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Abstract: Wind field (e.g., wind speed and wind direction) has the characteristics of randomness,
nonlinearity, and uncertainty, which can be critical and even destructive on a long-span bridge’s
hangers, such as vortex shedding, galloping, and flutter. Nowadays, the finite element method is
widely used for model calculation, such as in long-span bridges and high-rise buildings. In this study,
the investigated bridge hanger model was established by COMSOL Multiphysics software, which can
calculate fluid dynamics (CFD), solid mechanics, and fluid–solid coupling. Regarding the wind field
of bridge hangers, the influence of CFD models, wind speed, and wind direction are investigated.
Specifically, the bridge hanger structure has symmetrical characteristics, which can greatly reduce
the calculation efficiency. Furthermore, the von Mises stress of bridge hangers is calculated based on
fluid–solid coupling.

Keywords: wind field characteristics; finite element model; fluid–solid coupling; long-span bridge hangers

1. Introduction

In recent years, the structure of long-span bridges has been softer, and their crossing
ability has shown a continuous increase due to the advance in design and construction
technologies and the emergence of novel materials [1]. However, a long-span bridge
does not work properly and is even destroyed under wind effects, which include vortex
shedding, galloping, flutter, and so forth [2]. For example, vortex-induced vibrations may
result in long-term fatigue damage, shortening the bridge life [3]. Galloping can lead to
significant amplitude oscillation of the bridge [4]. Long-span bridges may be affected by
dynamic instability phenomena, that is, flutter [5]. Therefore, it is important to analyze
the impact of long-span bridges under wind fields (e.g., wind speed and wind direction),
which can ensure a reliable wind-resistant design of a bridge [6–12].

In order to study the impact of long-span bridges under wind fields (e.g., wind speed
and wind direction), computational fluid dynamics [13–17] has been proposed based
on structural health monitoring (SHM) data. Regarding the influence of wind direction,
Zhu et al. (2012) [18] found variations of aerodynamic coefficients with wind direction
based on the results of wind tunnel tests. However, wind tunnel tests cannot be widely
used in the study of a wind-induced structural response because these tests require a sub-
stantial amount of resources, where these tests are limited to a certain number of pressure
taps, and some information about separation zones, recirculation, and so forth might get
lost [19,20]. On the contrary, the numerical calculation method, that is, computational
fluid dynamics model, can obtain the corresponding structural stress response by setting
different wind speeds and wind directions based on the finite element method [21]. For ex-
ample, Huang et al. [22] ran a 3D CFD model to examine scale effects on turbulent flow
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and sediment scour. Shirai et al. [23] studied the applicability of the two-dimensional
Reynolds-averaged numerical simulation for predicting the flow around a self-oscillating
bridge deck section. Thus, the computational fluid dynamics model allows for an accurate
evaluation of the impact of long-span bridges under wind fields since it directly utilizes
SHM data.

The main contributions of this work are threefold: (1) The bridge hanger model was
established by COMSOL Multiphysics software, which can calculate computational fluid
dynamics. (2) Regarding the bridge hanger, the influence of wind speed, wind direction,
and turbulence model was investigated. The rest of the paper is organized as follows:
In Section 2, the standard k-ε model, realizable k-ε model, standard k–ω model, and SST
k-ω model of computational fluid dynamics are described. Section 3 introduces the results
of the influence of wind speed, wind direction, and turbulence model. Finally, Section 4
ends with some conclusions drawn from this study.

2. Computational Fluid Dynamics

Generally, the computational fluid dynamics of a bridge are calculated based on the
finite element method [24–31]. For an incompressible fluid, the continuity equation and
momentum equation can be expressed as [32]
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where ρ is the density of air, ρ = 1.293 kg/m3; υ is the kinematic viscosity, υ = 17.9× 10−6 m2/s;
P is the pressure, Pa; Sij is the velocity strain rate tensor; δij is the Kronecker delta; Ui are
the mean velocity components, m/s; and k is the turbulent kinetic energy, m2/s2.

Regarding the standard k-ε model, the transport equation of k can be expressed by [33]
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where Pk is the production of turbulent kinetic energy, and Pk = υtS2, S =
√

2SijSij,
and other constants are Cµ = 0.09, σε = 1.3, σk = 1.0, C1 = 1.44, and C2 = 1.92.

Regarding the realizable k-ε model, the transport equation of k can be expressed by [34]
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where Ωij is the mean rate-of-rotation tensor viewed in a rotating reference frame with the
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Regarding the standard k-ω model, the transport equations of k and ω are defined
by [35]

υωt =
k
ω

(8)
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where the constants are α = 5
9 , β1 = 0.09, σω1 = 0.5, and σk1 = 0.85.

Regarding the SST k-ω model, the transport equations of k and ω are defined by [36,37]

υωt =
a1k

max(a1ω, F2S)
(11)

∂k
∂t

+
∂kUj

∂xj
= Pk − β∗kω +

∂

∂xj

[
(υ + υωtσk2)

∂k
∂xj

]
(12)

∂ω

∂t
+

∂ωUj

∂xj
= αS2 − β2ω2 +

∂

∂xj

[
(υ + υωtσω2)

∂ω

∂xj

]
+ 2(1− F1)

σω2

ω

∂k
∂xi

∂ω

∂xi
(13)

Pk = min

(
τij

∂Ui
∂xj

, 10β∗kω

)
(14)

F1 = tanh


[

min

(
max

( √
k

β∗yω
,

500υ

y2ω

)
,

4σω2k
CDkωy2

)]4
 (15)

F2 = tanh


[

max

(
2
√

k
β∗yω

,
500υ

y2ω

)]2
 (16)

CDkω = max
(

2ρ
σω2

ω

∂k
∂xi

∂ω

∂xi
, 10−10

)
(17)

where the constants are β2 = 0.0828, σω2 = 0.856, σk2 = 1, and a1 = 0.31.

3. Calculation and Analysis

Figure 1 shows the investigated bridge. Regarding the investigated bridge hangers,
their diameter is 0.077 m, their modulus of elasticity is 1.9 × 108 kpa, their bulk density is
7850 kN/m3, and their Poisson’s ratio is 0.3. Regarding the boundary conditions of the
bridge hangers, they have a fixed constraint on the upper and lower.
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COMSOL Multiphysics is a general finite element software that can be used to cal-
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the finite element model, the left boundary is the wind speed inlet, the right boundary is 

the outlet, and the upper and lower boundaries are slip boundaries, which are the same 

boundary conditions with a wind tunnel test. Regarding the bridge section, there are 

9994 domain elements and 334 boundary elements, and the mesh is encrypted at the 

boundary. Regarding the finite element model, it has the four slip boundaries, the wind 

speed inlet, and the wind speed outlet, which can be seen in Figure 2a. Finally, the finite 

element model is divided into 35,377,709 units based on the finite volume method to 

solve the fluid governing equations, which can be seen in Figure 2b. 
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COMSOL Multiphysics is a general finite element software that can be used to calculate
fluid dynamics, solid mechanics, multifield coupling, and so forth [38]. Regarding the
finite element model, the left boundary is the wind speed inlet, the right boundary is
the outlet, and the upper and lower boundaries are slip boundaries, which are the same
boundary conditions with a wind tunnel test. Regarding the bridge section, there are 9994
domain elements and 334 boundary elements, and the mesh is encrypted at the boundary.
Regarding the finite element model, it has the four slip boundaries, the wind speed inlet,
and the wind speed outlet, which can be seen in Figure 2a. Finally, the finite element
model is divided into 35,377,709 units based on the finite volume method to solve the fluid
governing equations, which can be seen in Figure 2b.
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Figure 2. Finite element model: (a) shows the boundary conditions of wind field simulation based on finite element model;
(b) shows the calculation meshing in the wind field simulation based on the finite element model.

3.1. Influence of CFD Models

In this case study, the wind speed is 12 m/s and the wind direction is 90 degree.
The changes in a bridge hanger’s wind field at different CFD models are calculated, which
can be seen as Figure 3. The calculation result of the SST k-ω model is different from that of
the standard k-ε model, realizable k-ε model, and standard k-ω model, such as the wake
flow characteristics of a hanger. Regarding the calculation result of the standard k-ε model,
realizable k-ε model, and standard k-ω model, their wind field is the same. Therefore,
the standard k-ε model is selected to calculate the turbulence equation.
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k-ω model; (d) shows the wind field speed under the SST k-ω model.
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3.2. Influence of Wind Speed

In this case study, we assume the wind direction is 0 degree and the wind speed is
adjustable. The changes in the bridge hangers’ stress at different wind speeds are calculated
based on the k–ε model and dynamic equations, which can be seen in Figure 4. When the
wind speed increases from 3 to 12 m/s, the von Mises stress of the bridge hangers is
nonlinearly increasing.
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3.3. Influence of Wind Direction

In this case study, the wind speed is 12 m/s and the wind direction is adjustable.
The changes in the bridge hangers’ wind field at different wind directions are calculated
based on the k–ε model and dynamic equations, which can be seen in Figure 5. On the one
hand, the wind field is different at different heights with the same wind speed. On the
other hand, when the wind direction increases from 0 to 90 degrees, the wind speed field
changes too.
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The changes in the bridge hangers’ stress at different wind directions are calculated
based on the k–ε model and dynamic equations, which can be seen in Figures 4d and 6.
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4. Discussion and Conclusions

This case analyzes the finite element model of investigated bridge hangers through
COMSOL Multiphysics software. The influences of CFD models, wind speed, and wind
direction on the bridge hangers are investigated through case studies, and the von Mises
stress of the bridge hangers is calculated based on fluid–solid coupling. The main conclu-
sions drawn from this study are summarized as follows:

1. The calculation result of the SST k-ω model is different from that of the standard
k-ε model, realizable k-ε model, and standard k-ω model, such as the wake flow
characteristics of a hanger. Therefore, we will use the standard k-ε model to calculate
the von Mises stress time history curve of bridge hangers and then assess the fatigue
life of bridge hangers in a future work.

2. The larger is the wind speed, the larger is the effect on the wind field and stress for the
investigated bridge hangers. For example, when the wind speed increases from 3 to
12 m/s, the stress of the bridge hangers nonlinearly increases. Therefore, the influence
of the bridge hangers should be a concern under a strong wind speed during the
operation.

3. Regarding the different wind directions with the same wind speed, the influence of
the bridge hangers is also different. For example, when the wind direction increases
from 0 to 90 degrees, the fatigue life of the bridge hangers decreases. Therefore,
the influence of wind direction on the investigated bridge hangers cannot be ignored.
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