Increased Asymmetry of Trunk, Pelvis, and Hip Motion during Gait in Ambulatory Children with Spina Bifida
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Asymmetry in Controls
3.2. Asymmetry and ROM in Spina Bifida by Functional Level
3.3. Effect of Assistive Devices on Gait Asymmetry
3.4. Patients with Asymmetric Involvement
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bare, A.; Vankoski, S.J.; Dias, L.; Danduran, M.; Boas, S. Independent ambulators with high sacral myelomeningocele: The relation between walking kinematics and energy consumption. Dev. Med. Child Neurol. 2001, 43, 16–21. [Google Scholar] [CrossRef]
- Sawin, K.J.; Bellin, M.H. Quality of life in individuals with spina bifida: A research update. Dev. Disabil. Res. Rev. 2010, 16, 47–59. [Google Scholar] [CrossRef]
- Rintoul, N.E.; Sutton, L.N.; Hubbard, A.M.; Cohen, B.; Melchionni, J.; Pasquariello, P.S.; Adzick, N.S. A new look at myelomeningoceles: Functional level, vertebral level, shunting, and the implications for fetal intervention. Pediatrics 2002, 109, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Sharrard, W.J. The Segmental Innervation of the Lower Limb Muscles in Man. Ann. R. Coll. Surg. Engl. 1964, 35, 106–122. [Google Scholar] [PubMed]
- Hoffer, M.M.; Feiwell, E.; Perry, R.; Perry, J.; Bonnett, C. Functional ambulation in patients with myelomeningocele. J. Bone Joint Surg. Am. 1973, 55, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Swaroop, V.T.; Dias, L. Orthopedic management of spina bifida. Part I: Hip, knee, and rotational deformities. J. Child. Orthop. 2009, 3, 441–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rethlefsen, S.A.; Bent, M.A.; Mueske, N.M.; Wren, T.A.L. Relationships among classifications of impairment and measures of ambulatory function for children with spina bifida. Disabil. Rehabil. 2020, 1–5. [Google Scholar] [CrossRef]
- Wright, J.G. Neurosegmental level and functional status. In Caring for the Child with Spina Bifida; Sarwark, J.F., Lubicky, J.P., Eds.; American Academy of Orthopaedic Surgeons: Rosemont, IL, USA, 2001; p. 71. [Google Scholar]
- Iftikhar, W.; De Jesus, O. Spinal Dysraphism and Myelomeningocele; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Wren, T.A.; Ponrartana, S.; Van Speybroeck, A.; Ryan, D.D.; Chia, J.M.; Hu, H.H. Heterogeneity of muscle fat infiltration in children with spina bifida. Res. Dev. Disabil. 2014, 35, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, E.M.; Bartonek, A.; Haglund-Akerlind, Y.; Saraste, H. Centre of mass motion during gait in persons with myelomeningocele. Gait Posture 2003, 18, 37–46. [Google Scholar] [CrossRef]
- Gutierrez, E.M.; Bartonek, A.; Haglund-Akerlind, Y.; Saraste, H. Characteristic gait kinematics in persons with lumbosacral myelomeningocele. Gait Posture 2003, 18, 170–177. [Google Scholar] [CrossRef]
- McDonald, C.M.; Jaffe, K.M.; Mosca, V.S.; Shurtleff, D.B. Ambulatory outcome of children with myelomeningocele: Effect of lower-extremity muscle strength. Dev. Med. Child Neurol. 1991, 33, 482–490. [Google Scholar] [CrossRef]
- Patterson, K.K.; Parafianowicz, I.; Danells, C.J.; Closson, V.; Verrier, M.C.; Staines, W.R.; Black, S.E.; McIlroy, W.E. Gait asymmetry in community-ambulating stroke survivors. Arch. Phys. Med. Rehabil. 2008, 89, 304–310. [Google Scholar] [CrossRef]
- Jorgensen, L.; Crabtree, N.J.; Reeve, J.; Jacobsen, B.K. Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: Bone adaptation after decreased mechanical loading. Bone 2000, 27, 701–707. [Google Scholar] [CrossRef]
- Sigward, S.M.; Lin, P.; Pratt, K. Knee loading asymmetries during gait and running in early rehabilitation following anterior cruciate ligament reconstruction: A longitudinal study. Clin. Biomech. 2016, 32, 249–254. [Google Scholar] [CrossRef]
- Lathrop-Lambach, R.L.; Asay, J.L.; Jamison, S.T.; Pan, X.; Schmitt, L.C.; Blazek, K.; Siston, R.A.; Andriacchi, T.P.; Chaudhari, A.M. Evidence for joint moment asymmetry in healthy populations during gait. Gait Posture 2014, 40, 526–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forczek, W.; Staszkiewicz, R. An evaluation of symmetry in the lower limb joints during the able-bodied gait of women and men. J. Hum. Kinet. 2012, 35, 47–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ounpuu, S.; Winter, D.A. Bilateral electromyographical analysis of the lower limbs during walking in normal adults. Electroencephalogr. Clin. Neurophysiol. 1989, 72, 429–438. [Google Scholar] [CrossRef]
- Chodera, J.D. Analysis of gait from footprints. Physiotherapy 1974, 60, 179–181. [Google Scholar]
- Herzog, W.; Nigg, B.M.; Read, L.J.; Olsson, E. Asymmetries in ground reaction force patterns in normal human gait. Med. Sci Sports Exerc. 1989, 21, 110–114. [Google Scholar] [CrossRef]
- DeVita, P.; Hong, D.; Hamill, J. Effects of asymmetric load carrying on the biomechanics of walking. J. Biomech. 1991, 24, 1119–1129. [Google Scholar] [CrossRef]
- Fusagawa, H.; Fujita, H.; Matsuyama, T.; Himuro, N.; Teramoto, A.; Yamashita, T.; Selber, P. Gait profile score and gait variable scores in spina bifida. J. Pediatr. Orthop. B 2021. [Google Scholar] [CrossRef]
- Wren, T.A.; Mueske, N.M.; Rethlefsen, S.A.; Kay, R.M.; Van Speybroeck, A.; Mack, W.J. Quantitative Computed Tomography Assessment of Bone Deficits in Ambulatory Children and Adolescents with Spina Bifida: Importance of Puberty. JBMR Plus 2020, 4, e10427. [Google Scholar] [CrossRef]
- Wren, T.A.L.; O’Callahan, B.; Katzel, M.J.; Zaslow, T.L.; Edison, B.R.; VandenBerg, C.D.; Conrad-Forrest, A.; Mueske, N.M. Movement variability in pre-teen and teenage athletes performing sports related tasks. Gait Posture 2020, 80, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.B.I.; Ounpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Polfuss, M.; Sawin, K.J.; Papanek, P.E.; Bandini, L.; Forseth, B.; Moosreiner, A.; Zvara, K.; Schoeller, D.A. Total energy expenditure and body composition of children with developmental disabilities. Disabil. Health J. 2018, 11, 442–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenmakers, M.A.; de Groot, J.F.; Gorter, J.W.; Hillaert, J.L.; Helders, P.J.; Takken, T. Muscle strength, aerobic capacity and physical activity in independent ambulating children with lumbosacral spina bifida. Disabil. Rehabil. 2009, 31, 259–266. [Google Scholar] [CrossRef]
- Ellis, R.G.; Howard, K.C.; Kram, R. The metabolic and mechanical costs of step time asymmetry in walking. Proc. Biol. Sci. 2013, 280, 20122784. [Google Scholar] [CrossRef] [Green Version]
- Finley, J.M.; Bastian, A.J.; Gottschall, J.S. Learning to be economical: The energy cost of walking tracks motor adaptation. J. Physiol. 2013, 591, 1081–1095. [Google Scholar] [CrossRef]
Kerrypnx | Control N = 48 | SB N = 57 | p-Value | Asymmetric SB N = 7 |
---|---|---|---|---|
Sex | ||||
Female | 19 (40%) | 26 (46%) | 0.39 | 2 (29%) |
Male | 29 (60%) | 31 (54%) | 5 (71%) | |
Age (years) | 10.9 (1.8) | 11.1 (1.9) | 0.71 | 10.6 (1.7) |
Height (cm) | 147.0 (13.6) | 141.5 (12.8) | 0.03 | 137.9 (8.6) |
Weight (kg) | 40.0 (10.9) | 45.3 (18.6) | 0.09 | 43.1 (13.6) |
BMI (kg/m2) | 18.2 (2.3) | 22.0 (6.6) | 0.0002 | 22.3 (4.8) |
Functional Level | N/A | |||
Sacral/Low-Lumbar | 22 (39%) | 0 | ||
Mid-Lumbar+ | 35 (61%) | 7 (100%) | ||
Assistive Devices | N/A | |||
Sacral/Low-Lumbar | ||||
None | 21 (95%) | |||
Crutches | 1 (5%) | |||
Mid-Lumbar+ | ||||
None | 16 (46%) | 6 (86%) | ||
Crutches | 9 (26%) | 0 | ||
Walker | 10 (29%) | 1 (14%) |
Mean | SD | 95th Percentile | |
---|---|---|---|
Frontal plane | |||
Hip abduction (deg) | 2.6 | 2.2 | 6.6 |
Pelvis drop (deg) | 2.1 | 1.7 | 6.2 |
Trunk lean (deg) | 2.7 | 2.1 | 6.1 |
Transverse plane | |||
Hip rotation (deg) | 4.6 | 4.1 | 11.9 |
Pelvis rotation (deg) | 3.8 | 3.4 | 11.2 |
Trunk rotation (deg) | 4.6 | 3.5 | 10.4 |
Control N = 48 | Sacral/Low-Lumbar N = 22 | Mid-Lumbar+ N = 35 | p-Value | |
---|---|---|---|---|
Asymmetry | ||||
Hip abduction (deg) | 2.6 (2.2) | 3.7 (4.5) | 7.9 (7.0) | <0.0001 a,b |
Pelvis drop (deg) | 2.1 (1.7) | 2.8 (3.3) | 7.1 (5.4) | <0.0001 a,b |
Trunk lean (deg) | 2.7 (2.1) | 3.2 (2.8) | 6.3 (4.5) | <0.0001 a,b |
Hip rotation (deg) | 4.6 (4.1) | 5.8 (5.6) | 11.8 (10.8) | 0.0001 a,b |
Pelvis rotation (deg) | 3.8 (3.4) | 6.2 (7.7) | 10.4 (10.0) | 0.0004 a |
Trunk rotation (deg) | 4.6 (3.5) | 5.3 (4.7) | 9.1 (7.1) | 0.0005 a,b |
ROM | ||||
Hip abduction (deg) | 15.9 (2.9) | 15.0 (4.4) | 18.8 (7.4) | 0.01 a,b |
Pelvis drop (deg) | 10.1 (2.3) | 9.6 (3.4) | 16.1 (7.4) | <0.0001 a,b |
Trunk lean (deg) | 5.3 (2.0) | 7.7 (5.1) | 16.7 (8.8) | <0.0001 a,b |
Hip rotation (deg) | 14.6 (3.5) | 19.9 (6.8) | 33.4 (12.3) | <0.0001 a,b |
Pelvis rotation (deg) | 15.2 (4.7) | 19.2 (9.3) | 36.1 (16.2) | <0.0001 a,b |
Trunk rotation (deg) | 8.0 (2.2) | 11.3 (8.9) | 21.9 (10.3) | <0.0001 a,b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bent, M.A.; Ciccodicola, E.M.; Rethlefsen, S.A.; Wren, T.A.L. Increased Asymmetry of Trunk, Pelvis, and Hip Motion during Gait in Ambulatory Children with Spina Bifida. Symmetry 2021, 13, 1595. https://doi.org/10.3390/sym13091595
Bent MA, Ciccodicola EM, Rethlefsen SA, Wren TAL. Increased Asymmetry of Trunk, Pelvis, and Hip Motion during Gait in Ambulatory Children with Spina Bifida. Symmetry. 2021; 13(9):1595. https://doi.org/10.3390/sym13091595
Chicago/Turabian StyleBent, Melissa A., Eva M. Ciccodicola, Susan A. Rethlefsen, and Tishya A. L. Wren. 2021. "Increased Asymmetry of Trunk, Pelvis, and Hip Motion during Gait in Ambulatory Children with Spina Bifida" Symmetry 13, no. 9: 1595. https://doi.org/10.3390/sym13091595
APA StyleBent, M. A., Ciccodicola, E. M., Rethlefsen, S. A., & Wren, T. A. L. (2021). Increased Asymmetry of Trunk, Pelvis, and Hip Motion during Gait in Ambulatory Children with Spina Bifida. Symmetry, 13(9), 1595. https://doi.org/10.3390/sym13091595