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Abstract: The framework of Baikov–Gazizov–Ibragimov approximate symmetries has proven useful
for many examples where a small perturbation of an ordinary or partial differential equation (ODE,
PDE) destroys its local exact symmetry group. For the perturbed model, some of the local symmetries
of the unperturbed equation may (or may not) re-appear as approximate symmetries. Approximate
symmetries are useful as a tool for systematic construction of approximate solutions. For algebraic
and first-order differential equations, to every point symmetry of the unperturbed equation, there
corresponds an approximate point symmetry of the perturbed equation. For second and higher-
order ODEs, this is not the case: a point symmetry of the original ODE may be unstable, that is,
not have an analogue in the approximate point symmetry classification of the perturbed ODE. We
show that such unstable point symmetries correspond to higher-order approximate symmetries of
the perturbed ODE and can be systematically computed. Multiple examples of computations of
exact and approximate point and local symmetries are presented, with two detailed examples that
include a fourth-order nonlinear Boussinesq equation reduction. Examples of the use of higher-order
approximate symmetries and approximate integrating factors to obtain approximate solutions of
higher-order ODEs are provided.

Keywords: Lie groups; local symmetries; approximate symmetries; ordinary differential equations;
exact solutions; approximate solutions

1. Introduction

A symmetry of a system of algebraic or differential equations is a transformation
that maps solutions of the system to other solutions. Dating back to the works of Sophus
Lie in the nineteenth century, symmetry ideas have seen significant development over
the last century, relating to symmetry reduction and solutions of differential equations,
integrating factors, conserved quantities and local conservation laws, Hamiltonian and
Lagrangian structures, integrability, nonlocal extensions, invertible and non-invertible
mappings between different classes of differential equations, and more (see, e.g., [1,2] and
the references therein).

Let the term perturbed equations denote equations differing from some canonical or
otherwise well-understood model by extra term(s) involving a small parameter. This small
perturbation disturbs the local Lie symmetry properties of the unperturbed equations.
Several approximate Lie symmetry methods have been developed to study symmetry
properties of perturbed models, and relate and compare them to symmetry structure of the
unperturbed equations. An approximate symmetry method (referred to here as the BGI
method) was introduced by Baikov, Gazizov, and Ibragimov [3–5], where the approximate
symmetry generator is expanded in a perturbation series. This approach preserves the Lie
group structure, in particular, a commutator of two approximate symmetry generators
yields an approximate symmetry generator [6]. Using the BGI framework, approximate
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symmetries, first integrals, and approximate solutions have been constructed for a number
of models involving ordinary and partial differential equations (ODE and PDE) (e.g., [7–9].)
A different approach to approximate symmetries, developed by Fushchich and Shtelen [10],
combines a perturbation technique with the symmetry group method by expanding the
dependent variables in a Taylor series in the small parameter and approximately replacing
the original equations by a system of equations that are coefficients at different powers
of the parameter. The classical Lie symmetry method is applied to obtain symmetries of
the latter system. Using this method, approximate symmetries and approximate solutions
have been found for some PDE models [11,12]. The BGI and Fushchich–Shtelen approaches
are not equivalent. They have been compared and used to obtain approximate symmetries
and approximate solutions for several PDE models [13–16]. In [17], approximate solutions
of a singularly perturbed Boussinesq PDE were found using the approximate Fushchich–
Shtelen symmetries and using a proposed method that is not based on the Lie symmetries.
Burde [18] developed a new approach for approximate symmetries by constructing equa-
tions that could be reduced by exact transformations to an unperturbed equation and
would, at the same time, coincide approximately with the perturbed equation.

Contact and higher-order exact symmetries can be used to construct solutions for
ordinary differential equations (e.g., [19]). In [20], it was shown how integrating factors for
linear and nonlinear ordinary differential equations can be determined. A perturbation
method based on integrating factors was developed for a system of regularly perturbed
first-order ODEs [21].

In this paper, we follow the BGI approximate symmetry framework for algebraic
equations and ODEs. While BGI approximate symmetries have been found for many
models, including ODEs and PDEs (e.g., [3–7,14,22]), it has not been clarified under what
conditions point or local symmetries of exact equations can become unstable, disappearing
from the classification of approximate symmetries of a perturbed system of the same
differential order, and what form they, therefore, take.

In the sections below, we prove that for single algebraic and first-order differential
equations, all point symmetries are stable. For second and higher-order ODEs, we show
that a point or local symmetry of the unperturbed equation usually yields a higher-order
(generally, of order n− 1) symmetry of the perturbed model.

The paper is organized as follows. In Section 2, we briefly review the necessary nota-
tion for the Lie group of transformations, infinitesimal transformations and determining
equations for finding the exact symmetries, and provide an introduction to the theory of
approximate transformations and approximate symmetries of the perturbed equations in
the sense of Baikov, Gazizov, and Ibragimov.

In Section 3, we consider exact and approximate point symmetries of algebraic and
ordinary differential equations with a small parameter, and provide a relation between
exact and approximate symmetries of the original and perturbed algebraic and first-order
ordinary differential equations. We investigate the BGI approximate point symmetries of
the perturbed higher-order ODEs. Point symmetries of the unperturbed equation may
indeed disappear from the classification of approximate point symmetries of the perturbed
model, and conditions for that are presented.

In Section 4, we consider point and higher-order local exact and approximate sym-
metries of second and higher-order ODEs in evolutionary form, and present a systematic
way (Theorem 2) to find approximate symmetry components for approximate symmetries
that correspond to every point and local symmetry of the unperturbed equation. Relations
between exact and approximate symmetries are considered in detail for two examples,
including a nonlinearly perturbed second-order ODE, and a fourth-order ODE arising as a
traveling wave reduction of the Boussinesq partial differential equation modeling shallow
water wave propagation.

Finally, in Section 5, we determine approximate integrating factors of perturbed first-
order ODEs using approximate point symmetries. We find the determining equations of
approximate integrating factors, and show how these determining equations and higher-
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order approximate symmetries can be used to obtain approximate solutions of a perturbed
Boussinesq ODE. A brief discussion is offered in Section 6.

In addition to providing a complete answer to the question of stability of point and
local symmetries of unperturbed ODEs vs. their perturbed versions with a small parameter,
the main value of this contribution lies in new detailed examples of computation and
comparison of exact and approximate symmetry structures of multiple ODEs, and the use
of point and higher-order approximate symmetries to calculate closed-form approximate
solutions of such perturbed models.

2. Lie Groups of Exact and Approximate Point and Local Symmetries

We denote a general system of N algebraic or differential equations by

Fσ
0 [v] ≡ Fσ

0 (x, v, ∂v, . . . , ∂kv) = 0, k ≥ 0, σ = 1, 2, . . . , N, (1)

and its first-order perturbation in terms of a small parameter ε by

Fσ[v] ≡ Fσ(x, v, ∂v, . . . , ∂kv; ε) = Fσ
0 (x, v, ∂v, . . . , ∂kv) + εFσ

1 (x, v, ∂v, . . . , ∂kv) = o(ε). (2)

x = (x1, x2, . . . , xn), n ≥ 1, and v = (v1, v2, . . . , vm), m ≥ 1, are respectively independent
and dependent variables, and ∂qv denotes all qth-order derivatives of all components of v.

2.1. Exact and Approximate Transformation Groups

A one-parameter Lie group of transformations

(x∗)i = f i(x, v; a) = xi + aξ i
0(x, v) + O(a2), i = 1, 2, . . . , n,

(v∗)µ = gµ(x, v; a) = vµ + aη
µ
0 (x, v) + O(a2), µ = 1, 2, . . . , m,

(3)

with the group parameter a, and the corresponding infinitesimal generator

X0 = ξ i
0(x, v)

∂

∂xi + η
µ
0 (x, v)

∂

∂vµ , (4)

where summation in repeated indices is assumed, is a point symmetry of the system (1)
when, for each σ = 1, 2, . . . , N,

X0(k)Fσ
0 [v]

∣∣
Fσ

0 [v]=0, σ=1,2,...,N = 0, (5)

that is, (5) holds on solutions of (1) (e.g., [1,2]). The evolutionary (characteristic) form of
the Lie group of transformations (3) is the one-parameter family of transformations

(x∗)i = xi, i = 1, 2, . . . , n,
(v∗)µ = vµ + aζ[v] + O(a2), µ = 1, 2, . . . , m,

(6)

with the evolutionary infinitesimal generator

X̂0 = ζµ[v]
∂

∂vµ , (7)

where ζµ[v] = η
µ
0 (x, v)− vµ

i ξ i
0(x, v). Higher-order local transformations generalize (6) by

allowing the infinitesimal components ζ[v] to depend more generally on derivatives of v,
including higher-order derivatives.
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Example 1. The classical example (whose various perturbed versions we will use below) is that of
a second-order ODE with a maximal Lie group of point symmetries,

y′′(x) = 0. (8)

(Here and below, we use primes to denote ordinary derivatives.) The computation of the prolongation
of X0 (4) to the second order and the solution of determining Equation (5) yields the general point
symmetry components (see, e.g., [1])

ξ0 = C1x2 + C3
xy
2

+ C7x + C6y + C8, η0 = C1xy + C2x + C3
y2

2
+ C4y + C5, (9)

where Ci are arbitrary constants. The resulting eight-parameter Lie group of point symmetries of
(8) is spanned by the generators

X0
1 = xy

∂

∂y
+ x2 ∂

∂x
, X0

2 = x
∂

∂y
, X0

3 =
y2

2
∂

∂y
+

xy
2

∂

∂x
,

X0
4 = y

∂

∂y
, X0

5 =
∂

∂y
, X0

6 = y
∂

∂x
, X0

7 = x
∂

∂x
, X0

8 =
∂

∂x
.

(10)

For a general model (2) involving a small parameter ε, exact point and local symmetry
generators have the form

Y = αi(x, v; ε)
∂

∂xi + βµ(x, v; ε)
∂

∂vµ , Ŷ = ζµ(x, v, ∂v, . . . , ∂sv; ε)
∂

∂vµ . (11)

Solving the determining Equation (5), one finds exact symmetries of (2) holding for an
arbitrary ε. It is commonly the case that, due to the perturbation term, some (or even all)
point and/or local symmetries of the unperturbed Equation (1) disappear from the local
symmetry classification of the perturbed model (2).

Example 2. Consider an ODE
y′′ = ε(y′)−1, (12)

which is a perturbed version of (8). It is straightforward to show that the only point symmetries of
(8) that are also point symmetries of (12), holding for an arbitrary ε, are the translations

Y1 = X0
5 =

∂

∂y
, Y2 = X0

8 =
∂

∂x
. (13)

Approximate symmetries have been developed a tool to seek additional symmetry
structure of perturbed models. For Equation (2) with a small parameter ε, Baikov–Gazizov–
Ibragimov (BGI) approximate point symmetries [22,23] are defined by approximate sym-
metry generators

X = X0 + εX1 =
(

ξ i
0(x, v) + εξ i

1(x, v)
) ∂

∂xi +
(

η
µ
0 (x, v) + εη

µ
1 (x, v)

) ∂

∂vµ , (14)

and similarly, local approximate BGI transformations correspond to generators in evolu-
tionary form given by

X̂ = X̂0 + εX̂1 =
(

ζ
µ
0 [v] + εζ

µ
1 [v]

) ∂

∂vµ . (15)
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The approximate invariance condition

(X0(k) + εX1(k))(Fσ
0 (x, v, ∂v, . . . , ∂kv) + εFσ

1 (x, v, ∂v, . . . , ∂kv))
∣∣∣∣
F0+εF1=o(ε)

= o(ε),

σ = 1, . . . , N
(16)

yields determining equations for the components ξ i
j, η

µ
j of first-order BGI approximate

symmetries. The solution of the determining Equation (16) can be subdivided in the
following steps:

1. Compute an exact point/local symmetry generator X0 of the unperturbed Equation (1)
using determining Equation (5) for exact local or point symmetries.

2. Find the corresponding first-order deformation (the part X1 of the generator (14))
using the equation

X1(k) Fσ
0

∣∣∣∣
Fσ

0 =0
= G(x, v, ∂v, . . . , ∂kv),

where G is obtained from the coefficients of ε in

−X0(k)(Fσ
0 + εFσ

1 )

∣∣∣∣
Fσ

0 +εFσ
1 =0

, σ = 1, . . . , N.

The following theorem holds.

Theorem 1. Let the Equation (2) be approximately invariant under an approximate group of BGI
point transformations with the generator (14) such that ξ0, η0(x, v) 6= 0. Then, the infinitesimal
operator (4) is a generator of an exact symmetry group for the unperturbed Equation (1).

Remark 1. It is clear from Equation (16) that any symmetry generator X0 of an unperturbed
system (1) yields an approximate symmetry X = εX0 of the perturbed system (2). We call such
approximate generators trivial approximate symmetries of (2).

Remark 2. Similarly to the above-described procedure, one can consider higher-order expansions
of both the perturbed Equation (2) and symmetry generators in terms of the small parameter ε.

2.2. Stable and Unstable Symmetries in the BGI Framework

The converse to Theorem 1 does not hold: not every point or local symmetry of a given
model (1) yields an approximate BGI symmetry of its perturbed version (2). In [22], an
exact point (or local) symmetry of the unperturbed Equation (1) with the generator (4) (or
(7)) is called stable if there exists a point (local) approximate generator (14) or respectively
(15) that is a BGI approximate symmetry of the perturbed Equation (2). If all symmetries of
the Equation (1) are stable, the perturbed Equation (2) are said to inherit the symmetries of
the unperturbed equations.

Example 3. Consider the second-order ODE (12)

y′′ = ε(y′)−1.

Its unperturbed version y′′ = 0 has eight exact point symmetries given by (10). The approximate
BGI symmetry generator of (12) can be sought in the form

X = X0 + εX1 =
(

ξ0(x, y) + εξ1(x, y)
) ∂

∂x
+
(

η0(x, y) + εη1(x, y)
) ∂

∂y
,
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where X0 is an exact symmetry generator of the unperturbed ODE. The determining Equation (16)
for approximate symmetries yield

η1
xx + (2η1

xy − ξ1
xx)y

′ + (η1
yy − 2ξ1

xy)y
′2 − ξ1

yyy′3 = (3ξ0
x − 2η0

y)y
′−1 + 4ξ0

y − η0
xy′−2, (17)

where ξ0, η0 are exact symmetry components (9) computed in Example 1. The determining
Equation (17) splits into a system of PDEs for ξ1, η1 with the solutions

ξ1(x, y) = a1x2 +
a2

2
xy + a3x + a4y + a5, η1(x, y) = 2C6x2 + a1xy +

a2

2
y2 + a6x + a7y + a8, (18)

and the additional conditions: 3ξ0
x − 2η0

y = 0, η0
x = 0 on the unperturbed symmetry components

ξ0, η0 (9). These provide restrictions on free constants in (9): C1 = C2 = C3 = 0, C4 = 3C7/2.
Since the constants a1 . . . a8 and C4, C5, C6, C8 are free, the ODE (3) admits 12 approximate point
symmetries divided into the following classes:

1. Exact symmetries inherited from the unperturbed ODE (8), involving only O(ε0) components

X9 = X0
4 +

2
3

X0
7 , X10 = X0

5 , X11 = X0
8 . (19a)

2. A genuine approximate symmetry

X12 = X0
6 + 2εx2 ∂

∂y
(19b)

with O(ε0) part inherited from the stable symmetry X0
6 of the unperturbed ODE (8) (see (10)).

3. Eight trivial symmetries Xj = εX0
j , j = 1, 2, . . . , 8, corresponding to the free constants

a1 . . . a8 in (18), having only O(ε) components, and arising from each exact point symmetry
(10) of the unperturbed ODE (8).

Concerning the “fate" of the exact point symmetries (10) of the unperturbed ODE (8) in the
approximate symmetry classification (19) of the perturbed ODE (3), it turns out that only four
exact symmetries are stable: these are X0

5 , X0
6 , X0

8 and the linear combination

X0
s = X0

4 +
2
3

X0
7

that is contained in X9 of (19a). The other four symmetries of the unperturbed ODE (8) are unstable,
including the generators X0

1 , X0
2 , X0

3 in (10), and the transverse linear combination of X0
4 and X0

7 :

X0
u = X0

4 −
3
2

X0
7 . (20)

Example 4. The following example illustrates the case when there are no restrictions on the
unperturbed symmetry components, which leads to the stability of all point symmetries of the
unperturbed equation. Consider a second order ODE

y′′ = εy′, (21)

which is a different perturbed version of (8). The determining Equation (16) for approximate
symmetries of (21) yields

η1
xx + (2η1

xy − ξ1
xx)y

′ + (η1
yy − 2ξ1

xy)(y
′)2 − ξ1

yy(y
′)3 = η0

x + ξ0
xy′ + 2ξ0

yy′2, (22)

where ξ0, η0 are the unperturbed symmetry components (9). Clearly, Equation (22) splits into a
system of PDEs in ξ1, η1 with no change on ξ0, η0. Consequently, the perturbed ODE (21) admits
16 approximate symmetries given by
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X1 = x2 ∂

∂x
+

(
xy + ε

x2y
2

)
∂

∂y
, X2 = x

∂

∂y
+ ε

x2

2
∂

∂y
, X3 =

(
xy
2
− ε

x2y
4

)
∂

∂x
+

y2

2
∂

∂y
,

X4 = (y− εxy)
∂

∂x
, X5 =

(
x− ε

x2

2

)
∂

∂x
, X6 = y

∂

∂y
, X7 =

∂

∂y
, X8 =

∂

∂x
,

X9 = ε

(
xy

∂

∂y
+ x2 ∂

∂x

)
, X10 = εx

∂

∂y
, X11 = ε

(
xy

∂

∂x
+ y2 ∂

∂y

)
, X12 = εy

∂

∂y
,

X13 = ε
∂

∂y
, X14 = εy

∂

∂x
, X15 = εx

∂

∂x
, X16 = ε

∂

∂x
. (23)

All exact symmetries (10) of the unperturbed ODE (8) are inherited by the approximate symmetries
(23), and thus are stable by definition.

3. Exact and Approximate Point Symmetries of Algebraic and Ordinary
Differential Equations
3.1. Algebraic and First-Order Differential Equations

The relation between exact and approximate point symmetries of algebraic equations
and fist-order ODEs is quite simple. In summary, to every exact Lie point symmetry of an
unperturbed equation, there correspond:

• an infinite set of exact Lie point symmetries of the perturbed equation; and
• an infinite set of approximate BGI point symmetries of the perturbed equation.

It follows that all point symmetries of algebraic systems and first-order ODEs are
stable in the BGI approximate symmetry sense.

The above statement is the result of both algebraic equations and ODEs having infinite
sets of point symmetries, in both the classical Lie and approximate BGI framework. In
particular, for algebraic equations, let

F0(x) = const (24)

define a family of surfaces (curves) in Rn, with F0 being a scalar or vector function of m
components, 1 ≤ m < n. Let also

F(x) = F0(x) + εF1(x) = const (25)

denote a perturbation of (24). Suppose the point symmetry generator

X0 = ξ0i(x) ∂/∂xi (26)

preserves the solution set of (24) in the sense that

X0Fj
0(x) =

n

∑
i=1

ξ0i(x)
∂Fj

0
∂xi ≡ 0, j = 1, . . . , m. (27)

For the linear system (27), the dimension of the solution space is d = n− rank (DF0/Dx) ≥ 1,
that is, the point symmetry generator (26) is parameterized by d arbitrary functions. In the
same manner, assuming that rank (DF0/Dx) = rank (DF/Dx), for the point symmetry
generator Y = ηi(x; ε)∂/∂xi of the perturbed system (25), the symmetry determining
equations YFj(x) = 0, j = 1, . . . , m yields infinite point symmetries involving d arbitrary
functions, with limε→0 ηi = ξ0i.

For BGI approximate point symmetries admitted by the family of perturbed surfaces
(25), the generator has the form

X = X0 + εX1 =
n

∑
i=1

ξ0i(x)
∂

∂xi + ε
n

∑
i=1

ξ1i(x)
∂

∂xi . (28)
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The determining Equation (16) yield the conditions on the first-order infinitesimals ξ1i

n

∑
i=1

ξ1i(x)
∂Fj

0
∂xi = −

n

∑
i=1

ξ0i(x)
∂Fj

1
∂xi , j = 1, . . . , m. (29)

For each point symmetry (26) of the unperturbed Equation (24) given by a set of the
infinitesimal components, the determining Equation (29) have multiple nontrivial solutions
parameterized by d = n− rank (DF0/Dx) ≥ 1 functions; thus, to every point symmetry
of (24), there corresponds a d-dimensional set of approximate BGI point symmetries (28),
again satisfying limε→0 X = X0.

For a first-order ODE
y′ = f0(x, y), (30)

let
X0 = ξ0(x, y)

∂

∂x
+ η0(x, y)

∂

∂y
(31)

denote an exact point symmetry generator admitted by (30). Exact point symmetry compo-
nents (ξ0(x, y), η0(x, y)) of the ODE (30) satisfy the determining Equation (5)

η0
x + η0

y f0 − η0 f0y − ξ0 f0x − ξ0
x f0 − ξ0

y f 2
0 = 0, (32)

that is, for a fixed arbitrary function ξ0(x, y), a linear non-homogeneous PDE on η0(x, y),
which has infinitely many solutions, corresponding to infinite point symmetries of the
first-order ODE (30). In particular, for an arbitrary ξ0 = ξ0(x, y), it is well known that the
choice η0(x, y) = ξ0(x, y) f0(x, y) yields a point symmetry.

For a perturbed version of the ODE (30)

y′ = f0(x, y) + ε f1(x, y) + o(ε), (33)

the exact symmetry generator has the form

Y = ξ(x, y; ε)
∂

∂x
+ η(x, y; ε)

∂

∂y
. (34)

Since the right-hand side of the ODE (33) is just another function of x, y, by the same
reason as above, the perturbed ODE (33) has an infinite set of exact point symmetries with
generator (34), arising as solutions of the determining equation

ηx + ( f0 + ε f1)ηy − η( f0y + ε f1y)− ( f0x + ε f1x )ξ − ( f0 + ε f1)ξx − ( f0 + ε f1)
2ξy = 0. (35)

Again, for an arbitrary ξ(x, y; ε) analytic in ε, one can find η(x, y; ε) analytic in ε. Conse-
quently, when ε = 0, each symmetry (34) of the perturbed ODE (33) reduces to the exact
point symmetry (31) of the unperturbed ODE (30).

For the perturbed ODE (33), one can also seek a BGI approximate symmetry generator
in the form

X = X0 + εX1 =
(

ξ0(x, y) + εξ1(x, y)
) ∂

∂x
+
(

η0(x, y) + εη1(x, y)
) ∂

∂y
. (36)

Applying the approximate symmetry determining Equation (16), one has

η1
x + (η1

y − ξ1
x) f0 − ξ1

y f0
2 − ξ1 f0x − η1 f0y = (ξ0

x − η0
y) f1 + 2ξ0

y f0 f1 + ξ0 f1x + η0 f1y , (37)

which is a linear nonhomogeneous PDE in two unknowns ξ1 and η1. Hence, for an
arbitrary fixed ξ0(x, y), η0(x, y), and ξ1(x, y), an infinite set of solutions η1(x, y) can be
found, corresponding to an infinite set of BGI approximate symmetries (36) of the perturbed
ODE (33), corresponding to any exact symmetry (31) of the unperturbed ODE (30).
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3.2. Second and Higher-Order ODEs

The situation with stability of point symmetries of second and higher-order ODEs
in the BGI framework is significantly different: determining equations on BGI approxi-
mate symmetry components may (or may not) contain conditions on the exact symmetry
components, which can lead to unstable point symmetries. Consider the unperturbed
higher-order ODE

y(n) = f0(x, y, y′, . . . , y(n−1)), n ≥ 2, (38)

and its perturbed version

y(n) = f0(x, y, y′, . . . , y(n−1)) + ε f1(x, y, y′, . . . , y(n−1)) + o(ε). (39)

Perturbed ODEs generally have fewer exact point symmetries than their unperturbed
versions; Example 2 for the ODE y′′ = ε(y′)−1 illustrates this trend. The exact and BGI
approximate symmetry generators for (38), (39) are given by (31) and (36). To find the BGI
approximate symmetries of the perturbed ODE (39), we apply the approximate invariance
condition (16). In the zeroth order in ε, they are the same as (5) for exact point symmetries.
At the first order in ε, one has

X1(n)(y(n) − f0)

∣∣∣∣
y(n)= f0

= − ∂

∂ε

∣∣∣
ε=0

[
X0(n)(y(n) − f0 − ε f1)

∣∣∣∣
y(n)= f0+ε f1

]
, (40)

equivalent to

(
η1(n) −

n−1

∑
k=1

η1(k) ∂ f0

∂y(k)

)∣∣∣∣
y(n)= f0

− ξ1 f0x − η1 f0y =

− ∂

∂ε

∣∣∣
ε=0

[(
η0(n) −

n−1

∑
k=1

η0(k)(
∂ f0

∂y(k)
+ ε

∂ f1

∂y(k)
)− ξ0( f0x + ε f1x )− η0( f0y + ε f1y)

)∣∣∣∣
y(n)= f0+ε f1

]
. (41)

Note that η0(n) is linear in y(n), and satisfies the equation

η0(n) = Dnη0 −
n−1

∑
j=0

(
n
j

)
Djy′Dn−jξ0.

Hence the general form for the determining equation for approximate symmetries of the
perturbed ODE (39) is(

η1(n)
∣∣∣∣
y(n)= f0

−
n−1

∑
k=1

η1(k) ∂ f0

∂y(k)

)
− ξ1 f0x − η1 f0y =

(nξ0
x − η0

y) f1 + (n + 1)y′ξ0
y f1 +

n−1

∑
k=1

η0(k) ∂ f1

∂y(k)
+ ξ0 f1x + η0 f1y . (42)

The additional determining Equation (42) is a PDE on the BGI first-order perturbation
point symmetry components (ξ1, η1) which are functions of x, y. After replacing y(n) by
f0(x, y, y′, . . . , y(n−1)), and splitting with respect to different combinations of y′, . . . , y(n−1)

on which (ξ1, η1), one obtains a set of linear homogeneous PDEs. These involve the
unknown BGI perturbation components ξ1, η1 as well as the exact point symmetry compo-
nents (ξ0, η0) obtained from (5) in the previous step.

In particular, depending on the form of f0 and f1 in (39), these split determining
equations may contain additional conditions on the exact point symmetry components ξ0,
η0. When that is the case, some exact point symmetries of the unperturbed ODE (38) may
disappear from the approximate symmetry classification of the perturbed ODE (39), thus
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becoming unstable (see Example 3). If the additional determining Equation (42) contains
no restrictions on the exact point symmetry components ξ0, η0, all symmetries of the
unperturbed ODE remain stable (Example 4).

4. Exact and Approximate Local Symmetries of Higher-Order ODEs

While for algebraic equations and first-order ODEs, every point symmetry of the un-
perturbed equation is stable and reappears in the BGI approximate symmetry classification,
we have seen that for second- and higher-order ODEs, this is not the case: point symmetries
of a second or higher-order ODEs may or may not be stable.

By analogy with ODE systems, for higher-order ODEs, it is natural to expect that
the correct framework is provided by local (including higher-order) symmetries. Indeed,
below we show that to every point or local symmetry of an unperturbed ODE of second or
higher order, there corresponds a local BGI approximate symmetry of the perturbed ODE.

4.1. Exact Local Symmetries of the Unperturbed ODE

The infinitesimal generator of a local symmetry (6) admitted by an unperturbed ODE
(38) has the form

X̂0 = ζ0[y]
∂

∂y
, (43)

with the infinitesimal component

ζ0[y] = ζ0(x, y, y′, y′′, . . . , y(s)), 1 ≤ s ≤ n− 1. (44)

The nth prolongation of (43) is given by

X̂0(n) = ζ0 ∂

∂y
+ ζ0(1) ∂

∂y′
+ . . . + ζ0(n) ∂

∂y(n)
, ζ0(j)

= Djζ0, j = 1, 2, . . . , n.

The determining equations for the exact symmetries of the general ODE (38) arises from
the invariance condition

X̂0(n)(y(n) − f0)

∣∣∣∣
y(n)= f0

= 0, (45)

or in detail,

Dnζ0
∣∣∣∣
y(n)= f0

=
n−1

∑
k=1

(
Dkζ0 ∂ f0

∂y(k)

)∣∣∣∣
y(n)= f0

+ ζ0 f0y = 0. (46)

If s = n − 1, Equation (46) is a linear homogeneous PDE for ζ0 with independent
variables x, y, y′, . . . , y(n−1). This PDE can be written in solved form

∂nζ0

∂xn = R(x, y, y′, . . . , y(n−1), ζ0, ∂ζ0, . . . , ∂nζ0) (47)

for the highest derivative of ζ0 by x, where all derivatives with respect to x appearing in
the right-hand side of (47) are of lower order than those appearing on the left-hand side. It
follows that when s = n− 1, the PDE (46) is solvable for ζ0 for any “initial condition”, and
hence any given ODE of order n admits an infinite number of local symmetries of order
n− 1, parameterized by solutions of the PDE (47).
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When s < n − 1, the invariance condition (46) splits (with respect to {y(s+1), . . . ,
y(n−1)}) into an overdetermined system of linear homogeneous PDEs, which has, at most,
a finite number of linearly independent solutions (see, e.g., [19]).

4.2. Approximate Local Symmetries of the Perturbed ODEs

The higher-order approximate symmetry generator for the ODE (39) with a small
parameter is given by

X̂ = X̂0 + εX̂1 =
(

ζ0[y] + εζ1[y]
) ∂

∂y
, (48)

where ζ0[y] is given by (44), and

ζ1[y] = ζ1(x, y, y′, . . . , y(`)), 1 ≤ ` ≤ n− 1. (49)

The prolongation of this generator has the form

X̂(n) = X̂0(n) + εX̂1(n) = X̂0(n) + ε

(
X1 + ζ1(1) ∂

∂y′
+ . . . + ζ1(n) ∂

∂y(n)

)
,

with ζ1(j)
= Djζ1, j = 1, 2, . . . , n. To find the approximate symmetries of the perturbed

ODE (39), we apply the determining equations for approximate symmetries

X̂(n)(y(n) − f0 − ε f1)

∣∣∣∣
y(n)= f0+ε f1

= o(ε). (50)

First, one computes an exact local symmetry generator (43) of the unperturbed ODE (38).
Then, the first-order deformation X̂1 can be found from the equation

X̂1(n)(y(n) − f0)

∣∣∣∣
y(n)= f0

= G(x, y, y′, . . . , y(n−1)), (51)

where G is the coefficient of ε in

−
(

X̂0(n)(y(n) − f0 − ε f1)
)∣∣∣∣

y(n)= f0+ε f1

.

The additional determining Equation (51) becomes

Dnζ1
∣∣∣∣
y(n)= f0

−
n−1

∑
k=1

(
Dkζ1 ∂ f0

∂y(k)

)∣∣∣∣
y(n)= f0

− ζ1 f0y = G. (52)

When ` = n− 1, Equation (52) yields a linear nonhomogeneous PDE in ζ1 which has
a Cauchy–Kovalevskaya form with respect to the independent variable x, and its solutions
that can be obtained by the method of characteristics. No additional restrictions on the
unperturbed symmetry component ζ0 arise. Hence, the following theorem holds.
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Theorem 2. For each exact point or local symmetry (43) of an unperturbed ODE (38), there is
an approximate local symmetry (48) of the perturbed ODE (39), with the symmetry component ζ1

being of differential order at most n− 1.

We now consider two examples in detail.

4.3. The First Detailed Example

For the second-order ODE (12) with a small parameter,

y′′ = ε(y′)−1,

we apply Theorem 2 to find approximate symmetries of order n− 1 = 1 corresponding
to unstable point symmetries of (12) (see Example 3). This ODE is a perturbed version of
y′′ = 0. In total, it admits 12 approximate point symmetries; this set does not include the
following unstable point symmetries of y′′ = 0:

X0
1 = xy

∂

∂y
+ x2 ∂

∂x
, X0

2 = x
∂

∂y
, X0

3 =
y2

2
∂

∂y
+

xy
2

∂

∂x
, X0

u = X0
4 −

3
2

X0
7 . (53)

Let
X̂0 = ζ0(x, y, y′)

∂

∂y
=
(

η0(x, y)− y′ξ0(x, y)
) ∂

∂y
(54)

be the symmetry generator of the ODE y′′ = 0 in evolutionary form. Therefore, ζ0 has
the form

ζ0(x, y, y′) = α1xy + α2x + α3
y2

2
+ α4y + α5 − (α1x2 + α3

xy
2

+ α6y + α7x + α8)y′. (55)

The eight point symmetries (10) of y′′ = 0 have evolutionary forms

X̂0
1 =

(
xy− x2y′

) ∂

∂y
, X̂0

2 = x
∂

∂y
, X̂0

3 =
(
y2 − xyy′

) ∂

∂y
,

X̂0
4 = y

∂

∂y
, X̂0

5 =
∂

∂y
, X̂0

6 = yy′
∂

∂y
, X̂0

7 = xy′
∂

∂y
, X̂0

8 = y′
∂

∂y
.

(56)

Let
X̂ =

(
ζ0(x, y, y′) + εζ1(x, y, y′)

) ∂

∂y
(57)

be a local approximate symmetry generator admitted by the perturbed ODE (12) where ζ0

is given by (55). The determining Equation (52) on ζ1 requires that

ζ1
xx + 2y′ζ1

xy + y′2ζ1
yy = (−α1y− α2)(y′)−2 +

(
4α1x− α3

2
y− 2α4 + 3α7

)
(y′)−1 + 2α3x + 4α6. (58)

By a change of variables t = y− xy′, ζ1(x, y, y′) = u(x, t), the homogeneous part of (58),

ζ1
xx + 2y′ζ1

xy + y′2ζ1
yy = 0, (59)

becomes uxx = 0, with the general solution u(x, t) = R1(t) + xR2(t), where R1, R2 are
arbitrary functions of their arguments. Hence, the homogeneous PDE (59) has a general
solution ζ1

c = R1(y− xy′) + xR2(y− xy′). Now, let

ζ1
p = P(x, y)(y′)−2 + Q(x, y)(y′)−1 + R(x, y)
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be a particular solution for the nonhomogeneous PDE (58). Substituting this particular
solution into the Equation (58) yields the following system of PDEs

Pxx = −α1y− α2, Qxx + 2Pxy = 4α1x− α3

2
y− 2α4 + 3α7,

Rxx + 2Qxy + Pyy = 2α3x + 4α6, 2Rxy + Qyy = 0, Ryy = 0.

Solving the above system gives the general solution of (58)

ζ1(x, y, y′) = R1(y− xy′) + xR2(y− xy′)−
(α1

2
x2y +

α2

2
x2
)
(y′)−2

+

(
α1x3 − α3

4
x2y− α4x2 +

3α7

2
x2
)
(y′)−1 +

α3

2
x3 + 2α6x2. (60)

The simplest solution is found by taking R1 = R2 = 0:

ζ1(x, y, y′) =
(
−α1

2
x2y− α2

2
x2
)
(y′)−2 +

(
α1x3 − α3

4
x2y− α4x2 +

3α7

2
x2
)
(y′)−1 +

α3

2
x3 + 2α6x2. (61)

Now, we find, one by one, all approximate symmetry components ζ1 corresponding to
each of the eight point symmetries of the unperturbed equation y′′ = 0 as listed in (56).

For X̂0
1 , substituting α1 = 1, and αi = 0, i = 2, . . . , 8 into Equations (55) and (61), we

obtain ζ0 = xy− x2y′, and ζ1(x, y, y′) = − 1
2 x2y(y′)−2 + x3(y′)−1. Hence, the first-order

approximate symmetry corresponding to X̂0
1 is given by

X̂1 =

(
xy− x2y′ + ε

(
1
2

x2y(y′)−2 + x3(y′)−1
))

∂

∂y
. (62)

The symmetry X̂0
1 was unstable as a point symmetry of the ODE (8) but corresponds to a

first-order approximate symmetry (62).
For X̂0

2 , we have ζ0 = x, and the corresponding ζ1 found from (55) and (61) is
ζ1(x, y, y′) = − 1

2 x2(y′)−2. Thus, X̂0
2 , which used to be an unstable point symmetry of

y′′ = 0, in fact corresponds to a first-order approximate symmetry of the perturbed ODE
(12) given by

X̂2 =

(
x− ε

(
1
2

x2(y′)−2
))

∂

∂y
.

Similarly, the unstable point symmetry X̂0
3 of (8) becomes a local first-order approxi-

mate symmetry of (12)

X̂3 =

(
y2 − xyy′ + ε

(
x3 − 1

4
x2y(y′)−1

))
∂

∂y
.

In Example 3, we saw that X̂0
4 and X̂0

7 did not yield approximate point symmetries of
the perturbed ODE (12), while a linear combination X̂0

4 −
2
3 X̂0

7 was the evolutionary form
of the approximate point symmetry X9 in (19a) “as is”. By substituting α4 = 1, α7 = 2/3,
and all other αi = 0 in (55) and (61), one finds ζ0 = y− 2

3 xy′ and ζ1 = 0. A transverse
linear combination X̂0

4 +
3
2 X̂0

7 is the evolutionary form for the unstable point symmetry X0
u

(20). Substituting α4 = 1, α7 = −3/2, and other αi = 0 into Equations (55) and (61), one
finds ζ0 = y + 3

2 xy′ and ζ1 = − 13
4 x2(y′)−1. The first-order approximate symmetry of the

perturbed ODE (12) corresponding to the unstable point symmetry X0
u (20) is, thus,

X̂u =

(
y +

3
2

xy′ + ε

(
−13

4
x2(y′)−1

))
∂

∂y
.
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The generators X̂0
5 , X̂0

7 , and X̂0
8 are stable point symmetries of y′′ = 0, having ζ1 = 0.

For example, for X̂0
5 , substituting α5 = 1 and other αi = 0 in (55) and (61) one finds ζ1 = 0.

Finally, X̂0
6 in (56) is an evolutionary form of X0

6 in (10). The latter is a stable point
symmetry, with the corresponding genuine approximate point symmetry (19b). Here,
therefore ζ1 6= 0; this can be found from the determining Equations (55) and (61) using
α6 = 1 and other αi = 0, which indeed gives ζ0 = −yy′ and ζ1 = 2x2.

The corresponding approximate symmetry of the perturbed ODE (12) is given by

X̂6 =
(
−yy′ + 2εx2

) ∂

∂y
,

which is exactly the evolutionary form of the approximate point symmetry X11 in (19b).

Remark 3. We note that, in the current example, one would obtain an infinite set of first-order
approximate symmetries corresponding to each unstable point symmetry (53) of y′′ = 0, if a more
general form (60) of ζ1(x, y, y′) was used instead of the simplified ansatz (61). This, however,
does not make such first-order approximate symmetries trivial; they can be used, for example, for
construction of approximate solutions of the perturbed ODE (12) through mappings or approximate
reduction of order (see Section 5 below).

4.4. The Second Detailed Example

In the following example, we compute exact point and local symmetries of the fourth-
order Boussinesq differential equation [24,25] and discuss their stability. Consider a linear
ODE

y(4) + y′′ = 0 (63)

and its perturbed version, the Boussinesq ODE

y(4) + y′′ − ε
(

2yy′′ + 2y′2
)
= 0. (64)

The latter ODE can be obtained as a time-independent or a traveling wave reduction of the
Boussinesq partial differential equation

utt − uxx + ε(u2)xx − uxxxx = 0, u = u(x, t), (65)

which was introduced in 1871 to describe the propagation of long waves in shallow
water [26]. In this example, some point and local symmetries of the unperturbed ODE (63)
are shown to correspond to third-order local approximate BGI symmetries of the perturbed
ODE (64), as guaranteed by Theorem 2. The calculated approximate symmetries are used
in the next section to illustrate the construction of an approximate solution of the perturbed
Boussinesq Equation (64).

4.4.1. Exact Point Symmetries of (63); Approximate Point Symmetries of (64)

First, we seek exact point symmetries for (63) and approximate point symmetries for
(64). Let

X0 = ξ0(x, y)
∂

∂x
+ η0(x, y)

∂

∂y
(66)

be an exact point symmetry generator of the ODE (63). After the prolongation of X0 to the
fourth-order and applying the determining Equation (5), one finds

ξ0 = C1, η0 = C2 + C3x + C4y + C5 sin x + C6 cos x, (67)
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involving six arbitrary constants. Consequently, the ODE (63) has a six-dimensional Lie
algebra of point symmetry generators, spanned by

X0
1 =

∂

∂x
, X0

2 =
∂

∂y
, X0

3 = x
∂

∂y
, X0

4 = y
∂

∂y
, X0

5 = sin x
∂

∂y
, X0

6 = cos x
∂

∂y
. (68)

Next, we proceed to find approximate point symmetries of the Boussinesq ODE (64). Let

X = X0 + εX1 =
(

ξ0(x, y) + εξ1(x, y)
) ∂

∂x
+
(

η0(x, y) + εη1(x, y)
) ∂

∂y
(69)

denote the approximate BGI symmetry generator admitted by (64), where X0 is an exact
symmetry generator (66) of the unperturbed ODE (63). The determining equation for
approximate symmetries (42) yields

η1
xxxx + η1

xx = 0, η1
xy = 0, η1

yy = 0, ξ1
x = C2, ξ1

y = 0, C3 = C4 = C5 = C6 = 0. (70)

The above system has the solution

ξ1(x, y) = a1 + C2x, η1(x, y) = a2 + a3x + a4y + a5 sin x + a6 cos x, (71)

also involving six arbitrary constants. Specifically, the perturbed ODE (64) admits six trivial
approximate symmetries Xj = εX0

j , j = 1, 2, . . . , 6, corresponding to the free constants

a1 . . . , a6, where X0
j are the exact point symmetries (68) of the unperturbed ODE (63) and

two nontrivial approximate point symmetries

X1 = X0
1 =

∂

∂x
, X2 = X0

2 + εx
∂

∂x
=

∂

∂y
+ εx

∂

∂x
. (72)

It follows that the only two stable point symmetries of (63) are X0
1 and X0

2 , while the
remaining ones X0

j , j = 3, . . . , 6 in (68) are unstable.

4.4.2. Exact Second-Order Local Symmetries of (63); Approximate Second-Order Local
Symmetries of (64)

We now extend the above analysis, seeking exact local symmetries admitted by (63)
up to second-order, in the form

V0 = ϕ0(x, y, y′, y′′)
∂

∂y
. (73)

Applying the determining Equation (46), one finds(
D4 ϕ0 + D2 ϕ0

)∣∣∣∣
y(4)=−y′′

= 0. (74)

The above equation splits into system of PDEs. Solving this system gives

ϕ0 = k3y′ + k2 + k3x + k4y + k5 sin x + k6 cos x + k7y′′ + k8(y′ sin x + y′′ cos x)

+k9

(
y′2 + y′′2

)
+ k10

((
y′′2 − y′2

)
cos x + 2y′y′′ sin x

)
+ k11

((
y′2 + y′′2

)
sin x + 2y′y′′ cos x

)
+k12

(
y′
(
2y− x + 2y′′

)
− xy′′2

)
+ k13

((
2 sin x− x cos x

)
y′′ −

(
x sin x + cos x

)
y′ + 2y sin x

)
+k14

((
x sin x + 3 cos x

)
y′′ +

(
2 sin x− x cos x

)
y′ + y cos x

)
+ k15(y′′ sin x− y′ cos x),

(75)

involving 15 arbitrary constants k j. Hence, the ODE (63) admits local symmetries
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V0
1 = y′

∂

∂y
, V0

2 =
∂

∂y
, V0

3 = x
∂

∂y
, V0

4 = y
∂

∂y
, V0

5 = sin x
∂

∂y
, V0

6 = cos x
∂

∂y
,

V0
7 = y′′

∂

∂y
, V0

8 = (y′ sin x + y′′ cos x)
∂

∂y
, V0

9 =
(

y′2 + y′′2
) ∂

∂y
,

V0
10 =

((
y′′2 − y′2

)
cos x + 2y′y′′ sin x

) ∂

∂y
, V0

11 =
((

y′2 + y′′2
)

sin x + 2y′y′′ cos x
)

,

V0
12 =

(
2y′
(
y + y′′

)
− x
(
y′ + y′′2

)) ∂

∂y
,

V0
13 =

((
2 sin x− x cos x

)
y′′ −

(
x sin x + cos x

)
y′ + 2y sin x

) ∂

∂y
,

V0
14 =

((
x sin x + 3 cos x

)
y′′ +

(
2 sin x− x cos x

)
y′ + y cos x

) ∂

∂y
,

V0
15 = (y′′ sin x− y′ cos x)

∂

∂y
.

(76)

These generators were numbered to match the point symmetry classification (68) of the
unperturbed ODE (63). In particular, the generators V1, . . . , V6 in (76) are evolutionary
forms of the point symmetries (68).

Now, we will find the approximate local symmetries for the perturbed ODE (64). Let

V =
(

ϕ0(x, y, y′, y′′) + εϕ1(x, y, y′, y′′)
) ∂

∂y
(77)

be the local approximate symmetry generator admitted by the perturbed ODE (64) where
ϕ0 is given by Equation (75). Using the determining Equation (52), one obtains

ϕ1 = Q1(y) + y′′Q2(y) + a3x + a4y′ + a5 sin x + a6 cos x + a7

(
y′
(
2y− x + 2y′′

)
− xy′′2

)
+a8

(
y′2 + y′′2

)
+ a9

((
y′2 + y′′2

)
sin x + 2y′y′′ cos x

)
+ a10

((
y′′2 − y′2

)
cos x + 2y′y′′ sin x

)
+a11(y′′ sin x− y′ cos x) + a12

((
2 sin x− x cos x

)
y′′ −

(
x sin x + cos x

)
y′ + 2y sin x

)
+a13(y′ sin x + y′′ cos x) + a14

((
x sin x + 3 cos x

)
y′′ +

(
2 sin x− x cos x

)
y′ + y cos x

)
−k2xy′ + k3

(
2xy′′ − 1

2
x2y′ +

5
2

xy
)
+ k7

4
3

y′′2,

(78)

k1 is free, and ki = 0 for i = 4, 5, 6, 8, . . . , 15. Consequently, the local symmetries V0
i (76) for

i = 4, 5, 6, 8, . . . , 15 of the unperturbed ODE (63) are unstable, while V0
1 , V0

2 , V0
3 , and V0

7 in
(76) are parts of the approximate symmetries of (64) given by

V1 = V0
1 = y′

∂

∂y
, V2 = V0

2 − εxy′
∂

∂y
= (1− εxy′)

∂

∂y
,

V3 = V0
3 + ε

(
2xy′′ − 1

2
x2y′ +

5
2

xy
)

∂

∂y
=

(
x + ε

(
2xy′′ − 1

2
x2y′ +

5
2

xy
))

∂

∂y
,

V7 = V0
7 +

4
3

εy′′2
∂

∂y
=

(
y′′ +

4
3

εy′′2
)

∂

∂y
.

(79)

This set includes the evolutionary forms of the approximate point generators X1 and X2 of
(72) in their evolutionary forms V1 and V2. Moreover, V3 is a second-order approximate
symmetry of the perturbed ODE (64) corresponding to the unstable point symmetry X3

0 in
(68), and V7 is an evolutionary form of the approximate point symmetry X7 in (72).
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4.4.3. Higher-Order Approximate Symmetries Corresponding to Unstable Point and Local
Symmetries of (63)

Let
X̂0 = ζ0 ∂

∂y
(80)

be the evolutionary form of the exact point or local symmetry generator of the unperturbed
ODE (63). Here, ζ0 = ζ0(x, y, y′) for point symmetries (68), and ζ0 = φ0(x, y, y′, y′′) for
second-order local symmetries (76) of the unperturbed ODE (63).

Following Theorem 2, for each unstable local symmetry V j
0 , j = 4, 5, 6, 8, . . . , 15 in

(76) of the ODE (63), there is a corresponding higher-order approximate symmetry for the
perturbed ODE (64) of the form

X̂ =
(

ζ0 + εζ1(x, y, y′, y′′, y′′′)
) ∂

∂y
.

First, we consider the unstable point symmetry X4
0 in (68) (V0

4 in (76)). Its evolutionary
components is ζ0 = y. The corresponding ζ1 is any solution of the linear nonhomoge-
neous PDE (

D4ζ1 + D2ζ1
)∣∣∣∣

y(4)=−y′′
= 2yy′′ + 2(y′)2.

A simple particular solution is given by

ζ1(x, y, y′, y′′, y′′′) =
(

1
2

x2 +
5
6

)
y′2 +

1
2
(x2y′ + 3xy + 2y′′)y′′′.

One consequently obtains

X̂4 =

(
y + ε

((
1
2

x2 +
5
6

)
y′2 +

1
2
(x2y′ + 3xy + 2y′′)y′′′

))
∂

∂y

as a third-order approximate symmetry for the perturbed ODE (64) corresponds to the
unstable point symmetry X4

0 , V4
0 .

In the same way, one can find a third-order approximate symmetry corresponding to
each unstable point symmetry of (63) in (68) or unstable local symmetry in (76). Let

V̂ =
(

ϕ0(x, y, y′, y′′) + εϕ̂1(x, y, y′, y′′, y′′′)
) ∂

∂y
(81)

be an approximate symmetry generator for the perturbed ODE (64) where ϕ0 is given by
the Equation (75) . From the determining Equation (52), one can find that ϕ̂1 corresponds
to each local symmetry of (76). For example, consider the unstable local symmetry V0

9 =(
y′2 + y′′2

)
∂/∂y. By substituting ϕ0 = y′2 + y′′2 into the determining Equation (52),

one obtains(
D4 ϕ̂1 + D2 ϕ̂1

)∣∣∣∣
y(4)=−y′′

= 12yy′′′2 + 56y′y′′y′′′ + 10y′′3 − 12yy′′2 − 6y′2y′′. (82)

The above equation has a particular solution given by

ϕ̂1 = −2xy′′2y′′′ +
7
6

y′′3 +
(
2y− 3xy′

)
y′′2 +

1
2

y′2y′′ − xy′3. (83)

Hence,

V̂9 =

(
y′2 + y′′2 + ε

(
−2xy′′2y′′′ +

7
6

y′′3 +
(
2y− 3xy′

)
y′′2 +

1
2

y′2y′′ − xy′3
))

∂

∂y
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is a third-order local approximate symmetry of the Boussinesq ODE (64) corresponding to
the exact local symmetry V0

9 of the unperturbed Equation (63), which used to be unstable
in the class of second-order local symmetries.

5. Reduction of Order and Approximately Invariant Solutions of Perturbed
Differential Equations

In this section, we discuss approximate reduction techniques, including approximate
integrating factors and approximate first integrals of perturbed differential equations, and
the use of the higher-order approximate symmetries to find approximate solutions of
perturbed ODEs.

5.1. Approximate Integrating Factors Using Approximate Point Symmetries

A differential function

µ(x, y, y′, . . . , y(n−1); ε) = µ0(x, y, y′, . . . , y(n−1)) + εµ1(x, y, y′, . . . , y(n−1)) (84)

is an approximate integrating factor for the perturbed ODE (39) if there is a differential
function φ(x, y, y′, . . . , y(n−1); ε) = φ0(x, y, y′, . . . , y(n−1)) + εφ1(x, y, y′, . . . , y(n−1)) such
that

µ(y(n) − f0 − ε f1) = D(φ) = o(ε).

Finding the integrating factor allows an approximate reduction of the Equation (39) to an
(n− 1)−order equation

φ(x, y, y′, . . . , y(n−1); ε) = const + o(ε). (85)

Remark 4. The integrating factor for the perturbed first-order ODE (33) with exact symmetry
generator (34) has the form

µ(x, y; ε) =
1

η − ξ( f0 + ε f1)
, (86)

provided that η 6= ξ( f0 + ε f1). If (ξ, η) are analytic in ε, then, µ(x, y; 0) = µ0(x, y) is an
integrating factor for the unperturbed first-order ODE (30). Moreover, µ(x, y; ε) = µ0(x, y) +
εµ1(x, y) + o(ε) with

µ0(x, y) =
1

η0 − ξ0 f0
, µ1(x, y) = µ2

0

(
ξ0 f1 + ξ1 f0 − η1

)
(87)

is an approximate integrating factor for the ODE (33) with approximate symmetry generator (36).

This follows from taking ξ(x, y; ε) = ξ0(x, y) + εξ1(x, y) + o(ε) and η(x, y; ε) =
η0(x, y) + εη1(x, y) + o(ε), substituting these values into (86) and taking the Taylor ex-
pansion about ε = 0.

Example 5. The first-order ODE
y′ = y + εxy (88)

admits the approximate symmetry generator X = (1 + ε)y ∂/∂y. An approximate integrating
factor for (88) has the form µ(x, y; ε) = (1− ε)/y. Using this integrating factor, one finds

o(ε) =

(
1
y
(1− ε)

)(
y′ − y− εxy

)
=

y′

y
− 1 + ε

(
1− x− y′

y

)
= D

(
ln y− x + ε

(
x− x2

2
− ln y

))
. (89)
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Hence,

ln y− x + ε

(
x− x2

2
− ln y

)
= C + o(ε) (90)

is a family of approximate solution curves for the perturbed ODE (88). Note that the first two terms
of the Taylor expansion in ε of (90) agree with the first two terms of the Taylor expansion in ε of the
exact solution of the ODE (88):

y = C1e
εx2

2 +x.

5.2. Determining Equations for Approximate Integrating Factors

For one independent variable x and one dependent variable y, the Euler operator is
given by

δ

δy
=

∂

∂y
− D

∂

∂y′
+ D2 ∂

∂y′′
− D3 ∂

∂y′′′
+ · · · . (91)

Since the Euler–Lagrange operator (91) annihilates the total derivative for any differential
function, then the integrating factors (84) for the perturbed ODE (39) can be found from
the following equation:

δ

δy

(
µ(y(n) − f0 − ε f1)

)
= 0. (92)

For the perturbed first-order ODE (33), Equation (92) has the form

(µ f0)y + ε(µ f1)y + µx = 0.

Substituting µ = µ(x, y; ε) = µ0(x, y) + εµ1(x, y) into the above equation and setting to
zero the coefficients of ε0, ε, we arrive at the following determining equations for µ0 and µ1:

µ0x + (µ0 f0)y = 0, µ1x + (µ1 f0)y + (µ0 f1)y = 0. (93)

In particular, for the second-order perturbed ODE

y′′ = f0(x, y, y′) + ε f1(x, y, y′), (94)

the integrating factor µ(x, y, y′; ε) = µ0(x, y, y′) + εµ1(x, y, y′) for the ODE (94) satisfies
δ/δy (µ(y′′ − f0 − ε f1) = 0, equivalent to

y′′µy − (µ f0)y − ε(µ f1)y − D
(

y′′µy′ − (µ f0)y′ − ε(µ f1)y′
)
+ D2(µ) = 0. (95)

Finding the total derivatives appearing in Equation (95), one obtains

y′µyy′ + µxy′ + 2µy + (µ f0)y′y′ + ε(µ f1)y′y′ = 0,

y′2µyy + 2y′µxy + µxx + y′(µ f0)yy′ + (µ f0)xy′ + εy′(µ f1)yy′ + ε(µ f1)xy′ − (µ f0)y − ε(µ f1)y = 0.

Substituting µ(x, y, y′; ε) = µ0(x, y, y′) + εµ1(x, y, y′) into the above equations, we arrive
the following theorem.

Theorem 3. The components µ0, µ1, of the approximate integrating factor µ(x, y, y′; ε) =
µ0(x, y, y′) + εµ1(x, y, y′) for the perturbed second-order ODE (94) satisfy the following equations

y′µ0yy′
+ µ0xy′

+ 2µ0y + (µ0 f0)y′y′ = 0, (96a)

y′2µ0yy + 2y′µ0xy + µ0xx + y′(µ0 f0)yy′ + (µ0 f0)xy′ − (µ0 f0)y = 0, (96b)

y′µ1yy′
+ µ1xy′

+ 2µ1y + (µ1 f0)y′y′ + (µ0 f1)y′y′ = 0, (96c)
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y′2µ1yy + 2y′µ1xy + µ1xx + y′(µ1 f0)yy′ + (µ1 f0)xy′ − (µ1 f0)y − (µ0 f1)y

+y′(µ0 f1)yy′ + (µ0 f1)xy′ = 0.
(96d)

Example 6. Consider the perturbed Boussinesq ODE

y(4) + y′′ − ε
(

2yy′′ + 2y′2
)
= 0. (97)

Equation (97) can be written in the form

D2(y′′ + y− εy2) = 0.

Hence, the Boussinesq ODE (97) reduces to the second-order ODE

y′′ + y− εy2 = C1x + C2. (98)

The general solution of (98) is unknown. An approximate solution can be constructed in the
assumption of C1, C2 = O(ε). Let C1 = εc1, C2 = εc2; then, the ODE (98) becomes

y′′ = −y + ε(c1x + c2 + y2). (99)

Using the determining Equation (96), one can easily find that µ = y′+ ε(y′− c1) is an approximate
integrating factor for the ODE (99). Multiplying this integrating factor by (99) yields

y′y′′ + yy′ + ε(y′y′′ − c1y′′ + yy′ − c1y− (c1x + c2 + y2)y′) = o(ε),

and consequently an approximate first integral:

D
(

y′2 + y2 + ε

(
y′2 − 2c1y′ + y2 − (2c1x + 2c2)y−

2y3

3

))
= o(ε).

Hence, the perturbed Boussinesq ODE (97) is reduced to the first-order ODE

y′2 + y2 + ε

(
y′2 − 2y′ + y2 − (2x + 2)y− 2y3

3

)
= 2c2

3 + o(ε), (100)

where c1, c2, c3 are arbitrary constants. A series ansatz y(x; ε) = y0(x) + εy1(x) + o(ε) into the
ODE (100) leads to the system of ODEs

(y′0)
2 + y2

0 = 2c2
3,

2y′0y′1 + 2y0y1 + (y′0)
2 − 2c1y′0 + y2

0 − (2c1x + 2c2)y0 −
2y3

0
3

= 0,

with the solutions

y0(x) = c3(sin x + cos x),

y1(x) = c1x + c2 + c2
3 −

c2
3

3
sin 2x− c3

2
(cos x + sin x) + c4(cos x− sin x).

Finally, a general approximate solution for the Boussinesq ODE (97) involving four arbitrary
constants is obtained:

y(x; ε) = c3(sin x + cos x)

+ε

(
c1x + c2 + c2

3 −
c2

3
3

sin 2x− c3

2
(cos x + sin x) + c4(cos x− sin x)

)
.

(101)
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5.3. Reduction of Order under Contact and Higher-Order Symmetries

The general higher-order approximate symmetry generator for an nth−order ODE (39)

y(n) = f0(x, y, y′, . . . , y(n−1)) + ε f1(x, y, y′, . . . , y(n−1)) (102)

is given by

X̂ = X̂0 + εX̂1 =
(

ζ0(x, y, y′, . . . , y(s)) + εζ1(x, y, y′, . . . , y(`))
) ∂

∂y
. s, ` ≥ 1. (103)

The differential functions

ωk(x, y, y′, . . . , y(k); ε) = ω0
k(x, y, y′, . . . , y(k)) + εω1

k(x, y, y′, . . . , y(k)) + o(ε), k = 1, . . . , n

are approximate differential invariants for the ODE (102) if X̂(k)ωk(x, y, y′, . . . , y(k); ε) = o(ε).
Note that ω0

k are exact differential invariants for the unperturbed ODE (38). They arise as
constant of integrations of the characteristic equations

dy
ζ0 =

dy′

ζ0(1)
= · · · = dy(k)

ζ0(k)
. (104)

Then, the approximate differential invariant components ω1
k are determined from the

condition

H(ω1
ky

, ω1
ky′

, · · · ) = X̂1(k)(ω0
k)

∣∣∣∣
y(n)= f0

,

where H is a differential expression in terms of ω1
k arising from the coefficient of ε in

−
(

X̂0(k)(ωk)
)∣∣∣∣

y(n)= f0+ε f1

.

Example 7. The first example of using approximate differential invariants to reduce ODEs is
rather elementary and is used here for illustration purposes. Consider the second-order ODE

y′′ = εx(y′)2. (105)

This ODE admits an approximate contact symmetry given by

X̂ = X̂0 + εX̂1 =

(
x + ε

(
x3y′

3
+ y′2

))
∂

∂y
.

We determine the invariants ω(x, y, y′; ε) = ω0(x, y, y′) + εω1(x, y, y′) + o(ε) satisfying X̂(1)ω
= o(ε). Clearly, one invariant is x. Other invariants are determined by first finding ω0 satisfying

X̂0(1)ω0 = xω0
y + ω0

y′ = 0,

which has a general solution ω0(x, y, y′) = F(xy′ − y) based on the fundamental invariant
xy′ − y. Let ω0(x, y, y′) = xy′ − y. Then, one finds that the first-order correction satisfies the
inhomogeneous linear PDE

xω1
y + ω1

y′ = −
2
3

x3y′ − y′2.

The simplest particular solution is given by ω1(x, y, y′) = −(x3y′2 + y′3)/3. Consequently,

ω = ω0(x, y, y′) + εω1 = xy′ − y− ε

3
(x3y′2 + y′3) = C1 + o(ε) (106)
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is an approximate invariant for the ODE (105); here, C1 = const is a constant of integration.
Thus, the ODE (105) approximately reduces to a first-order ODE. By substituting y(x; ε) =
y0(x) + εy1(x) + o(ε) into the ODE (106) and setting to zero coefficients at ε0 and ε1, one finds a
system of ODEs

xy′0 − y0 = C1, xy′1 − y1 −
y′30
3
−

x3y′20
3

= 0.

Its solution yields an approximate solution of the perturbed ODE (105)

y = C2x− C1 +
ε

6
C2

2 x3 + O(ε2). (107)

We note that the ODE (105) is solvable by separation of variables, which makes it easy to compare
its general solution with the approximate solution (107). The general solution is

y =

√
2C2

ε
tanh−1

(√
C2 ε

2
x

)
− C1. (108)

The first two terms of its Taylor series with respect to ε indeed coincide with the approximate
solution (107).

Example 8. We now find a more general approximate solution of the Boussinesq ODE (97) than
that obtained in Example 6 above, using third-order approximate symmetries admitted by the
perturbed Boussinesq ODE (97). The fundamental solution of the unperturbed Equation (63) is

y(x) = C1x + C2 sin x + C3 cos x + C4. (109)

The solution (109) is invariant under the group generated by

X0
1 − C1X0

3 − C2X0
4 − C3X0

5 − C4X0
2 = (y− C1x− C2 sin x− C3 cos x− C4)

∂

∂y
, (110)

where X0
j , j = 1, . . . , 5 are the point symmetries (68) for the unperturbed ODE (63). X0

2 is stable
as a point symmetry, the corresponding approximate symmetry is X2 = (1− εxy′)∂/∂y. At the
same time, X0

1 , X0
3 , X0

4 , and X0
5 are unstable as point symmetries. However, using Theorem 2, one

finds that they correspond to third-order approximate symmetries of (97) given by

X1 =

(
y + ε

((
x2

2
+

5
6

)
y′2 +

(
x2y′ + 3xy + 2y′′

2

)
y′′′
))

∂

∂y
, (111a)

X3 =

(
x + ε

(
xy + 3x2y′

2
+ 2x2y′′′

))
∂

∂y
, (111b)

X4 =

(
sin x + ε

(
(3x2 − 17)y′ − 6xy + (3x2 − 36)y′′′

)
cos x + (15y− 12xy′ − 18xy′′′) sin x

6

)
∂

∂y
, (111c)

X5 =

(
cos x + ε

(
(17− 3x2)y′ + 6xy + (36− 3x2)y′′′

)
sin x + (15y− 12xy′ − 18xy′′′) cos x

6

)
∂

∂y
. (111d)

The approximately invariant solution under X1 − C1X3 − C2X4 − C3X5 − C4X2 is defined by

y− C1x− C2 sin x− C3 cos x− C4 + εh(x, y, y′, y′′, y′′′) = o(ε), (112)

where h is given by
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h =

(
x2

2
+

5
6

)
y′2 +

(
x2y′ + 3xy + 2y′′

2

)
y′′′ − C1

(
xy + 3x2y′

2
+ 2x2y′′′

)
− C2

((
(3x2 − 17)y′ − 6xy + (3x2 − 36)y′′′

)
cos x + (15y− 12xy′ − 18xy′′′) sin x

6

)

− C3

((
(17− 3x2)y′ + 6xy + (36− 3x2)y′′′

)
sin x + (15y− 12xy′ − 18xy′′′) cos x

6

)
. (113)

Substituting a series expansion y(x; ε) = y0(x) + εy1(x) + o(ε) into the Equation (112) and
equating the coefficients of ε0, ε1, we find y0 = C1x + C2 sin x + C3 cos x + C4 and y1 =
−h(x, y0, y0

′, y0
′′, y0

′′′). Hence, the approximate solution of the Boussinesq ODE (97) is given by

y(x; ε) = C1x + C2 sin x + C3 cos x + C4 + ε

[(
7C1C3 + 5C2C4

2

)
sin x

+

(
C1C2 + 2C3C4

2

)
x sin x +

C1C3

2
x2 sin x +

(
15C2

2 + 17C2
3

6

)
sin2 x− C2C3

3
sin 2x

+

(
5C3C4 − 7C1C2

2

)
cos x +

(
C1C3 − 2C2C4

2

)
x cos x− C1C2

2
x2 cos x

+

(
17C2

2 + 15C2
3

6

)
cos2 x + C2

1 x2 − C1C4x−
C2

1
3

]
. (114)

The unperturbed ODE (63) with the initial conditions y(0) = 1, y′(0) = 1, y′′(0) = −1,
y′′′(0) = −1 has a particular solution

y(x) = sin x + cos x. (115)

Using this particular solution and the corresponding different set of initial conditions

y(0) = 1 +
16ε

3
, y′(0) = 1− 2ε

3
, y′′(0) = −1, y′′′(0) = −1 +

8ε

3
(116)

in (114), one finds C1 = 0, C2 = 1, C3 = 1, and C4 = 0. This particular approximate solution
(114) of the perturbed ODE (97) has the form

yapprox(x; ε) = sin x + cos x + ε

(
16− sin 2x

3

)
. (117)

In order to test the accuracy of the approximate solution (117), we convert the perturbed
fourth-order ODE (97) into a system of four first-order ODEs, and compute numerical solutions of
the resulting system with the initial conditions (116) using the Matlab native ODE solver ode45.
The solver employs an adaptive Dormand–Prince algorithm [27] based on the use of a fourth- and a
fifth-order Runge–Kutta (RK) method pair. At every discrete independent variable step i→ i + 1,
the algorithm chooses the optimal Runge–Kutta coefficients to minimize the error of the fifth-order
RK solution and also find the optimal variable step hi for efficient computation.

In particular, on each step, the difference between the fourth- and the fifth-order RK solution
values is given by

ei+1 =
∥∥∥u[5]

i+1 − u[4]
i+1

∥∥∥, (118)
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where each u[j]
k is a four-component vector providing a numerical approximation of the exact solution

u = [y(xk), y′(xk), y′′(xk), y′′′(xk)]. The one-step difference (118) is controlled by user-defined
relative and absolute tolerances RelTol, AbsTol according to

ei+1 ≤ max{RelTol · |ui|, AbsTol}. (119)

If the ODE (97) is solved numerically for x ∈ [0, L] using N numerical steps, the conservative
estimate of the global numerical error at x = L, for the small parameter value ε, is given by

Enum(ε) =
N

∑
i=0

ei. (120)

The difference between the numerical and the approximate solution at a numerical grid node xi is
given by

d(xi; ε) = |ynum(xi; ε)− yapprox(xi; ε)|. (121)

For a sample numerical-approximate solution computation, we use tolerance values

RelTol = 10−8, AbsTol = 10−9. (122)

For example, for ε = 0.1, this choice yields N = 381 steps in x, with variable step sizes h ranging
from 0.00616 to 0.031948.

Figure 1 shows numerical and approximate solution curves of y(x) as functions of x ∈ [0, L],
L = 5, for ε = 0.02 and ε = 0.1. It is observed that, for ε = 0.02, the difference stays small for all
x in the interval, while for a larger ε = 0.1, the numerical and approximate solutions begin to differ
significantly after x & 1. (We note that, for ε = 0, the approximate solution (117) becomes exact,
and the difference (121) is negligible).

0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1. The approximate solution (117) of the perturbed Boussinesq Equation (97) with initial
conditions (116) vs. the numerical solution for the small parameter values ε = 0.02 and ε = 0.1.

To provide further details about the error and difference behaviour for the numerical and
approximate solutions, Figure 2 shows the conservative estimate (120) of the total numerical error
at x = L, the difference between the numerical and approximate solutions d(l; ε) (121) at x = L
as a function of ε, and also the typical behaviour of the difference (121) as a function of x for the
specific small parameter value ε = 0.05.

The above analysis indicates that for sufficiently small values of the parameter ε, the ap-
proximate solution (117) of the perturbed Boussinesq Equation (97) indeed provides a precise
approximation of the exact solution, with the error growing as the interval x ∈ [0, L] lengthens
and/or the parameter ε is increased.
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Figure 2. Numerical and approximate solution details for the Boussinesq ODE (97) with a small parameter ε. (a) The
conservative estimate (120) of the total numerical error at x = L = 5 as a function of ε, for the tolerance values (122).
(b) The difference between the numerical and approximate solutions d(L; ε) (121) at x = L = 5 as a function of ε. (c) The
numerical-approximate solution difference d(x; ε) (121) as a function of x for the small parameter ε = 0.05.

6. Discussion

In this paper, local symmetries of algebraic and ordinary differential equations in-
volving a small parameter ε were considered in comparison to the symmetry structure of
their unperturbed versions (small parameter equal to zero). Exact symmetries of the unper-
turbed equations, and exact and approximate symmetries (in the BGI framework [3–5]) of
the perturbed models were investigated. The main goal of the paper was to address the
question of stability of symmetries, when some given equation is perturbed by the addition
of small O(ε) terms.

It was observed by the original authors of the BGI method that while new and
useful approximate symmetries can be sometimes found for perturbed models, some point
symmetries of the unperturbed model may not appear in any form in the approximate
point symmetry classification of a perturbed model, being thereby unstable. The aims of
this paper were to find out the conditions under which a local symmetry becomes unstable,
the form it can assume in the approximate point symmetry classification of a perturbed
equation, and applications of approximate symmetries (in particular, higher-order ones) to
compute approximate solutions of the given ODE with a small parameter.

It is straightforward to check that, for algebraic equations and first-order ODEs, every
point symmetry of the unperturbed equation is stable (Section 3.1): a corresponding ap-
proximate point symmetry of the perturbed equation always exists; moreover, approximate
point symmetry generators of perturbed algebraic equations and ODEs are more general
than the exact symmetry generators of perturbed algebraic equations, and the approximate
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symmetry components arise as first-order Taylor terms in the expansion of exact symmetry
components of the perturbed equation in the small parameter.

For second and higher-order ODEs and PDEs, the situation is more complex
(Section 3.2): some original symmetries of the unperturbed model (38) can be unstable, in
the sense of not being inherited as nontrivial approximate point symmetries of a perturbed
ODE (39) (Example 3). At the same time, for some ODEs, all point symmetries of the
unperturbed model might be stable (Example 4). This occurs because in the approximate
point symmetry computation of a perturbed ODE, additional conditions on the O(ε0)
approximate symmetry components may or may not arise.

The situation is clarified in Section 4, where symmetries (point or local, exact, and
approximate) are written in the evolutionary form. Theorem 2 is proven, showing that
to every point or local symmetry of an exact ODE (38) of any order, there corresponds an
approximate symmetry of the perturbed ODE (39), being possibly a higher-order symmetry
of order at most n− 1. Two examples are considered in detail: a nonlinearly perturbed
second-order ODE (12) (Section 4.3), and a fourth-order Boussinesq reduction ODE (64)
(Section 4.4).

One of the most important applications of the approximate symmetry framework
is the construction of closed-form approximate solutions to nonlinear ODE models with
a small parameter. In Section 5, two approaches to obtain such solutions are developed.
The first approach is based on approximate integrating factors using approximate point
symmetries (Section 5.1).

Equations satisfied by approximate integrating factor components are derived (The-
orem 3) and applied to obtain a four-parameter approximate solution family (101) of the
fourth-order Boussinesq ODE (97). Another technique, approximate reduction of order
under contact and higher-order symmetries, is presented in Section 5.3 and illustrated on
two examples: an ODE (105) with a small parameter for which the exact general solution is
known (Example 7), and again the fourth-order Boussinesq ODE (97) (Example 8). In the
latter, the approximate solution is validated via a comparison to numerical solutions of the
Boussinesq Equation (97).

In future work, it will be important to extend the understanding of relationships
between symmetry structures of unperturbed and perturbed models in the cases of sys-
tems of ODEs, scalar PDEs, and systems of PDEs. Moreover, it is of high importance to
investigate approaches to the computation of approximate symmetry properties of singu-
larly perturbed models, including both ODE models (e.g., [28]) and PDE models, such as
almost-inviscid Navier–Stokes fluids and shallow water equations [29] as well as weakly
nonlinear models in elastodynamics [30].

Author Contributions: The authors contributed equally to the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: A.C. is grateful to NSERC of Canada for research support through a Discovery grant
RGPIN-2019-05570.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: A.C. is grateful to NSERC of Canada for research support through a Discovery
grant RGPIN-2019-05570.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Olver, P.J. Applications of Lie Groups to Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany,

2000; Volume 107.
2. Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer:

Berlin/Heidelberg, Germany, 2010; Volume 168.



Symmetry 2021, 13, 1612 27 of 27

3. Baikov, V.; Gazizov, R.; Ibragimov, N.K. Approximate symmetry and formal linearization. J. Appl. Mech. Tech. Phys. 1989,
30, 204–212. [CrossRef]

4. Baikov, V.; Gazizov, R.; Ibragimov, N.K. Perturbation methods in group analysis. J. Sov. Math. 1991, 55, 1450–1490. [CrossRef]
5. Baikov, V.A.; Gazizov, R.K.; Ibragimov, N.H. Approximate groups of transformations. Differ. Uravn. 1993, 29, 1712–1732.
6. Gazizov, R.K. Lie algebras of approximate symmetries. J. Nonlinear Math. Phys. 1996, 3, 96–101. [CrossRef]
7. Ünal, G. Periodic solutions and approximate symmetries. Nonlinear Dyn. 2000, 22, 111–120. [CrossRef]
8. Baikov, V.; Habibullin, R.; Vasil’ev, I. Modern Group Analysis for the New Millennium. In Proceedings of the International

Conference MOGRAN 2000, Ufa, Russia, 27 September–3 October 2000.
9. Bai, Y.S.; Zhang, Q. Approximate Symmetry Analysis and Approximate Conservation Laws of Perturbed KdV Equation. Adv.

Math. Phys. 2018, 2018, 4743567. [CrossRef]
10. Fushchich, W.; Shtelen, W. On approximate symmetry and approximate solutions of the nonlinear wave equation with a small

parameter. J. Phys. A Math. Gen. 1989, 22, L887. [CrossRef]
11. Euler, N.; Shul’ga, M.W.; Steeb, W.H. Approximate symmetries and approximate solutions for a multidimensional Landau-

Ginzburg equation. J. Phys. A Math. Gen. 1992, 25, 1095–1103. [CrossRef]
12. Euler, M.; Euler, N.; Kohler, A. On the construction of approximate solutions for a multidimensional nonlinear heat equation. J.

Phys. A Math. Gen. 1994, 27, 2083. [CrossRef]
13. Wiltshire, R. Two approaches to the calculation of approximate symmetry exemplified using a system of advection–diffusion

equations. J. Comput. Appl. Math. 2006, 197, 287–301. [CrossRef]
14. Grebenev, V.; Oberlack, M. Approximate Lie symmetries of the Navier-Stokes equations. J. Nonlinear Math. Phys. 2007, 14, 157–163.

[CrossRef]
15. Mahdavi, A.; Nadjafikhah, M.; Toomanian, M. Two Approaches to the Calculation of Approximate Symmetry of Ostrovsky

Equation with Small Parameter. Math. Phys. Anal. Geom. 2015, 18, 3. [CrossRef]
16. Ahmed, W.A.; Zaman, F.; Saleh, K. Invariant solutions for a class of perturbed nonlinear wave equations. Mathematics 2017, 5, 59.

[CrossRef]
17. Jiao, X.; Yao, R.; Lou, S. Approximate similarity reduction for singularly perturbed Boussinesq equation via symmetry perturbation

and direct method. J. Math. Phys. 2008, 49, 093505. [CrossRef]
18. Burde, G.I. Potential symmetries of the nonlinear wave equation utt = (uux)x and related exact and approximate solutions. J.

Phys. A Math. Gen. 2001, 34, 5355. [CrossRef]
19. Bluman, G.; Anco, S. Symmetry and Integration Methods for Differential Equations; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2008; Volume 154.
20. Ibragimov, N.H. Integrating factors, adjoint equations and Lagrangians. J. Math. Anal. Appl. 2006, 318, 742–757. [CrossRef]
21. van Horssen, W.T. A perturbation method based on integrating factors. SIAM J. Appl. Math. 1999, 59, 1427–1443. [CrossRef]
22. Ibragimov, N.H. CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 1995; Volume 3.
23. Ibragimov, N.K.; Kovalev, V.F. Approximate and Renormgroup Symmetries; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2009.
24. Jafari, H.; Borhanifar, A.; Karimi, S. New solitary wave solutions for the bad Boussinesq and good Boussinesq equations. Numer.

Methods Partial. Differ. Equ. Int. J. 2009, 25, 1231–1237. [CrossRef]
25. Manoranjan, V.; Ortega, T.; Sanz-Serna, J. Soliton and antisoliton interactions in the “good” Boussinesq equation. J. Math. Phys.

1988, 29, 1964–1968. [CrossRef]
26. Clarkson, P.A.; Kruskal, M.D. New similarity reductions of the Boussinesq equation. J. Math. Phys. 1989, 30, 2201–2213. [CrossRef]
27. Dormand, J.R.; Prince, P.J. A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 1980, 6, 19–26. [CrossRef]
28. O’Malley, R.E. Singular Perturbation Methods for Ordinary Differential Equations; Springer: Berlin/Heidelberg, Germany, 1991;

Volume 89.
29. Whitham, G.B. Linear and Nonlinear Waves; Wiley-Interscience: Hoboken, NJ, USA, 1999.
30. Cheviakov, A.; Ganghoffer, J.F. One-dimensional nonlinear elastodynamic models and their local conservation laws with

applications to biological membranes. J. Mech. Behav. Biomed. Mater. 2016, 58, 105–121. [CrossRef] [PubMed]

http://doi.org/10.1007/BF00852165
http://dx.doi.org/10.1007/BF01097534
http://dx.doi.org/10.2991/jnmp.1996.3.1-2.11
http://dx.doi.org/10.1023/A:1008334314448
http://dx.doi.org/10.1155/2018/4743567
http://dx.doi.org/10.1088/0305-4470/22/18/007
http://dx.doi.org/10.1088/0305-4470/25/18/002
http://dx.doi.org/10.1088/0305-4470/27/6/031
http://dx.doi.org/10.1016/j.cam.2005.11.003
http://dx.doi.org/10.2991/jnmp.2007.14.2.1
http://dx.doi.org/10.1007/s11040-015-9170-0
http://dx.doi.org/10.3390/math5040059
http://dx.doi.org/10.1063/1.2976034
http://dx.doi.org/10.1088/0305-4470/34/26/306
http://dx.doi.org/10.1016/j.jmaa.2005.11.012
http://dx.doi.org/10.1137/S0036139996309151
http://dx.doi.org/10.1002/num.20400
http://dx.doi.org/10.1063/1.527850
http://dx.doi.org/10.1063/1.528613
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1016/j.jmbbm.2015.08.027
http://www.ncbi.nlm.nih.gov/pubmed/26410196

	Introduction
	Lie Groups of Exact and Approximate Point and Local Symmetries
	Exact and Approximate Transformation Groups
	Stable and Unstable Symmetries in the BGI Framework

	Exact and Approximate Point Symmetries of Algebraic and Ordinary Differential Equations
	Algebraic and First-Order Differential Equations
	Second and Higher-Order ODEs

	Exact and Approximate Local Symmetries of Higher-Order ODEs
	Exact Local Symmetries of the Unperturbed ODE
	Approximate Local Symmetries of the Perturbed ODEs
	The First Detailed Example
	The Second Detailed Example
	Exact Point Symmetries of (63); Approximate Point Symmetries of (64)
	Exact Second-Order Local Symmetries of (63); Approximate Second-Order Local Symmetries of (64)
	Higher-Order Approximate Symmetries Corresponding to Unstable Point and Local Symmetries of (63)


	Reduction of Order and Approximately Invariant Solutions of Perturbed Differential Equations
	Approximate Integrating Factors Using Approximate Point Symmetries
	Determining Equations for Approximate Integrating Factors
	Reduction of Order under Contact and Higher-Order Symmetries

	Discussion
	References

