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1. Introduction

To generalize or unify several forms of q-oscillator algebras well-known in the physics
literature, many mathematicians introduced (p, q)-number [1–3]. As a result, we can find
(p, q)-analogues of binomial coefficients, (p, q)-exponential functions, (p, q)-trigonometric
functions, and so on, see [2,4–10]. In this paper, in order to introduce some properties of
(p, q)-cosine Euler polynomials, we provide several definitions related to (p, q)-number
used in this paper. We begin with notations: N denotes the set of the natural numbers, R
denotes the set of real numbers and C denotes the set of complex numbers.

For a natural number n, the (p, q)-number is defined by

[n]p,q =
pn − qn

p− q
= pn−1 + pn−2q + · · ·+ pqn−2 + qn−1,

which is a natural generalization of the q-number, see [3]. Here, we note that [n]p,q = [n]q,p.

Definition 1 (Ref. [5]). For n ≥ k, the (p, q)-analogues of binomial coefficients are defined by[
n
r

]
p,q

=
[n]p,q!

[n− k]p,q![k]p,q!
,

where m and r are non-negative integers.

We note [n]p,q! = [n]p,q[n− 1]p,q · · · [2]p,q[1]p,q, where n ∈ N.

Definition 2 (Ref. [11]). For x 6= 0, the (p, q)-derivative of a function f with respect to x is
defined by

Dp,q f (x) =
f (px)− f (qx)

(p− q)x
,

and (Dp,q f )(0) = f ′(0). This proves that f is differentiable at 0, and it is clear that Dp,qxn =
[n]p,qxn−1.

Symmetry 2021, 13, 1520. https://doi.org/10.3390/sym13081520 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13081520
https://doi.org/10.3390/sym13081520
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13081520
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13081520?type=check_update&version=2


Symmetry 2021, 13, 1520 2 of 13

Definition 3 (Refs. [6,12]). The (p, q)-analogue of (x + a)n is defined by

(x⊕ a)n
p,q =

n

∑
k=0

[
n
k

]
p,q

p(
k
2)q(

n−k
2 )xkan−k.

Definition 4 (Ref. [12]). Two forms of (p, q)-exponential functions can be expressed as

ep,q(x) =
∞

∑
n=0

p(
n
2)

xn

[n]p,q!
, Ep,q(x) =

∞

∑
n=0

q(
n
2)

tn

[n]p,q!
.

From Definition 4, we can find an important property, ep,q(x)Ep,q(−x) = 1, see [7,13].
Moreover, U. Duran, M. Acikgos and S. Araci define ẽp,q(x) in [11] as the follows:

ẽp,q(x) =
∞

∑
n=0

xn

[n]p,q!
. (1)

From Equation (1) and Definition 4, we can remark

(i) ep,q(x)Ep,q(y) =
∞

∑
n=0

(x⊕ y)n
p,q

[n]p,q!
= ẽp,q((x⊕ y)p,q)

(ii) ep,q(x)Ep,q(−y) =
∞

∑
n=0

(x	 y)n
p,q

[n]p,q!
= ẽp,q((x	 y)p,q)

Definition 5 (Refs. [11,13]). Let i =
√
−1 ∈ C. Then, the (p, q)-trigonometric functions are

defined by

SINp,q(x) =
Ep,q(ix)− Ep,q(−ix)

2i
COSp,q(x) =

Ep,q(ix) + Ep,q(−ix)
2

,

where, SINp,q(x) = sinp−1,q−1(x) and COSp,q(x) = cosp−1,q−1(x).

Such as the same way with their well known Euler expression by means of the
exponential functions, we can define the (p, q)-analogues of hyperbolic functions and find
some formulae, see [4,11,13].

Theorem 1. The following relationships hold true.

(i) Ep,q(ity) = COSp,q(ty) + iSINp,q(ty)

(ii) Ep,q(−ity) = COSp,q(ty)− iSINp,q(ty)

Based on the previous theory, many mathematicians have researched Bernoulli, Euler,
and Genocchi polynomials combining (p, q)-numbers. Moreover, they make polynomials
of various kinds which have some interesting properties and identities, see [9,12,14–16].
We introduce a few polynomials which are needed in this paper.

Definition 6. For |q| < 1 and x, y ∈ R, cosine Euler polynomials CEn(x, y) and q-cosine Euler
polynomials CEn,q(x, y) are defined respectively as

∞

∑
n=0

CEn(x, y)
tn

n!
=

2
et + 1

etxcos(ty),

∞

∑
n=0

CEn,q(x, y)
tn

[n]q!
=

2
eq(t) + 1

eq(tx)COSq(ty).
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Definition 7. Let |p/q| < 1 and x, y ∈ R. (p, q)-cosine Bernoulli polynomials CBn,p,q(x, y) are
defined by

∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!
=

t
ep,q(t)− 1

ep,q(tx)COSp,q(ty).

The different variations of cosine Euler polynomials, q-cosine Euler polynomials
and (p, q)-cosine Euler polynomials are illustrated in the diagram below. In addition,
Euler polynomials and Bernoulli polynomials are closely related, so in the diagram, we
can also see the relationship between cosine Bernoulli polynomials, q-cosine Bernoulli
polynomials and (p, q)-Bernoulli polynomials. These research began producing valuable
results in areas related to number theory and combinatorics. Mathematicians are studying
the extended versions of these polynomials and are researching new polynomials by
combining mathematics with other fields, such as physics or engineering.

t
et − 1

etxcos(ty)

= ∑∞
n=0 CBn(x, y) tn

n!
( cosine Bernoulli polynomials)

2
et + 1

etx cos(ty)

= ∑∞
n=0 CEn(x, y) tn

n!
( cosine Euler polynomials)

t
eq(t)− 1

eq(tx)COSq(ty)

= ∑∞
n=0 CBn,q(x, y)

tn

n!
( q-cosine Bernoulli polynomials)

2
eq(t) + 1

eq(tx)COSq(ty)

= ∑∞
n=0 CEn,q(x, y)

tn

n!
(q-cosine Euler polynomials)

t
ep,q(t)− 1

ep,q(tx)COSp,q(ty)

= ∑∞
n=0 CBn,p,q(x, y)

tn

n!
((p, q)-cosine Bernoulli polynomials)

2
ep,q(t) + 1

ep,q(tx)COSp,q(ty)

= ∑∞
n=0 CEn,p,q(x, y)

tn

n!
((p, q)-cosine Euler polynomials)

The aim of this paper is to find some properties and conjectures of (p, q)-cosine Euler
polynomials. The contents of the paper are as follows. Section 2 checks the properties
of (p, q)-cosine Euler polynomials. For example, we look for (p, q)-differential equations,
the properties associated with the symmetric property, and some relations between (p, q)-
cosine Euler polynomials and others polynomials. Section 3 identifies the structure and
approximate circle of approximate roots of (p, q)-cosine Euler polynomials based on the
contents of Section 2.

2. Some Properties of (p, q)-Cosine Euler Polynomials

In this section, we define (p, q)-cosine Euler polynomials using ẽp,q(x). From these
polynomials, we find some properties and identities (p, q)-cosine Euler polynomials using
(p, q)-binomial coefficients, (p, q)-Cauchy product, and so on.

Definition 8. Let 0 < |q/p| < 1 and x, y ∈ R with i =
√
−1. Then, we define the generating

function of (p, q)-cosine Euler polynomials CEn,p,q(x, y) as

∞

∑
n=0

CEn,p,q(x, y)
tn

[n]p,q!
=

2
ep,q(t) + 1

ep,q(tx)COSp,q(ty).
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Here, we can note some relations of (p, q)-cosine Euler polynomials, q-cosine Euler
polynomials, and cosine Euler polynomials:

(i) lim
q→1

∞

∑
n=0

CEn,1,q(x, y)
tn

[n]1,q!
=

∞

∑
n=0

CEn(x, y)
tn

n!
=

2
et + 1

etxcos(ty),

where CEn(x, y) is the cosine Euler polynomials.

(ii)
∞

∑
n=0

CEn,1,q(x, y)
tn

[n]1,q!
=

∞

∑
n=0

CEn,q(x, y)
tn

[n]q!
=

2
eq(t) + 1

eq(tx)COSq(ty),

where CEn,q(x, y) is the q-cosine Euler polynomials.

Theorem 2. For |q/p| < 1, we obtain

CEn,p,q(x, y) =
n

∑
k=0

[
n
k

]
p,q

(x⊕ iy)k
p,q + (x	 iy)k

p,q

2
En−k,p,q,

where En,p,q is the (p, q)-Euler numbers, see [14].

Proof. In [14], we note that

∞

∑
n=0
En,p,q

tn

[n]p,q!
=

2
ep,q(t) + 1

.

We consider En,p,q and ẽp,q(x). Substituting (x⊕ iy)p,q instead of x of ẽp,q(x), we find

∞

∑
n=0
En,p,q

tn

[n]p,q!
ẽp,q(t(x⊕ iy)p,q) =

2
ep,q(t) + 1

ẽp,q(t(x⊕ iy)p,q). (2)

By using (p, q)-analogues of (x− a)n and a property of ẽp,q(x) in Equation (2), we find

∞

∑
n=0
En,p,q

tn

[n]p,q!

∞

∑
n=0

(x⊕ iy)n
p,q

tn

[n]p,q!

=
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
p,q
(x⊕ iy)k

p,qEn−k,p,q

)
tn

[n]p,q!

=
2

ep,q(t) + 1
ep,q(tx)Ep,q(ity)

=
2

ep,q(t) + 1
ep,q(tx)(COSp,q(ty) + iSINp,q(ty)).

(3)

By using Cauchy’s product in the left hand-side of (3), we have

∞

∑
n=0

(
n

∑
k=0

[
n
k

]
p,q
(x⊕ iy)k

p,qEn−k,p,q

)
tn

[n]p,q!

=
2

ep,q(t) + 1
ep,q(tx)(COSp,q(ty) + iSINp,q(ty)).

(4)

In a similar way, we obtain

∞

∑
n=0

(
n

∑
k=0

[
n
k

]
p,q
(x	 iy)k

p,qEn−k,p,q

)
tn

[n]p,q!

=
2

ep,q(t) + 1
ep,q(tx)(COSp,q(ty)− iSINp,q(ty)).

(5)
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From the Equations (4) and (5), we find

∞

∑
n=0

(
n

∑
k=0

[
n
k

]
p,q
((x⊕ iy)k

p,q + (x	 iy)k
p,q)En−k,p,q

)
tn

[n]p,q!

= 2
2

ep,q(t) + 1
ep,q(tx)COSp,q(ty)

= 2
∞

∑
n=0

CEn,p,q(x, y)
tn

[n]p,q!
,

which obtain the required result at once.

Corollary 1. Setting p = 1 in Theorem 2, the following holds

CEn,q(x, y) =
n

∑
k=0

[
n
k

]
q

(x⊕ iy)k
q + (x	 iy)k

q

2
En−k,q,

where CEn,q(x, y) is the q-cosine Euler polynomials.

In [12], authors introduce Cn,p,q(x, y) as the follows.

ep,q(tx)COSp,q(ty) =
∞

∑
n=0

Cn,p,q(x, y)
tn

[n]p,q!
.

We note Cn,p,q(x, y) is equal to Cn(x, y) when p = 1 and q→ 1, see [15].

Theorem 3. Let |q/p| < 1. Then, we find

CEn,p,q(x, y) =
n

∑
k=0

[
n
k

]
p,q
En−k,p,qCk,p,q(x, y),

where En,p,q is the (p, q)-Euler numbers.

Proof. From the generation function of the (p, q)-cosine Euler polynomials, we have a
relation between Cn,p,q(x, y) and En,p,q such as

∞

∑
n=0

CEn,p,q(x, y)
tn

[n]p,q!
=

2
ep,q(t) + 1

ep,q(tx)COSp,q(ty)

=
∞

∑
n=0
En,p,q

tn

[n]p,q!

∞

∑
n=0

Cn,p,q(x, y)
tn

[n]p,q!

=
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
p,q
En−k,p,qCk,p,q(x, y)

)
tn

[n]p,q!
.

(6)

By comparing the coefficients of both-sides in Equation (6), we derive the required result.

Corollary 2. Putting p = 1 in Theorem 3, one holds

CEn,q(x, y) =
n

∑
k=0

[
n
k

]
q
En−k,qCk,q(x, y),

where CEn,q(x, y) is the q-cosine Euler polynomials, En,q is the q-Euler numbers, and
∑∞

n=0 Cn,q(x, y) tn

[n]q ! = eq(tx)COSq(ty).
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Theorem 4. Let ep,q(t) 6= −1 and |q/p| < 1. Then, we obtain

Cn,p,q(x, y) =
1
2

(
n

∑
k=0

[
n
k

]
n,q

p(
n−k

2 )
CEk,p,q(x, y) + CEn,p,q(x, y)

)
.

Proof. If we suppose ep,q(t) 6= −1 for (p, q)-cosine Euler polynomials, then we have

∞

∑
n=0

CEn,p,q(x, y)
tn

[n]p,q!
(ep,q(t) + 1) = 2ep,q(tx)COSp,q(ty) (7)

By using the power series of ep,q(t) and Cauchy’s product in Equation (7), we find

∞

∑
n=0

CEn,p,q(x, y)
tn

[n]p,q!
(ep,q(t) + 1)

=
∞

∑
n=0

CEn,p,q(x, y)
tn

[n]p,q!

(
∞

∑
n=0

p(
n
2)

tn

[n]p,q!
+ 1

)

=
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CEk,p,q(x, y) + CEn,p,q(x, y)

)
tn

[n]p,q!

= 2
∞

∑
n=0

Cn,p,q(x, y)
tn

[n]p,q!
.

(8)

We complete the proof of Theorem 4 from Equation (8).

In [12], we can find a relation between Cn,p,q(x, y) and CBn,p,q(x, y) as

p,qCn−1,p,q(x, y) =
n−1

∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CBk,p,q(x, y)− CBn,p,q(x, y), (9)

where CBn,p,q(x, y) is the (p, q)-cosine Bernoulli polynomials.

Corollary 3. From the Theorem 4 and Equation (9), we find a relation such as

n

∑
k=0

[
n + 1

k

]
p,q

p(
n+1−k

2 )
CBk,p,q(x, y)− CBn,p,q(x, y)

=
[n + 1]p,q

2

(
n

∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CEk,p,q(x, y) + CEn,p,q(x, y)

)
,

where CBn,p,q(x, y) is the (p, q)-cosine Bernoulli polynomials, see [12].

Theorem 5. For |q/p| < 1, we find

CEn,p,q(1, y) =
n

∑
k=0

[
n
k

]
p,q
(−1)n−k(2Ck,p,q(x, y)− CEk,p,q(x, y))q(

n−k
2 )xn−k.

Proof. Put x = 1 in the generating function of (p, q)-Euler polynomials. Then, we find

∞

∑
n=0

CEn,p,q(1, y)
tn

[n]p,q!
= 2COSp,q(ty)−

2
ep,q(t) + 1

COSp,q(ty) (10)
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By applying 1 = ep,q(x)Ep,q(−x) in Equation (10), we derive

∞

∑
n=0

CEn,p,q(1, y)
tn

[n]p,q!

=

(
2ep,q(tx)COSp,q(ty)−

2
ep,q(t) + 1

ep,q(tx)COSp,q(ty)
)

Ep,q(−x)

=
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
p,q
(−1)n−kq(

n−k
2 )(2Ck,p,q(x, y)− CEk,p,q(x, y)xn−k

)
tn

[n]p,q!
,

(11)

By using comparison of the coefficients in Equation (11), we have the desired re-
sult.

Corollary 4. Setting p = 1 in Theorem 5, one holds

CEn,q(1, y) =
n

∑
k=0

[
n
k

]
q
(−1)n−k

(
2Ck,q(x, y)− CEk,q(x, y)

)
q(

n−2
2 )xn−k,

where CEn,q(x, y) is the q-cosine Euler polynomials, see [16].

Corollary 5. Setting p = 1, q→ 1 in Theorem 5, the following holds

CEn(1, y) =
n

∑
k=0

[
n
k

]
q
(−1)n−k(2Ck(x, y)− CEk(x, y))xn−k,

where CEn(x, y) is the cosine Euler polynomials, see [15].

Theorem 6. Let a, b be non-negative integers. Then, we investigate

n

∑
k=0

[
n
k

]
p,q

an−kbk
CEn−k,p,q

( x
a

,
y
a

)
CEk,p,q

( x
b

,
y
b

)
=

n

∑
k=0

[
n
k

]
p,q

bn−kak
CEn−k,p,q

( x
b

,
y
b

)
CEk,p,q

( x
a

,
y
a

)
.

Proof. From (p, q)-cosine Euler polynomials, we can derive

2
ep,q(at) + 1

ep,q(tx)COSp,q(ty)
2

ep,q(bt) + 1
ep,q(tx)COSp,q(ty)

=
∞

∑
n=0

an
CEn,p,q

( x
a

,
y
a

) tn

[n]p,q!

∞

∑
n=0

bn
CEn,p,q

( x
b

,
y
b

) tn

[n]p,q!

=
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
p,q

an−kbk
CEn−k,p,q

( x
a

,
y
a

)
CEk,p,q

( x
b

,
y
b

)) tn

[n]p,q!
.

(12)

By rearranging the first equation of (12), we also find

2
ep,q(bt) + 1

ep,q(tx)COSp,q(ty)
2

ep,q(at) + 1
ep,q(tx)COSp,q(ty)

=
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
p,q

bn−kak
CEn−k,p,q

( x
b

,
y
b

)
CEk,p,q

( x
a

,
y
a

)) tn

[n]p,q!

(13)

From Equations (12) and (13), we can find the required result.
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Corollary 6. Putting a = 1 in Theorem 6, one holds

n

∑
k=0

[
n
k

]
p,q

bk
CEn−k,p,q(x, y)CEk,p,q

( x
b

,
y
b

)
=

n

∑
k=0

[
n
k

]
p,q

bn−k
CEn−k,p,q

( x
b

,
y
b

)
CEk,p,q(x, y).

Corollary 7. Setting p = 1 in Theorem 6, the following holds

n

∑
k=0

[
n
k

]
q
an−kbk

CEn−k,q

( x
a

,
y
a

)
CEk,q

( x
b

,
y
b

)
=

n

∑
k=0

[
n
k

]
q
bn−kak

CEn−k,q

( x
b

,
y
b

)
CEk,q

( x
a

,
y
a

)
.

Corollary 8. Let p = 1, q→ 1 in Theorem 6. Then, one holds

n

∑
k=0

(
n
k

)
an−kbk

CEn−k

( x
a

,
y
a

)
CEk

( x
b

,
y
b

)
=

n

∑
k=0

(
n
k

)
bn−kak

CEn−k

( x
b

,
y
b

)
CEk

( x
a

,
y
a

)
,

where CEn(x, y) is the cosine Euler polynomials, see [15].

Theorem 7. For |q/p| < 1, we have

∂

∂x CEn,p,q(x, y) = CEn,p,q(px, y)− CEn,p,q(qx, y)
(p− q)x

.

Proof. We consider (p, q)-derivative of (p, q)-exponential function in (p, q)-cosine Euler
polynomials as

∂

∂x

∞

∑
n=0

CEn,p,q(x, y)
tn

[n]p,q!

=
2

ep,q(t) + 1
COSp,q(ty)

∂

∂x
ep,q(tx)

=
1

(p− q)x

(
2

ep,q(t) + 1
ep,q(tpx)COSp,q(ty)−

2
ep,q(t) + 1

ep,q(tqx)COSp,q(ty)
)

.

(14)

By using the generating function of (p, q)-cosine Euler polynomials in Equation (14),
we find the desired result.

Corollary 9. Set p = 1 in Theorem 7. Then, the following holds

∂

∂x CEn,q(x, y) = CEn,q(x, y)− CEn,q(qx, y)
(1− q)x

.

Theorem 8. Let ep,q(t) 6= −1 with |q/p| < 1. Then, we derive

[n]p,qCEn−1,p,q(x, y) + 2CBn,p,q(x, y)

=
n

∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
(

2CBk,p,q(x, y)− [k]p,qCEk−1,p,q(x, y)
)

,

where CBn,p,q(x, y) is the (p,q)-cosine Bernoulli polynomials.
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Proof. From the generating functions of (p, q)-cosine Euler polynomials and (p, q)-cosine
Bernoulli polynomials, we find a relation such as

∞

∑
n=0

CEn,p,q(x, y)
tn

[n]p,q!
=

2(ep,q(t)− 1)
t(ep,q(t) + 1)

∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!
. (15)

We suppose ep,q(t) 6= −1 in (15). Using the power series of (p, q)-exponential function,
we can express (15) as

∞

∑
n=0

CEn,p,q(x, y)
tn+1

[n]p,q!

(
∞

∑
n=0

p(
n
2)

tn

[n]p,q!
+ 1

)

= 2
∞

∑
n=0

CBn,p,q(x, y)
tn

[n]p,q!

(
∞

∑
n=0

p(
n
2)

tn

[n]p,q!
− 1

)
.

(16)

By using Cauchy product in both sides of (16), we find

∞

∑
n=0

CEn,p,q(x, y)
tn+1

[n]p,q!

(
∞

∑
n=0

p(
n
2)

tn

[n]p,q!
+ 1

)

=
∞

∑
n=0

[n]p,qCEn−1,p,q(x, y)
tn

[n]p,q!

(
∞

∑
n=0

p(
n
2)

tn

[n]p,q!
+ 1

)

=
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
p,q
[k]p,q p(

n−k
2 )

CEk−1,p,q(x, y) + [n]p,qCEn−1,p,q(x, y)

)
tn

[n]p,q!

= 2
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
p,q

p(
n−k

2 )
CBk,p,q(x, y)− CBn,p,q(x, y)

)
tn

[n]p,q!
.

(17)

From the comparison of the coefficients in (17), we derive Theorem 8.

Corollary 10. Put p = 1 in Theorem 8. Then, the following holds

qCEn−1,q(x, y) + 2CBn,q(x, y) =
n

∑
k=0

[
n
k

]
q

(
2CBk,q(x, y)− [k]qCEk−1,q(x, y)

)
.

By using ẽp,q(x), we define a new type of (p, q)-cosine Euler polynomials CẼn,p,q(x, y) as

∞

∑
n=0

CẼn,p,q(x, y)
tn

[n]p,q!
=

2
ep,q(t) + 1

ẽp,q(tx)COSp,q(ty).

Theorem 9. Let a be a non-negative integer. Then, we have

CẼn,p,q
(
(x⊕ a)p,q, y

)
=

n

∑
k=0

[
n
k

]
p,q

q(
n−k

2 )an−k
CEk,p,q(x, y).

Proof. Substituting (x⊕ a)p,q instead of x in a new type of (p, q)-cosine Euler polynomials,
we find

∞

∑
n=0

CẼn,p,q
(
(x⊕ a)p,q, y

) tn

[n]p,q!

=
2

ep,q(t) + 1
ẽp,q(t(x⊕ a)p,q)COSp,q(ty)

=
∞

∑
n=0

(
n

∑
k=0

[
n
k

]
p,q

q(
n−k

2 )an−k
CEk,p,q(x, y)

)
tn

[n]p,q!
.

(18)
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By comparing the coefficients of both sides in (18), we find result which is a relation be-
tween new type of (p, q)-cosine Euler polynomials and (p, q)-cosine Euler polynomials.

Corollary 11. Putting (x	 a)p,q instead of x in Theorem 9, the following holds

CẼn,p,q((x	 a)p,q, y) =
n

∑
k=0

[
n
k

]
p,q
(−a)n−kq(

n−k
2 )

CEk,p,q(x, y).

3. The Structure of Approximate Roots for (p, q)-Cosine Euler Polynomials and Their
Characteristic Properties

In this section, we identify the specific polynomial form of (p, q)-cosine Euler polyno-
mials and the structure of the approximate roots of (p, q)-cosine Euler polynomials. We
also calculate the approximation of the roots varying with the value of n to find out the
shapes of the approximating circles and their properties related to it. The graphs and tables
shown in this section were obtained using Mathematica (Figures 1–4, Tables 1 and 2).

First, we look at several specific (p, q)-cosine Euler polynomials as follows.

CẼ0,p,q(x, y) = 0

CẼ1,p,q(x, y) = 1

CẼ2,p,q(x, y) =
(p + q)(−1 + 2px)

1 + p + q

CẼ3,p,q(x, y)

=
(p + q)(p2 + pq + q2)(1− p(1 + p + q)− 2px + 2p2(1 + p + q)x2 − 2q(1 + p + q)y2)

(1 + p + q)(1 + (p + q)(p2 + pq + q2))

· · · .

Figure 1 shows the structure of the approximate roots of (p, q)-cosine Euler polynomi-
als. Given p = 0.5, q = 0.9, y = 5, and n = 30, we see that the structures of the approximate
roots are as the left. Moreover, to determine the properties that depend on the value of p,
we can check the right graph of Figure 1 to figure out q, y, n under the same circumstances
as the left figure except when the value of p is changed to p = 0.1.

-2 -1 1 2
Re

-2

-1

1

2

Im

-10 -5 5 10
Re

-10

-5

5

10

Im

Figure 1. Structure of roots of CE30,p,0.9(x, 5) when p = 0.5 or p = 0.1.

In Figure 1, we can see that the values of the approximate roots becomes bigger as
the values of p become smaller, and the two graphs show that the approximate roots are
located in an elliptical form.

This time, let’s change the value of y to check the movement of the roots. The left side
of Figure 2 is the location of the approximate roots obtained under conditions of p = 0.5,
q = 0.9, and y = 10, and the right side of the figure is the structure of the approximate
roots that appears when y = 3 under conditions such as the left side.
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-4 -2 2 4
Re

-4

-2

2

4

Im

-1.5 -1.0 -0.5 0.5 1.0 1.5
Re

-1.5

-1.0

-0.5

0.5

1.0

1.5

Im

Figure 2. Structure of roots of CE30,0.5,0.9(x, y) when y = 10 or y = 3.

In Figure 2, its natural to compare with the left graph in Figure 1. As the value of y
gets bigger, so does the approximations of the roots, and as the value of y decreases, so
does the approximations of the roots.

The following Figure 3 shows a stacking structure of approximate roots that appears
when p = 0.1, q = 0.9, and y = 5 are conditioned on (p, q)-cosine Euler polynomials
and when the value of n varies from 1 to 30. In Figure 3, the smaller the value of n in
(p, q)-cosine Euler polynomials, the wider the position of approximation roots, and the
bigger the value of n, the more specific the approximation roots appear to be. Here, the
red dots shown in Figure 3 are the positions of approximate roots of (p, q)-cosine Euler
polynomials when n has a value of 30.

Figure 3. Stacking structure of approximate roots of CEn,0.1,0.9(x, 5) under 1 ≤ n ≤ 30.

Here, we can see through Figures 1–3 that the structure of the approximate roots
appears approximately circular in shape. Furthermore, even when p = 0.9, q = 0.1, and
y = 5, we can confirm that the larger the value of n gets, the closer the approximation values
are to a circle form. When we check these forms of plots, we can guess that approximate
roots exist in a form of circles may exist as the value of n grows.

To confirm the above idea, we look for approximations of the roots of CEn,p,q(x, y).
The following table shows approximations of the roots of (p, q)-cosine Euler polynomials
which appear when n = 50, p = 0.5, q = 0.9, and y = 5.

From Table 1 above, we can find Figure 4 as follows.
In Figure 4, we can grasp the interesting features of approximate roots of (p, q)-cosine

Euler polynomials. As n grows larger, we see that the position of approximations has a
shape close to a circle. In Figure 4, we plot the approximation circle in blue when n = 50
on the left, n = 55 in the middle, and n = 60 on the right. The center of each circle is
also marked by a blue dot. The center, radius, and error range of the circle represented
in Figure 4 are found as shown in Table 2. The circle equation of approximate roots for
CE50,0.5,0.9(x, 5) is (x− 0.0246014)2 + (y− 4.85622× 10−13)2 = 1.55359, the circle equation
of approximate roots of CE55,0.5,0.9(x, 5) is (x − 0.0505825)2 + (y + 7.41793 × 10−9)2 =
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1.46969, and the circle equation of approximate roots of CE60,0.5,0.9(x, 5) is (x− 0.0324048)2 +
(y− 3.1025× 10−9)2 = 1.41776.

Table 1. Approximate roots of CE50,0.5,0.9(x, 5).

(Re[x], Im[x])

(−1.52428, −0.100022), (−1.52428, 0.100022), (−1.49813, −0.298445),
(−1.49813, 0.298445), (−1.44622, −0.492041), (−1.44622, 0.492041),

(−1.36935, −0.677704), (−1.36935, 0.677704), (−1.26876, −0.852486),
(−1.26876, 0.852486), (−1.14617, −1.01362), (−1.14617, 1.01362),

(−1.0038, −1.15847), (−1.0038, 1.15847), (−0.8443, −1.28446),
(−0.8443, 1.28446), (−0.670471, −1.38909), (−0.670471, 1.38909),

(−0.485184, −1.47026), (−0.485184, 1.47026), (−0.291452, −1.52638),
(−0.291452, 1.52638), (−0.0924989, −1.55644), (−0.0924989, 1.55644),

(0.108276, −1.55998), (0.108276, 1.55998), (0.307381, −1.53704),
(0.307381, 1.53704), (0.50134, −1.48822), (0.50134, 1.48822),

(0.686785, −1.41456), (0.686785, 1.41456), (0.860538, −1.31761),
(0.860538, 1.31761), (1.01969, −1.1993), (1.01969, 1.1993),
(1.16164, −1.062), (1.16164, 1.062), (1.28423, −0.908368),

(1.28423, 0.908368), (1.38574, −0.741361), (1.38574, 0.741361),
(1.46502, −0.564084), (1.46502, 0.564084), (1.52152, −0.379624),

(1.52152, 0.379624), (1.55524, −0.190806), (1.55524, 0.190806), (1.56642, 0)

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

-1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

-1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 4. Position of the circle close to the approximate roots of CEn,0.5,0.9(x, 5) .

Table 2. The circle of approximate roots of CEn,0.5,0.9(x, 5).

The Center (x, y) The Radius The Error Range

n = 50 (0.0246014, 4.85622× 10−13) 1.55359 0.00181808

n = 55 (0.0505825,−7.41793× 10−9) 1.46969 0.00102648

n = 60 (0.0324048, 3.1025× 10−9) 1.41776 0.00047103

As it can be seen in Table 2, we can see that as n becomes larger, the radius becomes
smaller. It can also be seen that the margin of error is reduced. Here, we find in Figure 2
that roots exist on the real axis when n = 30 and y = 3. The value of this point is −1.04899
and we have found the equation of the circle closest to the approximate roots except for
these points. This can also be seen when n = 40. These experiments suggest that the form
of approximate roots in the higher order polynomials of CEn,0.5,0.9(x, 5) will conform to a
circular form, and that the center of the circle will exist close to the origin.

4. Conclusions

In this paper, we looked for various properties of (p, q)-cosine Euler polynomials.
Based on these contents, we were able to determine the positions of approximation roots
that appear differently depending on the values of p, q and y, as well as the equations
associated with approximation roots. Depending on the values of p, q and y, the value of
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approximation roots varies, but as n increases, it is assumed that the stacking structure
for each approximation root will become almost circular, and we can find a shape with a
small error for the approximation roots. The effort to generalize the position and stacking
structure of approximate roots of these higher-order equations is considered a challenge to
be solved in the future.
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