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Abstract: Spina bifida (SB) is caused by incomplete neural tube closure and results in multiple im-
pairments, including muscle weakness. The severity of muscle weakness depends on the neurologic
lesion level. Though typically symmetric, there can be asymmetries in neurologic lesion level, motor
strength, skeletal structures, and body composition that affect patients’ gait and function. Using
body segment and joint motion obtained through 3D computerized motion analysis, we evaluated
asymmetry and range of motion at the hip, pelvis, and trunk in the frontal and transverse planes
during gait in 57 ambulatory children with SB and 48 typically developing controls. Asymmetry and
range of hip, pelvis, and trunk motion in the frontal and transverse planes were significantly greater
for patients with mid-lumbar and higher level lesions compared with those having sacral/low-
lumbar level lesions and controls without disability (p ≤ 0.01). Crutch use decreased asymmetry of
trunk rotation in mid-lumbar level patients from 10.5◦ to 2.6◦ (p ≤ 0.01). Patients with asymmetric
involvement (sacral level on one side and L3-4 on the other) functioned similarly to sacral level
patients, suggesting that they may be better categorized using their stronger side rather than their
weaker side as is traditional. The information gained from this study may be useful to clinicians
when assessing bracing and assistive device needs for patients with asymmetric SB involvement.

Keywords: spina bifida; gait; asymmetry

1. Introduction

Spina bifida (SB) occurs in 3.3 per 10,000 live births in the United States. The most
severe form, myelomeningocele, results from incomplete closure of the neural tube [1].
Associated impairments typically include hydrocephalus and neurogenic bowel and/or
bladder, resulting in incontinence, muscle weakness, and lack of sensation in the lower
extremities [2]. There are a number of systems used to classify impairments in individuals
with SB, such as lesion level assessed via X-ray, International Myelodysplasia Study Group
(IMSG) level assessed via muscle strength, and functional level classified using the Hoffer
ambulatory level and Dias functional level [3–8]. There can be asymmetries in neurologic
lesion level and motor strength, skeletal structures, and body composition. Asymmetric
motor strength does not always correspond to the sensory level of dysfunction [9].

Neurologic lesion level is usually classified based on the lowest intact spinal segment
on either side, even in cases of asymmetric involvement. A patient with asymmetric
lesion levels and strength profiles may function very differently than their peers with more
symmetric involvement. Other sources of asymmetry also exist, which may impact gait
and function. From a skeletal perspective, children with SB may have pelvic obliquity
secondary to scoliosis or leg length discrepancy resulting from unilateral hip dislocation.
In terms of body composition, a magnetic resonance imaging study from our institution
demonstrated asymmetries and heterogeneity in fat distribution in the lower extremities in
children with SB [10].
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A common impairment of SB at higher neurologic lesion levels is hip abductor and
extensor weakness. Hip abductor and extensor weakness causes increased transverse and
frontal plane trunk and pelvic motion, increased center of mass excursion, and reduced
sagittal plane motion during gait [11,12]. Hip abductor weakness has been found to
increase the magnitude of pelvic rotation, pelvic obliquity, and hip abduction/adduction
during gait in patients with SB. This weakness and resultant excessive motion contribute
to the increased energy cost of gait and decreased self-selected gait speed when compared
to same aged peers without disability [1,13]. The impact of asymmetric hip abductor and
extensor weakness on pelvic and trunk motion and other aspects of gait is not known.

Gait symmetry is often a treatment goal in neurologic and post-surgical populations as
persistent asymmetries have been shown to lead to impaired balance, decreased gait speed,
inefficiency, and increased risk of musculoskeletal injury [14–16]. However, it has also been
reported that in the non-disabled population, there are inherent asymmetries in gait, with
as much as 10% asymmetry in joint moments in more than 50% of subjects in one study [17].
Forczek et al. found that the highest degree of side-to-side asymmetry during the gait cycle
occurred at the ankle in the sagittal plane during the swing phase of gait in healthy men
and women [18]. Other studies have found asymmetries in muscle activation, step length,
stride length, and ground reaction forces [19–22]. These findings highlight the fact that gait
symmetry cannot always be assumed even in uninjured, typically developing populations.

Little research has been done to examine gait symmetry in patients with SB and the
impact that symmetric lesion level may have on gait [23]. The purpose of our study was
to evaluate asymmetries of body segment/joint position and range of motion (ROM) at
the hip, pelvis, and trunk in the frontal and transverse planes during gait in ambulatory
children with SB. We hypothesized that patients with SB would have greater asymmetry in
body segment/joint position and ROM than peers with typical development, especially if
they had asymmetry in lesion level and muscle strength.

2. Materials and Methods

The data for our study were retrospectively gathered from children with SB and
controls without disability who were seen for previous research studies in our motion
analysis laboratory (Table 1) [24,25]. Inclusion criteria for both groups were age 8–13 years
and ability to ambulate with or without assistive devices. Exclusion criteria for those
with spina bifida were current use of glucocorticoid or seizure medications and chronic
conditions other than spina bifida and hydrocephalus. An additional inclusion criterion
for controls was participation in organized sports at least 3 times/week, and exclusion
criteria for controls were injury causing loss of activity for more than 2 weeks within the
past 6 months. All participants and their parents provided written assent and consent to
participate in research as approved by our hospital’s Institutional Review Board.

For the participants with spina bifida, neurosegmental level was determined based
on manual muscle testing following the IMSG criteria. Patients were classified as either
sacral/low-lumbar level (L4 and lower) or mid-lumbar level and above (mid-lumbar+,
L3-4 and higher) based on the IMSG rating of their more involved limb [8]. Asymmetry
of neurologic involvement was also investigated and was defined as a difference of more
than one segmental level between the left and right sides (e.g., L3-4 vs. S1).

All participants underwent instrumented motion analysis to measure dynamic three-
dimensional (3D) segment and joint motions of the trunk and lower extremities in the
sagittal, coronal, and transverse planes while walking at a self-selected speed in their
typical footwear condition and wearing orthoses if needed. Patients walked independently
without assistive devices if they were able; otherwise, they used their typical assistive
devices, such as a walker or crutches. Motion analysis data were collected using an 8–10
camera motion capture system (Vicon Motion Systems Ltd., Oxford, UK). Twenty-five
retro-reflective markers were placed on the participant’s lower body and trunk according
to a modified Plug-in-Gait model [26]. Following a static calibration trial, participants
walked along a 15 m walkway at a self-selected speed. Five to ten trials of data were
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recorded at 120 Hz, and at least three representative gait cycles per side were averaged for
analysis. Kinematic variables calculated from the gait analysis included trunk, pelvis, and
hip motion across the gait cycle. The gait cycle was defined as the time between initial foot
contact to the subsequent foot contact of the same limb as determined using our motion
capture software.

Table 1. Participant characteristics.

Kerrypnx Control
N = 48

SB
N = 57 p-Value Asymmetric SB

N = 7

Sex
Female 19 (40%) 26 (46%)

0.39
2 (29%)

Male 29 (60%) 31 (54%) 5 (71%)

Age (years) 10.9 (1.8) 11.1 (1.9) 0.71 10.6 (1.7)

Height (cm) 147.0 (13.6) 141.5 (12.8) 0.03 137.9 (8.6)

Weight (kg) 40.0 (10.9) 45.3 (18.6) 0.09 43.1 (13.6)

BMI (kg/m2) 18.2 (2.3) 22.0 (6.6) 0.0002 22.3 (4.8)

Functional Level
N/ASacral/Low-Lumbar 22 (39%) 0

Mid-Lumbar+ 35 (61%) 7 (100%)

Assistive Devices

N/A

Sacral/Low-Lumbar
None 21 (95%)

Crutches 1 (5%)
Mid-Lumbar+

None 16 (46%) 6 (86%)
Crutches 9 (26%) 0
Walker 10 (29%) 1 (14%)

Continuous variables are reported as mean (SD) and compared using t-tests. Categorical variables are reported
as n (%) and compared using Fisher’s exact test. Descriptive data are reported for the asymmetric SB subgroup.
N/A = not applicable.

Asymmetry of motion was calculated as the magnitude (absolute value) of difference
between the two limbs for peak hip abduction and internal rotation, ipsilateral pelvic drop
(downward pelvic obliquity) and internal rotation, and trunk drop (lateral lean towards the
ipsilateral side) and internal rotation over the gait cycle. Range of motion (ROM) across the
gait cycle was calculated for hip, pelvis, and trunk frontal and transverse plane motion as
the total excursion between the maximum and minimum values for obliquity and rotation
for each joint or body segment. Since the trunk and pelvis are each a single segment (left
and right are derived from the same rigid body), there was only one ROM measurement for
each per plane. Each limb had a separate hip ROM, and both were included in the analysis.

Asymmetry of hip, pelvis, and trunk motion in the frontal and transverse planes
was compared among the mid-lumbar+, sacral/low-lumbar, and control groups using
analysis of variance (ANOVA). The ROM variables were similarly compared among the
same groups using ANOVA. In the mid-lumbar+ patients, the effect of assistive device
use (none, crutches, or walker) on asymmetry was also examined using ANOVA. In all
cases, Bonferroni post hoc tests were used following ANOVA. All statistical analysis was
performed using Stata version 14.2 (StataCorp LLC, College Station, TX, USA) with a
significance level of 0.05.

3. Results
3.1. Asymmetry in Controls

Controls generally demonstrated symmetric motion, differing by an average of <3◦

in the frontal plane and <5◦ in the transverse plane for all variables studied (Table 2).
Around 95% of participants had asymmetry of <7◦ in the frontal plane. The upper limit of
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asymmetry was slightly larger in the transverse plane, with 95% of participants showing
asymmetry < 12◦.

Table 2. Asymmetry of motion in typically developing children (N = 48).

Mean SD 95th Percentile

Frontal plane

Hip abduction (deg) 2.6 2.2 6.6

Pelvis drop (deg) 2.1 1.7 6.2

Trunk lean (deg) 2.7 2.1 6.1

Transverse plane

Hip rotation (deg) 4.6 4.1 11.9

Pelvis rotation (deg) 3.8 3.4 11.2

Trunk rotation (deg) 4.6 3.5 10.4
Asymmetry is expressed as the magnitude (absolute value) of difference between left and right sides in degrees.

3.2. Asymmetry and ROM in Spina Bifida by Functional Level

Asymmetry of hip, pelvis, and trunk motion in the frontal and transverse planes was
significantly greater for patients in the mid-lumbar+ group compared with the sacral/low-
lumbar and control groups (Table 3 and Figure 1). Similarly, frontal and transverse plane
ROM of the trunk, pelvis, and hips were much larger for the mid-lumbar+ patients com-
pared with both the sacral/low-lumbar and control groups (Table 3 and Figure 2). There
were no differences in asymmetry or ROM between the sacral/low-lumbar group and the
control group. Similar results were obtained when patients with asymmetric lesion levels
were excluded.

Table 3. Comparison of asymmetry and ROM by functional level.

Control
N = 48

Sacral/Low-Lumbar
N = 22

Mid-Lumbar+
N = 35 p-Value

Asymmetry

Hip abduction (deg) 2.6 (2.2) 3.7 (4.5) 7.9 (7.0) <0.0001 a,b

Pelvis drop (deg) 2.1 (1.7) 2.8 (3.3) 7.1 (5.4) <0.0001 a,b

Trunk lean (deg) 2.7 (2.1) 3.2 (2.8) 6.3 (4.5) <0.0001 a,b

Hip rotation (deg) 4.6 (4.1) 5.8 (5.6) 11.8 (10.8) 0.0001 a,b

Pelvis rotation (deg) 3.8 (3.4) 6.2 (7.7) 10.4 (10.0) 0.0004 a

Trunk rotation (deg) 4.6 (3.5) 5.3 (4.7) 9.1 (7.1) 0.0005 a,b

ROM

Hip abduction (deg) 15.9 (2.9) 15.0 (4.4) 18.8 (7.4) 0.01 a,b

Pelvis drop (deg) 10.1 (2.3) 9.6 (3.4) 16.1 (7.4) <0.0001 a,b

Trunk lean (deg) 5.3 (2.0) 7.7 (5.1) 16.7 (8.8) <0.0001 a,b

Hip rotation (deg) 14.6 (3.5) 19.9 (6.8) 33.4 (12.3) <0.0001 a,b

Pelvis rotation (deg) 15.2 (4.7) 19.2 (9.3) 36.1 (16.2) <0.0001 a,b

Trunk rotation (deg) 8.0 (2.2) 11.3 (8.9) 21.9 (10.3) <0.0001 a,b

All kinematic angles are reported in degrees. a indicates p < 0.05 for mid-lumbar+ vs. control, b indicates p < 0.05 for mid-lumbar+ vs.
sacral/low-lumbar from post hoc test.
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Figure 1. Modified Plug-in-Gait marker set.

3.3. Effect of Assistive Devices on Gait Asymmetry

In mid-lumbar+ patients, the only difference in asymmetry based on assistive device
use was lower asymmetry of trunk rotation in patients who walked with crutches. Trunk
rotation asymmetry averaged 2.6◦ (SD 2.9) for patients with crutches compared with
10.5◦ (SD 6.1) for independent ambulators and 12.7◦ (SD 7.9) for patients using a walker
(p ≤ 0.01). Asymmetry of the other gait parameters did not differ based on assistive device
use (p > 0.08).

3.4. Patients with Asymmetric Involvement

In a small number of cases (7/57, 12%), there was asymmetric neurologic involvement.
All but one of these patients had L3-4 involvement on one side and sacral level involvement
or no loss on the other side. The remaining asymmetric patient had L3-4 involvement on
one side and T12 involvement on the other side. This patient used a walker and showed
only moderate asymmetry during gait. She had asymmetry of ≤5◦ for hip and pelvis
frontal and transverse plane motion, 8.5◦ for trunk rotation, and 11.2◦ for trunk lateral lean.

Of the six patients who had L3-4 strength on one side and lower level deficits on the
other side, three showed the expected pattern of greater hip abduction with compensatory
pelvis and/or trunk drop on the weaker side (Figure 3). Transverse plane motion was
variable with no discernable pattern being observed. The patients with asymmetric lesion
levels were similar to the patients with symmetric lesion levels with the exception of greater
asymmetry of trunk rotational motion in the asymmetric lesion level group (13.0◦ vs. 6.9◦,
p = 0.01).
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Figure 2. Asymmetry of gait kinematics by functional level.
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Figure 3. Kinematics of sample patient with asymmetric involvement showing expected gait pattern of hip abduction,
pelvis and trunk drop on the weaker (left) side. Functional level is L3-4 on left and no loss on right.

4. Discussion

The current study is the first to assess asymmetry and ROM of hip, pelvic, and trunk
kinematics in typically developing children. We found minimal hip, pelvic, and trunk
asymmetry and range of motion during gait in these subjects, with 95% of subjects showing
less than 7% and 12% asymmetry in the frontal and transverse planes, respectively. The
finding of some asymmetry in typically developing subjects is not surprising. Forczek
and Staszkiewicz examined the symmetry of gait in able-bodied women and men and
found some difference between sides in lower extremity joint kinematics but no difference
in temporal or phasic measures [18]. They did not, however, examine kinematics in the
frontal or transverse planes which was the focus of our study.

Our SB patients with sacral/low-lumbar level lesions showed hip, pelvic, and trunk
motion symmetry and ROM similar to their typically developing peers, despite the fact
that some likely had weak or absent hip abductors, extensors and ankle plantarflexors.
These findings are in general agreement with those of Gutierrez et al., who showed mini-
mal gait kinematic abnormalities in SB patients with sacral level involvement and intact
plantarflexors, but some kinematic deviations when the plantarflexors were absent. For
purposes of statistical analysis, we grouped our sacral/low lumbar patients with and with-
out plantarflexors together. Further study with larger numbers may allow us to separate
out these groups and may better align our data with the previous literature.

Our patients with mid-lumbar+ level lesions have nearly double the hip/pelvic/trunk
asymmetry and ROM that their sacral/low-lumbar level peers have. This was also seen
in the study by Gutierrez et al., who showed increasing trunk and pelvic motion with
increasing levels of lower extremity muscle weakness. Absence of plantarflexors, hip
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abductors, and extensors necessitates extra trunk and pelvic motion to maintain the center
of mass over the hip joint in stance phase. Trunk and pelvic motion may also be needed
to facilitate swing limb advancement in cases of insufficient plantarflexor and hamstring
strength to initiate swing [11,12].

Many of our mid-lumbar+ patients used assistive devices, and this led to less trunk
rotation asymmetry in crutch users. Though not specifically studied in this group, use
of assistive devices, and the associated decrease in trunk rotation asymmetry, may have
impacted the energy cost of walking for these patients. While it has been reported that
energy expenditure was significantly less for children with SB who primarily used a
wheelchair when compared to children without a disability, it is debatable if ambulatory
children with SB have a significant difference in energy expenditure compared to their
typically developing peers [27]. Bare et al. found that children with SB had oxygen cost and
consumption more than one standard deviation above that of their age-matched peers, with
increased pelvic obliquity strongly related to increased oxygen cost of walking. Their study
also found that both vertical and horizontal center of mass movement throughout gait in
these subjects was not significantly greater than their peers [1]. In one study that looked
at ambulatory children with SB, upper and lower extremity muscle strength and peak
rate of oxygen consumption were significantly lower compared to reference values [28].
Gait symmetry may play a role in energy expenditure in this population and is a possible
direction for future studies [29,30].

Based on our experience, it is more common for functional neurosegmental level to
be symmetric. In the current study, 12% of subjects had asymmetry of more than one
neurologic level between sides. The majority of these had sacral level involvement on one
side and L3-4 level involvement on the other. Though classified as mid-lumbar+ using
traditional methods (based on lowest intact motor level on either side), these individ-
uals functioned more like sacral level patients. They walked without assistive devices
(no crutches or walker) and had hip, pelvic, and trunk asymmetry and ROM similar to
sacral/low-lumbar level patients and those with typical development. In cases of extreme
asymmetry in neurologic lesion levels between sides, it is recommended that limbs should
either be classified separately, or the patients should be categorized based on the strength
of the stronger side for functional purposes. Further study is needed to determine if com-
puterized gait analysis can also be of assistance in assessing the functional implications
of milder neurologic asymmetry and to determine the ability of gait analysis to predict
the development of orthopedic conditions (such as hip dysplasia) over time in cases of
symmetric or asymmetric lesion level in patients with SB.

The relatively small sample size was a limitation to the current study, precluding
us from comparing patients with specific neurologic lesion levels, and those with other
comorbidities potentially affecting gait symmetry, such as unilateral hip dislocation and
scoliosis or patients with and without lesion level asymmetry. In addition, the results
for patients with asymmetric lesion level were primarily descriptive because of the small
sample size in this subgroup. Analysis of motion using wearables such as accelerometers
or inertial measurement units could allow for assessment outside the laboratory, and
inclusion of oxygen consumption data would have allowed us to directly assess the impact
of excessive motion asymmetry and ROM on energy expenditure during gait. These are
areas for further investigation.

In summary, patients with SB with mid-lumbar+ lesion levels exhibit greater hip,
pelvic, and trunk motion asymmetry and range of motion during gait as compared to their
peers with sacral/low-lumbar level lesions as well as children with typical development.
Patients with asymmetric lesion levels are traditionally categorized based on the strength
of the weaker limb. However, patients with one side having sacral/low-lumbar level
strength function more like sacral/low-lumbar level patients, ambulating independently
and exhibiting minimal hip, pelvic, and trunk asymmetry and range of motion. These
patients may be better categorized according to the level of their stronger side for functional
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purposes as it better illustrates their ambulation and functional mobility allowing for more
personalized and specific clinical care.
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