
symmetryS S

Article

Linearizability of 2:−3 Resonant Systems with
Quadratic Nonlinearities

Maja Žulj 1,†, Brigita Ferčec 1,2,3,† and Matej Mencinger 4,5,*,†

����������
�������

Citation: Žulj, M.; Ferčec, B.;
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Abstract: In this paper, the linearizability of a 2:−3 resonant system with quadratic nonlinearities is
studied. We provide a list of the conditions for this family of systems having a linearizable center.
The conditions for linearizablity are obtained by computing the ideal generated by the linearizability
quantities and its decomposition into associate primes. To successfully perform the calculations,
we use an approach based on modular computations. The sufficiency of the obtained conditions is
proven by several methods, mainly by the method of Darboux linearization.

Keywords: polynomial systems of ODEs; linearizability problem; linearizability quantities; Darboux
linearization; p:−q resonant system

1. Introduction

The linearizability problem of a 1:−1 resonant system is intimately connected to the
isochronicity problem, where we assume that the singularity in question is known to be a
center and determine whether it is isochronous, that is, whether every periodic solution in
a neighborhood of the origin has the same period [1]. This phenomena is closely related to
the mirror symmetry if considered in the physical plane. The history of isochronicity goes
back to the clocks based on some periodic motion (such as the swinging of a pendulum).
In the 17th century, Huygens designed a pendulum clocks with cycloidal “cheeks”, which
is probably the earliest example of a nonlinear isochronous system. Then, in second half of
20th century, the interest of isochronicity in planar systems of ODEs was renewed. Both the
isochronicity problem and linearizability problem represent very important problems in
dynamical systems, which describes real-life phenomena in different branches of science,
such as biochemistry, biology, physics, engineering, etc.

There are several methods on how to study the linearizability problem. An interesting
approach is based on Lie symmetries [2]. Lie proved that the necessary and sufficient
conditions for a scalar nonlinear ODEs to be linearizable is that it must have eight Lie
point symmetries [3,4]. In [5], the authors considered linearizability of systems of ODEs
obtained by complex symmetry analysis. In this paper, for a certain type of systems, i.e.,
p:−q resonant systems, we use approach based on computation of linearizability quantities.

The linearzability problem is one of the main problems in the qualitative theory
of ODEs, and it is closely connected to the center problem. The p:−q resonant center
problem is a generalization of the center problem to complex systems: in the context that
classical center problem for complex systems may be referred as the 1:−1 resonant center
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problem, which can be obtained as a complexification [1] of the real systems. Note that the
complexification is based on the involution of complex numbers for which the geometric
meaning is the mirror reflection of the complex plane over the real axis.

A generalization of the classical center problem to a p:−q resonant center problem
was proposed in [6] to the following differential systems in C2

ẋ = px + P(x, y), ẏ = −qy + Q(x, y), (1)

where p, q ∈ N, gcd(p, q) = 1, and P(x, y) and Q(x, y) are polynomials of the form

P(x, y) = P(a, x, y) = ∑
j+k≥1

j≥−1, k≥0

ajkxj+1yk

and
Q(x, y) = Q(b, x, y) = ∑

j+k≥1
j≥−1, k≥0

bkjxkyj+1.

The elementary singular point O(0, 0) of system (1) is called a p:−q resonant center if
there exists a formal first integral of the form

Ψ(x, y) = xqyp + ∑
j+k≥p+q+1
j,k∈ Z, j,k≥0

φj−q,k−pxjyk. (2)

In [6], system (1) is considered for p = 1 and q = 2 and with P(x, y) and Q(x, y) being
quadratic polynomials. The case when P(x, y) and Q(x, y) are quadratic polynomials has
been studied also by several other authors; in particular, the solution of the 1:−3 resonant
center problem can be found in [7] and that of the 1:−4 resonant center problem can be
found in [8]. Some results are also obtained for P(x, y) and Q(x, y) for cubic, (homogeneous)
quartic, and quintic polynomials.

System (1) is linearizable if and only if there exist a formal change of coordinates that
transforms system (1) to the linear system

ẋ = px, ẏ = −qy.

One of the methods to obtain conditions for linearizizability of the classical center
(i.e., p = q = 1) is to compute the so-called linearizability quantities (see [1]). A similar
idea (see preliminaries for details) can be applied for systems (1). The computations for
linearizability quantities for systems (1) become demanding with increasing values of p
and q, and degrees of polynomials P and Q. Therefore, the linearizability problem for the
system (1) only for some special families of polynomial systems have been investigated.

In [9], the linearizability problem for a 1:−2 resonant quadratic system (1) was con-
sidered and the authors also generalized the results to the linearizability of 1:−λ resonant
systems for continuous values of λ, but they did not present the exhaustive list of pos-
sibilities. The linearizability problem of 1:−3 resonant quadratic systems of the form (1)
was solved in [10], and the linearizablity problem of the 1:−3 resonant system with homo-
geneous cubic nonlinearities was solved in [11]. In [12], the authors listed the necessary
and sufficient conditions for linearizable 2:−q and p:−2 resonant centers for q, p ∈ N+,
but they considered only Lotka–Volterra systems with quadratic nonlinearities. In [13],
the authors gave some new sufficient conditions for linearizable Lotka–Volterra systems.
Lotka–Volterra systems were investigated also in [14], where all conditions for linearizable
systems with 3:−4 and 3:−5 resonance were listed. Later in [15], the authors considered a
3:−q linearizable resonant system, where q is an arbitrary positive integer.
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In this paper, the linearizability problem for system (1) with p = 2, q = 3, and
deg(P (x, y), Q(x, y)) = 2, i.e.,

ẋ = 2x− a10x2 − a01xy− a−12y2,

ẏ = −3y + b2,−1x2 + b10xy + b01y2
(3)

is considered. In the rest of the paper, we first consider some theoretic results needed for
proving the main results. We present the theory of the linearizability problem, which also
includes the computation of linearizability quantities. Next, we state the Darboux theory
of linearizability for p:−q resonant systems, which is an straightforward generalization
from 1:−1 resonant systems, and give the proofs to justify the proposed generalization.
Finally, we present the conditions for linearizability of systems (3).

2. Preliminaries

By means of a change of coordinates

x = x1 + ∑
k1+k2>1

h(k1,k2)
1 xk1

1 yk2
1 ,

y = y1 + ∑
k1+k2>1

h(k1,k2)
2 xk1

1 yk2
1

(4)

system (1) can be transformed into its normal form

ẋ1 = px1 + x1

∞

∑
j=1

X(jq+1,jp)(xq
1yp

1 )
j,

ẏ1 = −qy1 + y1

∞

∑
j=1

Y(jq,jp+1)(xq
1yp

1 )
j.

(5)

Definition 1. System (1) is linearizable (i.e., there is a linearizable center at the origin), if and only
if there exists an analytic change of coordinates of the form (4) that reduces (1) to the system

ẋ1 = px1, ẏ1 = −qy1. (6)

We see that system (1) is linearizable at the origin if the coefficients X(jq+1,jp), Y(jq,jp+1)

of the normal form (5) are zero for all j ∈ N.
Instead of directly constructing a transformation that changes system (1) to its normal

form (5) and then imposing that X(jq+1,jp) = Y(jq,jp+1) = 0, we look for an inverse of such
transformation (see [1])

x1 = x +
∞

∑
j+k=2

cj−1,kxjyk,

y1 = y +
∞

∑
j+k=2

dj,k−1xjyk,
(7)

which changes the linear system (6) into system (1).
After computing derivatives with respect to t in each part of (7), applying (1) and

(6), we equate coefficients of the terms xk1+1yk2 and xk1 yk2+1 on each side of the equalities.
This yields the following recurrence formulas:

(pk1 − qk2)ck1,k2 =
k1+k2−1

∑
n+`=0

[
(n + 1)ak1−n,k2−` − ` · bk1−n,k2−`

]
cn,`, (8)
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(pk1 − qk2)dk1,k2 =
k1+k2−1

∑
n+`=0

[
n · ak1−n,k2−` − (`+ 1)bk1−n,k2−`

]
dn,`. (9)

To initialize the calculations, we set c0,0 = d0,0 = 1, c−1,1 = d−1,1 = 0, and ajk = bkj = 0
if j + k < 1. The recurrence formulas (8) and (9) are used to compute coefficients ck1,k2
and dk1,k2 for (k1, k2) ∈ N−q ×N−p of the transformation (7). At the first step, we find all
ck1,k2 and dk1,k2 for which k1 + k2 = 1; at the second step, we find all coefficients for which
k1 + k2 = 2, etc. As long as pk1 − qk2 6= 0, the process is successful and ck1,k2 and dk1,k2 are
uniquely determined by (8) and (9). We note that ck1,k2 and dk1,k2 are polynomial functions
of the coefficients (a, b) of system (1), i.e., ck1,k2 = ck1,k2(a, b) and dk1,k2 = dk1,k2(a, b).

At every (p + q)th stage, when pk1 − qk2 = 0 (k1 = kq and k2 = kp), coefficients ck1,k2
and dk1,k2 cannot be computed using (8) and (9). In this case, we can chose them arbitrarily,
and usually, the choice is ckq,kp = dkq,kp = 0. Then, we denote the polynomials on the
right-hand side of (8) by Ikq,kp and on the right-hand side of (9) by Jkq,kp, i.e.,

Ikq,kp =
kq+kp−1

∑
n+`=0

[
(n + 1)akq−n,kp−` − ` · bkq−n,kp−`

]
cn,`, (10)

Jkq,kp =
kq+kp−1

∑
n+`=0

[
n · akq−n,kp−` − (`+ 1)bkq−n,kp−`

]
dn,`. (11)

We call Ikq,kp and Jkq,kp the kth linearizability quantities of polynomial system (1). Clearly,
Ikq,kp and Jkq,kp are polynomials in the coefficients (a, b), Ikq,kp = Ikq,kp(a, b), and Jkq,kp =
Jkq,kp(a, b), implying that system (1) is linearizable on condition that

Ikq,kp(a, b) = Jkq,kp(a, b) = 0, ∀k ∈ N.

Thus, we need to find the affine variety (variety of the ideal generated by polynomials
f1, . . . fs is the set V(〈 f1, . . . fs〉) = {(a1, . . . an) ∈ kn : f j(a1, . . . an) = 0, for every j =
1, . . . , s} ) V(L) of the ideal

L =
〈

Iq,p, Jq,p, I2q,2p, J2q,2p, I3q,3p, J3q,3p, . . .
〉
.

Hilbert Basis Theorem (see, e.g., [16]) ensures that every ideal L is finitely generated,
which means that every ascending chain of ideals eventually stabilizes. Consequently, to
attain p:−q resonant systems (1) with linearizable center at the origin we first compute
some linearizability quantities and thereafter find irreducible decomposition of the variety
of the ideal generated by obtained linearizability quantities.

Once the decomposition of variety associated with the ideal of L is determined in
order to prove the sufficiency of the obtained conditions, for each system satisfying the
conditions of the corresponding component of the decomposition of the variety, one needs
to find the linearizing transformation that transforms the system into the linear system
(6). One of the most efficient tools to find the linearizing transformation is the Darboux
linearization, which is well known for 1:−1 systems [9]. In the next section, we give
a generalization of this theory to p:−q resonant systems based on analogy, where we
summarize some results from [9,11] and generalize some results of Darboux linearization
theory for 1:−1 resonant systems from [1].

3. Darboux Linearization for p:−q Resonant Systems

First, recall some notation related to the Darboux theory. We consider systems

ẋ = P(x, y), ẏ = Q(x, y), (12)
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where x, y ∈ C, P and Q are polynomials without constant terms having no nonconstant
common factor. By D, we denote the corresponding vector field of system (12)

D :=
∂

∂x
P +

∂

∂y
Q.

Definition 2. A nonconstant polynomial f (x, y) ∈ C[x, y] is called an algebraic partial integral
(also Darboux factor) of system (12) if there exists a polynomial K(x, y) ∈ C[x, y] such that

D f =
∂ f
∂x

P +
∂ f
∂y

Q = K f .

The polynomial K is called a cofactor of f , and it is of the degree at most m − 1, where
m = max(deg(P), deg(Q)).

A simple computation shows that, if there are algebraic partial integrals f1, f2, . . . , fk
with the cofactors K1, K2, . . . , Kk satisfying

k

∑
i=1

αiKi = 0,

then H = f α1
1 · · · f αk

k , is a Darboux first integral of (12) and, if

k

∑
i=1

αiKi + P′x + Q′y = 0,

then
M = f α1

1 · · · f αk
k (13)

is the Darboux integrating factor of (12).
When proving the integrability of a 1:−q resonant system, one can also use the

following subresult proven in ([9], Theorem 4.13).

Remark 1. Let M be of the form (13) and denotes a local (reciprocal) integrating factor with fi
being analytic in x and y and αi 6= 0. System (12) with p = 1 and q ∈ R+ admitting M is
integrable if q 6= 0 is rational and if at most one fi(0, 0) vanishes and the corresponding algebraic
partial integral has one of the forms: fi(x, y) = x + o(x, y) or fi(x, y) = y + o(x, y).

Next, we consider Darboux linearization for p:−q resonant systems (1).

Definition 3. A Darboux linearization of a polynomial system of the form (1) is an analytic change
of coordinates

x1 = Z(x, y), y1 = W(x, y)

in which inverse linearizes (1), i.e., it changes system (1) to the linear system

ẋ1 = px1, ẏ1 = −qy1,

and Z(x, y) and W(x, y) are of the form

Z(x, y) =
m

∏
j=0

f
αj
j (x, y) = x + Z1(x, y),

W(x, y) =
n

∏
j=0

g
β j
j (x, y) = y + W1(x, y),
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where f j, gj ∈ C[x, y], αj, β j ∈ C and polynomials Z1 and W1 begin with terms of order at least
two. A system is Darboux linearizable if it admits a Darboux linearization.

Theorem 1. A fixed system of the form (1) is called Darboux linearizable if and only if there
exist k + 1, for k ≥ 0, algebraic partial integrals f0, f1, . . . , fk with corresponding cofactors
K0, K1, . . . , Kk and l + 1, for l ≥ 0, algebraic partial integrals g0, g1, . . . , gl with corresponding
cofactors L0, L1, . . . , Ll with the properties listed below:

(i) f0(x, y) = x + . . . and f j(0, 0) = 1 for j ≥ 1;
(ii) g0(x, y) = y + . . . and gj(0, 0) = 1 for j ≥ 1;
(iii) There are k + l constants α1, α2, . . . , αk, β1, β2, . . . , βl ∈ C, s.t.

K0 + α1K1 + . . . + αkKk = p and L0 + β1L1 + . . . + βl Ll = −q. (14)

Then, the Darboux linearization is given by

x1 = Z(x, y) = f0 f α1
1 . . . f αk

k , y1 = W(x, y) = g0gβ1
1 . . . gβl

l .

Proof. For two smooth functions f and g vector field D is a derivation

D( f g) = gD( f ) + f D(g),

D
(

f
g

)
=

gD( f )− f D(g)
g2 ,

(15)

which may be verified using straightforward computations.
Now, we assume that, for a system (1), there are k + 1 ≥ 1 algebraic partial integrals

f0, f1, . . . , fk and l + 1 ≥ 1 algebraic partial integrals g0, g1, . . . , gl fulfilling conditions
(i)–(iii). The mapping

x1 = Z(x, y) = f0 f α1
1 . . . f αk

k , y1 = W(x, y) = g0gβ1
1 . . . gβl

l , (16)

is constructed to be analytic. By the Inverse function Theorem, (16) admits an analytic
inverse x = Z(x1, y1), y = W(x1, y1) in some neighborhood of the origin in C2.

The differentiation of the first equation in (16) with the respect to t gives

ẋ1 = D( f0 f α1
1 . . . f αk

k ) =

= D( f0) f α1
1 . . . f αk

k +
k

∑
i=1

f0 f α1
1 . . . f αi−1

i−1 αi f αi−1
i D( fi) f αi+1

i+1 . . . f αk
k =

= K0 f0 f α1
1 . . . f αk

k +
k

∑
i=1

αiKi f0 f α1
1 . . . f αk

k =

= f0 f α1
1 . . . f αk

k (K0 + K1α1 + . . . + αkKk) =

= x1(K0 + α1K1 + . . . + αkKk).

(17)

Condition ẋ1 = px1 yields the left expression of (14).
Similarly, the differentiation of the second equation in (16) with the respect to t gives

ẏ1 = −qy1. Therefore, the system (1) can be linearized by the transformation (16).

Note that some algebraic partial integrals may be used as f j or as gj.
Next two theorems help us to construct the linearizing transformation for polynomial

system (1) even, if one is not able to find enough (see Theorem 1) algebraic partial integrals.
This is possible, if the existence of the first integral of the system is ensured. This makes
sense, since a resonant center at the origin is assumed. However, we have to find enough
algebraic partial integrals satisfying one or the other conditions of (14).
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Theorem 2. Suppose system (1) has a resonant center at the origin; hence, it admits a formal
first integral ψ(x, y) of the form (2) and there exist algebraic partial integrals f0, f1, . . . , fk that
meet condition (i) in Theorem 1 and that satisfy the first equation of (14). The system (1) is then
linearized by the transformation

x1 = Z(x, y) = f0

k

∏
i=1

f αi
i = x + . . .

y1 = W(x, y) =
(

ψ

(Z(x, y))q

) 1
p
= y + . . .

(18)

Proof. Recall that, if there exists a formal first integral ψ of the form (2), then there exists
an analytic first integral of the same form ([1], Corollary 3.2.6), which we still denote by ψ.
By the condition (i) of Theorem 1, transformation (18) is analytic and it admits an analytic
inverse in some neighborhood of the origin. The computation (17) is valid and yields
ẋ1 = D(Z) = pZ = px1. Then, (15) and the fact that ψ is a first integral yield

ẏ1 =
1
p

(
ψ

Zq

) 1
p−1 ZqD(ψ)− ψqZq−1D(Z)

Z2q =

=
1
p

(
ψ

Zq

) 1
p Zq

ψ
· −ψqZq−1 pZ

Z2q = −q
(

ψ

Zq

) 1
p
= −qy1.

For the analogous theorem, we omit the proof.

Theorem 3. Suppose that system (1) has a resonant center at the origin; hence, it admits a formal
first integral ψ(x, y) of the form (2) and that there exist algebraic partial integrals g0, g1, . . . , gl
that meet condition (ii) in Theorem 1 and that satisfy the second equation in (14). The system (1) is
then linearized by the transformation

x1 = Z(x, y) =
(

ψ

(W(x, y))p

) 1
q
= x + . . .

y1 = W(x, y) = g0

l

∏
i=1

gβi
i = y + . . .

(19)

4. The Linearizability Conditions

In this section, we present conditions for linearizability of the 2:−3 resonant family of
quadratic systems (3).

Theorem 4. System (3) is linearizable if one of the following conditions is fulfilled:

(1.) b10 = b2,−1 = 0;
(2.) b01 + 3a01 = a−12 = b10 = 0;
(3.) b10 = a−12 = a10 = 2a01 + b01 = 0;
(4.) b10 = a−12 = a10 = a01 +

5b01
6 = 0;

(5.) b2,−1 = a−12 = a10 + b10 = a01 + b01 = 0;
(6.) 256b01b2,−1 − 189b2

10 = 243b10a−12 + 64b2
01 = 16a10 + 17b10 = 9a01 + 7b01 = 0;

(7.) a−12 = a10 + 2b10 = a01 +
4b01

3 = 0;
(8.) b2,−1 = a10 + 2b10 = 0;
(9.) a−12 = a01 = 0;
(10.) b2,−1 = a10 − b10 = a−12b10 + 6a2

01 − 2a01b01 = 0;
(11.) b2,−1 = a10 − 2b10 = a01 = 0;

(12.) b2,−1 = a−12b10 −
b2

01
3 = a10 +

2b10
3 = a01 +

b01
3 = 0;
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(13.) 3b2
10

4 + b01b2,−1 = a−12 = a10 +
b10
2 = a01 − b01 = 0;

(14.) b2,−1b01 +
112b2

10
27 = a−12b10 +

3b2
01

16 = a10 + 2b10 = a01 − b01
3 = 0;

(15.) b2,−1b01 −
7b2

10
3 = a−12b10 +

12b2
01

49 = a10 − 3b10 = a01 − 2b01
21 = 0;

(16.) − 108b2
10

7 + b01b21 = − 7b2
01

81 + a−12b10 = a10 − 26b10
7 = a01 +

2b01
9 = 0;

(17.) b2,−1b01 −
63b2

10
2 = a−12b10 +

b2
01

27 = a10 +
19b10

2 = a01 +
b01
2 = 0;

(18.) 36b01b2,−1 + 91b2
10 = 169b10a−12 − 33b2

01 = 12a10 + 29b10 = 13a01 + 9b01 = 0;
(19.) 36b01b2,−1 + 91b2

10 = 169b10a−12 − 48b2
01 = a10 + 2b10 = 13a01 + 4b01 = 0;

(20.) 676b01b2,−1 + 231b2
10 = 121b10a−12 − 52b2

01 = 13a10 + 11b10 = 33a01 + 4b01 = 0;
(21.) 256b01b2,−1 + 161b2

10 = 529b10a−12 − 48b2
01 = 16a10 + 27b10 = 23a01 + 24b01 = 0;

(22.) 7b01b2,−1 + 192b2
10 = 64b10a−12 + 7b2

01 = 7a10 − 46b10 = 2a01 + b01 = 0.

(23.) a01b2,−1 − 7a10b10
9 +

8b01b2,−1
15 +

14b2
10

45 = a2
10 − 8a10b10 +

27b01b2,−1
35 +

239b2
10

20 =

a01a10 − a01b10 +
a10b01

6 +
11a−12b2,−1

14 − 2b01b10
3 = − 63a2

01b10
5 − 21a01b01b10

10 + 14a10a−12b10
15 −

7a10b2
01

15 + a−12b01b2,−1 −
427a−12b2

10
30 +

28b2
01b10
15 = − 7a10b01b2,−1

15 +
98a10b2

10
15 + a−12b2

2,−1 −
14b01b10b2,−1

15 − 343b3
10

30 = − 63a01b2
10

10 + a10a−12b2,−1− 7a10b01b10
5 − 7a−12b10b2,−1 +

9b2
01b2,−1

25 +
371b01b2

10
100 = a3

01 +
a2

01b01
3 + 19a01a−12b10

18 − a01b2
01

12 −
5a10a−12b01

81 +
11a2
−12b2,−1
189 + 53a−12b01b10

324 = 0;

(24.) −15a10b10 + b01a2,−1 + 51b2
10 = 37a01b10

7 + a10b01− 10b01b10
3 = a01b01− 37a−12b10

2 +
5b2

01
3 =

6a01b10 + a−12a2,−1 = a01a2,−1 + 4a10b10 − 15b2
10 = a10a−12 + 4a−12b10 −

2b2
01

3 = a2
10 −

57a10b10
7 +

349b2
10

21 = a01a10 − 101a01b10
21 − b01b10

9 = a2
01 +

31a−12b10
6 − 4b2

01
9 = 111a01a−12b10

14 −
11a−12b01b10 + b3

01 = 0;

(25.) − 170a01b01
231 + a10a−12 +

29a−12b10
21 − 18b2

01
77 = a01a10 +

3a01b10
2 + a10b01

6 +
11a−12a2,−1

24 − 2b01b10
3

= a2
01 +

25a01b01
42 − 121a−12b10

84 +
b2

01
14 = a01b01a2,−1 +

15a01b2
10

7 +− 11
7 a10b01b10 +

33a−12b10a2,−1
4 +

3b2
01a2,−1

7 +
8b01b2

10
7 = − 1020a01b10a2,−1

77 +
24a2

10b10
7 − 4a10b01a2,−1

7 +
24a10b2

10
7 +

a−12a2
2,−1 −

544b01b10a2,−1
77 − 48b3

10
7 = 20a01a−12b10

77 − 96a01b2
01

539 + a2
−12a2,−1 +

192a−12b01b10
539

− 16b3
01

539 = a01a−12a2,−1 +
46a01b01b10

147 +
3a−12b01a2,−1

7 +
55a−12b2

10
147 − 6b2

01b10
49 = −6a3

10b10 +

a2
10b01a2,−1 −

100a2
10b2

10
7 + 55

7 a10b01b10a2,−1 +
26a10b3

10
7 +

b2
01a2

2,−1
7 + 34b01b2

10a2,−1 +
116b4

10
7 = 0.

Proof. Following the approach described in Section 2 using computer algebra system Mathe-
matica, we compute the first four pairs of linearizability quantities

{
I3k,2k, J3k,2k : k = 1, 2, 3, 4

}
.

We present only the first pair of linearizability quantities:

I3,2 =
1

155232
(−21252a3

01a10b2,−1 − 31416a3
01b10b2,−1 − 6468a2

01a2
10b10

− 18172a2
01a10b01b2,−1 − 25872a2

01a10b2
10 − 25857a2

01a−12b2
2,−1

− 16016a2
01b01b10b2,−1 − 25872a2

01b3
10 + 1113a01a2

10a−12b2,−1

+ 6468a01a2
10b01b10 − 39382a01a10a−12b10b2,−1

− 3696a01a10b2
01b2,−1 + 12936a01a10b01b2

10

− 19812a01a−12b01b2
2,−1 − 75236a01a−12b2

10b2,−1

+ 1617a3
10a−12b10 − 84a2

10a−12b01b2,−1 + 1617a2
10a−12b2

10

+ 396a10a2
−12b2

2,−1 + 4704a10a−12b01b10b2,−1 − 6468a10a−12b3
10

− 22308a2
−12b10b2

2,−1 − 3648a−12b2
01b2

2,−1 − 2016a−12b01b2
10b2,−1

− 6468a−12b4
10),
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J3,2 =
1

232848
(27720a3

01a10b2,−1 + 51282a3
01b10b2,−1

+ 33264a2
01a10b01b2,−1 + 29106a2

01a10b2
10 + 42012a2

01a−12b2
2,−1

+ 62370a2
01b01b10b2,−1 + 58212a2

01b3
10 − 10080a01a2

10a−12b2,−1

− 19404a01a2
10b01b10 + 27405a01a10a−12b10b2,−1

+ 8008a01a10b2
01b2,−1 − 29106a01a10b01b2

10

+ 55332a01a−12b01b2
2,−1 + 166950a01a−12b2

10b2,−1

+ 17864a01b2
01b10b2,−1 + 19404a01b01b3

10 − 1680a2
10a−12b01b2,−1

− 4851a2
10a−12b2

10 − 10032a10a2
−12b2

2,−1

− 25424a10a−12b01b10b2,−1 + 49236a2
−12b10b2

2,−1

+ 14688a−12b2
01b2

2,−1 + 34832a−12b01b2
10b2,−1 + 19404a−12b4

10),

and the others are too long to be presented in this paper.
Next, we compute the irreducible decomposition of the variety of the ideal

I =
〈

I3k,2k, J3k,2k : k = 1, 2, 3, 4
〉

in order to obtain a set of necessary conditions for linearizability. The computational
tool that we use is the routine minAssGTZ [17] (which finds the minimal associate primes
of a polynomial ideal using the algorithm by Gianni, Trager, and Zacharias [18]) of the
computer algebra system SINGULAR [19]. Since computations are too laborious they can
not be completed in the field of rational numbers. Therefore, we follow the algorithm
based on modular computations [10,20], and we replace the ring Q[a,b] by the ring Zp[a,b],
where a = (a10, a01, a−12), b = (b2,−1, b10, b01), and p is some prime number. The most
difficult step of this algorithm is to realize that all points of the variety V(I) were found.
All of the encountered points belong to the decomposition of V(I), but we do not know
whether the given decomposition is complete. Thus, the proof of the completeness of the
decomposition is not given exactly (over the field of characteristic zero), but the probability
of the opposite event is extremely low (see the estimation in [6], where the Faugére method
[21] is used).

We choose prime p = 32, 003 and compute the decomposition of I over Z32,003. We
obtain 25 ideals. Then, we perform rational reconstruction algorithm to obtain ideals
P1, . . . , P25 in Q[a, b]. For instance, we find that one of the component is b10 = a−12 =
a01 + 10, 668b01 = 0. Performing the rational reconstruction using Mathematica, we obtain
10, 668 ≡ 1

3 mod 32, 003. Therefore, the corresponding component over characteristic
zero is b10 = a−12 = a01 +

1
3 b01 = 0. Then, we check by a direct computation using

Mathematica if the 8 linearizability quantities from I are zero under each of the obtained
conditions. It turns out that they are all zero. To check if some conditions in computations
over the field of characteristic “32,003” were lost, we first compute intersection P =
25⋂

i=1
Pi over the field of characteristic zero. We obtain 50 polynomials p1, . . . , p50. We

want to check if
√

I =
√

P. Computing over the field of characteristic zero Gröbner
basis of each ideal

〈
1− wI3k,2k, P : k = 1, 2, 3, 4

〉
and

〈
1− wJ3k,2k, P : k = 1, 2, 3, 4

〉
with w,

a new variable, we find that they are all equal to {1}, implying that
√

I ⊂
√

P. To
check the opposite inclusion,

√
P ⊂

√
I, we need to use computations with modular

arithmetic. We choose prime “32,003”, and after computing the Gröbner basis of each ideal
〈1− wpk, I : k = 1, . . . , 50〉, where pk ∈ P over the field Z32,003, we find that they are not all
{1}. Thus, we assume that not all points of V(I) were found. In such a case, we have to
repeat the calculations with another prime. We repeat the calculations with three more
(larger) primes, “1,548,586”, “179,595,127”, and “479,001,599”. It turns out that, in the case
of “1,548,586” and “179,595,127”, we arrive at the same troubles as with “32,003”, i.e., some
points of V(I) are lost in the computation. Anyway, computing the decomposition over
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Z479,001,599 yields 25 components. After performing rational reconstruction algorithm, we
obtain 25 ideals P1, . . . , P25 that give components of Theorem 4 and we check that, under
each component, all linearizability quantities from I are zero. Then, computing intersection

P =
25⋂

i=1
Pi over the field Q yields 85 polynomials p1, . . . , p85. Similar to that above for

“32,003”, we easily check
√

I ⊂
√

P. To check the opposite inclusion
√

P ⊂
√

I, we need
to use computations with modular arithmetics. We performed computations using two
primes, p = 32, 003 and p = 479, 001, 599, and in both cases, we find that the Gröbner
basis of ideal 〈1− wpk, I : k = 1, . . . , 85〉 is {1} for each k = 1, . . . , 85. We can conclude
that equality

√
P =
√

I holds with high probability. However, since still there is a small
probability that some points are lost, we say in the statement of Theorem 4 “if” and not “if
and only if”.

Next, we prove the sufficiency of each component.
Case (1) In the first case, the corresponding system is written as

ẋ = 2x− a10x2 − a01xy− a−12y2,

ẏ = −3y + b01y2,
(20)

for which we obtain two algebraic partial integrals

g1 = y and g2 = 1− b01y
3

with corresponding cofactors K1 = −3 + b01y and K2 = b01y. Apparently, the equation
K1 + aK2 = −3 holds for a = −1; hence, transformation

y1 = g1g−1
2 =

3y
3− b01y

linearizes the second equation of the system. The integrability of the above quadratic
system has been proven in [22]. Using Theorem 3, we can also linearize the first equation;
thus, system (20) is linearizable.

Case (2) We prove the linearizability of the following system:

ẋ = 2x− a10x2 − a01xy,

ẏ = −3y + b−2,1x2 − 3a01y2.
(21)

To find linearizing transformations, we use four algebraic partial integrals:

f1 = x, f2 = 1− a10x
2
− 1

2
a01b−2,1x2 + 2a01y− 1

2
a01a10xy + a2

01y2,

f3 = 1 +
1
4

(
−a10 −

√
a2

10 + 8a01b2,−1

)
x + a01y

and f4, which is too long to be written here.
Their corresponding cofactors are

K1 = 2− a10x− a01y, K2 = −a10x− 6a01y,

K3 =
1
2

((
−a10 −

√
a2

10 + 8a01b−2,1

)
x− 6a01y

)
,

K4 = 2− 2a10x +
√

a2
10 + 8a01b−2,1x− 7a01y.

The first equation of system (21) is linearizable by the change of coordinates:

x1 = f1 f a
2 f b

3 ,



Symmetry 2021, 13, 1510 11 of 25

where
a = −1

6
+

5a10

6
√

a2
10 + 8a01b−2,1

and b = − 5a10

3
√

a2
10 + 8a01b−2,1

.

We are able to construct the Darboux integrating factor M = f c
2 f d

3 f e
4 for

c = −
−5a10 + 9

√
a2

10 + 8a01b21

4
√

a2
10 + 8a01b21

, d =
−5a10 + 2

√
a2

10 + 8a01b21

2
√

a2
10 + 8a01b21

, and e =
1
2

. By Remark 1,

system (21) is integrable, and according to Theorem 2, it is linearizable at the origin.
For all cases where we use the method of Darboux linearization, the procedure and

reasoning is similar to that of Case (2). Therefore, in the following cases, where we construct
a Darboux linearization, we list only the algebraic partial integrals, one of the linearizations
and a Darboux integrating factor, or in some cases, linearizations of both equations.

Case (3) In this case, we find three algebraic partial integrals:

f1 = x, f2 = 1 +
1
12

b01b2,−1x2 − b01y
3

and f3 = − b2,−1x2

7
+ y.

The first equation is linearizable by the change of coordinates:

x1 = f1 f−
1
2

2 =
x√

1
12 b01b2,−1x2 − b01y

3 + 1
.

The second equation is linearizable by the transformation:

y1 = f3 f−1
2 = −

12
(
b2,−1x2 − 7y

)
7(b01b2,−1x2 − 4b01y + 12)

.

Case (4) The system is written as

ẋ = 2x +
5
6

b01xy = P(x, y),

ẏ = −3y + b2,−1x2 + b01y2 = Q(x, y).
(22)

To construct the linearizability transformation, we use an approach from [23]. We look
for a transformation y1(x, y) = y + . . . that linearizes the second equation of system (22).
In system (22), we perform the blow-up transformation (x, y)→ (z, y) = ( x

y , y) and attain
the following system

ż = 5z− b01

6
yz− b2,−1yz3 = P̃(x, y),

ẏ = −3y + b2,−1y2z2 + b01y2 = Q̃(x, y),
(23)

for which we search for a transformation Y(z, y) of the form

Y(z, y) =
∞

∑
i=1

fi(z)yi, (24)

where fi is a polynomial of degree at most i and Y(z, y) linearizes the second equation of
system (23), i.e.,

∂Y
∂x

P̃(x, y) +
∂Y
∂y

Q̃(x, y) = −3y1. (25)

We insert some initial terms of (24) into Equation (25) and equate the coefficients of
the same powers on both sides of the equations and obtain differential equations with
unknown functions fi(z). The first differential equation for f1(z) is 5z f ′1(z) = 0, which
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gives solution f1(z) = C. Choosing C = 1, we have f1(z) = 1. Next, we see that, for k > 1,
we obtain recursive differential equations of the form

(k− 1)(b01 + b2,−1z2) fk−1(z)−
(

b01

6
z + b2,−1z3

)
f ′k−1(z)

− 3(k− 1) fk(z) + 5z f ′k(z) = 0.
(26)

If we solve the differential equation in (26) in turn and insert the solution of each one
into the next equation, we obtain

f2(z) =
b01

3
+

b2,−1

7
z2 + C2z

3
5 ,

f3(z) =
b2

01
9

+
3

28
b2,−1b01z2 + C3z

6
5 ,

f4(z) =
b3

01
27
− 1

21
b2,−1b2

01z2 +
3

308
b01b2

2,−1z4 + C4z
9
5 ,

f5(z) =
b4

01
81
− 5

378
b2,−1b3

01z2 +
29

3696
b2

01b2
2,−1z4 + C5z

12
5 .

We set the integration constant to zero for all k ≥ 2. Next, we obtain f6(z) = P6(z),
f7(z) = P6(z), f8(z) = P8(z), f9(z) = P8(z), and f10(z) = P10(z), where for k = 6, 7, 8, . . .,
function Pk(z) denotes a polynomial of degree k and contains only terms with even powers.
Then, we note that f11(z) = P10(z) without the term with z6.

Choosing Ck = 0 in each fk, for k = 2, 3, . . ., we assume that

fk(z) =

{
Pk(z) ; if k is even
Pk−1(z) ; if k is odd

where Pk(z) denotes a polynomial of degree at most k.
Moreover, we assume also that polynomials Pk(z) contain only terms with even

powers, i.e.,

Pk(z) =

{
a0 + a2z2 + a4z4 + . . . + akzk ; if k is even
a0 + a2z2 + a4z4 + . . . + ak−1zk−1 ; if k is odd.

(27)

We prove this using mathematical induction. Suppose that the assumption is true for
k = 1, 2, . . . , n− 1 and we compute fk for k = n, solving the differential equation

f ′n(z)−
3(n− 1)

5z
fn(z) = h(z), (28)

where
h(z) =

1
5z

[
−(n− 1)(b01 + b2,−1z2) fn−1(z)

+

(
b01

6
z + b2,−1z3

)
f ′n−1(z)

]
.

(29)

First, let n be even, and we want to prove that fn(z) = Pn(z), where Pn is a polynomial
of degree at most n containing only terms of even powers. If n is even, then n− 1 is odd
and fn−1 is of the form

fn−1 = Pn−2(z) = A0 + A2z2 + . . . + An−2zn−2

and
f ′n−1 = 2A2z + 4A4z3 + . . . + (n− 2)An−2zn−3.
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Then,

h(z) =
1
5z

(B0 + B2z2 + B4z4 + . . . + Bnzn),

for some constants B0, B1, . . . , Bn.
Since the linear equation

f ′(x) + g(x) f (x) = h(x) (30)

has the solution

f (x) = Ce−
∫

g(x)dx + e−
∫

g(x)dx
∫

e
∫

g(x)dxh(x)dx, (31)

the solution of differential Equation (28) is

fn(z) = Ce
∫ 3(n−1)

5z dz + e
∫ 3(n−1)

5z dz
∫

e−
∫ 3(n−1)

5z dz 1
5z

(B0 + B2z2 + . . . + Bnzn)dz

= Cz
3(n−1)

5 + z
3(n−1)

5

∫
z

3(1−n)
5 z−1 1

5
(B0 + B2z2 + . . . + Bnzn)dz

= Cz
3(n−1)

5 + z
3(n−1)

5
1
5

∫ (
B0z

−2−3n
5 + B2z

8−3n
5 + . . . + Bnz

−2+2n
5

)
dz

= Cz
3(n−1)

5 +
1
5

z
3(n−1)

5

(
B0

z
3−3n

5

3−3n
5

+ B2
z

13−3n
5

13−3n
5

+ . . . + Bn
z

3−2n
5

3−2n
5

)
= Cz

3(n−1)
5 + B̃0 + B̃2z2 + B̃4z4 + . . . + B̃nzn.

Choosing C = 0, we obtain that fn(z) = Pn(z), where Pn(z) is a polynomial of degree
n and it contains only terms with even powers.

Now, we assume that n is odd and we want to prove that fn(z) = Pn−1(z), where
Pn−1 is a polynomial of degree at most n− 1 and contains only terms of even powers.

If n is odd, then n− 1 is even and fn−1 is of the form

fn−1 = Pn−1(z) = A0 + A2z2 + . . . + An−1zn−1

with
f ′n−1 = 2A2z + 4A4z3 + . . . + (n− 1)An−1zn−2.

Then,

h(z) =
1
5z

[
(B0 + B2z2 + . . . + Bn−1zn−1 − (n− 1)b2,−1 An−1zn+1

+(n− 1)b2,−1 An−1zn+1)
]

=
1
5z

[
(B0 + B2z2 + . . . + Bn−1zn−1)

]
for some B0, . . . , Bn−1.

Differential Equation (28) has a solution:

fn(z) = Ce
∫ 3(n−1)

5z dz + e
∫ 3(n−1)

5z dz
∫

e−
∫ 3(n−1)

5z dz 1
5z

(B0 + B2z2 + B4z4+

. . . + Bn−1zn−1)dz

= Cz
3(n−1)

5 + z
3(n−1)

5

(
B̃0z

3−3n
5 + B̃2z

13−3n
5 + . . . + B̃n−1z

2n−2
5

)
= Cz

3(n−1)
5 + B̃0 + B̃2z2 + B̃4z4 + . . . + B̃n−1zn−1.
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Choosing C = 0, we obtain that fn(z) = Pn−1(z), as assumed. Therefore, transforma-
tion (24) takes the form

Y(z, y) =
∞

∑
i=1

fi(z)yi = y +
∞

∑
i=2

Pi(z)yi, (32)

where polynomials Pi(z) are defined by (27).
Thus, the transformation y1(x, y), which linearizes the second equation of system (22), is

y1(x, y) = Y
(

x
y

, y
)
= y +

∞

∑
i=2

Pi

(
x
y

)
yi.

The obstacle in the proof could appear if we obtain logarithmic terms after integration
in the computation of fn(z). We see that this is the case if one of the powers is −1. We
observe that all powers of z in the integral are of the form −2+10k−3n

5 for k = 0, 1, 2, . . . , n− 1
(n odd) and k = 0, 1, 2, . . . , n (n even). We check when

−2 + 10k− 3n
5

= −1

and obtain k = 3n−3
10 . Since k ∈ {0, 1, 2, . . . , n}, this is the case if 3n− 3 ≡ 0 (mod 10).

However, we can prove that this can never happen. Logarithmic terms could appear
after integration only in functions f11, f21, . . . , f10`+1, . . . for ` = 1, 2, 3, . . ., but we prove
by induction that functions f10`+1 do not have a term z6`, which could yield a logarithmic
term after integration. We already proved by induction that functions f10`+1 are of the
form P10`(z), where Pi(z) denotes a polynomial of degree at most i.

Suppose that functions f10`+1 are polynomials of degree 10` without the mono-
mial term z6` for ` = 1, 2, . . . , m, and we compute f10(m+1)+1 by solving the differential
Equation (28).

Suppose

f10`+1(z) = Ã0 + . . . + Ã6`−2z6`−2 + Ã6`+2z6`+2 + . . . + Ã10`z10`

for all ` = 1, 2, 3, . . . , m. Functions f10m(z) and f ′10m(z) are of the form

f10m(z) = A0 + A2z2 + . . . + A10mz10m,

f ′10m(z) = 2A2z + . . . + (10m)A10mz10m−1.

Moreover, we assume that the coefficients of polynomial f10m satisfy the condition

A6m−2b2,−1(5m− 1) + A6mb01 = 0. (33)

If we insert expressions f10m(z) and f ′10m(z) into differential Equation (28), condi-
tion (33) assures that f10m+1 does not have a term with z6m. In functions f10m+i(z), for
i = 3, 4, . . . , 10, no logarithmic term can appear and we already proved that these functions
are of the required form. Detailed analysis is needed for f10m+11(z) = f10(m+1)+1, since in
this function logarithmic terms after integration could appear. We compute the function
f10m+11(z) and obtain f10m+11(z) = P10m+10(z), where P10m+10(z) is a polynomial of degree
10m + 10 and we see that the coefficient of z6(m+1) is given by

A6m+4b2,−1(5m + 4) + A6m+6b01. (34)

No logarithmic term appears in f10(m+1)(z) after integration only if expression (34) is
zero. We observe that condition (34) corresponds to condition (33) for m + 1; hence, it is
zero, and thus ,the proof of induction is completed.
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Now, we also have to prove that the first equation is linearizable. To do so, we prove
that system (22) is integrable and then use Theorem 3.

We are not able to form the first integral of the required form using the Darboux theory
of integrability and we can not construct it using power series, so we use the method based
on blow-up (see [24]). According to transformation (x, y) 7−→ (z, y) =

(
x
y , y
)

, we attain
system (23). Now, we search for the formal series

Ψ(z, y) =
∞

∑
k=5

fk(z)yk,

which will be the first integral of system (23) only if DΨ ≡ 0. Setting the coefficients of term
yk to zero, for each k ≥ 5 and set f4(z) = 0, generate for k ≥ 5 the subsequent differential
equation

(k− 1)
(

b01 + b2,−1z2
)

fk−1(z)− 3k fk(z) + 5z f ′k(z)−
(

1
6

b01z + b2,−1z3
)

f ′k−1(z) = 0.

We compute

f5(z) = z3,

f6(z) =
3
2

b01z3 − 2
7

b2,−1z5,

f7(z) =
11b2

01z3

8
− 127

168
b01b2,−1z5 +

b2
2,−1z7

49
,

f8(z) =
143b3

01z3

144
−

845b2
01b2,−1z5

1008
+

39
308

b01b2
2,−1z7,

where we chose an integration constant equal to one for f5, and in all other functions
( fk, k = 6, 7, . . .), we chose the integration constant to be zero. Next, f9(z) = P9(z),
f10(z) = P9(z), f11(z) = P11(z), f12(z) = P11(z), f13(z) = P13(z), f14(z) = P13(z), and
f15(z) = P15(z) without the term with z9, where for k = 9, . . . , 15 function Pk(z) denotes a
polynomial of degree k.

We notice that functions fk for k = 6, 7 . . . , 15 are polynomials that contain only terms
with odd powers:

fk(z) =

{
a3z3 + a5z5 + . . . + akzk ; if k is odd
b3z3 + b5z5 + . . . + bk−1zk−1 ; if k is even

(35)

which can be proven inductively very similar to the above (simply replace n with n− 1),
and to compute fn, we solve the differential equation

f ′n(z)−
3n
5z

fn(z) = h(z), (36)

where h(z) is the same as in (28).
Additionally, in this case, we have to prove that no logarithmic terms appear in

any solution fk. We can easily check that only in functions f15, f25, . . . , f10`+5, . . ., for
` = 1, 2, 3, . . ., logarithmic terms could appear. We prove by induction that functions f10`+5
do not have a term z6`+3, which could yield logarithmic terms after integration. We already
proved by induction that functions f10`+5 are of the form f10`+5(z) = P10`+5(z), where
Pi(z) denotes polynomial of degree i.

Suppose that functions f10`+5 are polynomials of degree 10`+ 5 without the monomial
term z6`+3, for ` = 1, 2, . . . , m, and we compute f10(m+1)+5 by solving the differential
Equation (36).
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Suppose

f10`+5(z) =

= Ã3z3 + . . . + Ã6`+1z6`+1 + Ã6`+5z6`+5 + . . . + Ã10`+5z10`+5

for all ` = 1, 2, 3, . . . , m. Functions f10m+4(z) and f ′10m+4(z) are of the form

f10m+4(z) = A3z3 + . . . + A10m+3z10m+3,

f ′10m+4(z) = 3A3z2 + . . . + (10m + 3)A10m+3z10m+2.

We assume that coefficients of polynomial f10m+4 satisfy the condition

A6m+1b2,−1(5m + 2) +
3
2

A6m+3b01 = 0. (37)

Condition (37) assures that f10m+5 does not have a term with z6m+3. Similar as before,
we have to prove only for f10m+15(z) = f10(m+1)+5, that it does not contain any logarithmic
term. We compute the function f10m+15(z) and obtain a polynomial of degree 10m + 15,
denoted by P10m+15(z), and we see that the coefficient of z6(m+1)+3 is given by

A6m+7b2,−1(5m + 7) +
3
2

A6m+9b01. (38)

We can see that condition (38) coincides with condition (37) if m is replaced by m + 1;
hence, it is zero. Therefore, in function f10m+15(z), no logarithmic terms appear after
integration, and thus, the induction is proven.

We have proven that the formal first integral of system (23) is of the form

Ψ(z, y) =
∞

∑
k=5

fk(z)yk = z3y5 +
∞

∑
k=6

Pk(z)yk,

where polynomials Pk(z) are defined by (35). Substituting z 7→ x
y , y 7→ y, yields

Ψ̃(x, y) = Ψ
(

x
y

, y
)
=

x3

y3 · y
5 +

∞

∑
k=6

Pk

(
x
y

)
yk = x3y2 + . . . ,

which is a formal first integral of (22) of the required form, and due to ([1], Corollary 3.2.6),
it is also the analytic first integral of (22). Finally, we can form the linearizing transformation
of the first equation of system (22), as stated in Theorem 3.

Case (5) We find three algebraic partial integrals:

f1 = x, f2 = y and f3 = 1 +
b10x

2
− b01y

3
.

The first equation of the system is linearizable by the change of coordinates

x1 = f1 f−1
3 =

6x
−2b01y + 3b10x + 6

and the second equation by the transformation

y1 = f2 f−1
3 =

6y
−2b01y + 3b10x + 6

.
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Case (6) In this case, system (3) has the form:

ẋ = 2x +
17b10x2

16
+

7b01xy
9

+
64b2

01y2

243b10
,

ẏ = −3y +
189b2

10x2

256b01
+ b10xy + b01y2.

(39)

Using algebraic partial integrals

f1 = x +
3b10x2

32
− b01xy

9
+

8b2
01y2

243b10
,

f2 = y−
27b2

10x2

256b01
+

b10xy
8
− b01y2

27
,

f3 = 1 +
5b10x

8
+

25b2
10x2

256
− 10b01y

27
− 25

216
b01b10xy +

25b2
01y2

729
,

we find the transformation

x1 = f1 f−1
3 =

24
(
243b10x(32 + 3b10x)− 864b01b10xy + 256b2

01y2)
b10(432 + 135b10x− 80b01y)2

that linearizes the first equation of the system, and the transformation

y1 = f2 f−1
3 =

27
(
6912b01y− (27b10x− 16b01y)2)
b01(432 + 135b10x− 80b01y)2

that linearizes the second equation of the system.
We see that linearizing transformations x1, y1, and the expressions on the right-hand

side of system (39) are not defined for b10 = 0 or b01 = 0. By V we denote the variety V(I).
Here

I = 〈256b01b2,−1 − 189b2
10, 243b10a−12 + 64b2

01, 16a10 + 17b10, 9a01 + 7b01〉

is the ideal which is generated by polynomials arising from conditions of Case (6) of
Theorem 4, and J1 = 〈b10〉 and J2 = 〈b01〉. We see that x1 and y1 are defined properly for
all points from V(I) except perhaps for points with b10 = 0 or b01 = 0, i.e., they are defined
for points from V\V(J), where J = J1 ∩ J2. The set V\V(J) is not necessarily a variety.
Note that the smallest variety which contains this set is its Zariski closure V\V(J). We
know (see [16]) that

V(I : J) = V(I)\V(J).

It is easy to see that J = 〈b10b01〉. Applying SINGULAR (using the routine “quotient”)
one easily obtains the quotient

I : J = 〈256b01b2,−1 − 189b2
10, 243b10a−12 + 64b2

01, 16a10 + 17b10, 9a01 + 7b01〉.

Obviously I : J = I. Thus V\V(J) = V and consequently for each point of the variety
V, the corresponding system (39) is linearizable. (With similar computations, one can
prove the linearizability for systems, which we study in cases below when some functions
(integrating factors, analytic first integrals, and linearizing transformations) are not defined
for specific values of parameters.)
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Case (7) Using algebraic partial integrals

f1 = x,

f2 = 1 + 3b10x + 3b2
10x2 +

1
3

b01b2,−1x2 + b3
10x3 +

1
3

b01b10b2,−1x3

+
1
9

b2
01b2

2,−1x4 − 4b01y
3
− 4

3
b01b10xy− 8

9
b2

01b2,−1x2y

− 2
9

b2
01b10b2,−1x3y +

2b2
01y2

3
− 1

9
b2

01b10xy2 +
1
9

b2
01b2

10x2y2

− 2
27

b3
01b2,−1x2y2 −

4b3
01y3

27
+

2
27

b3
01b10xy3 +

b4
01y4

81
,

we construct the linearizing transformation x1 = f1 f−1/3
2 of the first equation of system

and the Darboux integrating factor M = f 1/2
1 f−1

2 .
Case (8) In this case, the corresponding system is

ẋ = 2x + 2b10x2 − a01xy− a−12y2,

ẏ = −3y + b10xy + b01y2.
(40)

We attempt to linearize the second equation of system (40); therefore, we look for
a transformation

y1 =
∞

∑
k=1

fk(x)yk (41)

such that equation
∂y1

∂x
ẋ +

∂y1

∂y
ẏ = −3y1 (42)

is satisfied for all x, y ∈ C.
After inserting some initial terms of (41) into (42) and equating coefficients of the same

powers on both sides of equation, we see that functions fk are determined recursively by
the differential equation

2x(1 + b10x) f ′k(x)− a01x f ′k−1(x)− a−12 f ′k−2(x)

+ (kb10x− 3(k− 1)) fk(x) + (k− 1)b01 fk−1(x) = 0.

For k = 1, 2, 3, 4, 5, 6, we find

f1(x) =
1

(1 + b10x)
1
2

, f2(x) =
p1(x)

(1 + b10x)
5
2

,

f3(x) =
p2(x)

(1 + b10x)
9
2

, f4(x) =
p3(x)

(1 + b10x)
13
2

,

f5(x) =
p4(x)

(1 + b10x)
17
2

, f6(x) =
p5(x)

(1 + b10x)
21
2

,

where pi(x) denotes a polynomial of degree i. Suppose that fk(x) = pk−1(x)

(1+b10x)
4k−3

2
, where

k = 1, 2, . . . , n− 1. We compute fk(x) for k = n. To this end, we solve the differen-
tial equation

f ′n(x) +
nb10x− 3(n− 1)

2x(1 + b10x)
fn(x) = H(x), (43)

where H(x) =
a01x f ′n−1(x)+a−12 f ′n−2(x)+(1−k)b01 fn−1(x)

2x(1+b10x) using the induction assumption about
fn−1, f ′n−1 and f ′n−2.
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As the general solution of linear differential equation of the form (30) is (31) and, in our
case, we have g(x) = nb10x−3(n−1)

2x(1+b10x) and h(x) =
qn−1(x)

x(1+b10x)
4n−3

2
, where qn−1 is polynomial of

degree at most n− 1, it follows that e
∫

g(x)dx = (1+b10x)
4n−3

2

x
3(n−1)

2
and the solution of differential

Equation (43) is

fn(x) =
Cx

3(n−1)
2

(1 + b10x)
4n−3

2
+

Ã0 + Ã1x + . . . + Ãn−1xn−1

(1 + b10x)
4n−3

2
.

Choosing C = 0, we obtain fn(x) = pn−1(x)

(1+b10x)
4n−3

2
, where pn−1 denotes a polyno-

mial of degree at most n− 1. We can check that the power series expansion of transfor-
mation y1(x, y) = ∑∞

k=1 fk(x)yk, which linearizes the second equation of system (40) is
y + ∑∞

i+j>1 αijxiyj.
Note that the same method cannot be used to linearize the first equation of system (40).

Therefore, we want to find a formal first integral of the form Ψ(x, y) = ∑∞
k=2 fk(x)yk. We

compute DΨ ≡ 0 and set the coefficients of the terms yk to zero, for k ≥ 2 and thus generate
the differential equation:

2x(1 + b10x) f ′k(x)− a01x f ′k−1(x)− a−12 f ′k−2(x) + k(b10x− 3) fk(x)

+ (k− 1)b01 fk−1(x) = 0.

Setting the integration constant equal to 1 and considering f0(x) = f1(x) = 0, we
obtain f2(x) = x3

(1+b10x)4 for k = 2, and for k = 3, 4, 5, 6 (setting the integration constant for
each k equal to 0), we obtain the following:

f3(x) =
p4(x)

(1 + b10x)6 , f4(x) =
p5(x)

(1 + b10x)8 ,

f5(x) =
p6(x)

(1 + b10x)10 , f6(x) =
p7(x)

(1 + b10x)12 ,

where pk(x) denotes a polynomial of degree at most k. Suppose by induction that, for
k = 2, . . . , n− 1, we have fk(x) = pk+1(x)

(1+b10x)2k and that integration constant is zero. We solve
the differential equation:

f ′n(x)− n(3− b10x)
2x(1 + b10x)

fn(x) = H(x) (44)

where H(x) is the same as in (43) and for fn−1 and fn−2 we use the induction assumption.
Considering Formula (31), we obtain the general solution of linear differential

Equation (44):

fn(x) = C · x
3n
2

(1 + b10x)2n +
B0x1 + B1x2 + . . . + Bnxn+1

(1 + b10x)2n

= C · x
3n
2

(1 + b10x)2n +
pn+1(x)

(1 + b10x)2n .

Choosing C = 0, we obtain fn(x) = pn+1(x)
(1+b10x)2n , where pn+1(x) is a polynomial of

degree at most n + 1. Therefore, the first integral of the form Ψ(x, y) = ∑∞
k=2 fk(x)yk in

which the power series expansion is of the form x3y2 + ∑∞
i+j>6 αijxiyj exists.
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Case (9) If a−12 = a01 = 0, system (3) has the form

ẋ = 2x− a10x2,

ẏ = −3y + b2,−1x2 + b10xy + b01y2.
(45)

We find two algebraic partial integrals:

f1 = x and f2 = 1− a10x
2

.

Transformation
x1 = f1 f−1

2 =
2x

2− a10x

linearizes the first equation of system (45). System (45) has an analytic first integral of the
form Ψ(x, y) = x3y2 + . . . [22]. According to Theorem 2, the second equation of system is
linearized by transformation y1 =

√
Ψ
x3

1
.

Case (10) The linearizability of the corresponding system is proven in a similar way as
in Case (4), using the method based on blow-up.

Case (11) We are able to linearize the second equation using three algebraic partial
integrals:

f1 = y,

f2 = 1− 2b10x + b2
10x2 − b01y

3
+

1
3

b01b10xy +
1
3

a−12b10y2y3,

f3 = 1− 3b10x + 3b2
10x2 − b3

10x3 +
1
6

(
−3b01 −

√
b2

01 − 12a−12b10

)
y

+
1
3

(
3b01b10 + b10

√
b2

01 − 12a−12b10

)
xy +

1
6
(−3b01b2

10

− b2
10

√
b2

01 − 12a−12b10)x2y +
1

18

(
b2

01 + 6a−12b10

+ b01

√
b2

01 − 12a−12b10

)
y2 +

1
18

(
−b2

01b10 − 6a−12b2
10

− b01b10

√
b2

01 − 12a−12b10

)
xy2 +

1
1296

(−72a−12b01b10+

+ b2
01

√
b2

01 − 12a−12b10 − 84a−12b10

√
b2

01 − 12a−12b10

−
(

b2
01 − 12a−12b10

)3/2
)

y3.

The equation K1 + aK2 + bK3 = −3 holds for

a =
1
4
+

15b01

4
√

b2
01 − 12a−12b10

and b = − 5b01

2
√

b2
01 − 12a−12b10

;

thus, the second equation is linearizable and we construct a Darboux integrating fac-

tor of the form M = f c
1 f d

2 f e
3 for c = − 1

3 , d = −
5
(
−3b01+

√
b2

01−12a12b10

)
6
√

b2
01−12a−12b10

and e =

− 5b01

3
√

b2
01−12a12b10

.
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Case (12) There are two algebraic partial integrals:

f1 = y,

f2 = 1 + b10x +
b2

10x2

3
+

b3
10x3

27
− 2b01y

3
− b01b10xy +

1
9

b01b2
10x2y

+
b2

01y2

18
+

1
9

b2
01b10xy2 +

b3
01y3

27
.

The second equation is linearizable by the change of coordinates y1 = f1 f−1/2
2 and

the Darboux integrating factor is of the form M = f−1/3
1 f−1

2 .
Case (13) The algebraic partial integrals are

f1 = x, f2 = 1− b01y
3
− b10x

4
,

f3 = 1− 5
4

b01b10xy +
5b2

10x2

8
+

5b10x
4

,

the linearization of the first equation is

x1 = f1 f2 = x− b01xy
3
− b10x2

4
,

and teh Darboux integrating factor is M = f 1/2
1 f−1/2

2 f−1
3 .

Case (14) We use three algebraic partial integrals

f1 =
16b2

10x2

27b01
+ y +

b10xy
3
− b01y2

12
, f2 = 1− 5b10x

9
− 5b01y

12
,

f3 = 1 +
25b10x

9
+

200b2
10x2

81
− 25

27
b01b10xy +

25b2
01y2

288
,

the second equation is linearizable by the change of coordinates

y1 = f1 f−1
2 f−1/2

3

and the Darboux integrating factor is of the form M = f−1/3
1 f−1

2 f−1
3 .

Case (15) We find three algebraic partial integrals

f1 = x− b10x2

6
− 4b01xy

21
+

3b2
01y2

98b10
, f2 = 1− 5b10x

3
+

5b01y
21

,

f3 = 1− 5b10x
6
− 10b01y

21
,

the first equation is linearizable by the change of coordinates

x1 = f1( f2 f3)
−2/3

and we construct Darboux integrating factor M = f 1/2
1 f−1

2 f−2
3 .



Symmetry 2021, 13, 1510 22 of 25

Case (16) We compute the following algebraic partial integrals:

f1 = y−
108b2

10x2

49b01
+

480b3
10x3

343b01
− 11b10xy

7
+

40
49

b2
10x2y− 2b01y2

9

+
10
63

b01b10xy2 +
5b2

01y3

486
,

f2 = 1− 20b10x
7

+
25b2

10x2

7
− 5b01y

9
+

25
63

b01b10xy +
25b2

01y2

243
,

f3 = 1− 15
7

i
(
−2ib10 +

√
3b10

)
x +

75
49

(
b2

10 + 4i
√

3b2
10

)
x2

+
125
343

(
10b3

10 − 9i
√

3b3
10

)
x3 +

5
18

i
(

3ib01 +
√

3b01

)
y

+
25
63

(
9b01b10 + i

√
3b01b10

)
xy +

25
162

(
b2

01 − i
√

3b2
01

)
y2

− 125
882

i
(
−15ib01b2

10 + 11
√

3b01b2
10

)
x2y

+
125i

(
5ib2

01b10 +
√

3b2
01b10

)
xy2

1134
+

125ib3
01y3

2187
√

3
.

Transformation
y1 = f1 f a

2 f b
3

with a = 1
4 i
(

3i +
√

3
)

and b = −i+
√

3
2(3i+

√
3)

linearizes the second equation of considered

system and we construct the Darboux integrating factor M = f−1/3
1 f−1

2 .
Case (17) We obtain three algebraic partial integrals

f1 = y−
9b2

10x2

2b01
+ 2b10xy− 2b01y2

9
, f2 = 1 +

5b10x
4
− 5b01y

18
,

f3 = 1 +
35b10x

4
+

175b2
10x2

8
− 5b01y

9
− 25

24
b01b10xy +

25b2
01y2

216
,

the second equation is linearizable by the change of coordinates

y1 = f1 f−2
2 = −

72
(
−18b01y + (9b10x− 2b01y)2)

b01(36 + 45b10x− 10b01y)2

and the Darboux integrating factor is of the form M = f−1/3
1 f−1/3

2 f−1
3 .

Case (18) The linearizability of the corresponding system is proven using the method
based on blow-up in a similar way as in Case (4).

Case (19) Using algebraic partial integrals

f1 = x− b10x2

6
− 2b01xy

13
−

6b2
01y2

169b10
,

f2 = y +
13b2

10x2

36b01
+

b10xy
3

+
b01y2

13
,

f3 = 1 +
5b10x

6
−

25b2
10x2

108
− 10b01y

39
− 25

117
b01b10xy−

25b2
01y2

507

we are able to linearize both equations of the system by the transformations

x1 = f1 f−1
3 and y1 = f2 f−1

3 .

Case (20) The linearizability of the obtained system is proven in a similar way as in
Case (4), using method based on blow-up.
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Case (21) Using algebraic partial integrals

f1 = x +
33b10x2

32
+

15b2
10x3

1024
− 12b01xy

23

+
45b01b10x2y

1472
−

6b2
01y2

529b10
+

45b2
01xy2

2116
+

60b3
01y3

12167b10
,

f2 =
13b2

10x2

36b01
+ y +

b10xy
3

+
b01y2

13
,

f3 = 1 +
5b10x

6
−

25b2
10x2

108
− 10b01y

39
− 25

117
b01b10xy−

25b2
01y2

507
,

we find linearizing transformation

x1 = f1 f−1
3 and y1 = f2 f−1

3 .

Case (22) We use the following three algebraic partial integrals:

f1 =
192b2

10x2

49b01
+ y− 11b10xy

7
+

b01y2

8
, f2 = 1 +

5b10x
7
− 5b01y

24

f3 = 1− 15b10x + 75b2
10x2 − 125b3

10x3 − 15b01y
8

+
75
4

b01b10xy

− 375
8

b01b2
10x2y +

75b2
01y2

64
− 375

64
b2

01b10xy2 −
125b3

01y3

512
.

The second equation of the system is linearizable by

y1 = f1 f−1/4
2 f−1/12

3

and system has a Darboux integrating factor M = f−1/3
1 f−1/6

2 f−7/18
3 .

Cases (23), (24) and (25) As for the conditions that arise in cases (23), (24), and (25) we
observe that they are quite long. We can find some solutions that satisfy to the particular
cases (23), (24), or (25). For instance, using Mathematica, we can solve the system of
equations in case (23) and we obtain 15 solutions. If we pick up one solution, for example

a01 = −8b01

15
, a10 = −

9b2
01

25a−12
, b10 = 0, b2,−1 = −

21b3
01

125a2
−12

,

we can easily check that, under this solution, all four pairs of linearizability quantities are
zero and the system corresponding to this solution is

ẋ = 2x +
9b2

01
25a−12

x2 +
8b01

15
xy− a−12y2,

ẏ = −3y−
21b3

01
125a2

−12
x2 + b01y2.

(46)

To prove the linearizability of this system, we can use a similar approach based on
blow-up transformation as in Case (4). Similarly, we can use the approach also in cases (24)
and (25).

Remark 2. Some functions appearing in the proof of Theorem 4 are not defined for specific values
of parameters. The existence of analytic first integrals or analytic linearizing transformations for
these specific values is following from the fact that the set of all systems (3) with a complex resonant
(linearizable) center is a closed set with Zariski topology. The computations are similar as in the
proof of Case (6) of Theorem 4.
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The proofs of cases (10), (18), (20), (23), (24) and (25) are very long and similar to Case (4);
thus they are omitted in the paper, but the interested reader can requent them from the authors.
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22. Žulj, M.; Ferčec, B.; Mencinger, M. The solution of some persistent p:−q resonant center problems. Electron. J. Qual. Theory Differ.
Equ. 2018, 99, 1–21. [CrossRef]

23. Giné, J.; Romanovski, V.G. Linearizability conditions for Lotka–Volterra planar complex cubic systems. J. Phys. Math. Theor. 2009,
42, 225206. [CrossRef]
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