
σ+ := (σ−)

∗ =
t0 + 1
t0 + 2

Zθ −
1

t0 + 2
Yθt2 . (66)

One can notice, that σ+ in (66) differs from what one would expect from the conjuga-
tion rules (52). The reason is that in (52) we work with C := Λp(Md)⊗R[Y, Z] complex. In
the GL(d)-case we deal with

(
Λp(Md)⊗R[Y, Z]

)
∩ ker(t1) complex, therefore one should

project on the highest weight vectors of the underlying sl(2) in the complex C. The same
procedure applies to the O(d)-case. Though general formulae for extremal projectors are
known for any simple Lie algebra (We are grateful to the referee for bringing this fact to
our attention.) [26–29] (for reviews see [30,31]), to keep the paper self-contained we derive
the relevant projectors straightforwardly.

Knowing σ+, it remains to construct the Laplace operator ∆ = {σ−, σ+} and find its
zeros. Elementary computation gives

∆ =
t0

t0 + 1
(D + h2 − 1) +

1
t0 + 1

YθθY −
1

(t0 + 1)(t0 + 2)
t2θZYθ . (67)
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Being built from the manifestly gl(d)-invariant operators, ∆ commutes with gl(d)
hence being diagonal on its irreducible submodules. Thus, it suffices to analyze zeros of ∆
on gl(d) irreducible components of the forms.

5.2.1. H0(σ−)

Any element of V0 has the form F = Fa(n),b(m)Ya(n)Zb(m). It is easy to see that

∆F = h2F . (68)

Therefore
H0(σ−) = {F = Fa(n)Y

a(n)|∀Fa(n) ∈ R} . (69)

5.2.2. Hp(σ−), p > 0

For p > 0, a general element of Vp is F = Fa(n),b(m)|c1,..,cpYa(n)Zb(m)θc1 ..θcp . Generally
it forms a reducible gl(d)-module associated with the tensor product of two diagrams. In
terms of Young diagrams it decomposes into the following irreducible components:

p ⊗gl m
n ∼= m

p
−

1

n + 1 ⊕ m + 1

p
−

1

n ⊕ m

p

n ⊕ m + 1

p
−

2

n + 1 . (70)

At p = 1 the last diagram is absent. The manifest decomposition of Fa(n),b(m)|c1,c2,..,cp
into irreducible components is

Fa(n),b(m)|c1,c2,..,cp = F1a(n)c1,b(m),c2,..,cp +
m

n−m + 2
F1a(n)b,b(m−1)c1,c2,..,cp + F2a(n),b(m)c1,c2,..,cp

+ F3a(n),b(m),c1,..,cp + F4a(n)c1,b(m)c2,c3,..,cp , (71)

where Fi corresponds to the i-th diagram. There are no restrictions on n, m, p in (71) except
for n ≥ m. If for some n, m tensor expression has a wrong Young shape, it is zero. To
simplify calculations we derive restrictions on n, m, p for each diagram from the condition
of being σ−-closed. For the second and fourth diagrams we find no restrictions, but for
others we have

σ−

(
1st diagram

)
= −m

(
1− 1

n−m + 2

)
F1a(n)c0,b(m−1)c1,c2,..,cp ⇒ m = 0, (72)

σ−F3a(n),b(m),c1,..,cp = mF3a(n),b(m−1)c0,c1,..,cp ⇒ m = 0 . (73)

Using this we obtain the action of ∆ on the rest diagrams:

∆F1a(n)c1,c2,..,cp =
1

n + 1
∆θY F1(Y, Z, θ) =

n(p− 1)
(n + 1)2 θY F1(Y, Z, θ), (74)

∆F2a(n),b(m)c1,c2,..,cp =
1

m + 1
∆θZF2(Y, Z, θ) =

m + p
m + 1

θZF2(Y, Z, θ), (75)

∆F4a(n)c1,b(m)c2,c3,..,cp =
1

(m + 1)(n + 1)
∆θYθZF4(Y, Z, θ)

=
(n−m)(p + m− 1)

(n−m + 1)(m + 1)(n + 1)
θYθZF4(Y, Z, θ) . (76)

As a result,
H1(σ−) = {ϕ = Fa(n)cθcYa(n)|h2F = 0, F ∈ V1} , (77)
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Hp(σ−) = {W = θYθZC(Y, Z, θ)|t0C = 0, C ∈ Vp−2 , p > 1}, (78)

C = Ca(n),b(n),c1,..,cp−2
Ya(n)Zb(n)θc1 ..θcp−2 ∈ Vp−2 .

The dynamical interpretation of the obtained results is as follows. The system has one
symmetric gauge field with gauge transformation described by a symmetric parameter.
The second cohomology group H2(σ−) is spanned by a single tensor corresponding to the
generalized (traceful) Weyl tensor. If the latter is set to zero, the system becomes topological
with the zero-curvature field equations. Otherwise the unfolded equations encode a set
of constraints expressing all fields and Weyl tensor via derivatives of the physical fields.
Proceeding further with the equations on the Weyl tensor and its descendants results in
an infinite set of constraints with no differential equations on the physical field. Such
off-shell unfolded equations were considered in [32]. The off-shell systems are for interest
in many contexts such as, e.g., construction of actions and quantization [33,34]. The lower
cohomology groups (69), (77) and (78) match with those obtained, e.g., in [16].

5.3. O(d) Case
5.3.1. Irreducibility Conditions

The O(d) case is in many respects analogous to that of GL(d). The difference is due
to the tracelessness condition (46). The algebra of the operators encoding irreducibility
conditions is extended since the metric allows the new types of contractions between θ, Y, Z
and their derivatives. From the representation theory perspective new terms associated
with traces appear in the diagram decomposition of the form coefficients, affecting the
cohomology analysis.

The following operators form the algebra sp(4):

t1 = Ya ∂

∂Za , t2 = Za ∂

∂Ya , h1 = Ya ∂

∂Ya , h2 = Za ∂

∂Za , (79)

t0 = Ya ∂

∂Ya − Za ∂

∂Za , (80)

f1 = ∂a
Y∂Ya, f2 = ∂a

Z∂Za, f3 = ∂a
Y∂Za, (81)

e1 = YaYa, e2 = ZaZa, e3 = YaZa . (82)

Evidently, these operators commute with the so(d) generators (49). sp(4) and so(d)
form a Howe-dual pair [35]. Young condition (45) and tracelessness condition (46) impose
highest weight conditions on a sp(4)-module.

In addition, we introduce the following O(d) invariant operators:

Zθ = Za∂θa, Yθ = Ya∂θa, (83)

∂θZ = ∂θa∂a
Z, ∂θY = ∂θa∂a

Y, (84)

θZ = θa∂Za, θY = θa∂Ya , (85)

which, along with D (57) counting differential form degree, extend sp(4) to osp(2|4).
The simplest way to see this is to let index a take a single value, treating the operators
Z, Y, ∂Z, ∂Y, θ, ∂θ as creation and annihilation operators, and apply the oscillator realization
of osp(2|4).

In the problem in question, the form space is

Vp = {F ∈ Λp(Md)⊗R[Y, Z]|t1F = 0, f1F = 0} . (86)

Note that these restrictions imply the tracelessness over indices (Y, Z) and (Z, Z) as a
consequence of the form of commutators of t1 with f1,2.

5.3.2. σ+

Let us look for σ+ = σ∗− in the form
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σ+ = g1(h1, h2)Zθ + g2(h1, h2)t2Yθ + g3(h1, h2)e3∂θY + g4(h1, h2)e1t2∂θY + g5(h1, h2)e2∂θZ

+ g6(h1, h2)e3t2∂θZ + g7(h1, h2)e1t2
2∂θZ . (87)

The condition Im(σ+) ⊂ Vp gives

0 = f1σ+F =

(
2g2(h1 + 2, h2) + 2g3(h1 + 2, h2) + 2g4(h1 + 2, h2)(d + 2h1)

)
t2∂θY F

+

(
2g6(h1 + 2, h2) + 2g7(h1 + 2, h2)(d + 2h1)

)
t2
2∂θZF, (88)

0 = t1σ+F =

(
g1(h1 − 1, h2 + 1) + g2(h1 − 1, h2 + 1)t0

)
Yθ F +

(
− g3(−1, 1) + 2g5(−1, 1)

+ g6(−1, 1)t0

)
e3∂θZ +

(
g3(−1, 1) + g4(−1, 1)(t0 − 2)

)
e1∂θY +

(
− g4(−1, 1) + g6(−1, 1)

+ 2g7(−1, 1)(t0 − 1)
)

e1t2∂θZ . (89)

This imposes the following six equations on seven coefficients

g1(h1, h2) + g2(h1, h2)(t0 + 2) = 0, (90)

−g3(h1, h2) + 2g5(h1, h2) + g6(h1, h2)(t0 + 2) = 0, (91)

g3(h1, h2) + g4(h1, h2)t0 = 0, (92)

−g4(h1, h2) + g6(h1, h2) + 2g7(h1, h2)(t0 + 1) = 0, (93)

g2(h1, h2) + g3(h1, h2) + g4(h1, h2)(d + 2h1 − 4) = 0, (94)

g6(h1, h2) + g7(h1, h2)(d + 2h1 − 4) = 0 . (95)

Choosing g7(h1, h2) as a free parameter, we obtain

g1(h1, h2) = −(t0 + 2)(d− 4 + h1 + h2)(d− 6 + 2h2)g7(h1, h2), (96)

g2(h1, h2) = (d− 4 + h1 + h2)(d− 6 + 2h2)g7(h1, h2), (97)

g3(h1, h2) = t0(d− 6 + 2h2)g7(h1, h2), (98)

g4(h1, h2) = −(d− 6 + 2h2)g7(h1, h2), (99)

g5(h1, h2) = (t0 + 1)(d− 4 + h1 + h2)g7(h1, h2), (100)

g6(h1, h2) = −(d− 4 + 2h1)g7(h1, h2) . (101)

Now using the conjugation rules (52) and highest weight conditions (86) we get

(F1, σ+F2) =
(
− g7(h1, h2)(t0 + 2)(d− 4 + h1 + h2)(d− 6 + 2h2)

)
(σ−F1, F2) . (102)

The condition σ+ = σ∗− demands

g7(h1, h2) = −
1

(t0 + 2)(d− 4 + h1 + h2)(d− 6 + 2h2)
(103)
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giving

σ+ = Zθ −
1

t0 + 2
t2Yθ −

t0

(t0 + 2)(d− 4 + h1 + h2)
e3∂θY +

1
(t0 + 2)(d− 4 + h1 + h2)

e1t2∂θY

− t0 + 1
(t0 + 2)(d− 6 + 2h2)

e2∂θZ +
d− 4 + 2h1

(t0 + 2)(d− 4 + h1 + h2)(d− 6 + 2h2)
e3t2∂θZ

− 1
(t0 + 2)(d− 4 + h1 + h2)(d− 6 + 2h2)

e1t2
2∂θZ . (104)

This yields operator σ+ such that σ2
+ = 0 on V, Im(σ+) ⊂ V and σ∗− = σ+.

To calculate the Laplace operator ∆ = σ−σ+ + σ+σ− on Vp we obtain straightfor-
wardly that

σ−σ+ = θZZθ −
1

t0 + 1
t2θZYθ −

1
t0 + 1

θYYθ −
t0 − 1

(t0 + 1)(d− 3 + h1 + h2)

(
e3θZ∂θY + θaYa∂θY

)
+

1
(t0 + 1)(d− 3 + h1 + h2)

(
e1t2θZ∂θY + e1θY∂θY

)
− t0

(t0 + 1)(d− 4 + 2h2)

(
e2θZ∂θZ + 2θaZa∂θZ

)
+

d− 4 + 2h1

(t0 + 1)(d− 3 + h1 + h2)(d− 4 + 2h2)

(
e3t2θZ∂θZ + e3θY∂θZ + t2θaYa∂θZ − θaZa∂θZ

)
− 1

(t0 + 1)(d− 3 + h1 + h2)(d− 4 + 2h2)

(
e1t2

2θZ∂θZ + 2e1t2θY∂θZ

)
. (105)

σ+σ− = ZθθZ +
1

t0 + 2
t2θZYθ +

t0

(t0 + 2)(d− 4 + h1 + h2)
e3θZ∂θY −

1
(t0 + 2)(d− 4 + h1 + h2)

× e1t2θZ∂θY +
t0 + 1

(t0 + 2)(d− 6 + 2h2)
e2θZ∂θZ −

d− 4 + 2h1

(t0 + 2)(d− 4 + h1 + h2)(d− 6 + 2h2)
e3t2θZ∂θZ

+
1

(t0 + 2)(d− 4 + h1 + h2)(d− 6 + 2h2)
e1t2

2θZ∂θZ . (106)

Since, by construction, both σ−σ+ and σ+σ− and hence ∆ are O(d) invariant, ∆ is
diagonal on irreducible O(d)-modules and, to compute H(σ−), it suffices to find its zeros
on the irreducible components.

5.3.3. H0(σ−)

In the sector of zero-forms, all terms that contain ∂
∂θc trivialize. Hence,

∆F = h2F = mF (107)

and
H0(σ−) = {F = Fa(n)Y

a(n)|∀Fa(n) ∈ R} . (108)

Comparing the resulting differential gauge parameters with (5), we find that, as
anticipated, differential gauge symmetries in the unfolded formulation coincide with those
of the Fronsdal theory.

5.3.4. Hp(σ−), p > 0

The main difference between o(d)- and gl(d)- cases is due to the traceful terms in the
decomposition of the p-forms into the irreducible parts depicted as
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p ⊗so m
n ∼= m

p

n ⊕ m + 1

p
−

1

n ⊕ m

p
−

1

n + 1 ⊕ (109)

⊕ m + 1

p
−

2

n + 1 ⊕ m

p
−

1

n− 1 ⊕ m− 1

p
−

1

n ⊕ m− 1

p
−

2

n + 1 ⊕ m + 1

p
−

2

n− 1 ⊕

⊕ m− 1

p
−

2

n− 1 ⊕ m
p
−

2

n ⊕ m

p
−

2

n ⊕ m

p
−

3

n + 1 ⊕

⊕ m + 1

p
−

3

n ⊕ m

p
−

3

n− 1 ⊕ m− 1

p
−

3

n ⊕ m

p
−

4

n

For 1 ≤ p ≤ 3, the diagrams carrying negative p-dependent labels are absent. It is
important to note that the diagram (n, m, p− 2) is present twice: one copy results from the
contraction of one of the form indices with the first row followed by the symmetrization
of another form index with the same row. Another one results from the application of the
same procedure to the second row. This fact leads to two different tensor implementations.
Also note that some of the diagrams vanish for special dimensions by virtue of the Two-
Column Theorem:

Theorem 2. so(d) traceless tensors with the symmetry properties of such Young diagrams that the
sum of the heights of the first two columns exceeds d, are identically zero [36].

The cohomology Hp(σ−) is empty for p > d. Analogously, some potential elements of
Hp(σ−) are zero by the Two-Column Theorem for large p ≤ d.

Now we are in a position to consider the action of the Laplace operator on each of the
diagrams (109) separately. In the following restrictions on n, m, p will be imposed: if for
some n, m, p a tensor has a wrong Young shape, it is zero. In most cases we will simplify
calculation by demanding p-forms be σ−-closed. Another simplification is due to the fact
that ∆F = 0 is equivalent to the two equations σ−F = 0 and σ+F = 0.

Diagram (n,m;p), n ≥ 0, m ≥ 0, p ≥ 0 has the tensor form Ta(n),b(m),c1,..,cp . It is
σ−-closed, if m = 0. Then

∆Ta(n),c1,..,cp = pTa(n),c1,..,cp . (110)

This diagram is in ker(∆) at p = 0 that reproduces the already obtained result for H0(σ−).
Diagram (n + 1,m + 1;p − 2), n ≥ 0, m ≥ 0, p ≥ 2 has the tensor form Ta(n)c1,b(m)c2,..,cp .

This diagram is σ−-closed. The action of ∆ is

∆Ta(n)c1,b(m)c2,..,cp =
(n−m)(p + m− 1)

(n−m + 1)
Ta(n)c1,b(m)c2,..,cp . (111)

This diagram is in ker(∆), if n = m, thus belonging to Hp(σ−) with p ≥ 2.
Diagram (n,m + 1;p − 1), n ≥ 1, m ≥ 0, p ≥ 1 has the tensor form Ta(n),b(m)c0,c1,..,cp−1

.
Then

∆Ta(n),b(m)c0,c1,..,cp−1
= (m + p)Ta(n),b(m)c0,c1,..,cp−1

. (112)

This equation admits no solutions since p ≥ 1 in the case in question.
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Diagram (n + 1,m;p − 1), n ≥ 0, m ≥ 0, p ≥ 1 has the tensor form

Ta(n)c0,b(m),c1,..,cp−1
+

m
n−m + 2

Ta(n)b,b(m−1)c0,c1,..,cp−1
.

It is σ−-closed iff m = 0. Then

∆Ta(n)c0,c1,..,cp−1
=

n(p− 1)
n + 1

Ta(n)c0,c1,..,cp−1
. (113)

This expression vanishes at p = 1. Hence,

Ta(n)c0
∈ H1(σ−) . (114)

As one can see, n = 0 in (113) also leads to zero Laplace action. However, this is not a
new result, since it has been already accounted in the diagrams (n, m; p) for n = m = p = 0
(110), (n + 1, m + 1; p− 2) for n = m = 0, p ≥ 2 (111) and the n = m = 0, p = 1 case of
(n + 1, m; p− 1) (113). This fact is a simple consequence of the tensor multiplication of a
column by a scalar.

Diagram (n − 1,m;p − 1), n ≥ 1, m ≥ 0, p ≥ 1 has the tensor form

T = ηac1 ρa(n−1),b(m),c2,..,cp −
n− 1

d− 4 + 2n
ηaaρa(n−2)c1,b(m),c2,..,cp +

m(n− 1)
(d− 4 + m + n)(d− 4 + 2n)

× ηaaρa(n−2)b,b(m−1)c1,c2,..,cp −
m

d− 4 + m + n
ηabρa(n−1),b(m−1)c1,c2,..,cp , (115)

where ρ is an arbitrary (n− 1, m; p− 1) tensor.
One can check that T ∈ ker(σ−) demands m = 0 with

T = ηac1 ρa(n−1),c2,..,cp −
n− 1

d− 4 + 2n
ηaaρa(n−2)c1,c2,..,cp . (116)

After some calculation we obtain

∆T =
(p− 1)(d− 2 + n)

d− 3 + n
T . (117)

This implies that ∆ has zero at p = 1 contributing to H1(σ−). The case of d = 2, n = 1
must be considered separately because of the divergent denominator. The seeming diver-
gence emerges due to the second term in (116), which is absent at d = 2, n = 1,

T = ηac1 ρc2,..,cp ⇒ σ+T =
p− 1

2

(
ηbc1 ρa,c2,..,cp−1 − ηac1 ρb,c2,..,cp−1

)
, (118)

leading to the same answer with p = 1.
Diagram (n,m − 1;p − 1) n ≥ 1, m ≥ 1, p ≥ 1 has the tensor form

T = (n− 1)ηaaρa(n−2)bc1,b(m−1),c2,..,cp −
(n− 1)(m− 1)

d− 6 + 2m
ηaaρa(n−2)bb,b(m−2)c1,c2,..,cp − (d− 4 + m + n)

× ηac1 ρa(n−1)b,b(m−1),c2,..,cp − (n−m)ηabρa(n−1)c1,b(m−1),c2,..,cp +
(m− 1)(d− 4 + 2n)

d− 6 + 2m
ηab

× ρa(n−1)b,b(m−2)c1,c2,..,cp +
(n−m + 1)(d− 4 + m + n)

n
ηbc1 ρa(n),b(m−1),c2,..,cp

− (m− 1)(n−m + 1)(d− 4 + m + n)
(d− 6 + 2m)n

ηbbρa(n),b(m−2)c1,c2,..,cp , (119)

where ρ is an arbitrary (n, m− 1; p− 1) tensor.
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Let us show that this diagram can never be annihilated by σ−. Indeed,

σ−T =

(
d− 4 + m + n− (n−m)

)
ηac0 ρa(n−1)c1,b(m−1),c2,..,cp + (m− 1)(lit), (120)

where (lit) denotes some terms that are linearly independent from the first one. If m = 1
the above expression reduces to

σ−T =
(
d− 2

)
ηac0 ρa(n−1)c1,c2,..,cp . (121)

The expression in brackets vanishes at d = 2. However, such diagram is zero by virtue
of the Two-column theorem 2, since the heights of the first two columns sum up to 3 > d.

Thus, the nontrivial T is never in ker(σ−).
Diagram (n + 1,m − 1;p − 2) n ≥ 1, m ≥ 1, p ≥ 2 has the tensor form

T = ηac1 ρa(n−1)bc2,b(m−1),c3,..cp −
n−m + 1

n
ηbc1 ρa(n)c2,b(m−1),c3,..cp

+
m− 1

n−m + 3
ηac1 ρa(n−1)bb,b(m−2)c2,c3,..cp −

(m− 1)(n− 1)
(d− 6 + 2m)(n−m + 3)

ηaaρa(n−2)bbc1,b(m−2)c2,c3,..cp

+
2(m− 1)(n−m + 1)

(d− 6 + 2m)(n−m + 3)
ηabρa(n−1)bc1,b(m−2)c2,c3,..cp −

(m− 1)(n−m + 1)
n(n−m + 3)

× ηbc1 ρa(n)b,b(m−2)c2,c3,..cp −
(m− 1)(n−m + 2)(n−m + 1)

(d− 6 + 2m)(n−m + 3)n
ηbbρa(n)c1,b(m−2)c2,c3,..cp , (122)

where ρ is an arbitrary (n + 1, m− 1; p− 2) tensor.
Though the tensor realization (122) may look complicated, the problem is simplified

by the observation that all terms except for the first and second ones carry a factor of
(m− 1). The action of σ− on the first and second terms produces a factor of (m− 1) in
front of each ηρ combination. It can be checked that σ−T has an overall factor of (m− 1)
so that the only possible solution for T ∈ ker(σ−) is at m = 1 in which case the tensor
decomposition acquires the form

T = ηac1 ρa(n−1)bc2,..,cp − ηbc1 ρa(n)c2,..,cp . (123)

At p = 2, after some calculations one can check that

σ+T = 0 . (124)

For p > 2 it is not difficult to see that σ+T ̸= 0. Indeed,

σ+T = (p− 2)
(

1 +
1
n

)
ηac1 ρa(n−1)bc2,b,c3,..,cp−1

+ (lit) , (125)

where (lit) denotes other linearly independent terms. The first term is never zero.
Thus,

T = ηac1 ρa(n−1)bc2
− ηbc1 ρa(n)c2

∈ H2(σ−) . (126)

Diagram (n − 1,m + 1;p − 2), n ≥ 1, m ≥ 0, p ≥ 2 has the tensor form

T = ηac1 ρa(n−1),b(m)c2,..,cp −
n− 1

d− 4 + 2n
ηaaρa(n−2)c1,b(m)c2,..,cp , (127)

where ρ is an arbitrary (n− 1, m + 1; p− 2) tensor.
Though it is obviously in ker(σ−) for any m, it is not hard to see that it is never in

ker(σ+).

σ+T = −
(

1 +
p− 2
m + 1

)
ηac1 ρa(n−1),b(m+1),..,cp−1

+ (lit) . (128)
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Hence this diagram does not contribute to Hp(σ−).
Diagram (n − 1,m − 1;p − 2), n ≥ 1, m ≥ 1, p ≥ 2 has an involved tensor form. Since

the coefficients in the expression below are complicated, we extract the factor of (m− 1)
once present denoting the leftover coefficients as αi,

T = ηac1 ηbc2 ρa(n−1),b(m−1),..,cp + (m− 1)α1ηaaηaaρa(n−4)bbc1,b(m−2)c2,..,cp

+ α2ηaaηac1 ρa(n−3)bc2,b(m−1),..,cp + (m− 1)α3ηaaηac1 ρa(n−3)bb,b(m−2)c2,..,cp

+ (m− 1)α4ηaaηabρa(n−3)bc1,b(m−2)c2,..,cp + α5ηaaηbc1 ρa(n−2)c2,b(m−1),..,cp

+ (m− 1)α6ηaaηbc1 ρa(n−2)b,b(m−2)c2,..,cp + (m− 1)α7ηaaηbbρa(n−2)c1,b(m−2)c2,..,cp

+ α8ηac1 ηabρa(n−2)c2,b(m−1),..,cp + (m− 1)α9ηac1 ηabρa(n−2)b,b(m−2)c2,..,cp

+ (m− 1)α10ηac1 ηbbρa(n−1),b(m−2)c2,..,cp + (m− 1)α11ηabηabρa(n−2)c1,b(m−2)c2,..,cp

+ (m− 1)α12ηabηbc1 ρa(n−1),b(m−2)c2,..,cp , (129)

where ρ is an arbitrary (n− 1, m− 1; p− 2) tensor. The explicit form of αi is given in the
Appendix A.

Now we observe that the action of σ− on the terms free of the factor of (m − 1)
produces such factor. Hence, σ−(T) has the form of the sum of linearly independent terms
with the common factor of (m− 1). Consequently,

σ−T = 0, iff m = 1. (130)

At m = 1, the only terms that remain are

T = ηac1 ηbc2 ρa(n−1),..,cp +
(n− 2)(n− 1)

(d− 3 + n)(d− 4 + 2n)
ηaaηac1 ρa(n−3)bc2,..,cp

+
(n− 1)(d− 2 + n)

(d− 3 + n)(d− 4 + 2n)
ηaaηbc1 ρa(n−2)c2,..,cp −

n− 1
d− 3 + n

ηac1 ηabρa(n−2)c2,..,cp . (131)

It can be checked that for p = 2

σ+T = 0 . (132)

For p > 2 it is not difficult to see that

σ+T =
(p− 2)d

(d− 2)(d− 3 + n)(d− 2 + n)
e2

3θYρ + (lit), (133)

where ρ = ρa(n−1),c1,..,cp−2
Ya(n−1)θc1 ..θcp−2 . Therefore,

H2(σ−) ∋ T = ηac1 ηbc2 ρa(n−1) +
(n− 2)(n− 1)

(d− 3 + n)(d− 4 + 2n)
ηaaηac1 ρa(n−3)bc2

+
(n− 1)(d− 2 + n)

(d− 3 + n)(d− 4 + 2n)
ηaaηbc1 ρa(n−2)c2

− n− 1
d− 3 + n

ηac1 ηabρa(n−2)c2
. (134)

Diagram (n + 1,m;p − 3), n ≥ 1, m ≥ 1, p ≥ 3 has the tensor form

T = ηbc1 ρa(n)c2,b(m−1)c3,..,cp −
n

n−m + 1
ηac1 ρa(n−1)bc2,b(m−1)c3,..,cp , (135)

where ρ is an arbitrary (n + 1, m; p− 3) tensor.
Explicit computation gives
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∆T =
t0

t0 + 1

(
p + h2 − 1

)
T − 2t0

(t0 + 1)(d− 4 + 2h2)
θaZa∂θZT

+
d− 4 + 2h1

(t0 + 1)(d− 3 + h1 + h2)(d− 4 + 2h2)

(
t2θaYa∂θZ − θaZa∂θZ

)
T

− t0 − 1
(t0 + 1)(d− 3 + h1 + h2)

θaYa∂θYT . (136)

This expression vanishes at n = m. Indeed, in this case t0T = 0, h1T = h2T =
nT, t2T = 0 so that

∆T =
1

d− 3 + 2n

(
t2θaYa∂θZ − θaZa∂θZ

)
T +

1
d− 3 + 2n

θaYa∂θYT . (137)

Since

t2θaYa∂θZT = θaYa∂θZt2T − θaYa∂θYT + θaZa∂θZT = −θaYa∂θYT + θaZa∂θZT , (138)

it follows that ∆T = 0 at n = m. To check that ∆T ̸= 0 at n ̸= m one should substitute the
expression for T noticing that different linearly independent terms have no common factor
to vanish, that implies nontriviality of ∆T.

Diagram (n,m + 1;p− 3), n ≥ 1, m ≥ 0, p ≥ 3has the tensor form T = ηac1ρa(n−1)c2,b(m)c3,..,cp .
It belongs to ker(σ−), but not to ker(σ+).

σ+T =

(
1 +

p− 3
m + 1

)
ηac1 ρa(n−1)c2,b(m+1),..,cp + (lit) . (139)

Diagram (n,m;p − 2) n ≥ 1, m ≥ 0, p ≥ 2 admits two tensor realizations Ti due to the
double presence of this diagram in the result of tensor product. The tensors

T1 = ηac1 ρ1a(n−1)c2,b(m),c3,..,cp +
m
n

ηbc1 ρ1a(n),b(m−1)c2,c3,..,cp , (140)

T2 = ηaaρ2a(n−2)bc1,b(m−1)c2,c3,..,cp −
n−m
n− 1

ηabρ2a(n−1)c1,b(m−1)c2,c3,..,cp −
d− 4 + n + m

n− 1
ηac1

× ρ2a(n−1)b,b(m−1)c2,c3,..,cp +
(n−m + 1)(d− 4 + m + n)

n(n− 1)
ηbc1 ρ2a(n),b(m−1)c2,c3,..,cp (141)

are linearly independent. That Laplace operator acts diagonally on Ti, ∆Ti = λi(n, m, p)Ti,
allows us to separately consider each of these diagrams. Firstly, we check if these are in
ker(σ−) computing

σ−T1 = mηac1 ρ1a(n−1)c2,b(m−1)c3,..,cp+1
, (142)

σ−T2 =
d− 4 + 2m

n− 1
ηac1 ρ2a(n−1)c2,b(m−1)c3,..,cp+1

. (143)

T1 ∈ ker(σ−) at m = 0. Formally, T2 is annihilated by σ− at d = 2, m = 1, but this is
not allowed by the Two-column theorem. So, the only candidate for cohomology is T1.
However,

σ+T1 =
1

n + 1

(
1 +

p− 2
n

)
ηbc1 ρ1a(n),c2,..,cp−1

+ (lit) , (144)

which is never zero.
Diagram (n−1,m;p−3), n ≥ 2, m ≥ 1, p ≥ 3 has the tensor form
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T = ηac1 ηbc2 ρa(n−1),b(m−1)c3,..,cp −
(n− 1)(d− 3 + m + n)

(d− 4 + n + m)(d− 4 + 2n)
ηaaηbc1 ρa(n−2)c2,b(m−1)c3,..,cp

− (n− 1)(n− 2)
(d− 4 + m + n)(d− 4 + 2n)

ηaaηac1 ρa(n−3)bc2,b(m−1)c3,..,cp +
n− 1

d− 4 + m + n
× ηabηac1 ρa(n−2)c2,b(m−1)c3,..,cp , (145)

where ρ is an arbitrary (n− 1, m; p− 3) tensor.
Obviously, T ∈ ker(σ−). However, T /∈ ker(σ+).

σ+T =

(
1 +

p− 3
m

)
ηac1 ηbc2 ρa(n−1),b(m),c3,..,cp−1

+ (lit) , (146)

hence not contributing to cohomology.
Diagram (n,m−1;p−3), n ≥ 1, m ≥ 1, p ≥ 3 has the tensor form

T = ηac1 ηbc2 ρa(n−1)c3,b(m−1),..,cp + (m− 1)(lit) (147)

with all terms except for the first one carrying a factor of (m− 1). The action of σ− on the
first term brings a factor of (m− 1) in front of ηρ. Since all ηρ terms in the decomposition
are linearly independent we conclude that

σ−T = 0, if m = 1. (148)

At p = 3 one can check that σ+T = 0. However, for p > 3 T does not belong to
ker(σ+),

σ+T = −(p− 3)ηac1 ηbc2 ρa(n−1)c3,b,..,cp−1
+ (lit) . (149)

Consequently, the only contribution to H3(σ−) is

T = ηac1 ηbc2 ρa(n−1)c3
∈ H3(σ−) . (150)

Diagram (n,m;p−4), n ≥ 1, m ≥ 1, p ≥ 4 has the tensor form

T = ηac1 ηbc2 ρa(n−1)c3,b(m−1)c4,..,cp . (151)

This is obviously annihilated by σ−, but not by σ+.

σ+T = −
(

1 +
p− 4

m

)
ηac1 ηbc2 ρa(n−1)c3,b(m),..,cp−1

+ (lit) . (152)

Hence it does not contribute to Hp(σ−).

5.3.5. Summary

Summarizing the results of Sections 5.3.3 and 5.3.4 we found the following cohomol-
ogy groups:

H0(σ−) = {F = Fa(n)Y
a(n)|F ∈ V0} , (153)

H1(σ−) = {ϕ = F1a(n)cYa(n)θc, F1 ∈ V1;

ϕtr =
[
(n− 1)ηaaF2a(n−2)c − (d− 4 + 2n)ηacF2a(n−1)

]
Ya(n)θc ∈ V1} , (154)
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H2(σ−) = {W = θYθZC(Y, Z) : t0C = 0, C ∈ V0;

EA =
[
ηac1 ρ1a(n−1)bc2

− ηbc1 ρ1a(n)c2

]
Ya(n)Zbθc1 θc2 ∈ V2;

EB =
[
ηac1 ηbc2 ρ2a(n−1) +

(n− 2)(n− 1)
(d− 3 + n)(d− 4 + 2n)

ηaaηac1 ρ2a(n−3)bc2

+
(n− 1)(d− 2 + n)

(d− 3 + n)(d− 4 + 2n)
ηaaηbc1 ρ2a(n−2)c2

− n− 1
d− 3 + n

ηac1 ηabρ2a(n−2)c2

]
Ya(n)Zbθc1 θc2 ∈ V2} , (155)

H3(σ−) = {B f r = ηac1 ηbc2 ρa(n−1)c3
Ya(n)Zbθc1 θc2 θc3 ∈ V3;

B1 = θYθZC(Y, Z, θ) : t0C = 0, C = Ca(n),b(n),cYa(n)Zb(n)θc ∈ V1;

B2 =
[
ηbc1 ρa(n)c2,b(n−1)c3

− nηac1 ρa(n−1)bc2,b(n−1)c3

]
Ya(n)Zb(n)θc1 θc2 θc3 ∈ V3} . (156)

At p > 3

Hp(σ−) =
{

B1 = θYθZC(Y, Z, θ) : t0C = 0, C = Ca(n),b(n),c1,..,cp−2
Ya(n)Zb(n)θc1 ..θcp−2 ∈ Vp−2;

B2 =
[
ηbc1 ρa(n)c2,b(n−1)c3,..,cp − nηac1 ρa(n−1)bc2,b(n−1)c3,..,cp

]
Ya(n)Zb(n)θc1 ..θcp ∈ Vp

}
. (157)

According to Theorem 1, the differential gauge transformation parameters are de-
scribed by H0(σ−) (153). The gauge parameter in the Fronsdal theory is known to be a
symmetric traceless tensor. Since tensors (n, 0, 0) constitute the cohomology group H0(σ−),
the unfolded differential gauge transformation is shown to coincide with the Fronsdal one.

As recalled in Section 2.1, the Fronsdal field consists of two symmetric traceless fields
(2). These fields are represented by the cohomology groups H1(σ−) (154). Cohomology
group H1(σ−) consists of two elements (n + 1, 0, 0) and (n− 1, 0, 0) matching the com-
ponents of the Fronsdal field. Thus, the physical fields in the unfolded approach indeed
coincide with the Fronsdal field.

The cohomology group H2(σ−) (155) describes gauge invariant combinations of
derivatives of the physical fields that can be used to impose differential equations on the
latter. The Fronsdal cohomology classes EA and EB match with the Fronsdal equations:
EA is associated with the traceless part of the Fronsdal equations, while EB with the trace
part, that is the equations EA = 0, EB = 0 just reproduce the Fronsdal equations. Note that
the number of resulting equations is the same as the number of fields, as it should be in a
Lagrangian system.

W in (155) represents "Weyl" cohomology. Imposing W = 0 in the case of gravity one
gets conformally flat metrics and in the case of higher spins “conformally flat” fields. In
Einstein gravity and HS theory, the equation W = 0 is not imposed. Instead, elements of
W are interpreted as new fields C that describe generalized Weyl tensors by virtue of the
unfolded Equation (14). Thus, calculation of the cohomology group H2(σ−) shows that
unfolded Equations (13) and (14) contain Fronsdal equations along with constraints on
auxiliary fields.

In accordance with the general discussion of Section 3 elements of H3(σ−) (156) cor-
respond to Bianchi identities. Class B f r describes the Bianchi identities for the Fronsdal
equations. Note that their number coincides with the number of differential gauge param-
eters. The remaining classes B1 and B2 correspond to the Bianchi identities on the Weyl
tensor. It is noteworthy that the latter can be checked to coincide with the first σ̃− coho-
mology in the Weyl sector of zero-forms of [10] for s > 1. This fact exhibits the connection
between the gauge and Weyl sectors.

For p > 3 cohomology groups Hp(σ−) describe the higher Bianchi identities for
Bianchi identities on the Weyl tensor also interpreted as syzygies [24].
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Obtained lower cohomology groups match with the results of [16–18].
In HS theory the fields are realized by one-forms. Formally, one can consider field

Equations (13) and (14) for p-forms ωa(n),b(m) valued in a two-row irreducible o(d)-module.
From our results and physical interpretation of the σ− cohomology groups it follows that
for p > 1 the unfolded system in the gauge sector is off-shell. To answer the question
whether the full unfolded system including both the gauge p-form sector and the Weyl
(p − 1)-form sector is off-shell, the analysis of H(σ̃−) has to be performed in the Weyl
sector. The case of p > 1 may be somewhat similar to the s = 1 case, where the equation
on Aµ lies in the Weyl sector.

Finally, let us stress that the results of this section for HS fields in Minkowski space
admit a straightforward deformation to AdSd with the same operator σ−. This is because
in that case dynamical fields are described by rectangular diagrams of the AdSd algebra
o(d− 1, 2) [37]. In general, in the flat limit, irreducible massless (gauge) fields in AdSd
decompose into nontrivial sets of irreducible flat space massless fields [38–40] and there
is no one-to-one correspondence between massless fields in Minkowski space and AdSd.
Namely, a generic irreducible field in Minkowski space may admit no deformation to AdSd
(see also [41]).

6. σ− Cohomology in AdS4 in the Spinor Language

4d HS theories admit a description in terms of two-component spinors instead of
tensors. That is, instead of using the generating functions in the tensor form ω(x, dx |Y, Z),
where Ya and Za carried vector Lorentz indices a = {0, 1, 2, 3}, we will use

ω(y, y |x, dx) = ∑
k,m

ωα1 ...αk ,α̇1 ...α̇m(x, dx) yα1 . . . yαk yα̇1
. . . yα̇m

, (158)

where the indices α and α̇ of the two-component commuting spinors yα and yα̇ take two
values {1, 2}.

Analogously to Sections 3 and 4, we have to introduce the grading on the space of
Λ•(M)⊗C[[y, y]]. Consider the homogeneous element of Λ•(M)⊗C[[y, y]] of degree N
and N in y and y, respectively

ω(µy, µy |x, dx) = µN µN ω(y, y |x, dx). (159)

Define the grading operator G on Λ•(M)⊗C[[y, y]] as follows:

Gω(y, y |x, dx) = |N − N|ω(y, y |x, dx) ≡ |degy(ω(y, y |x, dx))− degy(ω(y, y |x, dx))|. (160)

Note that in the bosonic sector the frame-like fields em1 ...ms−1 ↔ eα1 ...αs−1,α̇1 ...α̇s−1 have
the lowest possible grading G = 0. For our later computations to match with the Fronsdal
theory, we define the action of σ− on ω(y, y) to decrease the G-grading:

σ−ω(y, y) := i yα̇hα
α̇∂α ω(y, y), at degy(ω) > degy(ω), (161a)

σ−ω(y, y) := i yαh α̇
α ∂α̇ ω(y, y), at degy(ω) < degy(ω), (161b)

σ−ω(y, y) := 0 at degy(ω) = degy(ω) , (161c)

where

∂α :=
∂

∂yα
, ∂α̇ :=

∂

∂yα̇
, (162)

and the dependence on x and dx in ω(y, y) = ω(y, y |x, dx) is always implicit.
It is easy to check that so defined σ− is nilpotent, (σ−)2 = 0.
Note that σ± change the grading G by 2. This agrees in particular with the fact that

the bosonic and fermionic sectors, where the grading is even and odd respectively, are
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independent. We consider in detail the more complicated bosonic case, observing in the
end that the computation for fermionic fields is quite similar.

Note that the analysis of σ− cohomology in the 4d conformal HS theory was also
performed in terms of two-component spinors in [42,43]. It is more complicated since
the generating functions of conformal HS theory depend on twice as many independent
spinors, but simpler since it is free of the module factors like |N − N| in the grading
definition (160).

Next, we define a scalar product (Being SL(2,C)-invariant this scalar product is not
positive-definite. Analogously to the tensorial case, without affecting the σ− cohomology
analysis it can be made positive-definite by going to the su(2)⊕ su(2) algebra, which is the
compact real form of sl(2,C)⊕ sl(2,C) with altered conjugation rules yα = yα, yα̇ = yα̇.)
on generating elements of Λ•(M)⊗C[[y, y]] by

⟨qα|qβ⟩ = ⟨yα|yβ⟩ = iϵαβ , ⟨pα̇|pβ̇⟩ = −⟨∂α̇|∂β̇⟩ = iϵα̇β̇ , ⟨hαα̇|hββ̇⟩ = ϵαβϵα̇β̇ , (163)

where qα = yα, pα = i∂α and hαβ̇ is a vierbein one-form.
In some local coordinates xµ on the base manifold (which in our case is AdS4) the

vierbein one-forms hα
α̇ can be expressed as

hα
α̇ =

(
hµ

)α
α̇

dxµ. (164)

The AdS4 vierbein
(
hµ

)α
α̇

is demanded to be non-degenerate at any point of AdS4.
The next step is to obtain σ+ := σ†

− with respect to the scalar product ⟨ , ⟩, i.e.,
⟨ϕ|σ−ψ⟩ = ⟨σ+ϕ|ψ⟩. It is not hard to check that

σ+ω(y, y) := −iyαD α̇
α ∂α̇ ω(y, y) at degy(ω) > degy(ω) , (165a)

σ+ω(y, y) := −iyα̇Dα
α̇∂α ω(y, y) at degy(ω) < degy(ω) , (165b)

σ+ω(y, y) := −i
(

yαD α̇
α ∂α̇ + yα̇Dα

α̇∂α

)
ω(y, y) at degy(ω) = degy(ω) , (165c)

where

D α̇
α :=

∂

∂hα
α̇

, Dα
α̇ :=

∂

∂h α̇
α

. (166)

By ω = ω(y, y |x, h) we mean a general p-form polynomial in y and y with the
coordinate one-forms dx replaced by h via (164), that is

ω(y, y |x, h) = ∑
n,m

ωα1 ...αp |µ(n)|α̇1 ...α̇p |µ̇(m)(x) hα1α̇1 ∧ · · · ∧ hαp α̇p yµ(n) yµ̇(m) . (167)

So defined σ+ increases the grading. The Laplace operator

∆ := σ−σ+ + σ+σ− (168)

is by construction self-adjoint with respect to ⟨ | ⟩ and non-negative definite for the compact
version of the space-time symmetry algebra.
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7. Bosonic Case in AdS4

To calculate cohomology of σ− we have to compute the action of ∆. Since σ− and
σ+ are defined differently in the different regions of the (N, N) plane, we compute the
Laplacian action in the these regions separately. Direct computation yields:

∆N>N+2 = N(N + 2) + yβ∂αhα
γ̇D γ̇

β + yα̇∂β̇hγα̇Dγβ̇ , (169a)

∆N<N−2 = N(N + 2) + yα∂βhαγ̇Dβγ̇ + yα̇∂β̇h β̇
γ Dγ

α̇ , (169b)

∆N=N+2 = ∆N>N+2 + yα̇yβ̇∂α∂βhβ

β̇
Dα

α̇ , (169c)

∆N=N−2 = ∆N<N−2 + yαyβ∂α̇∂β̇h β̇
β D α̇

α , (169d)

∆N=N = yα̇∂β̇hγα̇Dγβ̇ + yα∂βhαγ̇Dβγ̇ − yα̇yβ∂α∂β̇hα
α̇D β̇

β − yαyβ̇∂β∂α̇h α̇
α Dβ

β̇
. (169e)

The computation of the cohomology Hp(σ−) will be performed as follows. Taking
a general p-form ω(y, y |x), we decompose it into Lorentz irreducible components. As
we will observe, the projectors onto irreducible parts will commute with the action of the
Laplacian. Thus, instead of involved calculation of the action of ∆ on all of the irreducible
components of ω(y, y |x) we can first calculate its action on the general ω(y, y |x) and
then project.

7.1. H0(σ−)

Evidently, ∆N=N

∣∣∣
0-forms

= 0 since all the terms in (169e) contain derivatives in h’s. At

the same time, ∆N ̸=N

∣∣∣
0-forms

> 0. Thus, we conclude

H0(σ−) = ker
(

∆
∣∣∣
0-forms

)
=

{
F(y, y) = Fα(n),α̇(n)y

α(n)yα̇(n), n ∈ N0

}
. (170)

By Theorem 1, elements of this cohomology space correspond to the parameters of
differential (non-Stueckelberg) linearized HS gauge transformations. This result fits the
pattern of the spin-s Fronsdal gauge symmetry parameters with n = s− 1.

7.2. H1(σ−)

The decomposition of a one-form Θ(y, y |x) into Lorentz irreps reads as

Θ(y, y |x) = Θµ(n+1)|µ̇(m+1) hµµ̇yµ(n)yµ̇(m)︸ ︷︷ ︸
ΘA(y,y)

−1
2

Θµ(n−1)|µ̇(m+1) h µ̇
ν yνyµ(n−1)yµ̇(m)︸ ︷︷ ︸

ΘB(y,y)

− 1
2

Θµ(n+1)|µ̇(m−1) hµ
ν̇yµ(n)yν̇yµ̇(m−1)︸ ︷︷ ︸

ΘC(y,y)

+
1
4

Θµ(n−1)|µ̇(m−1) hνν̇yνyµ(n−1)yν̇yµ̇(m−1)︸ ︷︷ ︸
ΘD(y,y)

. (171)

Thus, for fixed n and m, there are four Lorentz-irreducible one-forms: ΘA, ΘB, ΘC,
ΘD. For direct computations it will be convenient to separate two of the indices of the
y group:

Θ(y, y) = Θλ,ν,µ(n−1)|λ̇,ν̇,µ̇(m−1) hλλ̇yνyµ(n−1)yν̇yµ̇(m−1). (172)

In terms of the basis one-forms hλλ̇yνyµ(n−1)yν̇yµ̇(m−1) the projectors onto irreducible
components are

PA = S(λ,µ,ν)S(λ̇,µ̇,ν̇), PC = S(λ,µ,ν)ϵλ̇ν̇, (173)

PB = ϵλνS(λ̇,µ̇,ν̇), PD = ϵλνϵλ̇ν̇, (174)
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where S(λ,µ,ν) implies symmetrization over indices λ, µ, ν and similarly for the
dotted indices.

7.2.1. H1(σ−) in the Diagonal Sector N = N

In the diagonal sector with n = m the Laplacian is a sum of the following four terms:

∆N=NΘ(y, y) = yα̇∂β̇hγα̇Dγβ̇Θ(y, y)︸ ︷︷ ︸
T1(y,y)

+ yα∂βhαγ̇Dβγ̇Θ(y, y)︸ ︷︷ ︸
T2(y,y)

−yα̇yβ∂α∂β̇hα
α̇D β̇

β Θ(y, y)︸ ︷︷ ︸
T3(y,y)

−yαyβ̇∂β∂α̇h α̇
α Dβ

β̇
Θ(y, y)︸ ︷︷ ︸

T4(y,y)

. (175)

Consider the first term in (175).

yα̇∂β̇hγα̇Dγβ̇Θ(y, y) = Θλ,ν,µ(n−1)|λ̇,ν̇,µ̇(m−1)

[
yα̇∂β̇hγα̇Dγβ̇

(
hλλ̇yνyµ(n−1)yν̇yµ̇(m−1))]︸ ︷︷ ︸

Tλ,ν,µ(n−1)|λ̇,ν̇,µ̇(n−1)
1

. (176)

The expression in square brackets is denoted by Tλ,ν,µ(n−1)|λ̇,ν̇,µ̇(n−1)
1 . The notation

for other irreducible components T2, T3 and T4 is analogous. Straightforward computa-
tion yields

Tλ,ν,µ(n−1)|λ̇,ν̇,µ̇(n−1)
1 = −hλ

α̇ϵν̇λ̇yνyµ(n−1)yα̇yµ̇(n−1)

−(n− 1)hλ
α̇ϵµ̇λ̇yνyµ(n−1)yα̇yν̇yµ̇(n−2) , (177a)

Tλ,ν,µ(n−1)|λ̇,ν̇,µ̇(n−1)
2 = −h λ̇

α ϵνλyαyµ(n−1)yν̇yµ̇(n−1)

−(n− 1)h λ̇
α ϵµλyαyνyµ(n−2)yν̇yµ̇(n−1) , (177b)

Tλ,ν,µ(n−1)|λ̇,ν̇,µ̇(n−1)
3 = −

(
hν

α̇yλyµ(n−1) + (n− 1)hµ
α̇yλyνyµ(n−2)

)
×
(

ϵν̇λ̇yα̇yµ̇(n−1) + (n− 1)ϵµ̇λ̇yα̇yν̇yµ̇(n−2)
)

, (177c)

Tλ,ν,µ(n−1)|λ̇,ν̇,µ̇(n−1)
4 = −

(
h ν̇

α yλ̇yµ̇(n−1) + (n− 1)h ν̇
α yλ̇yν̇yµ̇(n−2)

)
×
(

ϵνλyαyµ(n−1) + (n− 1)ϵµλyαyνyµ(n−2)
)

. (177d)

Projecting onto the irreducible parts of Θ(y, y) we find

∆N=N(ΘA) = 0 , (178a)

∆N=N(ΘB) = (n + 1)2ΘB ̸= 0 , (178b)

∆N=N(ΘC) = (n + 1)2ΘC ̸= 0 , (178c)

∆N=N(ΘD) = 0. (178d)
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Thus, the only elements of the kernel of ∆1-forms
∣∣∣

N=N
are ΘA(y, y) and ΘD(y, y). By

the Hodge theorem of Section 4 this yields that H1(σ−) = ker
(

∆1-forms
∣∣∣

N=N

)
is

H1(σ−) =
⊕
n≥0

H1
(n)(σ−), (179a)

H1
(n)(σ−) =

{
ϕ(n)(y, y |x) + ϕtr

(n)(y, y |x), (179b)

ϕ(n)(y, y |x) := ϕµ(n+1),µ̇(n+1)(x) hµµ̇ yµ(n)yµ̇(n), (179c)

ϕtr
(n)(y, y |x) := ϕtr

µ(n−1),µ̇(n−1)(x) hνν̇ yνyµ(n−1)yν̇yµ̇(n−1) , if n > 0
}

, (179d)

where n is the number of indices of the corresponding cocycles.
Equivalently,

H1(σ−) =
{

hµµ̇ ∂µ∂µ̇ F1(y, y |x) + hµµ̇ yµyµ̇F2(y, y |x)
}

, (180)

where F1,2(y, y |x) belongs to the diagonal N = N, that is,(
yα ∂

∂yα
− yα̇ ∂

∂yα̇

)
F1,2(y, y |x) = 0. (181)

The fields ϕ(y, y) and ϕtr(y, y) exactly correspond to the irreducible components of
the double-traceless Fronsdal field.

It remains to prove that there are no other nontrivial cocycles in H1(σ−) at N ̸= N.

7.2.2. H1(σ−) in the Far-from-Diagonal Sector |N − N| > 2

Consider the action of the Laplace operator ∆N>N+2 on general one-forms at N >

N + 2

∆N>N+2Θ(y, y) =
(

n(m + 2) + yβ∂αhα
γ̇D γ̇

β + yα̇∂β̇hγα̇Dγβ̇
)

Θ(y, y)

= n(m + 2)Θ(y, y)︸ ︷︷ ︸
T1(y,y)

+ yβ∂αhα
γ̇D γ̇

β Θ(y, y)︸ ︷︷ ︸
T2(y,y)

+ yα̇∂β̇hγα̇Dγβ̇Θ(y, y)︸ ︷︷ ︸
T3(y,y)

. (182)

Analogously to (176), we denote

Tλ,ν,µ(n−1)|λ̇,ν̇,µ̇(m−1)
2 = yβ∂αhα

γ̇D γ̇
β

(
hλλ̇yνyµ(n−1)yν̇yµ̇(m−1)) (183)

and similarly for T1 and T3. In this sector we obtain

Tλ,ν,µ(n−1)|λ̇,ν̇,µ̇(m−1)
1 = n(m + 2)hλλ̇yνyµ(n−1)yν̇yµ̇(m−1) , (184a)

Tλ,ν,µ(n−1)|λ̇,ν̇,µ̇(m−1)
2 = −hνλ̇yλyµ(n−1)yν̇yµ̇(m−1) − (n− 1)hµλ̇yλyνyµ(n−2)yν̇yµ̇(m−1) , (184b)

Tλ,ν,µ(n−1)|λ̇,ν̇,µ̇(m−1)
3 = −hλ

α̇ϵν̇λ̇yνyµ(n−1)yα̇yµ̇(m−1) − (m− 1)hλ
α̇ϵλ̇µ̇yνyµ(n−1)yα̇yν̇yµ̇(m−2) . (184c)

Projection onto the irreducible components according to (173) yields

∆N>N+2(ΘA) = n(m + 1)ΘA ̸= 0 , (185a)

∆N>N+2(ΘB) = (nm + 2n + 1)ΘB ̸= 0 , (185b)

∆N>N+2(ΘC) = (nm− n + 2m)ΘC ̸= 0 , (185c)

∆N>N+2(ΘD) = (nm + 2n−m + 4)ΘD ̸= 0 . (185d)
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Thus, there are no nontrivial cocycles in this sector. For N < N − 2 the computation is
analogous. Thus, H1(σ−) = 0 in the far-from-diagonal sector.

7.2.3. Subtlety in the Near-Diagonal Sector |N − N| = 2

In this case we face certain peculiarity. Denote the space of p-forms (p = 1 for H1)
with N chiral and N anti-chiral indices by V(N,N). Recall that the grading operator is
G = |N − N|. Consider the case with N − N = 2. Namely, let N = n + 1 and N = n− 1.
At G = 2 the operator σ− maps a state X ∈ V(n+1,n−1) onto the diagonal, σ−(X) ∈ V(n,n),
where in accordance with (165c), σ+ acts ’both up and down’:

V(n+1,n−1)
σ−−→ V(n,n)

σ+−→ V(n−1,n+1) ⊕ V(n+1,n−1) . (186)

Thus,
V(n+1,n−1)

σ+σ−−−−→ V(n−1,n+1) ⊕ V(n+1,n−1) . (187)

As a result,

∆(n+1,n−1) : V(n+1,n−1) −→ V(n−1,n+1) ⊕ V(n+1,n−1) , (188a)

∆(n−1,n+1) : V(n−1,n+1) −→ V(n−1,n+1) ⊕ V(n+1,n−1) . (188b)

Consequently, ker(∆) should be searched in the form of a linear combination of the
vectors both from V(n+1,n−1) and from V(n−1,n+1).

Indeed, let X be a vector in V(n+1,n−1). Consider the complex conjugated vector
X ∈ V(n−1,n+1) and compute the action of the Laplacian on them. Let

∆X = ∆(n+1,n−1)X = α(n)X + β(n)X , (189a)

∆X = ∆(n−1,n+1)X = γ(n)X + δ(n)X (189b)

with some coefficients α, β, γ, and δ. That X and X are conjugated and operator ∆ is
self-adjoint implies the relations α = δ and β = γ. Looking for ker(∆) in the form

Y = F(n)X + G(n)X ∈ ker(∆) (190)

and acting on Y by the Laplace operator we find that the condition ∆Y = 0 yields

∆Y = F(n)∆(n+1,n−1)X + G(n)∆(n−1,n+1)X =

=
(
α(n)F(n) + β(n)G(n)

)
X +

(
β(n)F(n) + α(n)G(n)

)
X = 0 . (191)

Since X and X are linearly independent, the problem of finding such Y = αX + βX
that ∆Y = 0, amounts to the linear system[

α(n) β(n)
β(n) α(n)

][
F(n)
G(n)

]
=

[
0
0

]
, (192)

which admits non-trivial solutions iff

det

[
α(n) β(n)
β(n) α(n)

]
= |α(n)|2 − |β(n)|2 = 0. (193)

Hence, we conclude that

α(n) = β(n) · eiχ, χ ∈ [0, 2π) . (194)

In the next section coefficients α(n) and β(n) will be shown to be real, i.e., eiχ = ±1.
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Summarizing, if we find that the coefficients α(n) and β(n) coincide up to a sign,
α(n) = ±β(n), this would imply the existence of a non-trivial σ−-cocycle

Y = X∓ X . (195)

Otherwise the cohomology is trivial.

7.2.4. H1(σ−) in the Near-Diagonal Sector |N − N| = 2

To compute H1(σ−) in the leftover sector of N = N + 2 (analysis at N = N − 2 is
analogous) consider a general one-form Θ(y, y) (172) with N = N + 2.

In this sector, the Laplacian differs form that at N > N + 2 by the T4(y, y) term in

∆N=N+2Θ(y, y) =
(

N(N + 2) + yβ∂αhα
γ̇D γ̇

β + yα̇∂β̇hγα̇Dγβ̇︸ ︷︷ ︸
∆N>N+2

)
Θ(y, y) + yα̇yβ̇∂α∂βhβ

β̇
Dα

α̇Θ(y, y)︸ ︷︷ ︸
T4(y,y)

. (196)

Consequently, it is essential to compute the action of this additional term. As before
(cf. (176)), denote

Tλ,ν,µ(n−1)|λ̇,ν̇,µ̇(m−1)
4 = yα̇yβ̇∂α∂βhβ

β̇
Dα

α̇

(
hλλ̇yνyµ(n−1)yν̇yµ̇(m−1)) .

This yields

Tλ,ν,µ(n−1)|λ̇,ν̇,µ̇(m−1)
4 = (n− 1)ϵµλhν

β̇
yµ(n−2)yλ̇yβ̇yν̇yµ̇(m−1) + (n− 1)ϵνλhµ

β̇
yµ(n−2)yλ̇yβ̇yν̇yµ̇(m−1)

+ (n− 1)(n− 2)ϵµλhµ

β̇
yνyµ(n−3)yλ̇yβ̇yν̇yµ̇(m−1). (197)

Projecting T4 onto the irreducible parts, we find:

(A) : S(λ,ν,µ)S(λ̇,ν̇,µ̇)T
λ,ν,µ(n−1)|λ̇,ν̇,µ̇(m−1)
4 = 0 , (198a)

(B) : S(λ̇,ν̇,µ̇)ϵλνTλ,ν,µ(n−1)|λ̇,ν̇,µ̇(m−1)
4 = −(n− 1)(2n− 1)hµ

β̇
yµ(n−2)yβ̇yµ̇(m+1) , (198b)

(C) : ϵλ̇ν̇S(λ,ν,µ)T
λ,ν,µ(n−1)|λ̇,ν̇,µ̇(m−1)
4 = 0 , (198c)

(D) : ϵλ̇ν̇ϵλνTλ,ν,µ(n−1)|λ̇,ν̇,µ̇(m−1)
4 = 0 . (198d)

We observe that the action of the Laplacian in this sector differs from the previously
computed one only in the type-(B) sector, namely,

∆N=N+2(ΘB) =
(

n(m + 3)ΘB + (2n2 − 3n + 1)ΘC

)∣∣∣
m=n−2

= (n2 + n)︸ ︷︷ ︸
α(n)

ΘB + (2n2 − 3n + 1)︸ ︷︷ ︸
β(n)

ΘC . (199)

That |α(n)| ̸= |β(n)| at integer n implies triviality of H1(σ−) in the near-diagonal
sector.

7.3. H2(σ−)

The calculation of H2(σ−) is in main features analogous to that of H1(σ−). To decom-
pose a general two-form Ω(y, y |x) into irreducible parts we use the following useful iden-
tity

hνν̇ ∧ hλλ̇ =
1
2

Hνλϵν̇λ̇ +
1
2

Hν̇λ̇
ϵνλ, (200)

where

Hνλ = H(νλ) := hν
γ̇ ∧ hλγ̇ , Hν̇λ̇

= H(ν̇λ̇) := h ν̇
γ ∧ hγλ̇ . (201)
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The decomposition reads

Ω(y, y |x) = ΩA
µ(n+2)|µ̇(m) Hµµyµ(n)yµ̇(m)︸ ︷︷ ︸

ΦA(n,m)

+ΩA
µ(n)|µ̇(m+2) Hµ̇µ̇yµ(n)yµ̇(m)︸ ︷︷ ︸

ΦA(n,m)

+ ΩB
µ(n−2)|µ̇(m) Hννyνyνyµ(n−2)yµ̇(m)︸ ︷︷ ︸

ΦB(n,m)

+ΩB
µ(n)|µ̇(m−2)Hν̇ν̇yµ(n)yν̇yν̇yµ̇(m−2)︸ ︷︷ ︸

ΦB(n,m)

+ ΩC
µ(n)|µ̇(m) H µ

ν yνyµ(n−1)yµ̇(m)︸ ︷︷ ︸
ΦC(n,m)

+ΩC
µ(n)|µ̇(m) H µ̇

ν̇ yµ(n)yν̇yµ̇(m−1)︸ ︷︷ ︸
ΦC(n,m)

. (202)

Consider now the reducible two-forms

Φλ(2),ν(2),µ(n−2)|µ̇(m) = Hλλyνyνyµ(n−2)yµ̇(m), (203a)

Φµ(n)|λ̇(2),ν̇(2),µ̇(m−2)
= Hλ̇λ̇yµ(n)yν̇yν̇yµ̇(m−2). (203b)

In these terms, the projectors onto irreducible components are

PA = S(λ,ν,µ) , PB = ϵλνϵλν , PC = S(λ,ν,µ) ◦ ϵλν , (204a)

PA = S(λ̇,ν̇,µ̇) , PB = ϵλ̇ν̇ϵλ̇ν̇ , PC = S(λ̇,ν̇,µ̇) ◦ ϵλ̇ν̇ (204b)

and the decomposition (202) reads as

ΦA = PAΦ , ΦB = PBΦ , ΦC = PCΦ , (205a)

ΦA = PAΦ , ΦB = PBΦ , ΦC = PCΦ . (205b)

For practical calculations we have to find the result of the action of the operator
D = ∂

∂h on the two-form H. The result is

Dαβ̇ Hνλ = Dαβ̇

(
hν

γ̇ ∧ hλγ̇
)
= ϵ ν

α ϵβ̇γ̇hλγ̇ − hν
γ̇ ϵ λ

α ϵ
γ̇

β̇
= −ϵ ν

α hλ
β̇
− ϵ λ

α hν
β̇
= −2ϵ

(ν
α hλ)

β̇
, (206)

or, in the condensed notation for symmetrized indices,

Dαβ̇ Hνν = −2ϵ ν
α hν

β̇
. (207)

7.3.1. H2(σ−) in the Far-From-Diagonal Sector |N − N| > 2

Compute ∆N>N+2 on the general two-forms Φ and Φ,

∆N>N+2(Φ) = n(m + 2)Φ(y, y)︸ ︷︷ ︸
T1(y,y)

+ yβ∂αhα
γ̇D γ̇

β Φ(y, y)︸ ︷︷ ︸
T2(y,y)

+ yα̇∂β̇hγα̇Dγβ̇Φ(y, y)︸ ︷︷ ︸
T3(y,y)

. (208)

As in (176), denote

Tλ(2),ν(2),µ(n−2)|µ̇(m)
2 = yβ∂αhα

γ̇D γ̇
β Hλλyνyνyµ(n−2)yµ̇(m) (209)

and similarly for T1 and T3. Straightforward computation yields

Tλ(2),ν(2),µ(n−2)|µ̇(m)
1 = n(m + 2) Hλλyνyνyµ(n−2)yµ̇(m) , (210a)

Tλ(2),ν(2),µ(n−2)|µ̇(m)
2 = −4Hνλyλyνyµ(n−2)yµ̇(m) − 2(n− 2) Hµλyλyν(2)yµ(n−3)yµ̇(m) , (210b)

Tλ(2),ν(2),µ(n−2)|µ̇(m)
3 = m Hλλyν(2)yµ(n−2)yµ̇(m). (210c)
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Projecting onto the irreducible part ΦA we obtain

∆N>N+2ΦA = PA(T1 + T2 + T3) = [n(m + 2)− 2n + m]ΦA = m(n + 1)ΦA. (211)

We see that ΦA ∈ ker(∆) whenever m = 0. This gives a 2-cocycle of the form Hµµyµ(n).
It can be represented in terms of the generating function as follows. Contract all the indices
in Hµµyµ(n) with some symmetric coefficients ΩA

µµµ(n) to obtain

ΩA
µ(n+2)Hµµyµ(n) ≡ h(λγ̇ ∧ hνγ̇)Ω(λνµ(n))y

µ(n) ⇒ hλ
γ̇ ∧ hνγ̇ ∂λ∂νC(y, 0 |x) ∈ ker

(
∆N>N+2

∣∣∣
2-forms

)
, (212)

where C(y, 0 |x) = Ωµµµ(n)yµyµyµ(n). Summarizing, we found a part of the kernel of ∆
represented by the two-forms

W(y, 0 |x) = Hµν∂µ∂νC(y, 0 |x) (213)

with C(y, 0|x) being a general polynomial of y’s of degree ≥ 4.
Let us now project (208) onto the second irreducible part ΦB,

∆N>N+2ΦB = PB(T1 + T2 + T3) = [n(m + 2) + 0 + m]ΦB ̸= 0 ∀n, m ∈ N0. (214)

Since ΦB(n,m) is proportional to Hννyνyνyµ(n−2)yµ̇(m), the case n = m = 0 is beyond
the allowed region. Thus, ΦB does not contribute to H2(σ−).

Projecting (208) onto ΦC, we find

∆N>N+2ΦC = PC(T1 + T2 + T3) = [n(m + 2)− 2− (n− 2) + m]ΦC = (nm + n + m)ΦC . (215)

Again, ΦC does not contribute to H2(σ−) since m > 0, n ≥ 0.
Next, we consider the anti-holomorphic two-form Φ. The action of the Laplacian yields

∆N>N+2(Φ) = n(m + 2)Φ(y, y)︸ ︷︷ ︸
T1(y,y)

+ yβ∂αhα
γ̇D γ̇

β Φ(y, y)︸ ︷︷ ︸
T2(y,y)

+ yα̇∂β̇hγα̇Dγβ̇Φ(y, y)︸ ︷︷ ︸
T3(y,y)

. (216)

As in (176) we set

Tµ(n)|λ̇(2),ν̇(2),µ̇(m−2)
2 = yβ∂αhα

γ̇D γ̇
β Hλ̇λ̇yµ(n)yν̇yν̇yµ̇(m−2) (217)

and analogously for T1 and T3. The computation in components yields

Tµ(n)|λ̇(2),ν̇(2),µ̇(m−2)
1 = n(m + 2)Hλ̇λ̇yµ(n)yν̇yν̇yµ̇(m−2), (218a)

Tµ(n)|λ̇(2),ν̇(2),µ̇(m−2)
2 = −n Hλ̇λ̇yµ(n)yν̇(2)yµ̇(m−2), (218b)

Tµ(n)|λ̇(2),ν̇(2),µ̇(m−2)
3 = −4 ϵν̇λ̇ H λ̇

α̇ yµ(n)yα̇yν̇yµ̇(m−2) − 2(m− 2) ϵµ̇λ̇ H λ̇
α̇ yµ(n)yα̇yν̇(2)yµ̇(m−3). (218c)

Projecting onto the irreducible components we obtain

∆N>N+2ΦA = PA(T1 + T2 + T3) = [n(m + 1)]ΦA , (219a)

∆N>N+2ΦB = PB(T1 + T2 + T3) = (nm + n + 4m)ΦB , (219b)

∆N>N+2ΦC = PC(T1 + T2 + T3) = (nm + n−m)ΦC . (219c)

The condition n > m + 2 valid in the far-from-diagonal sector does not allow ΦA,B,C
to be in the kernel of ∆.
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The analysis of the opposite sector N < N − 2 is analogous via swapping dotted and
undotted indices. As a result, the final answer for the under-diagonal sector is

W(0, y |x) = Hµ̇ν̇
∂µ̇∂ν̇C(0, y |x). (220)

This completes the analysis of H2(σ−) in the sector |N − N| > 2. The cohomology is
represented by the two-forms

W(y, y |x) = hµ
γ̇ ∧ hνγ̇ ∂µ∂νC(y, 0 |x) + h µ̇

γ ∧ hγν̇ ∂µ̇∂ν̇C(0, y |x). (221)

These two-forms are known to represent the so-called Weyl cocycle in the HS theory.
It is thus shown that there are no other non-trivial 2-cocycles in this sector.

7.3.2. H2(σ−) on the Diagonal N = N

Now we prove that there are no non-trivial cocycles at N = N except for the Weyl co-
homology (221). As before, act by the operator ∆N=N on the two-form Φλ(2)|ν(2)|µ(n−2)|µ̇(n)

(y, y) = Hλλyνyνyµ(n−2)yµ̇(n)

∆N=NΦ(y, y) = yα̇∂β̇hγα̇Dγβ̇Φ(y, y)︸ ︷︷ ︸
T1(y,y)

+ yα∂βhαγ̇Dβγ̇Φ(y, y)︸ ︷︷ ︸
T2(y,y)

−yα̇yβ∂α∂β̇hα
α̇D β̇

β Φ(y, y)︸ ︷︷ ︸
T3(y,y)

−yαyβ̇∂β∂α̇h α̇
α Dβ

β̇
Φ(y, y)︸ ︷︷ ︸

T4(y,y)

. (222)

Denoting

Tλ(2),ν(2),µ(n−2)|µ̇(n)
1 = yα̇∂β̇hγα̇Dγβ̇ Hλλyν(2)yµ(n−2)yµ̇(n) (223)

and analogously for T2, T3 and T4, straightforward computation yields

Tλ(2),ν(2),µ(n−2)|µ̇(n)
1 = n Hλλyν(2)yµ(n−2)yµ̇(n) , (224a)

Tλ(2),ν(2),µ(n−2)|µ̇(n)
2 = −4ϵνλ H λ

α yαyνyµ(n−2)yµ̇(n) −
−2(n− 2)ϵµλH λ

α yαyν(2)yµ(n−3)yµ̇(n) , (224b)

Tλ(2),ν(2),µ(n−2)|µ̇(n)
3 = 4n hν

α̇ ∧ hλµ̇ yλyνyµ(n−2)yα̇yµ̇(n−2) +

+2n(n− 2) hµ
α̇ ∧ hλµ̇yλyν(2)yµ(n−3)yα̇yµ̇(n−1) , (224c)

Tλ(2),ν(2),µ(n−2)|µ̇(n)
4 = 4n ϵνλ h µ̇

α ∧ hλ
β̇

yαyνyµ(n−2)yβ̇yµ̇(n−1) +

+2n(n− 2) ϵµλ h µ̇
α ∧ hλ

β̇
yαyν(2)yµ(n−3)yβ̇yµ̇(n−1). (224d)

and

∆N=NΦA = PA(T1 + T2 + T3 + T4) = n2ΦA, (225a)

∆N=NΦB = PB(T1 + T2 + T3 + T4) = (2n2 + 5n + 4)ΦB ̸= 0, (225b)

∆N=NΦC = PC(T1 + T2 + T3 + T4) = 2(n2 + n + 1)ΦC − 2n(n + 1)ΦC. (225c)

We observe that the only way for some of ΦA,B,C to be in H2(σ−) is at n = 0. But in
the diagonal sector with N = N = n this implies N = N = 0. This case extends formula
(221) to the spin-one y, y-independent sector. The analysis of the anti-holomorphic part
Φ is analogous. The resulting cohomology parameterizes the spin-one field strength, i.e.,
Faraday field strength.
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7.3.3. H2(σ−) in the Near-Diagonal Sector |N − N| = 2

In the near-diagonal sector a subtlety considered in Section 7.2.3 takes place. We
should search for a kernel of ∆ in the form of a linear combination of the two-forms lying
under the diagonal and above the diagonal. Our strategy is to act separately on the general
holomorphic (203a) and anti-holomorphic (203b) two-forms placed below the diagonal
N = N − 2 and then determine which two-forms are in ker(∆). (The computation with
N > N only differs by the complex conjugation.)

We start with the general holomorphic two-form below the diagonal

Φλ(2)|ν(2)|µ(n−3)|µ̇(n+1)
(n−1,n+1) (y, y) = Hλλyν(2)yµ(n−3)yµ̇(n+1). (226)

Firstly, we set n ≥ 4 considering the cases of n ≤ 3, that are special in our computation
scheme, because n− 3 is the number of indices µ, later. This yields

∆N=N−2Φ(n−1,n+1)(y, y) = ∆N<N−2Φ(n−1,n+1)(y, y)︸ ︷︷ ︸
T1(y,y)

+ yαyβ∂α̇∂β̇h β̇
β D α̇

α Φ(n−1,n+1)(y, y)︸ ︷︷ ︸
T2(y,y)

. (227)

The first term is computed the same way as in (208) giving

Tλ(2),ν(2),µ(n−3)|µ̇(n+1)
1 = (n + 1)2 Hλλyνyνyµ(n−3)yµ̇(n+1) − 4Hνλyλyνyµ(n−3)yµ̇(n+1)

− 2(n− 3) Hµλyλyν(2)yµ(n−4)yµ̇(n+1) + (n− 1) Hλλyν(2)yµ(n−3)yµ̇(n+1). (228)

The computation of the additional term T2(y, y) yields

Tλ(2),ν(2),µ(n−3)|µ̇(n+1)
2 = yαyβ∂α̇∂β̇h β̇

β D α̇
α Hλλyν(2)yµ(n−3)yµ̇(n+1)

= −2n(n + 1) h µ̇
β ∧ hλµ̇yλyβyν(2)yµ(n−3)yµ̇(n−1)

= −n(n + 1) Hµ̇µ̇yλ(2)yν(2)yµ(n−3)yµ̇(n−1). (229)

Projection onto the irreducible parts A, B and C yields

∆ΦA(n−1,n+1) = n(n + 1)︸ ︷︷ ︸
α(n)

ΦA(n−1,n+1)−n(n + 1)︸ ︷︷ ︸
β(n)

ΦA(n+1,n−1) , (230a)

∆ΦB(n−1,n+1) = (n2 + 5n− 4)ΦB(n−1,n+1) , (230b)

∆ΦC(n−1,n+1) = (n2 + 2n− 1)ΦC(n−1,n+1) . (230c)

Let us stress that the complex conjugation denoted by † swaps dotted and undotted
indices

(yα)† = yα̇, (Hαα)† = Hα̇α̇ (231)

and relates Φ and Φ in the following way:

(ΦA,B,C(n−1,n+1))
† = ΦA,B,C(n+1,n−1). (232)

The computation for the complex-conjugated objects ΦA,B,C(n+1,n−1) is analogous
giving

∆ΦA(n+1,n−1) = n(n + 1)ΦA(n+1,n−1) − n(n + 1)ΦA(n−1,n+1) , (233a)

∆ΦB(n+1,n−1) = (n2 + 5n− 4)ΦB(n+1,n−1) , (233b)

∆ΦC(n+1,n−1) = (n2 + 2n− 1)ΦC(n+1,n−1) . (233c)
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From (230a) and (233a) we observe that there is a non-trivial 2-cocycle

EA = ΦA(n−1,n+1) + ΦA(n+1,n−1) = EA
µ(n+1),µ̇(n+1)

(
Hµµyµ(n−1)yµ̇(n+1) + Hµ̇µ̇yµ(n+1)yµ̇(n−1)

)
(234)

with arbitrary coefficients EA
µ(n+1),µ̇(n+1)(x). This answer agrees with the analysis of

Section 7.2.3. Indeed, the coefficients on the r.h.s. of (230a) coincide up to a sign α(n) =
−β(n), and by (195) of Section 7.2.3 this implies a non-trivial 2-cocycle (234).

This cocycle represents the traceless part of the free Fronsdal HS equations.
The irreducible representations of types (B) and (C) do not contribute to cohomology

since they are not in ker(∆) (recall that we are assuming n ≥ 4).
Now consider the cases of n = 1, 2, 3. Computing the action of the Laplace operator

on the following objects:

Φλλ|µ̇µ̇

(0,2) (y, y) = Hλλyµ̇yµ̇, (235a)

Φλλ|µ|µ̇(3)
(1,3) (y, y) = Hλλyµyµ̇(3), (235b)

Φλλ|νν|µ̇(4)
(2,4) (y, y) = Hλλyνyνyµ̇(4) , (235c)

it is not difficult to obtain

(∆Φ(0,2))
λλ|µ̇µ̇(y, y) = 2Hλλyµ̇(2) − 2Hµ̇µ̇yλ(2), (236a)

(∆Φ(1,3))
λλ|µ|µ̇(3)(y, y) = 8Hλλyµyµ̇(3) − 2Hµλyλyµ̇(3) − 6Hµ̇µ̇yλ(2)yµyµ̇, (236b)

(∆Φ(2,4))
λλ|νν|µ̇(4)(y, y) = 16Hλλyννyµ̇(4) − 4Hνλyλyνyµ̇(4) − 12Hµ̇µ̇yλ(2)yν(2)yµ̇(2). (236c)

We see that these results for n = 1, 2, 3 extend the traceless part of the Fronsdal
cohomology (234) to spins s = 2, 3, 4.

It remains to analyze the case of anti-holomorphic two-form below the diagonal
N = N − 2

Φν̇(2)|µ(n−1)|λ̇(2)|µ̇(n−1)
(n−1,n+1) (y, y) = Hλ̇λ̇yµ(n−1)yν̇(2)yµ̇(n−1). (237)

Unlike Equation (226), the number of indices µ and µ̇ in (237) is n− 1, not n− 3. Hence,
there is no need to consider separately the cases of n ≥ 4 and n ≤ 3. Instead, we set n ≥ 2
and then analyze the n = 1 case separately.

Let n ≥ 2. The action of the corresponding Laplace operator on (237) yields

∆N=N−2Φ(n−1,n+1)(y, y) = ∆N<N+2Φ(n−1,n+1)(y, y)︸ ︷︷ ︸
T3(y,y)

+ yαyβ∂α̇∂β̇h β̇
β D α̇

α Φ(n−1,n+1)(y, y)︸ ︷︷ ︸
T4(y,y)

. (238)

The computation is completely analogous to that for the holomorphic two-form. After
projecting onto the irreducible components it gives

∆ΦA(n−1,n+1) = (n2 + n− 4)ΦA(n−1,n+1) , (239a)

∆ΦB(n−1,n+1) = (n2 + 4n− 1)︸ ︷︷ ︸
α(n)

ΦB(n−1,n+1)−(n2 + 4n− 1)︸ ︷︷ ︸
β(n)

ΦB(n+1,n−1) , (239b)

∆ΦC(n−1,n+1) = (n2 + 2n + 1)ΦC(n−1,n+1) . (239c)

Applying once again the result (195) of Section 7.2.3 to (239b), on the r.h.s. of which
the coefficients coincide up to a sign, α(n) = −β(n), we obtain the 2-cocycle of the form
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EB = ΦB(n+1,n−1) + ΦB(n−1,n+1)

= EB
µ(n−1)µ̇(n−1)

(
Hννyν(2)yµ(n−1)yµ̇(n−1) + Hν̇ν̇yµ(n−1)yν̇(2)yµ̇(n−1)) , (240)

that represents the trace part of the Fronsdal equations.
Having considered n ≥ 2, now consider the case of n = 1. Computation of the action

of the Laplace operator on the following two-form:

Φλ̇λ̇|µ̇µ̇

(0,2) (y, y) = Hλ̇λ̇yµ̇yµ̇ (241)

yields

(∆Φ(0,2))
λ̇λ̇|µ̇µ̇(y, y) = 4Hλ̇λ̇yµ̇(2) − 4Hµ̇λ̇yλ̇yµ̇ − 2Hααyαyαϵµ̇λ̇ϵµ̇λ̇. (242)

After projecting onto the irreducible components, we find that the case of n = 1
extends the trace part of the Fronsdal cocycle EB (240) to spin s = 2. In addition, (242) also
contributes to the antiholomorphic part of the Weyl cocycle represented by the second
term on the r.h.s. of (221). The holomorphic part of the latter lies in the opposite (complex-
conjugated) region, in which the analysis is completely analogous. This 2-cocycle represents
the Weyl tensor for the linearized gravity (s = 2) in AdS4.

This completes the analysis of H2(σ−) in the near-diagonal sector N = N ± 2.

7.4. Summary for Bosonic H0,1,2(σ−)

Here we collect the final results for the cocycles associated with the bosonic HS gauge
parameters, fields and field equations in AdS4.

Recall that H0(σ−) represents parameters of the differential HS gauge symmetries. It
is spanned by the zero-forms

F(y, y| x) = Fα(n) α̇(n)(x) yα(n)yα̇(n) , n ∈ N0 . (243)

H1(σ−) represents the dynamical HS fields. For the bosonic HS fields in AdS4 it is
spanned by the two 1-cocycles ϕ(y, y |x) and ϕtr(y, y |x) corresponding, respectively, to the
traceless and trace components of the original Fronsdal field in the metric formalism:

ϕ(y, y |x) = hµµ̇ ∂µ∂µ̇ F1(y, y |x), (244a)

ϕtr(y, y |x) = hµµ̇ yµyµ̇ F2(y, y |x), (244b)

where F1,2(y, y |x) are (N, N)-diagonal, that is(
yα ∂

∂yα
− yα̇ ∂

∂yα̇

)
F1,2(y, y |x) = 0. (245)

Finally, H2(σ−), which represents gauge invariant differential operators on the bosonic
HS fields, are spanned by three different 2-cocycles: the so-called Weyl cocycle W(y, y |x)
and two irreducible components of the Fronsdal cocycle EA(y, y |x) (234) and EB(y, y |x)
(240). The latter correspond to the l.h.s.’s of the dynamical equations for the fields of spin
s > 1 (spin s ≤ 1 field equations are in the zero-form sector of unfolded equations [12]).
Note that these cocycles are real since they contain equal numbers of dotted and undotted
indices.

W(y, y |x) = Hµν∂µ∂νC(y, 0 |x) + Hµ̇ν̇
∂µ̇∂ν̇C(0, y |x) , (246a)

EA(y, y |x) =
(

Hµν∂µ∂ν + Hµ̇ν̇
∂µ̇∂ν̇

)
Cdiag(y, y |x) , (246b)

EB(y, y |x) =
(

Hµνyµyν + Hµ̇ν̇yµ̇yν̇

)
Cdiag(y, y |x), (246c)

where Cdiag(y, y) obey (245).
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8. Fermionic Hs Fields in AdS4

So far, we considered the bosonic case with even grading G = |N − N|. By (160)
odd G corresponds to fields of half-integer spins, i.e., oddness of G determines the field
statistics.

To extend the results for Hp(σ−) to fermionic fields, we first define the operator σ−
on multispinors of odd ranks. In the fermionic case, the lowest possible odd grading is
G = |N − N| = 1. This means that the previously unique lowest grading line on the
(N, N)-plane splits into two separate lines N − N = ±1. Therefore, the definition of σ−
and its conjugated σ+ depends on the lowest grading line. We define the action of σ− to
vanish on the both lines. In all other gradings, σ± is defined analogously to the bosonic
case. Namely,

σ−ω(y, y) := i yα̇hα
α̇∂α ω(y, y), at N ≥ N + 3 , (247a)

σ−ω(y, y) := i yαh α̇
α ∂α̇ ω(y, y), at N ≤ N − 3 . (247b)

Analogously, the operator σ+ is defined as

σ+ω(y, y) := −i yαD α̇
α ∂α̇ ω(y, y), at N ≥ N + 3 , (248a)

σ+ω(y, y) := −i yα̇Dα
α̇∂α ω(y, y), at N ≤ N − 3 . (248b)

For the lowest grading lines N − N = 1 and N − N = −1, σ+ is defined as in the sectors
N ≥ N + 3 and N ≤ N − 3, respectively.

Notice that the action of the fermionic Laplace operator is analogous to that of the
bosonic one (169) with the grading shifted by one, ∆fermionic

G = ∆bosonic
G−1 , except for the

lowest grading. The final result is

• ∆fermionic
N>N+3 = ∆bosonic

N>N+2 = N(N + 2) + yβ∂αhα
γ̇D γ̇

β + yα̇∂β̇hγα̇Dγβ̇ , (249a)

• ∆fermionic
N=N+3 = ∆bosonic

N=N+2 = ∆N>N+2 + yα̇yβ̇∂α∂βhβ

β̇
Dα

α̇ , (249b)

• ∆fermionic
N=N+1 = yα̇∂β̇hγα̇Dγβ̇ − yα̇yβ∂α∂β̇hα

α̇D β̇
β , (249c)

• ∆fermionic
N=N−1 = yα∂βhαγ̇Dβγ̇ − yαyβ̇∂β∂α̇h α̇

α Dβ

β̇
. (249d)

This allows us do deduce the fermionic cohomology from the bosonic one arriving at
the following final results.

8.1. Fermionic H0(σ−)

The space H0(σ−) for fermionic HS fields is spanned by two independent zero-forms
with N − N = ±1 :

H0(σ−) =
{

F(y, y |x) + F(y, y |x) = Fα(n+1),α̇(n)(x) yα(n+1)yα̇(n) + Fα(n),α̇(n+1)(x) yα(n)yα̇(n+1)
}

. (250)

Recall that, from Theorem 3.1, H0(σ−) represents the parameters of differential HS
gauge transformations.

8.2. Fermionic H1(σ−)

In the bosonic case, we had two physically different cocycles in H1 (179a) correspond-
ing to traceless ϕ(y, y |x) and trace ϕtr(y, y |x) parts of the Fronsdal field. These belong to
the diagonal N = N.
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For the fermionic case, the situation is almost analogous. The lowest grading is now
G = |N − N| = 1. So, in this sector, there are four (not two) different 1-cocycles inherited
from the bosonic case: ψ, ψtr, ψ, and ψ

tr and two additional cocycles, ψext, ψ
ext, given by

ψ(y, y |x) = ψµ(n+2),µ̇(n+1)(x) hµµ̇ yµ(n+1)yµ̇(n), (251a)

ψ(y, y |x) = ψµ(n+1),µ̇(n+2)(x) hµµ̇ yµ(n)yµ̇(n+1), (251b)

ψtr(y, y |x) = ψtr
µ(n),µ̇(n−1)(x) hνν̇ yνyµ(n)yν̇yµ̇(n−1), (251c)

ψ
tr
(y, y |x) = ψ

tr
µ(n−1),µ̇(n)(x) hνν̇ yνyµ(n−1)yν̇yµ̇(n), (251d)

ψext(y, y |x) = ψext
µ(n),µ̇(n+1)(x) hν

µ̇ yνyµ(n)yµ̇(n), (251e)

ψ
ext

(y, y |x) = ψ
ext
µ(n+1),µ̇(n)(x) hµ

ν̇ yµ(n)yν̇yµ̇(n) (251f)

with a non-negative integer n (positive for ψtr and ψ
tr). Cocycles ψ, ψtr and ψext belong

to the upper near-diagonal line N = N + 1, whereas ψ, ψ
tr and ψ

ext belong to the lower
near-diagonal line N = N − 1. All of them have a grading of G = 1. ψ and ψ are
mutually conjugated.

These results can be put into the following concise form

ψ(y, y |x) = hµµ̇ ∂µ∂µ̇ F1(y, y |x), (252a)

ψtr(y, y |x) = hµµ̇ yµyµ̇ F2(y, y |x), (252b)

ψext(y, y |x) = hν
µ̇ yν∂µ̇ F3(y, y |x), (252c)

where F1,2(y, y |x) are of the homogeneity degree N − N = 1, i.e.,(
yα ∂

∂yα
− yα̇ ∂

∂yα̇

)
F1,2(y, y |x) = F1,2(y, y |x) , (253)

and F3(y, y |x) is of the homogeneity degree N − N = −1, i.e.,(
yα ∂

∂yα
− yα̇ ∂

∂yα̇

)
F3(y, y |x) = −F3(y, y |x) . (254)

For ψ, ψ
tr and ψ

ext, the results are analogous except that F1,2(y, y |x) as degree N−N = −1
and F3(y, y |x) has degree N − N = 1.

8.3. Fermionic H2(σ−)

According to the same arguments, the fermionic H2 is almost analogous to the bosonic
one. Recall that the bosonic 2-cocycles are represented by three different two-forms: Weyl
tensor, traceless and traceful parts of the generalized Einstein tensors (near diagonal,
G = 3).

The fermionic Weyl cohomology is given by the same formula as the bosonic one:

Wferm(y, y |x) = Hµν ∂µ∂νC(y, 0 |x) + Hµ̇ν̇
∂µ̇∂ν̇C(0, y |x), (255)

where C(y, 0 |x) and C(0, y |x) are polynomials of y and y, respectively.
The two bosonic Fronsdal cocycles (246) were represented by the two zero-forms

Cdiag(y, y) with the support on the diagonal N = N. In the fermionic case the two Fronsdal
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cocycles split into four. The bosonic diagonal polynomial Cdiag(y, y) is replaced by a pair

of near-diagonal Cnear-diag(y, y) and Cnear-diag
(y, y) satisfying the relations(

yα ∂

∂yα
− yα̇ ∂

∂yα̇

)
Cnear-diag(y, y |x) = Cnear-diag(y, y |x), (256a)(

yα ∂

∂yα
− yα̇ ∂

∂yα̇

)
Cnear-diag

(y, y |x) = −Cnear-diag
(y, y |x) (256b)

These support the fermionic 2-cocycles associated with the l.h.s.’s of the fermionic field
equations for spin s ≥ 3/2 massless fields as follows

E ferm
A (y, y |x) =

(
Hµν∂µ∂ν + Hµ̇ν̇

∂µ̇∂ν̇

)
Cnear-diag(y, y |x), (257a)

E ferm
A (y, y |x) =

(
Hµν∂µ∂ν + Hµ̇ν̇

∂µ̇∂ν̇

)
Cnear-diag

(y, y |x), (257b)

E ferm
B (y, y |x) =

(
Hµνyµyν + Hµ̇ν̇yµ̇yν̇

)
Cnear-diag(y, y |x), (257c)

E ferm
B (y, y |x) =

(
Hµνyµyν + Hµ̇ν̇yµ̇yν̇

)
Cnear-diag

(y, y |x) . (257d)

As in the case of 1-forms, additional cocycles appear in the cohomology

E ferm
C (y, y |x) = Hµνyµ∂νCnear-diag(y, y |x), (258a)

E ferm
C (y, y |x) = Hµ̇ν̇yµ̇∂ν̇Cnear-diag

(y, y |x) . (258b)

9. Conclusions

In this paper, free unfolded equations for massless HS fields are analyzed in detail in
terms of σ− cohomology. This is done both in flat space of arbitrary dimension in the tensor
formalism for bosonic fields and in AdS4 in the spinor formalism for both bosonic and
fermionic fields. Not surprisingly, the final results agree with those stated long ago in the
original papers [12,15]. Our aim is to present the detailed analysis of the σ− cohomology
providing an exhaustive proof of the so-called First On-Shell Theorem of the form of free
unfolded HS equations, allowing the interested reader to check every step.

In the tensor case the full set of cohomology groups Hp(σ−) was found both for the
groups GL(d) and O(d). Our results for GL(d) and p < 3 coincide with those found
in [16]. For the O(d) case of traceless fields lower cohomology groups matched against
those in [16–18]. In AdS4 we used spinor formalism to analyze H0,1,2(σ−) for both bosonic
and fermionic HS fields. To the best of our knowledge such analysis was not available in
the literature.

Practically, to compute Hk(σ−) in both Minkd and AdS4 cases we used the ana-
logue of the Hodge theorem. Namely, the problem of finding the cohomology Hk(σ−) =
ker(σk

−)/im(σk−1
− ) was reduced to the calculation of the kernel of an appropriate positive-

definite Laplace-Hodge operator ∆ invariant under the action of compact version of the
space-time symmetry algebra. This technique was shown to be lucid and efficient. Having
found the cohomology groups Hk(σ−) for k = 0, 1, 2, in accordance with [13] we obtained
the exhaustive information about the differential HS gauge parameters, dynamical HS
gauge fields and their field equations. Thus, we have explicitly proven the so-called First
On-Shell Theorem for bosonic HS fields in Minkd (which case is straightforwardly extend-
able to AdSd) and all massless fields in AdS4. The technique used in this paper can be
further applied to the calculation of Hp(σ−) in the zero-form sector of HS fields studied
in [13,22] that describes dynamics of a scalar field and s = 1 particle as well as to more
general systems considered in [44–46]. One of the byproduct results of this paper is the
interpretation of the matching between σ− cohomology of the one-form sector against
zero-form sector expressing the matching between Bianchi identities in the two sectors.
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Appendix A

Appendix A.1. Index Conventions

Since most of the tensors encountered in the course of this paper are Young tensors in
the symmetric basis, it is convenient to accept the following notation.

A tensor without a certain type of index symmetry will be denoted as Ta|b|c|.., where
the vertical line | separates groups of indices not related by any symmetries to each other.

A tensor that has a symmetric set of n indices, say, (a1, a2, . . . , an) will be denoted
Ta(n)|... ≡ T(a1a2 ...an)|.... A tensor corresponding to a certain Young diagram in the symmetric
basis then has the form: Ta(n),b(m),c(k),....

Symmetrization over n indices is performed by the formula Sym = 1
n! ∑all permutations.

We will denote all symmetrized tensor indices by the same letter. For example,

Ta(n)|a ≡ 1
(n + 1)! ∑

σ∈Sn+1

Tσ(a1..an |an+1) . (A1)

In Section 5 we omit Y, Z, θ and assume that all indices are contracted with the
corresponding variables.

The rules for raising and lowering sl(2)-indices are

Aα = Aβϵβα, Aα = ϵαβ Aβ, ϵαβϵγβ = ϵ
γ

α = δ
γ

α = −ϵ
γ
α

with
ϵαβ = −ϵβα, ϵ12 = 1.

Appendix A.2. Coefficients in the Tensor form of the Diagram (n− 1, m− 1; p− 2)

α1 = (−3+n)(−2+n)(−1+n)(−3+d+2n)
(−5+d+m+n)(−4+d+m+n)(−4+d+2n)(d2+d(−8+m+3n)−2(−8+m+m2+7n−3mn)) , (A2)

α2 = (−2+n)(−1+n)
(−4+d+m+n)(−4+d+2n) , (A3)

α3 = − 2(−2+n)(−1+n)(−3+d+2n)
(−4+d+m+n)(−4+d+2n)(d2+d(−8+m+3n)−2(−8+m+m2+7n−3mn)) , (A4)

α4 = 2(1+m−n)(−2+n)(−1+n)(−3+d+2n)
(−5+d+m+n)(−4+d+m+n)(−4+d+2n)(d2+d(−8+m+3n)−2(−8+m+m2+7n−3mn)) , (A5)

α5 = (−1+n)(−3+d+m+n)
(−4+d+m+n)(−4+d+2n) , (A6)

α6 = − (−2+d+2m)(−1+n)
(−4+d+2n)(d2+d(−8+m+3n)−2(−8+m+m2+7n−3mn)) , (A7)

α7 = (−1+n)(−3+d+2n)(16+d2−7m−9n+2d(−4+m+n)+(m+n)2)
(−5+d+m+n)(−4+d+m+n)(−4+d+2n)(d2+d(−8+m+3n)−2(−8+m+m2+7n−3mn)) , (A8)

α8 = − (−1+n)
(−4+d+m+n) , (A9)

α9 = 2(−1+n)(−3+d+2n)
(−4+d+m+n)(d2+d(−8+m+3n)−2(−8+m+m2+7n−3mn)) , (A10)
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α10 = − (−3+d+2n)
d2+d(−8+m+3n)−2(−8+m+m2+7n−3mn) , (A11)

α11 = − (−4+d+2m)(−1+n)(−3+d+2n)
(−5+d+m+n)(−4+d+m+n)(d2+d(−8+m+3n)−2(−8+m+m2+7n−3mn)) , (A12)

α12 = (14+d2−6n+2m(−5+m+n)+d(−8+3m+n))
(−4+d+m+n)(d2+d(−8+m+3n)−2(−8+m+m2+7n−3mn)) . (A13)
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