symmetry

Article

On Some New Trapezoidal Type Inequalities for Twice (p, q)
Differentiable Convex Functions in Post-Quantum Calculus

Thanin Sitthiwirattham ¥**©®, Ghulam Murtaza #*t, Muhammad Aamir Alj >**(©, Sotiris K. Ntouyas 451Q,

Muhammad Adeel >t and Jarunee Soontharanon

check for

updates
Citation: Sitthiwirattham, T.;
Murtaza, G.; Ali, M.A_; Ntouyas, S.K.;
Adeel, M.; Soontharanon, J. On Some
New Trapezoidal Type Inequalities
for Twice (p, q) Differentiable Convex
Functions in Post-Quantum Calculus.
Symmetry 2021, 13, 1605. https://
doi.org/10.3390/sym13091605

Academic Editor: Nicusor Minculete

Received: 20 July 2021
Accepted: 30 August 2021
Published: 1 September 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

6,1

Mathematics Department, Faculty of Science and Technology, Suan Dusit University,

Bangkok 10300, Thailand

Department of Mathematics, University of Management and Technology, Lahore 54700, Pakistan;

F2019349078@umt.edu.pk

Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University,

Nanjing 210023, China

Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece; sntouyas@uoi.gr

Nonlinear Analysis and Applied Mathematics (NAAM)—Research Group, Department of Mathematics,

Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North

Bangkok, Bangkok 10800, Thailand; jarunee.s@sci.kmutnb.ac.th

*  Correspondence: thanin_sit@dusit.ac.th (T.S.); ghulammurtaza@umt.edu.pk (G.M.);
mahr.muhammad.aamir@gmail.com (M.A.A.)

1t These authors contributed equally to this work.

Abstract: Quantum information theory, an interdisciplinary field that includes computer science,
information theory, philosophy, cryptography, and symmetry, has various applications for quantum
calculus. Inequalities has a strong association with convex and symmetric convex functions. In this
study, first we establish a (p, g)-integral identity involving the second (p, g)-derivative and then we
used this result to prove some new trapezoidal type inequalities for twice (p, )-differentiable convex
functions. It is also shown that the newly established results are the refinements of some existing
results in the field of integral inequalities. Analytic inequalities of this nature and especially the
techniques involved have applications in various areas in which symmetry plays a prominent role.

Keywords: Hermite-Hadamard inequality; (p, q)-calculus; convex functions

1. Introduction

In convex functions theory, Hermite-Hadamard (HH) inequality is very important,
and was discovered by C. Hermite and J. Hadamard independently (see, also [1,2], p. 137).

T+ 17 T(m) + ()
n( ) < ;/ TT(5¢)dse < v £170UT2) (1)

2 2

where I1 is a convex function. In the case of concave mappings, the above inequality
satisfies in reverse order.

On the other hand, several works in the field of g-analysis, beginning with Euler,
have been implemented in order to master the mathematics that underpins quantum com-
puting. The term g-calculus creates a link between mathematics and physics. It’s used
in combinatorics, number theory, basic hypergeometric functions, orthogonal polynomi-
als, and other fields, as well as relativity theory, mechanics, and quantum theory [34].
In quantum information theory, it has many applications [5-7] and it not only has a link
with the estimations calculus, but also to affine algebraic geometry including the famous
Jacobian Conjecture [8,9]. Euler used the g-parameter in Newton’s work on infinite se-
ries, which is why he is thought to be inventor of this important branch of mathematics.
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The concept of g-calculus that is known to be calculus without limits was given by Jack-
son [10,11] for the first time in a proper way. The notions about the g-fractional integral
and g-Riemann-Liouville fractional integral was given by Al-Salam [12] in 1996. Since
the research increased gradually in this field, therefore Tariboon and Ntouyas [13] gave
the idea about the -, D;-difference operator and g, -integral. The notions about the ™ D,-
difference operator and q™2-integral were given by Bermudo et al. [14] very recently in
2020. Sadjang [15] generalized the concept of g-calculus by introducing the concepts of
(p, q)-calculus. Soontharanon et al. [16] introduced the concepts of fractional (p, g)-calculus
later on. The (p, q)-variant of , D;-difference operator and g, -integral was introduced by
Tung and Gov [17]. Recently, in 2021, Chu et al. introduced the notions of ™Dy, ; derivative
and (p, q)™-integral in [18].

Many integral inequalities for many sorts of functions have indeed been investi-
gated employing quantum as well as post-quantum integrals. For example, the HH
inequalities and their right-left estimates for convex and coordinated convex functions
via 7, Dy, Dy-derivatives and g, , q2-integrals were given by different authors in [19-27].
Noor et al. [28] used the pre-invexity to prove HH inequalities in the setup of g-calculus.
Some parameterized g-integral inequalities for generalized quasi-convex functions es-
tablished by Nwaeze et al. [29]. Khan et al. used the notions of Green functions to
establish some new inequalities of HH type in [30]. Budak et al. [31], Ali et al. [32,33]
and Vivas-Cortez et al. [34] proved some new boundaries for Simpson’s and Newton's
type inequalities for convex and coordinated convex functions in the setting of g-calculus.
One can consult [35-37] for g-Ostrowski’s inequalities for convex and coordinated con-
vex functions. In [38], the authors generalized the results of [21] and proved HH type
inequalities and their left estimates using ~, D, 4-difference operator and (p, q) x,-integral.
Recently, in [39], the authors established the right estimates of HH type inequalities proved
by Kunt et al. [38]. For (p, 4)-Ostrowski type inequalities, one can consult [18]. The results
proved in [14] were generalized in [40].

Inspired by the ongoing studies, we establish some new post-quantum trapezoidal
type inequalities for (p, q)-differentiable convex functions through the (p, g)-integral. Fur-
thermore, we prove that the newly established inequalities are the extensions of some
already given inequalities.

The organization of this paper is as follows: In Section 2, a short explanation of the
concepts of g-calculus and some associated works in this direction are given. In Section 3,,
we review the notions of (p, q)-derivatives and integrals. In Section 4, the trapezoidal
type inequalities for twice (p, q)-differentiable functions via (p, q)-integrals are presented.
The relationship between the results provided here and comparable outcomes in the
literature are also taken into account. Section 5 provides some findings as well as other
study directions.

2. Quantum Derivatives and Integrals

In this portion, we recall a few known definitions and related inequalities in g-calculus.
Set the following notation ([4]):

1—g"
[n], = _”’q —1+g0+@P+..+4"Y, g€ (0,1).

1

The g-Jackson integral of a mapping I1 from 0 to 71, is given by Jackson [11], which is
defined as:

Us) oS
/H(%) dgze = (1—q)my Y q"T1(m2q"), where 0 < g < 1 ()
0 n=0
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provided that the sum converges absolutely. Moreover, over the interval [771, 72|, he gave
the following integral of a mapping IT:

}ZH(%) dgse = 721_[(%) dgsx —71_1(%) dgs .
st 0 0

Definition 1 ([13]). The q,-derivative of mapping I1 : [rt1, 2] — R is defined as:

DyT1(3) = H<%)(—1£I(qq)ﬂ(4%+_(1m—)q)m), %A, 3)

For » = 1y, we state ; DgI1(711) = lim,, 7, DgI1(5c) if it exists and it is finite.

Definition 2 ([14]). The q"2-derivative of mapping I1: [r11, 7] — R is given as:

mD, () = H(q%g (10]_)(‘12;2)JZ)H(”), s # . @)

For s« = 715, we state "2 DgI1(712) = lim,, ,, ™2 D,I1(5) if it exists and it is finite.

Definition 3 ([13]). The qn,-definite integral of mapping I1 : [my, o] — R on [y, mp] is
defined as:

Ve

J 1) mdyr = (=) —m) T "M+ (1= q)m), > € [l )

7.[] n=0

On the other side, the following concept of g-definite integral is stated by
Bermudo et al. [14]:

Definition 4 ([14]). The q"2-definite integral of mapping 11 : [m1, mp] — R on [my, o] is
given as:

/H(T) d,t = (1—¢q)(m — 2 i I1(g"sc+ (1 —g")m2), 2 € [y, m2].  (6)

Remark 1. If IT is a symmetric function, that is 11(t) = f(m + mp —t), then we have the
following relation

/‘nzn(t) dot = /mn(t) gt
S het’ Ao g

J 7T S|

3. Post-Quantum Derivatives and Integrals

In this section, we review some fundamental notions and notations of (p, g)-calculus.

The [n],, . is said to be (p, 9)-integers and expressed as:

with0 < g < p < 1.The [n], ! and [ Z ]! are called (p, g)-factorial and (p, q)-binomial,

respectively, and expressed as:
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[ n }' _ [n]p,q!
3 R S

Definition 5 ([15]). The (p, q)-derivative of mapping I1: [rr1, 7] — R is given as:

R @)

with0 <g<p <1
Definition 6 ([17]). The (p,q) ,,-derivative of mapping I1: [rt1, 2] — R is given as:

(psx+ (1 —p)m) — (g + (1 —q)m)

 Dpall() = (b —9)Ge—m)

, % F T 8)

with0 <g<p <1
For » = 1y, we state , Dy gI1(711) = lim,, 7, 7, Dp,g11(5¢) if it exists and it is finite.
Definition 7 ([18]). The (p, q)™?-derivative of mapping 1 : [1t1, 715] — R is given as:

(g + (1 —q)mp) —(px+ (1 —p)m2)
(p—q)(ma — »)

2Dy 11(3¢) = , % F T )

For » = 1y, we state 2Dy, ;11(712) = lim,,, 7, ™D, 411(5) if it exists and it is finite.

Remark 2. It is clear that if we use p = 1 in (8) and (9), then the equalities (8) and (9) reduce
to (3) and (4), respectively.

Definition 8 ([17]). The definite (p, q)x,-integral of mapping I1 : [y, o] — R on [y, 73] is

stated as:
q" q" q"
pn—‘rl H(pn-H x+ (1 B pn+1 T (10)

[T = (p - ) - m) 1

m
with0 <g<p <1

Definition 9 ([18]). The definite (p, q)™2-integral of mapping I1 : [mt1, ] — R on [y, 112] is
stated as:

7T - 00 qn qn qn
/ I(7) ™dpgt = (p—q) (2 — ») Z +1H<pn+l »+ (1 - W) 7r2> (11)
n=0

P pt
with0 <g<p <1

Remark 3. It is evident that if we pick p = 1 in (10) and (11), then the equalities (10) and (11)
change into (5) and (6), respectively.

Remark 4. If we take 711 = 0 and » = 11y = 1in (10), then we have

1 0 n n
[ 1) ot = (=) & ST (ST ).
0 oP p

n=|

Similarly, by taking s« = 1y = 0 and 11y = 1in (11), then we obtain that

1 1 0 qn qn
/O T1(7) Yyt = (p—q) ¥ pn+1n<1 - pn+1>.

n=0
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In [38], Kunt et al. proved the following HH type inequalities for convex functions via
(p, g) n, -integral:

Theorem 1. For a convex mapping I1 : [m1, mp| — R, which is differentiable on [rty, 73], the
following inequalities hold for (p, q)  -integral:

qmy + pro 1 prot(1-p)m qlI(m) + pll(mp)
H( 21, ) = p(m2 — 1) /m H(0) mpg>e < 2l -

where0 < g <p <1

Lemma 1 ([40]). We have the following equalities:

)Dé+1

02 (1 — My
o —0)* ™l e = 5L
/711 (702 = ) P4 [w+1],,

a1

o a (0 — 1)
— 7T d =
[ = T

where x € R — {—1}.

Remark 5. If 1T is a symmetric function, that is 11(t) = f(m + mp —t), then we have
following relation

)

TL(t) r,dp gt = / TI(t) ™d,t.

/P7T2+(1—P)7T1
prri+(1-p)m

m

4. Post-Quantum Trapezoidal Type Inequalities

In this section, we prove some new trapezoidal type inequalities for twice (p, q)-
differentiable convex functions using the (p, 7)-integrals.

Lemma 2. Consider a mapping I1 : I = [y, mp] — R, which is twice (p, q)-differentiable and
2 Df,,qH is continuous and integrable on 1. Then, the following equality holds:

T

pll(pmi + (1 — p)ma) +q1l1(m2) i / I1(5c) ™2d, 43¢
2],,,q T — 7T :
’ prri+(1-p2)m
1
20 \2
|2z 0

where0 < g <p <1

Proof. Consider

nsz,qu(Trcl +(1-1)m)
(g + (1 — g7) ) — T (pem + (1 - pr)ma)
(p—q)(m2 — m)T
pI(g?tm + (1 — ¢?1)mp) — 2], ,T1(pgT + (1 — pqT)72) + qIl(p?tm + (1 — p21)my)
pa(p —9)*(m2 — m)*7?

— Uy
- D i

Now, from Definition 9, we have
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1
/ pt(l—q1) ”2D§,qH(T7Tl + (1 —=1)m)dp,yT
0

pIL(g*Tmy + (1 — g?T)72) — (p + q) 1 (pgT

1
+(1 - pq7)12) + gl (p*T7m + (1 — p*7)112)
(1 —gt dyaT
b/p (=47 pq(p — )% (72 — m1)27 P
J— 1 ] )
q(p — q)*(ma — m)?
! F’H(’izfﬁﬁr(l*q%)ﬂz)*(PJF’J)H(MTM+(1*MT)7T2)+'1H(P2T7T1+(1*P2T)7T2)d
Of T paT
1 1
X —pqof (Pt + (1 — ¢°T)m2)dp g T + q[2 Jn.q OfH pqt + (1 — pqt)mo)dy, T
1
—qzbfﬂ(pzwq (1—p?1)ma)dp T
r o n+2 n+2 E )
p(p ‘7) gon YRS Us| + (1 - %)TQ)
oo n 1 n 1
(r*—¢*) H( - m+(1-1 - 7T2)
réozo
1 q(p —q) ;OH(pZ r+ (1 )7m2)
- — )2 _ 2 Og_ n n+2
AP =D m=m)* | —pg(p - g) L (L + (1 - Zn+1)7'f2)
n:
[ee] n n+1 n+1
(P =) X A (L + (1- L))
| P -0) T (G (- )
[ p(p —q)(I1(m2) — (g + (1 — g)2))
+‘71T(P —q)(I(prt1 + (1 = p)2) — I(7m2))
3 2 2
1 a6 Pdp e+ B (p — )T (pry + (1 p)
= p2ri+(1—-p?)m
q(p — q)*(m2 — m)? 2 n2 i
+p(p—)(qm + (1 — q)m2) — 2o J I1(5c) ™2dp,q5¢
N P2+ (1-p?)m,
(2] 2 .
[ TI(e) Rdpge— (92— T (pm + (1— p)ma
L P2+ (1—-p2)m
o
_ 1 4 2] -
" g(m — nl)zn(n2> + (s — nl)zn(P”l + (1 =p)m) — P —m)? I1(5¢) ™dpqse.

I1(m) + ¢11(7)

p2r+(1-p2)m

Now, we have the identity (13) by multiplying both sides of (14) by

proof is complete. [J

Remark 6. In Lemma 2, If we set p = 1, then we have

5 1

‘12(”2 1)

2,

q

)

71'2)

T
1 —
— H%”Zdzzifrl—T”ZDZHTn—i—l—Tn d,T.
@‘ml () T i (- 0y

(14)

7), and the
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IN

IN

IN

— )2 1
—7'(2 4 /T (1—gq1)
0
qu(nz - 7T1)2

27.[_7.[2
pq-(m2 — 711) [ps

This is established by Ali et al. in [19].

Remark 7. In Lemma 2, If we set p = 1 and later take the limit as g — 17, then we have

1
/T(l — )" (tmry + (1 — 1) 7mp)d.
0

T1(y) + I1(702) 17 (m—m)?
: 2 : _7T2 T[1/H(%)d%— : 2 :

This is established by Alomari et al. in [41].

Theorem 2. Consider the assumptions in Lemma 2 are valid. If | D%qu| is convex on I, then
the following inequality holds:

pl(prm + (1 p)m) +qll(m) 1 /2
[2] Tl — 71
prm+(1-p?)m

[p| D2 1) + (p? = p+ %) | D3, T1()

I1() nzdp,q%

P

P4

p*(rmp — m)?
< @B, ),

P4 [ pAq [ P4

where0 < g <p <1

Proof. Taking modulus of (13) and applying the convexity of |2 D%,q , we obtain
I 1 I 1 h
pI(prmy + (1= p)ma) +qI(ma) / T1(3¢) d, g3
2],,,q T — T
pPr+(1-p?)m
1
20 )2
P =TS [o1 — go)| 2D (o + (1 1))y
[Z]p,q / pAa !

nsz,,qH(nl)‘ +(1-1)

”ZDf,,ql'[(nz) H dpgT

2]

1 1
”ZDZ I1(my ‘/Tz 1—qT)dqu+‘”D (7, ‘/T 1—g7)(1—71)dpyT
A 0 0

”ZDi,qH(m)\ +P(P*—p+49%)

ﬂzD,%,qH(nz)H

[2],,4(31,414]

pA [ P4 [ pA

and the proof is completed. [
Remark 8. In Theorem 2, if we set p = 1, then we obtain [19], Theorem 4.

Remark 9. In Theorem 2, If we set p = 1 and later take the limit as q — 17, then we
obtain [42], Proposition 2.

Theorem 3. Consider the assumptions in Lemma 2 as valid. If | D%WHV, r > 1, is convex on I,
then the following inequality holds:

]
pH(pT[1 + (1 — p)ﬂz) + qH(HZ) o i / H(%) nde/q%
[z]p,q 7 s
PP+ (1-p2)m
302 (710 — 711 )2 1
< POV )|+ (R - p )02 ]
[2]p,4" [3],,4[4]p.
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where0 < g <p <1

Proof. Taking modulus of (13) and applying the power mean inequality, we have

pl(prmi + (1 = p)ma) +qll(m2) 1 72
[Z]p,q ) — 701

IT(5¢) ™dp,q¢
PP+ (1-p?)m

1
270 — )2
pq-m2 —m )" (7T2 1) /Tz (1- gr)

”ZDf,IqH(Tm +(1- T)ﬁz)‘dp,q’['

0
(1rp — 711)? i T r ’
2 pa (T — m)” [/T —qT)dy, qT] [/ (1 —q7) ”ZDf,,qH(Tnl +(1- 7)71:2)‘ dpqt| -

<
0 0
Now, using the convexity of | D;%,q r, we have
T
pi(prm + (1 — p)m2) + q11(72) 1
2] T m-m / [(32) "¢
P p?m+(1-p?)m
2 2 1 -7
2 |/
1
. 1 . 1 r
X ﬂsz,,qH(m)‘ /1—2(1—qr)dp,qr+‘ﬂzpilqﬂ(m)‘ /T(l—q'r)(l—'r) dp,q"c]
0 0
11
o PP(m-—m)| _ p
- 21, 21,,4031,,4
1
3 20,2 2 ¥
P |2 r PP P ) ’
X | —=————|"2D T1(7 4+ ——|"2D; Il(7
[[3]17,11[4];7»7 patll l)‘ Blp.ql4pq patll 2)‘
pPe?(my — mp)? T 2 ! 2 INEES) v
= 2_1—[17 Dp,qn<771)‘ +(p"—p+7q°) Dp,qH(rQ) }

205" 31,45
which completes the proof. [
Remark 10. In Theorem 3, if we set p = 1, then we obtain [19], Theorem 5.
Remark 11. In Theorem 3, if we set p = 1 and later take the limit as g — 17, then we have

1

1 b 2*1(71 m1)?
"7t — 0 r rlr
z_nl/n(%)d% < =R I ()| + 117 (ma) ]

() +II(mp)
2

Theorem 4. Consider the assumptions in Lemma 2 are valid. If | ™ D%rqHV is convex on 1 for some
r > 1, then we have the following inequality:

pli(pm+ (1= p)m) +qll(m) 1 /
[2]p,q T — 7

() ”2dp,q%

p2ri+(1-p?)m;
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D3 ()| + (2], ~ 1)

,
D3 T1(73)

wherez = (p—q) ¥ (5

n=0 4

2,4

T

PRI - (D)) 0<qg<p<lands=r/(r—1).

Proof. Taking the modulus of (13) and applying the Holder’s inequality, we have

Tt
pl(pm + (1 - p)m) +qll(m) 1 ’

2],

1
. PP(m—m)? T
= T By 0/ l m

7o)
——— / I1(5¢) ™dp,q

prri+(1-p?)m

I

Now, using the convexity of | D%WHV, we have

pl(pm + (1 —p)m) +q11(mp) 1 7
2]

IN

[2] pq

) 2
DIW

qu(ﬂz - 7T1)2

qu(ﬂz — 7T1)2 [

1
s

/(T(l —q1)°dp,T
0

7lp —
A p?ri+(1-p?)m

S

1

1 1
r r
()| [ 7 dpgr+ | D310 [(1-7) dp,qu
0 0

r r
D2 ()| + (2], — 1) D3, 1(m)|

2,

where

1
:/ (1—qt)°dpt=(p—1q) ) (
0

e opfie @y

1
P

n=0

Hence, the proof is completed. [

Remark 12. In Theorem 4, if we set p = 1, then we obtain [19], Theorem 6.

1
r

1
r

;
”2D2 II(tm + (1 —1)mp)

dpqgT

I1() "2dp,q%

Remark 13. In Theorem 4, if we set p = 1 and later take the limit as g — 1=, then we have

2

T1(7ty) + I1(7m) 17
: : _ﬂz—ﬂl/n(%

(110 — 111)

- 2

;-n

where B(s +1,s+1) =z = [(t
0

2

2

(B(s+ 1,5+ 1))1/5[|H”(m)|r + |H"<nz>|’]

(1 — 7)°dr is the famous Euler’s beta function.
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Theorem 5. With the assumptions of Theorem 4, we have the following inequality

Yo
pI(pm; + (1 [—2];7)712) +qll(m) - 1 - / T1(2¢) ™dpq5¢
pzﬂ'l"r(l_Pz)ﬂZ

iz

2(1y — 7111)2 1 5 r ok
< P ) ({ ) [Zl 7TzDIZ,,qH(m)‘ +22 ﬂzD’%,qH(m)H ’

2] » s+1]p,4
C(p—a) Y (1Y (g} A" Y
where Zl (p q) ngo p2n+2 (1 pn+] ) ﬂl’ld ZZ (p q) ngo pn+] (1 pn+1 ) (1 pn+1 ) .

Proof. Taking modulus of (13) and applying the Holder’s inequality, we have

U3
pl(pmi+ (1 —p)my) +qll(my) 1 / 10 oy
[Z]Pr‘i ) — 71
p2rm+(1-p?)m
$ =
pP(m— m )2 | | i BERE
: T /TSdp’qT /(1 o qT)r 7TZDIZJ,qu(Tﬂl + (1 - T)T(z) dp,qT
pAa 0 0

Now, using the convexity of | D%,qHV/ we have

Uy
pLL(pm + (1 — p)7) + ql1(72) 1 / T1(5¢) ™ g0

[2] g Tl — 711

p2ri+(1-p2)m

IN

P (s — m1)? ([ 1 )i

2], s+1]pq

1

1 1 7
r r
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Hence, the proof is completed. O
Remark 14. In Theorem 5, if we set p = 1, then we obtain [19], Theorem 7.

Remark 15. In Theorem 5, if we put p = 1 and later take the limit as g — 1=, then we have

T
H(nl) +H(7T2) _ 1 /H(%)d%
2 T — 1M
T

1

= - _Zm)z <s }L 1) ? ((r + 1)1(r+2)>r [(r+2)|H”(7r1)|r + |H"(7fz)ﬂ %'
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5. Conclusions

In this work, we established some new trapezoidal type (p, 7)-integral inequalities
for twice (p, q)-differentiable convex functions. We deduce that the findings proved in
this work are naturally universal and contribute into the theory of inequalities, as well
as applications for determining the uniqueness of solutions in quantum boundary value
problems, quantum mechanics, and special relativity theory. The findings of this study
can be applied to quantum information theory and symmetry. Results for the case of
symmetric functions can be obtained by applying the concepts in Remarks 1 and 5, which
will be studied in future work. As a future direction, one can find similar inequalities for
coordinated convex functions.
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