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Abstract: In this study, the experimental design is developed based on the testing procedure for the
lifetime performance index of products following Weibull lifetime distribution under progressive
type I interval censoring. This research topic is related to asymmetrical probability distributions and
applications across disciplines. The asymptotic distribution of the maximum likelihood estimator of
the lifetime performance index is utilized to develop the testing procedure. In order to reach the given
power level, the minimum sample size is determined and tabulated. In order to minimize the total
cost that occurred under progressive type I interval censoring, the sampling design is investigated
to determine the minimum number of inspection intervals and equal interval lengths when the
termination time of experiment is fixed or not fixed. For illustrative aims, one practical example
is given for the implementation of our proposed sampling design to collect the progressive type I
interval censored sample so that the users can use this sample to test if the lifetime performance
index exceeds the desired target level.

Keywords: censored sample; Weibull distribution; maximum likelihood estimator; process capability
indices; testing algorithmic procedure; sampling design

1. Introduction

For the larger-the-better-type quality characteristics like the lifetimes of products, the
unilateral process capability index CL proposed by Montgomery [1] is used to assess the
performance of the lifetimes of products. This index is so-called the lifetime performance
index. For a complete sample, Tong et al. [2] utilized the uniformly minimum variance
unbiased estimator (UMVUE) of CL to develop a testing computational algorithm for
exponential products. In many cases, the experimenters can only observe censored data.
Two censoring types, including type I censoring and type II censoring, are frequently
considered. Type I censoring occurs if the life test of n subjects stops at a predetermined
time and the number of observations is random. Type II censoring occurs if the life test
stops when a predetermined number of failure times are observed. Progressive censoring
has the property of allowing the removal of units at some time points that may not be the
final termination point. Referring to Yadav et al. [3], Jäntschi et al. [4], Chen and Gui [5],
Balakrishnan and Aggarwala [6] and Aggarwala [7], we can see more inferences about the
progressive censored data. For progressive type II censored data, Lee et al. [8] constructed
a testing procedure for the lifetime performance index. We referred to Wu et al. [9] and Wu
et al. [10] for step–stress accelerated life testing data. For this type of censored data, the
lifetime performance index of exponential products was evaluated by Lee et al. [11]. For
progressive type I interval censored data, a testing procedure for the lifetime performance
index was assessed by Wu and Lin [12] using the maximum likelihood estimator as the
testing statistic for exponential products. For products following the Gompertz lifetime
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distribution, a testing procedure for the lifetime performance index was proposed by Wu
and Hsieh [13] based on a progressive type I interval censored sample. Based on this testing
procedure, a reliability sampling design was developed by Wu et al. [14] for products
following Gompertz distribution. For products following Weibull lifetime distribution, Wu
and Lin [15] proposed a hypothesis testing procedure for the lifetime performance index
using progressive type I interval censored data, and the proposed testing procedure is
summarized in Section 2. The conforming rate is defined as the probability that the product
life exceeds the given lower specification limit. It is an increasing function of the lifetime
performance index. By this monotonic relationship, the experimenters can determine the
desired target value for the lifetime performance index so that the conforming rate can
be sustained. Based on progressive type I interval censored data, the testing procedure
to see if the lifetime performance index meets the desired target value is proposed. The
research goal of this paper is to develop a sampling design under three cases for the testing
procedure proposed in Wu and Lin [15] using a progressive type I interval censored sample.
The first case is to determine the sample size so that the preassigned test power can be
attained for a level α test. The second case is to determine the number of inspection intervals
so that the total experimental cost can be minimized when the termination time of the
experiment is fixed. The third case is to determine the number of inspection intervals and
inspection interval lengths by minimizing the total cost for the test on the evaluation of the
lifetime performance index when the termination time is not fixed. The algorithms, figures
and tables are shown in Sections 3.1–3.3. Our algorithms can help experimenters to set up
a progressive type I interval censoring scheme. For the aim of illustration, one practical
example is given to demonstrate the implementation of this sampling design to collect the
progressive type I interval censored data, and then, the experimenters can use this data
to test whether or not the process is capable. Our research results are only applicable for
Weibull lifetime distribution, and the research results in Wu et al. [14] are only applicable
for Gompertz lifetime distribution. Finally, the conclusion is made in Section 4.

2. The Introduction of the Testing Procedure for the Lifetime Performance Index in
Wu and Lin

We consider that the lifetimes U of products follow a two-parameter Weibull distribu-
tion. The probability density function (pdf) and the cumulative distribution function (cdf)
for U are given as follows:

fU(u) =
δ

λ
(

u
λ
)

δ−1
exp

{
−( u

λ
)

δ
}

, u > 0, δ > 0, λ > 0 (1)

and

FU(u) = 1− exp
{
−( u

λ
)

δ
}

, u > 0, δ > 0, λ > 0, (2)

where λ is the scale parameter and δ is the shape parameter. The application of Weibull
distribution refers to Durán et al. [16], Shi et al. [17] and Almarashi et al. [18]. After
the transformation of Y = Uδ, we obtain a new lifetime variable Y from an exponential
distribution with the scale parameter 1/k = λδ. It is observed that the mean and the
standard deviation of Y are µ = 1/k and σ = 1/k. If we consider LU as the lower specification
limit for U, then the lower specification limit for Y can be obtained as L = Lδ

U .
Montgomery [1] proposed the lifetime performance index as

CL =
µ− L

σ
, (3)

where µ is the process mean, σ is the process standard deviation and L is the known lower
specification limit. Replacing µ by 1/k and σ by 1/k, the lifetime performance index for the
new lifetime variable Y is reduced to

CL = 1− kL (4)
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We define the conforming rate to be the probability that the product life exceeds the
given lower specification limit L, and it is computed as

Pr = P(Y ≥ L) = exp{−kL} = exp{CL − 1}, −∞ < CL < 1. (5)

It is apparent that the conforming rate increases when the lifetime performance index
CL increases. If the experimenter desires the conforming rate to exceed 0.766539, the value
of CL should be considered to exceed 0.8.

A progressive type I interval censoring scheme is depicted as follows: We put n
products in a life test with the termination time T and the number of inspection intervals m
and let (t1, . . . ,tm) be the predetermined inspection times for m inspection intervals, where
tm =T is the termination time, and let (p1, . . . ,pm) be the prespecified removal percentages
for the progressive censoring scheme of (R1, . . . ,Rm) on the inspection times (t1, . . . ,tm),
where pm = 1. For the first inspection time interval (0,t1], the number of failure units
X1 is observed, and then, R1 = [(n− X1)p1] units are randomly removed from the rest
(n − X1) units, where [.] is the floor function. For the second time interval (t1,t2], the
number of failure units X2 is observed, and then, R2 = [(n− X1 − X2 − R1)p2] units are
randomly removed from the rest (n− X1 − X2 − R1) of the units, which is done until the
mth inspection time interval (tm-1,tm]. At this inspection interval, the number of failure
units Xm is observed, and then, the rest Rm = n−∑m

j=1 Xj −∑m−1
j=1 Rj of the units are all

removed, and the experiment is terminated. Then, we can collect the progressive type I
interval censored sample as (X1, . . . ,Xm) with the progressive censoring scheme of (R1,
. . . ,Rm). From Wu and Lin [15], the maximum likelihood estimator (MLE) of k denoted by
k̂ is found to be the numerical solution of the following log-likelihood equation:

d
dk

lnL(k) =
m

∑
i=1

(xi
(tδ

i − tδ
i−1) exp

{
−k(tδ

i − tδ
i−1)

}
1− exp

{
−k(tδ

i − tδ
i−1)

} )−(tδ
i−1xi + tδ

i Ri) = 0. (6)

The Fisher’s information is obtained as

I(k) = −E[
d2

dk2 lnL(k)]

= n
m

∑
i=1

(tδ
i − tδ

i−1)
2

1− exp
{
−k(tδ

i − tδ
i−1)

} i−1

∏
j=1

(1− pj)
i

∏
j=1

exp
{
−k(tδ

i − tδ
i−1)

}
. (7)

Then, we can find the asymptotic distribution of k̂ as k̂ d−−−→
n→∞

N(k, V(k̂)), where

V(k̂) = I−1(k) is the asymptotic variance of k̂.
In Equations (6) and (7), the case of equal interval lengths can be considered by

substituting ti with ti = it, i = 1, . . . , m, where the equal interval length is t = ti − ti-1, i = 1,
. . . , m.

Using the invariance property of MLE, the MLE of CL is obtained as

ĈL = 1− k̂L. (8)

Let c0 be the desired level of lifetime performance index so that the process is capable
if CL exceeds c0. Then, we want to test H0 : CL ≤ c0 versus Ha : CL > c0 (the process
is capable). Using the MLE of CL given by ĈL = 1 − k̂L as the testing statistic at the
level of significance α, the critical region for this test is

{
ĈL
∣∣ĈL > C0

L
}

, with the critical
value C0

L = 1− L(k0 + Zα

√
I−1(k0)), where k0 = 1−c0

L and Zα represent the α percentile
of a standard normal distribution. In the other word, we will conclude to support the
alternative hypothesis if ĈL > C0

L.
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Let w(k) = nV(k̂), which is independent of the sample size n. Then, the power at the
point of CL = c1 > c0 in the parameter space of the alternative hypothesis is

g(c1) = Φ

(
k0 − k1 + Zα

√
w(k0)/

√
n√

w(k1)/
√

n

)
(9)

where Φ(·) is the cdf for the standard normal distribution, k0 = 1−c0
L and k1 = 1−c1

L .

3. Reliability Sampling Design

In this section, the reliability sampling design is investigated under different setups
and considerations. In Section 3.1, the case of the fixed termination time T is considered.
The minimum sample size is determined to reach the given power level of the hypothesis
testing procedure. In Section 3.2, the case of the unfixed number of inspection intervals
and fixed termination time T is considered. The minimum number of inspection intervals
and sample sizes are determined to reach the given power of the level α testing procedure,
and the total cost can be minimized. In Section 3.3, the case of an unfixed number of
inspection intervals and unfixed interval length is considered. The minimum number of
inspection intervals and the corresponding sample sizes and equal lengths of the intervals
are determined so that the given power of the level α testing procedure can be reached and
the total cost of the experiment can be minimized.

3.1. The Determination of the Minimum Sample Size

In this subsection, we need to determine the sample size n to attain the prespecified
power 1-β or the probability of type II error β at c1 under the level of significance α for
a fixed m and T. For a fixed number of inspection intervals, we assigned the power in
Equation (9) to be 1-β. Then, we have g(c1) = 1− β. The minimum required sample size
to reach the given power is obtained by solving the equation of g(c1) = 1− β. Then, the
formula for the minimum required sample size can be obtained as

n =

(
Zβ

√
w(k1) + Zα

√
w(k0)

k0 − k1

)2

(10)

The minimum required sample sizes for testing H0 : CL ≤ 0.8 are tabulated in
Tables 1–3 at β = 0.25, 0.20 and 0.15 under α = 0.01, 0.05 and 0.1, respectively; for c1 = 0.825,
0.850, 0.875, 0.90, 0.925, 0.95, 0.96, 0.975 and 0.98, m = 5, 6, 7 and 8 and p = 0.05, 0.075 and
0.1, with L = 0.3 and T = 3.0. For example, the user wants to conduct a level 0.05 hypothesis
testing of H0 : CL ≤ 0.8 under the power of 0.8 at c1 = 0.95, p = 0.05 and m = 8, so the
minimum required sample size is 7 from Table 2. The minimum required sample sizes are
also displayed in Figures 1–4 for some typical cases. Observed in Figures 1–4, we find that
(1) the minimum sample size n is a decreasing function of c1 for fixed α, β, m and p; (2)
the minimum sample size is a decreasing function of the level of significance for fixed β,
m and p; (3) the minimum sample size is a nondecreasing function of m at α = 0.05 for a
fixed β = 0.2 and p = 0.05; (4) the minimum sample size is a nonincreasing function of the
removal percentage p for fixed α, β and m and (5) the minimum sample size is a decreasing
function of power 1-β at α = 0.05 for fixed m = 5 and p = 0.05.
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Table 1. The minimum sample size for c1 = 0.825, 0.850, 0.875, 0.90, 0.925, 0.95, 0.96, 0.975 and 0.98;
m = 5, 6, 7 and 8 and p = 0.05, 0.075 and 0.1 under α = 0.01, L = 0.3, T = 3.0 and c0 = 0.8.

c1

β m p 0.825 0.85 0.875 0.9 0.925 0.95 0.96 0.975 0.98

0.25 5 0.050 415 107 49 28 18 12 11 9 9

0.075 429 111 50 29 19 13 11 9 9

0.100 442 114 52 30 19 13 12 10 9

6 0.050 414 107 49 28 18 12 11 9 9

0.075 431 111 51 29 19 13 11 9 9

0.100 449 116 53 30 19 14 12 10 9

7 0.050 416 108 49 28 18 13 11 9 9

0.075 437 113 51 29 19 13 12 10 9

0.100 460 119 54 31 20 14 12 10 9

8 0.050 420 109 49 28 18 13 11 9 9

0.075 445 115 52 30 19 13 12 10 9

0.100 472 122 56 32 20 14 12 10 10

0.2 5 0.050 419 109 50 29 18 13 11 9 9

0.075 433 113 51 29 19 13 11 10 9

0.100 447 116 53 30 20 14 12 10 9

6 0.050 418 109 50 28 18 13 11 9 9

0.075 436 113 52 30 19 13 12 10 9

0.100 454 118 54 31 20 14 12 10 9

7 0.050 420 109 50 29 18 13 11 9 9

0.075 442 115 53 30 19 13 12 10 9

0.100 464 121 55 32 20 14 12 10 10

8 0.050 424 110 51 29 19 13 11 9 9

0.075 450 117 54 31 20 14 12 10 9

0.100 477 124 57 33 21 14 13 10 10

0.15 5 0.050 424 111 51 29 19 13 11 9 9

0.075 438 115 53 30 19 13 12 10 9

0.100 452 119 54 31 20 14 12 10 9

6 0.050 423 111 51 29 19 13 11 9 9

0.075 441 116 53 30 20 14 12 10 9

0.100 459 121 55 32 20 14 12 10 10

7 0.050 425 112 51 29 19 13 11 9 9

0.075 447 117 54 31 20 14 12 10 9

0.100 470 123 57 33 21 14 13 10 10

8 0.050 429 113 52 30 19 13 12 9 9

0.075 455 120 55 31 20 14 12 10 9

0.100 483 127 58 33 22 15 13 11 10
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Table 2. The minimum sample size for c1 = 0.825, 0.850, 0.875, 0.90, 0.925, 0.95, 0.96, 0.975 and 0.98;
m = 5, 6, 7 and 8 and p = 0.05, 0.075 and 0.1 under α = 0.05, L = 0.3, T = 3.0 and c0 = 0.8.

c1

β m p 0.825 0.85 0.875 0.9 0.925 0.95 0.96 0.975 0.98

0.25 5 0.050 211 55 26 15 10 7 6 5 5

0.075 218 57 26 15 10 7 6 5 5

0.100 225 59 27 16 10 7 6 5 5

6 0.050 211 55 25 15 10 7 6 5 5

0.075 220 58 27 15 10 7 6 5 5

0.100 229 60 28 16 10 7 6 5 5

7 0.050 212 56 26 15 10 7 6 5 5

0.075 223 58 27 16 10 7 6 5 5

0.100 234 61 28 16 11 7 6 5 5

8 0.050 214 56 26 15 10 7 6 5 5

0.075 227 60 27 16 10 7 6 5 5

0.100 240 63 29 17 11 8 7 6 5

0.2 5 0.050 214 57 26 15 10 7 6 5 5

0.075 221 59 27 16 10 7 6 5 5

0.100 228 61 28 16 10 7 6 5 5

6 0.050 214 57 26 15 10 7 6 5 5

0.075 223 59 27 16 10 7 6 5 5

0.100 232 61 28 16 11 7 6 5 5

7 0.050 215 57 26 15 10 7 6 5 5

0.075 226 60 28 16 10 7 6 5 5

0.100 237 63 29 17 11 8 7 6 5

8 0.050 217 57 27 15 10 7 6 5 5

0.075 230 61 28 16 11 7 6 5 5

0.100 244 65 30 17 11 8 7 6 5

0.15 5 0.050 218 58 27 16 10 7 6 5 5

0.075 225 60 28 16 11 7 6 5 5

0.100 232 62 29 17 11 8 7 5 5

6 0.050 217 58 27 16 10 7 6 5 5

0.075 226 61 28 16 11 7 6 5 5

0.100 236 63 29 17 11 8 7 6 5

7 0.050 218 59 27 16 10 7 6 5 5

0.075 230 62 29 17 11 7 7 5 5

0.100 241 65 30 17 11 8 7 6 5

8 0.050 221 59 28 16 10 7 6 5 5

0.075 234 63 29 17 11 8 7 5 5

0.100 248 66 31 18 12 8 7 6 5
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Table 3. The minimum sample size for c1 = 0.825, 0.850, 0.875, 0.90, 0.925, 0.95, 0.96, 0.975 and 0.98;
m = 5, 6, 7 and 8 and p = 0.05, 0.075 and 0.1 under α = 0.1, L = 0.3, T = 3.0 and c0 = 0.8.

c1

β m p 0.825 0.85 0.875 0.9 0.925 0.95 0.96 0.975 0.98

0.25 5 0.050 131 35 16 9 6 4 4 3 3

0.075 135 36 17 10 6 5 4 3 3

0.100 139 37 17 10 7 5 4 3 3

6 0.050 130 35 16 9 6 4 4 3 3

0.075 136 36 17 10 6 5 4 3 3

0.100 141 38 18 10 7 5 4 3 3

7 0.050 131 35 16 9 6 4 4 3 3

0.075 138 37 17 10 7 5 4 3 3

0.100 145 39 18 10 7 5 4 4 3

8 0.050 132 35 16 10 6 4 4 3 3

0.075 140 37 17 10 7 5 4 3 3

0.100 149 40 18 11 7 5 4 4 3

0.2 5 0.050 133 36 17 10 6 5 4 3 3

0.075 137 37 17 10 7 5 4 3 3

0.100 142 38 18 10 7 5 4 3 3

6 0.050 133 36 17 10 6 5 4 3 3

0.075 138 37 17 10 7 5 4 3 3

0.100 144 39 18 11 7 5 4 4 3

7 0.050 133 36 17 10 6 5 4 3 3

0.075 140 38 18 10 7 5 4 3 3

0.100 147 40 19 11 7 5 4 4 3

8 0.050 135 36 17 10 7 5 4 3 3

0.075 143 38 18 11 7 5 4 4 3

0.100 151 41 19 11 7 5 4 4 4

0.15 5 0.050 136 37 18 10 7 5 4 3 3

0.075 140 38 18 11 7 5 4 3 3

0.100 145 40 19 11 7 5 4 4 3

6 0.050 135 37 18 10 7 5 4 3 3

0.075 141 39 18 11 7 5 4 4 3

0.100 147 40 19 11 7 5 4 4 3

7 0.050 136 37 18 10 7 5 4 3 3

0.075 143 39 19 11 7 5 4 4 3

0.100 150 41 19 11 7 5 5 4 3

8 0.050 137 38 18 10 7 5 4 3 3

0.075 146 40 19 11 7 5 4 4 3

0.100 155 42 20 12 8 5 5 4 4
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3.2. The Determination of Optimal m and n When the Termination Time Is Fixed

The smaller the number of inspection intervals m, the more convenient for experi-
menters to collect a progressive type I interval sample. There must be an upper limit m0 for
m specified by the experimenters (The default value of m0 is 100). In this subsection, the
case of the fixed termination time is considered. For this case, the algorithm for searching
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the optimal (m,n) is presented so that the total experimental cost is minimized for the
testing procedure in Wu and Lin [15] under progressive type I interval censoring. Using
the cost structure in Huang and Wu [19], the following costs are considered:

1. Ca: The cost of installing all test units;
2. Cs: The cost for per test unit in the sample;
3. CI: The cost for the use of the inspection equipment;
4. Co: The cost for operating the equipment per unit of experimental time.

Integrating all these costs, we have the total cost of

TC(m,n) = Ca + nCs + m CI + T Co (11)

where n is determined in Equation (10).
The Algorithm 1 using the numeration method to search the optimal (m,n) is given

as follows:

Algorithm 1:

Step 1: Give the preassigned values of c0, c1, α, β, p, T, L and m0 (the default value is 100) and the
four costs Ca = aCo, Cs = bCo, CI = cCo and Co by the experimenters.
Step 2: Set m = 1.
Step 3: Compute the sample size n in Equation (10) as n’(m) and then compute the corresponding
total cost TC(m, n’(m)), as in Equation (11).
Step 4: If m ≥ m0, then go to Step 5; otherwise, m = m + 1, and go to Step 3.
Step 5: The optimal solution of m* is the minimum m value with the minimum total cost
TC(m, n’(m)). Then, the corresponding sample size n* = n’(m*) is obtained.
Step 6: Calculate the critical value of C0

L = 1− L(k0 + Zα

√
I−1(k0)) by replacing m = m* and

n = m*.

Consider Co = 1 and a = b = c = 1 and testing for H0 : CL ≤ 0.8. When β = 0.15, α= 0.01,
p = 0.05, δ = 1.97, c1 = 0.825, m0 = 20, L = 0.3 and T = 3.0, the curve of the total cost versus
mboxemphm = 2:m0 is plotted in Figure 5a. From this figure, it can be seen that the total
cost curve is a convex curve, and the minimum number of inspection intervals is m = 5,
with a minimum total cost of 424. For another setup of parameters β = 0.25, α = 0.1, p = 0.1,
δ = 1.97, c1 = 0.90, m0 = 20, L = 0.3 and T = 3.0, the plot of m = 2:m0 against its corresponding
total cost is made in Figure 5b. This figure also shows that it is a convex curve with some
flats, and the minimum number of inspection intervals is m = 3, with a minimum total cost
of 17.
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Consider the case of β = 0.25, 0.20 and 0.15, α = 0.01, 0.05 and 0.1; L = 0.3; T = 3.0;
p = 0.05, 0.075 and 0.1 and testing H0 : CL ≤ 0.8. The required inspection intervals m*
and sample size n* to yield the minimum total cost TC(m*,n*) under m0 = 20 are tabulated
in Tables 4 and 5 for c1 = 0.825 and 0.850 and c1 = 0.875 and 0.90, respectively. We also
tabulated the related critical values in these two tables. Suppose that the experimenters
would like to conduct a level 0.05 test for the case of 1-β = 0.8 at c1 = 0.90, p = 0.05 and
m0 = 20. We can find the minimum number of inspection intervals to be three, with the
minimum total cost 23 from Table 5. At the same time, the corresponding required sample
size can be 16, with the critical value 0.71592.

Table 4. The optimal (m*,n*), total cost TC and critical value C0
L for c1 = 0.825 and 0.850 and p = 0.05,

0.075 and 0.1 under α = 0.1, L = 0.3, T = 3.0 and c0 = 0.8.

c1 0.825 0.85

α β p m∗ n∗ TC C0
L m∗ n∗ TC C0

L

0.01 0.25 0.050 5 415 424 0.77781 5 107 116 0.75644

0.075 5 429 438 0.77915 4 112 120 0.75884

0.100 4 443 451 0.78035 4 114 122 0.76142

0.20 0.050 5 419 428 0.77792 5 109 118 0.75677

0.075 5 433 442 0.77925 4 114 122 0.75911

0.100 4 447 455 0.78046 4 116 124 0.76174

0.15 0.050 5 424 433 0.77805 5 111 120 0.75725

0.075 5 438 447 0.77937 4 116 124 0.75963

0.100 4 452 460 0.78057 4 119 127 0.76215

0.05 0.25 0.050 5 211 220 0.77801 5 55 64 0.75693

0.075 5 218 227 0.77932 4 58 66 0.75950

0.100 4 225 233 0.78052 4 59 67 0.76205

0.20 0.050 5 214 223 0.77818 4 58 66 0.75714

0.075 5 221 230 0.77949 4 59 67 0.76000

0.100 4 229 237 0.78068 4 60 68 0.76246
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Table 4. Cont.

c1 0.825 0.85

α β p m∗ n∗ TC C0
L m∗ n∗ TC C0

L

0.15 0.050 5 218 227 0.77834 4 59 67 0.75775

0.075 5 225 234 0.77966 4 61 69 0.76049

0.100 4 232 240 0.78084 4 62 70 0.76304

0.10 0.25 0.050 5 131 140 0.77822 4 35 43 0.75720

0.075 4 136 144 0.77944 4 36 44 0.75993

0.100 4 139 147 0.78070 3 38 45 0.76172

0.20 0.050 5 133 142 0.77842 4 37 45 0.75818

0.075 5 137 146 0.77970 4 37 45 0.76073

0.100 4 142 150 0.78088 4 38 46 0.76308

0.15 0.050 5 136 145 0.77862 4 38 46 0.75865

0.075 5 140 149 0.77992 3 40 47 0.76054

0.100 4 145 153 0.78109 3 41 48 0.76330

Table 5. The optimal (m*,n*), total cost TC and critical value C0
L for c1 = 0.875 and 0.90 and p = 0.05,

0.075 and 0.1 under L = 0.3, T = 3.0 and c0 = 0.8.

c1 0.875 0.90

α β p m∗ n∗ TC C0
L m∗ n∗ TC C0

L

0.01 0.25 0.050 4 50 58 0.73444 4 28 36 0.71364

0.075 4 51 59 0.73871 3 30 37 0.71755

0.100 4 52 60 0.74280 3 31 38 0.72265

0.20 0.050 4 51 59 0.73553 4 29 37 0.71488

0.075 4 52 60 0.73958 3 31 38 0.71856

0.100 4 53 61 0.74350 3 31 38 0.72348

0.15 0.050 4 52 60 0.73605 3 31 38 0.71361

0.075 4 53 61 0.74041 4 30 38 0.72144

0.100 4 54 62 0.74416 3 32 39 0.72505

0.05 0.25 0.050 3 27 34 0.73418 3 16 23 0.71362

0.075 3 28 35 0.73855 3 16 23 0.71954

0.100 3 28 35 0.74276 3 16 23 0.72428

0.20 0.050 3 28 35 0.73521 3 16 23 0.71592

0.075 4 27 35 0.74082 3 16 23 0.72139

0.100 3 29 36 0.74408 3 17 24 0.72581

0.15 0.050 3 29 36 0.73620 3 17 24 0.71592

0.075 4 28 36 0.74236 3 17 24 0.72312

0.100 3 30 37 0.74470 3 17 24 0.72725

0.10 0.25 0.050 3 17 24 0.73615 3 10 17 0.71390

0.075 3 18 25 0.74010 3 10 17 0.72033

0.100 3 18 25 0.74438 3 10 17 0.72775
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Table 5. Cont.

c1 0.875 0.90

α β p m∗ n∗ TC C0
L m∗ n∗ TC C0

L

0.20 0.050 3 18 25 0.73769 2 12 18 0.71155

0.075 3 18 25 0.74136 2 12 18 0.71803

0.100 3 19 26 0.74538 2 12 18 0.72325

0.15 0.050 3 19 26 0.73769 2 12 18 0.71502

0.075 3 19 26 0.74255 2 12 18 0.72081

0.100 3 19 26 0.74633 3 11 18 0.72991

We have the following findings from Tables 4 and 5: (1) the minimum required
sample size is a nonincreasing function of the level of significance for fixed β and p; (2) the
minimum required sample size is a nonincreasing function of c1 for fixed α, β and p; (3) the
minimum required sample size increases when the probability of type II error β decreases;
(4) the minimum inspection intervals decrease when c1 increases for any combination of
α, β and p; (5) the minimum inspection intervals increases when the probability of type
II error β decreases; (6) the minimum total cost increases when the removal probability
p decreases for fixed α, β and c1 are fixed; (7) the minimum total cost decreases when c1
increases for any combination of α, β and p and (8) the minimum total cost increases when
the probability of type II error β decreases.

3.3. The Determination of Optimal m, t and n for the Unfixed Total Life Test Time T

In this subsection, the case of the fixed termination time T and unfixed equal interval
length t is considered. The algorithm for searching the optimal (m,t,n) is presented so that
the total experimental cost is minimized for the testing procedure based on Wu and Lin [15]
under progressive type I interval censoring.

The total cost is
TC(m,t,n) = Ca + nCs + m CI + mt Co (12)

where n is determined in Equation (10).
The Algorithm 2 using the numeration method to search the optimal (m,t,n) is given

as follows:

Algorithm 2:

Step 1: Give the preassigned values of c0, c1, α, β, p, T, L and m0 (the default value is 100) and the
four costs Ca = aCo, Cs = bCo, CI = cCo and Co by the experimenters.
Step 2: Set m = 1.
Step 3: Find the optimal solution t*, such that TC(m,t,n) is minimized. Compute the sample size n
in Equation (10) as n′(m,t*), and then, compute the corresponding total cost TC(m,t*, n’(m,t*)), as
in Equation (12).
Step 4: If m ≥ m0, then go to Step 5; otherwise, m = m+1, and go to Step 3.
Step 5: The optimal solution of m* is the minimum m value with the minimum total cost
TC(m, n’(m)). Then, the corresponding sample size n* = n’(m*) is obtained.
Step 6: Calculate the critical value of C0

L = 1− L(k0 + Zα

√
I−1(k0)) by replacing m = m* and

n = m*.

Consider the cost structure Co = 1 and a = b = c = 1 and the testing for H0 : CL ≤ 0.8.
When β = 0.25, α = 0.01, p = 0.05, δ = 1.97, c1 = 0.825, m0 = 20, L = 0.3 and T = 3.0, the
curve of total cost versus m = 2:m0 is plotted in Figure 6a. It can be seen that the total cost
curve is a convex curve, and the minimum number of inspection intervals is m = 6, with a
minimum total cost of 423.1605. For another set up of parameters: β = 0.15, α = 0.1, p = 0.1
and c1 = 0.90, the plot of the total cost curve with m = 1:m0 is made in Figure 6b. It can
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be seen that the total cost curve is a concave upward curve, and the minimum number of
inspection intervals is m = 3, with a minimum total cost of 16.8.
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Consider the case of β = 0.25, 0.20 and 0.15; α = 0.01, 0.05 and 0.1; L = 0.3; T = 3.0;
p = 0.05, 0.075 and 0.1 and c0 = 0.8. The minimum suggested number of inspection intervals
m*, optimal equal interval length t* and sample size n* to attain the minimum total cost
TC(m*,t*,n*) under m0 = 20 are tabulated in Tables 6 and 7 for c1 = 0.825 and 0.850 and
c1 = 0.875 and 0.90, respectively. We also list the critical values C0

L in these two tables. If
the experimenters would like to conduct a level 0.05 test under the conditions of β = 0.8,
c1 = 0.825, p = 0.05 and m0 = 20, the optimal values of (m*,t*,n*) can be found as (5,0.55,214)
from Table 6. From this table, you can also find the minimum total cost as TC = 222.744
and the corresponding critical value as 0.7759.
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Table 6. The optimal (m*,t*,n*), total cost TC and critical value C0
L for c1 = 0.825 and 0.850 and p = 0.05,

0.075 and 0.1 under L = 0.3, T = 3.0 and c0 = 0.8.

c1 0.825 0.85

α β p m∗ t∗ n∗ TC C0
L m∗ t∗ n∗ TC C0

L

0.01 0.25 0.050 6 0.53 413 423.161 0.77552 5 0.53 107 115.659 0.75198

0.075 5 0.6 428 437.004 0.77552 4 0.65 111 118.591 0.75177

0.100 4 0.68 442 449.702 0.77549 4 0.66 114 121.637 0.75177

0.20 0.050 5 0.55 419 427.759 0.77558 4 0.62 110 117.481 0.75218

0.075 5 0.58 433 441.877 0.77562 4 0.64 113 120.568 0.75218

0.100 5 0.65 445 454.226 0.77565 4 0.66 116 123.639 0.75219

0.15 0.050 5 0.55 424 432.761 0.77573 5 0.54 111 119.696 0.75287

0.075 5 0.58 438 446.905 0.77576 4 0.6 116 123.406 0.75267

0.100 4 0.67 452 459.688 0.77576 3 0.8 120 126.399 0.75266

0.05 0.25 0.050 5 0.55 211 219.725 0.77573 4 0.58 56 63.319 0.75248

0.075 4 0.66 219 226.654 0.77567 3 0.71 59 65.117 0.75251

0.100 4 0.66 225 232.65 0.77573 3 0.73 60 66.186 0.75249

0.20 0.050 5 0.55 214 222.744 0.77590 4 0.62 57 64.482 0.75303

0.075 5 0.58 221 229.912 0.77590 3 0.74 60 66.231 0.75264

0.100 4 0.68 228 235.713 0.77590 3 0.7 62 68.097 0.75346

0.15 0.050 5 0.53 218 226.641 0.77605 4 0.58 59 66.324 0.75370

0.075 4 0.65 226 233.607 0.77605 3 0.72 62 68.155 0.75373

0.100 4 0.67 232 239.668 0.77610 3 0.75 63 69.244 0.75371

0.10 0.25 0.050 4 0.6 132 139.4 0.77574 3 0.71 36 42.12 0.75316

0.075 4 0.6 136 143.414 0.77592 3 0.69 37 43.072 0.75315

0.100 4 0.65 139 146.607 0.77592 3 0.68 38 44.048 0.75375

0.20 0.050 5 0.52 133 141.595 0.77615 3 0.72 37 43.172 0.75384

0.075 4 0.63 138 145.508 0.77615 3 0.71 38 44.115 0.75390

0.100 4 0.63 142 149.522 0.77606 3 0.7 39 45.089 0.75391

0.15 0.050 4 0.62 137 144.478 0.77640 3 0.66 39 44.995 0.75408

0.075 4 0.62 141 148.496 0.77639 3 0.75 39 45.257 0.75521

0.100 4 0.63 145 152.527 0.77631 3 0.73 40 46.195 0.75576

A software program to find the optimal setup for the sampling design proposed in
Sections 3.1–3.3 for any combination of parameters was built by the authors for practi-
cal use.

From Tables 6 and 7, we have the following findings: (1) the minimum required
sample size is a decreasing function of the level of significance for fixed β and p; (2) the
minimum required sample size is a decreasing function of c1 for fixed α, β and p; (3) the
minimum required sample size increases when the probability of a type II error β decreases;
(4) the minimum number of inspection intervals decreases when c1 increases for any
combinations of α, β and p; (5) the minimum number of inspection intervals increases when
the probability of a type II error β decreases; (6) the minimum total cost decreases when c1
increases for fixed α, β and p; (7) the minimum total cost increases when the probability of
a type II error β decreases and (8) the minimum total cost is a nonincreasing function of the
removal probability p for fixed α, β and c1.
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Table 7. The optimal (m*,t*,n*), total cost TC and critical value C0
L for c1 = 0.875 and 0.90 and p = 0.05,

0.075 and 0.1 under L = 0.3, T = 3.0 and c0 = 0.8.

c1 0.825 0.85

α β p m∗ t∗ n∗ TC C0
L m∗ t∗ n∗ TC C0

L

0.01 0.25 0.050 4 0.61 49 56.451 0.72832 3 0.69 29 35.065 0.70665

0.075 3 0.7 52 58.109 0.72837 3 0.66 30 35.99 0.70658

0.100 3 0.72 53 59.149 0.72843 3 0.73 30 36.19 0.70652

0.20 0.050 4 0.63 50 57.518 0.72910 3 0.66 30 35.994 0.70618

0.075 3 0.72 53 59.145 0.72922 3 0.74 30 36.225 0.70607

0.100 3 0.73 54 60.191 0.72917 3 0.7 31 37.108 0.70764

0.15 0.050 3 0.73 53 59.196 0.73004 3 0.66 31 36.969 0.70618

0.075 3 0.75 54 60.253 0.73003 3 0.72 31 37.16 0.70745

0.100 4 0.68 54 61.721 0.73061 3 0.69 32 38.083 0.70890

0.05 0.25 0.050 3 0.64 27 32.928 0.73102 3 0.71 15 21.138 0.70983

0.075 3 0.7 27 33.102 0.73098 3 0.62 16 21.875 0.71470

0.100 3 0.67 28 34.006 0.72980 3 0.67 16 22.002 0.71478

0.20 0.050 3 0.74 27 33.217 0.73198 3 0.64 16 21.918 0.70875

0.075 3 0.69 28 34.055 0.73209 3 0.69 16 22.07 0.71380

0.100 3 0.66 29 34.984 0.73086 3 0.63 17 22.879 0.71151

0.15 0.050 3 0.73 28 34.192 0.73313 3 0.75 16 22.255 0.71274

0.075 3 0.69 29 35.06 0.73323 3 0.65 17 22.942 0.71311

0.100 3 0.67 30 35.996 0.73218 3 0.7 17 23.089 0.71525

0.10 0.25 0.050 3 0.64 17 22.924 0.73297 3 0.6 10 15.815 0.70895

0.075 3 0.7 17 23.092 0.73472 3 0.64 10 15.925 0.71318

0.100 3 0.63 18 23.896 0.73289 3 0.69 10 16.068 0.71678

0.20 0.050 3 0.61 18 23.843 0.73237 3 0.68 10 16.032 0.71495

0.075 3 0.66 18 23.966 0.73426 3 0.76 10 16.27 0.71827

0.100 3 0.71 18 24.138 0.73573 3 0.61 11 16.826 0.71497

0.15 0.050 3 0.71 18 24.122 0.73553 3 0.61 11 16.815 0.71349

0.075 3 0.64 19 24.92 0.73561 3 0.64 11 16.919 0.71687

0.100 3 0.69 19 25.063 0.73709 3 0.68 11 17.05 0.72543

3.4. Example

For the aims of the illustration, the data in Caroni [20] is used to illustrate our proposed
sampling design. The data of the failure times of n = 25 ball bearing are given as follows
(number of cycles in 1000 times): 0.1788, 0.2892, 0.3300, 0.4152, 0.4212, 0.4560, 0.4848, 0.5184,
0.5196, 0.5412, 0.5556, 0.6780, 0.6780, 0.6780, 0.6864, 0.6864, 0.6888, 0.8412, 0.9312, 0.9864,
1.0512, 1.0584, 1.2792, 1.2804, 1.7340.

The Gini test (see Gail and Gastwirth [21]) is a scale-free goodness-of-fit test for distri-
bution that can be transformed into an exponential distribution. The testing procedures
in Jäntschi [22] and Jäntschi [23] are more general procedures as alternatives to the Gini
test. We use the Gini test with the maximum p-value to determine the parameter δ for
this example. We conduct the Gini test as follows: In the first step, the null hypothesis is
set up as H:0 : Ui ∼ FU(u) = 1− exp

{
−( u

λ )
δ
}

, u > 0, δ > 0, λ > 0. Secondly, we sort
the data in order as U(1) = 0.1788, U(2) = 0.2892, . . . and U(25) = 1.7340. We calculate the
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Gini test statistic Gn =

n−1
∑

i=1
i(n−i)(Y(i+1)−Y(i))

24
n
∑

i=1
(n−i+1)(Y(i)−Y(i−1))

, where Y(i) = Uδ
(i). The limiting distribution

of Z =
√

12(n− 1)(Gn − 0.5) is a standard normal distribution when the sample size is
large enough. Let z be the realization of Z, and then, the p-value is obtained as 2P(Z >|z|) .
The higher the p-value, the better fit of the data to the Weibull distribution. From Wu and
Lin [15], the value of δ is determined as δ = 1.97, since it has the largest p-value = 0.9882 for
the Gini test. With a high p-value, we conclude that the data fits the Weibull distribution
very well. We then used this example to illustrate Sections 3.1–3.3.

For Section 3.1, we considered the case of L = 0.05, T = 0.5, m = 5 and p = 0.05 for
testing H0 : CL ≤ 0.8 with a significance level α = 0.05 and the power level 1-β = 0.75 at
c1 = 0.975. After running our software, the minimum sample size was determined to be
n = 20, and the critical value was obtained as C0

L = 0.7002605.
Then, the hypothesis test was conducted as follows:
Step 1: We took a random sample of size n = 20 from the dataset. The progres-

sive type I interval censored sample (X1,X2, . . . ,X5) = (0,1,1,1,2) was collected at the
time points (t1,t2, . . . ,t5) = (0.1,0.2,0.3,0.4,0.5) under the progressive censoring scheme of
(R1,R2, . . . ,R5) = (1,2,0,2,10).

Step 2: Based on the progressive type I interval censored sample given in step 1, the
MLE of k was found to be k̂ = 1.382812 by solving Equation (6).

Step 3: The value of test statistic ĈL = 1− k̂L = 1 − 1.382812 × 0.05 = 0.9308594 was
computed.

Step 4: Due to the result of ĈL = 0.9308594 > C0
L = 0.7002605, we concluded it supported

the alternative hypothesis Ha : CL > 0.8 and claimed that the lifetime performance index
exceeded the desired level.

From Section 3.2, the same consideration of parameters and cost setup as the previous
paragraph was considered. After running our software, the minimum number of inspection
intervals and the related sample size were determined to be m* = 1 and n*= 19, with the
critical value as C0

L = 0.7228799 and a minimum total cost of 21.5 units.
The, a hypothesis test about CL was conducted as follows:
Step 1: A random sample of size n = 19 was taken from the dataset. The progressive

type I interval censored sample (X1) = (5) was collected at the time point (t1) = (0.5) under
the progressive censoring scheme of (R1) = (14).

Step 2: Using the progressive type I interval censored sample collected in step 1, the
MLE of k was found to be k̂ = 1.196398 by solving Equation (6).

Step 3: Computing the test statistic, ĈL = 1− k̂L = 1 − 0.196398 × 0.05 = 0.9401801.
Step 4: We observed that ĈL = 0.9401801 > C0

L = 0.7228799. Thus, it supported the
alternative hypothesis Ha : CL > 0.8 and claimed that the lifetime performance index
exceeded the desired level.

For Section 3.3, the case of unfixed m and t was considered. Based on the same setup
with the previous two cases, the optimal sampling design with (m*,n*,t*) = (2,12,0.42) was
found from the output of our software. The critical value C0

L = 0.7063278 and the minimum
total cost of TC = 15.834 units could also be found from the output.

The testing procedure of CL was conducted as follows:
Step 1: A random sample of size n = 12 was taken from the dataset. The progressive

type I interval censored sample was (X1,X2) = (3,6) at the time points (t1,t2) = (042,0.84)
under the progressive censoring schemes of (R1,R2) = (0,3).

Step 2: Based on the progressive type I interval censored sample given in step 1, the
MLE of k was found to be k̂ = 1.875922 by solving Equation (6).

Step 3: The test statistic was ĈL = 1− k̂L = 1 − 1.875922 × 0.05 = 0.9062039.
Step 4: we observed that ĈL = 0.9062039 > C0

L = 0.7063278. Based on this observation,
the same claim was made with the previous two cases.
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4. Conclusions

This model of Weibull distribution is widely used for reliability engineering and failure
analyses. The lifetime performance index can be used to assess the capability performance
of a manufacturing process, especially for Weibull products. Based on the progressive type
I interval censored sample, we investigated the required minimum sample size under a
given power for the level α test for testing the capability of the manufacturing process
based on the lifetime performance index. We also provided the required minimum sample
size and number of inspection intervals when the termination time of the experiment was
fixed to reach given power and the minimum total cost for the level α test. When the
termination time of the experiment was not fixed, the required minimum sample size,
number of inspection intervals and the inspection interval time length were determined in
this paper to reach the given power with the minimum total cost for the level α test under
progressive type I interval censoring.
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