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Abstract: This article considers an inventory model for non-instantaneous deteriorating items with
expiration dates, such as seasonal items, first-hand vegetables, and fruits. Interestingly, an inspection
will be performed to manage the quality of the items during the state of no deterioration because it is
difficult to purchase items with 100% perfection. Additionally, we assume that the upstream member
has the power of controlling or influencing downstream members’ decisions. That is, the supplier
asks the retailer for a partial advance payment to avoid cancellation of orders and offers them a
credit payment to stimulate sales; in turn, the customer must pay some cash when placing an order
and pay the remainder in credit for the retailer. The goal of this article is to determine an optimal
replenishment cycle and the total annual cost function, so we explore the functional properties of
the total annual cost function and show that the total annual cost function is convex. Theoretical
analysis of the optimal properties shows the existence and uniqueness of the optimal solution. Then,
we obtain simple and easy solution procedures for the inventory system. Moreover, numerical
analysis of the inventory model is conducted, and the corresponding examples are considered with
a view to illustrating the application of the supply chain model that we have investigated in this
article. Finally, in the concluding section, we have not only provided the motivation and the need for
our usages of mathematical analytic solution procedures based upon the convexity, monotonicity
(increasing and decreasing) and differentiability properties of the object function (that is, the total
annual cost function), which involve some symmetry aspects of the object function, but we have also
indicated the limitations and shortcomings in our investigation, which will naturally lead to some
potential directions for further research on the supply chain model, which we have considered and
mathematically analyzed in this article.
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1. Introduction

In today’s competitive business environment, more than 80% of businesses offer
their products on various short-term, interest-free credit terms (that is, a credit payment)
with a view to stimulate sales and to reduce inventory in the United Kingdom and the
United States of America. Likewise, trade credit financing is used by approximately 60% of
international trade transactions, rendering it to be the second after that of banks and other
financial institutions in the United States of America. Additionally, in order to avoid the
risk of order cancellation and non-payment risks, the business frequently offers a partial
credit period to the downstream members, who must pay a portion of the procurement
amount at the time of placing an order and then receive a permissible delay on the rest of
the outstanding amount (that is, a cash-credit payment). On the other hand, granting trade
credit increases not only the opportunity loss, but also the default risk from the viewpoint
of the business, so the powerful businesses may ask the downstream members to prepay
the entire or a fraction of the procurement amount before the delivery to mitigate interest
loss and default risks (that is, an advance payment). For example, insurance companies
generally require an advance payment in order to extend coverage to the insured party.

In existing literatures, Zhang [1] proposed an advance payment plan because it may
save time and money for a customer to prepay, for example 80.00 USD for 4 months of
water bills, instead of paying 20.00 USD each month for 4 months. All the above mentioned
payment types can be combined such that, for example, the supplier demands the retailer
to prepay 5 to 10% of the total procurement cost as a good-faith deposit when both sign
a contract of agreement to install some item(s). Upon delivery of the item(s), a cash-
on-delivery payment to cover the supplier’s cost of the item(s) is then required. In this
contractual arrangement, the retailer will pay the remainder of the total cost after the work
is completed.

In reality, the deteriorating items have a maximum lifetime due to their physical
nature and must be disposed of after the expiration date, due to the fact that consumers
evaluate the freshness of a deteriorating item by checking its expiration date before making
a purchase, and the willingness to purchase a deteriorating item decreases throughout its
shelf-life. Furthermore, the expiration date is the most important factor that is time-bound
and plays an important role in developing the inventory model. In practice, most of the
products maintain their quality or original situation over a span; that is, during this span,
deterioration does not occur, and then they begin to deteriorate in the next period. It is
observed that foodstuffs, first-hand vegetables, and fruits have a short span during which
fresh quality is maintained and there is almost no spoilage. These processes are defined as
the non-instantaneous deterioration of the product.

The quality of the products is considered to be another direct factor to affect a con-
sumer’s purchase decision as well. Furthermore, this article assumes that the retailer
receives the items with a time-varying deterioration rate depending on its expiration date,
such as seasonal products, and that an inspection will occur during the state of no deterio-
ration in order to manage the quality of the products. By performing the screening process,
the retailer detects the imperfect items and throws them out.

In this article, we first establish an inventory model for non-instantaneous deteriorat-
ing items with expiration dates and imperfect quality in which we assume a 100% screening
process to identify imperfect items. We then consider that the supplier asks the retailer to
prepay a fraction of the procurement cost when signing a contract to buy products, to pay
another fraction of the procurement cost in cash upon receiving the ordered quantity, and



Symmetry 2021, 13, 1695 3 of 26

to receive a short-term interest-free credit term on the remaining procurement cost (that is,
an advance-cash-credit payment). Likewise, the retailer gives the customer the opportunity
to pay a fraction of the procurement cost after delivery of the ordered items and then to pay
the remaining procurement cost at a later date without any additional charges to reduce the
risk of cancellations of the order from customers (that is, a cash-credit payment). It is worth
mentioning that, by the usage of the mathematical analytic solution procedures, the present
article shows that the total annual cost function is convex by exploring the functional
properties of the total annual cost function such as, for example, the continuity, convexity,
monotonicity (increasing and decreasing), and differentiability properties, whereby one
can also see the symmetry aspects of the total annual const function. Furthermore, by
applying the mathematical analytic solution procedures again, we prove that the retailer’s
optimal replenishment cycle not only exists, but it also is unique. With a view to illustrating
and validating the proposed inventory model, we have considered numerical examples
involving different fixed markup rates. Finally, in the concluding section of this article
(Section 6), we have briefly discussed the limitations and shortcomings of this investigation
in that we have concentrated upon the inventory system without shortage and that it can
affect the supply chain from the producer to the retailer. Furthermore, this model has the
potential to be extended to incorporate inflation and quantity discount effects, different
demand forms such as credit-linked promotion-dependent demand and other issues under
the system with shortages. Additionally, this article has considered the deterministic situ-
ation, so considering the stochastic situation, such as stochastic demand, can be another
future research direction on the subject of this article.

Literature Review

There is a large volume of published studies concerning the inventory models with
cash payments, credit payments, or advance payments, such as those that we have reviewed
or cited below.

In these literatures, Taleizadeh et al. [2] established an economic order quantity (EOQ)
model with partial backordering in which the supplier asks the retailer to pay a frac-
tion of the purchasing cost in advance and allows them to divide the prepayment into
multiple equal installments during a lead time. Taleizadeh [3] extended the inventory
model of Taleizadeh et al. [2] to the cases of deteriorating items with and without short-
ages. Taleizadeh [4] used an advance-cash-payment plan to develop an EOQ model for
an evaporating item with partial backordering for a real case study of a gasoline sta-
tion. Zhang et al. [5] developed an inventory model under advance payment, which
includes all payments in advance and partially advanced-partially delayed payment plans.
Eck et al. [6] explored the role of cash-in-advance financing for export decisions in firms.
Lashgari et al. [7] considered an EOQ model with hybrid partial payment, such as upstream
partial prepayment and downstream partial delayed payment without shortage, with full
backordering, or with partial backordering. Tavakoli and Taleizadeh [8] gave a lot-sizing
model for decaying item for the retailer to pay all the purchasing cost in advance with no
shortage or with full backordering shortage or partial lost sale. Heydari et al. [9] assumed
the demand is stochastic and credit-dependent under the two-level trade credit, then they
found the optimal ordering quantity and the length of the credit period. Feng and Chan [10]
expanded the two-level trade credit to include joint pricing and production decisions for
new products with pronounced learning-by-doing phenomenon. Much of the current re-
search attention has been directed towards trade-credit inventory models for deteriorating
items with its own expiration date. For example, Chen and Teng [11] established an inven-
tory model for deteriorating items under two-level trade credit by discounted cash flow
analysis in which the deterioration rate is non-decreasing over time and near 100 percent
particularly close to its expiration date. Then, they demonstrated that the retailer’s optimal
credit period and cycle time not only exist, but are also unique. Mahata [12] discussed
an EOQ model for deteriorating items having fixed lifetime under two-level trade credit.
He showed that the retailer’s optimal replenishment cycle time not only exists but is also
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unique. Wu et al. [13] examined an inventory model with expiration date dependent dete-
rioration under an advance-cash-credit payment scheme to find the optimal replenishment
cycle time and the fraction of no shortages such that the total profit is maximized. Moreover,
some related recent articles are those by, for example, Zia and Taleizadeh [14], Wu et al. [15],
Chen et al. [16], Teng et al. [17], Diabat et al. [18], Feng et al. [19], Mahata and De [20],
Tiwari et al. [21], Taleizadeh et al. [22], Li et al. [23,24], Taleizadeh [25], Krommyda et al. [26],
Tsao et al. [27], Mashud et al. ([28,29]), AlArjani et al. [30], and Hou et al. [31].

There is a large volume of published studies describing the inventory models for
non-instantaneous deteriorating items. Udayakumar and Geetha [32] considered time,
value of money, and the effect of inflation to develop an economic-ordering policy for
non-instantaneous deteriorating items over a finite time horizon in which the demand is
a deterministic function of selling price and advertisement cost. They found the optimal
length of replenishment and the optimal order quantity. Lashgari et al. [33] presented an
EOQ model for non-instantaneous deteriorating items under an advance-delay payment
when shortages are allowed in a partial form. They found the optimal order and shortage
quantities to minimize the retailer’s total inventory cost function. Udayakumar and
Geetha [34] developed an EOQ model for non-instantaneous deteriorating items with
capacity constraint under a trade credit policy. They found the optimal replenishment cycle
time and order quantity to minimize the total inventory cost. Babangida and Baraya [35]
showed an inventory model for non-instantaneous deteriorating items with two-phase
demand rates, capacity constraint and complete backlogged under trade credit policy.
They provided the necessary and sufficient conditions for the existence and uniqueness
of solutions. Soni and Suthar [36] revealed an inventory model for non-instantaneous
deteriorating items with partial backlogging; they considered that the demand rate has
a negative and positive exponential effect of price and promotional effort, respectively,
while the item is not in a state of deterioration and then found the joint optimal pricing and
replenishment policy for the non-instantaneous deteriorating items. Cenk Çalışkan [37]
deals with the inventory model for deteriorating items in which the opportunity cost
is based on compound interest, and backorders are allowed. The article determines a
near-optimal and intuitive closed-form solution, which is simple to the practitioners.
Under a variety of practical conditions, some researchers have considered the above
items, such as Tiwari et al. [38], Tsao [39], Geetha and Udayakumar [40], Jaggi et al. [41],
Maihami et al. [42], Mashud et al. [43], Bounkhel et al. [44], and Udayakumar et al. [45].

Given that it is worthwhile studying the effect of defective items on inventory prob-
lems, numerous researchers, such as Khanna et al. [46], have developed inventory models
for deteriorating imperfect quality items with allowable shortages and permissible delays
in payments. Zhou et al. [47] found a synergy economic order quantity model, in which
the concepts of imperfect quality, inspection error, and shortages with trade credit are
considered. They found the annual profit function is concave and obtained the closed form
optimal solution to the model. Datta [48] proposed a production-inventory model with
defective items. The model incorporates additional investment opportunity on quality
improvement for reducing the proportion of defective products. Taleizadeh et al. [49]
developed an imperfect EPQ model with upstream trade credit periods linked to raw
material order quantity and downstream trade credit periods. Pal and Mahapatra [50]
developed an inventory model with imperfect products for a three-level supply chain,
and three different ways of dealing with defective products were investigated in their
model. Khakzad and Gholamian [51] investigated the effect of inspection time on the
deterioration rate; they showed the convexity of the model and illustrated the uniqueness
of the solution. Taleizadeh et al. [52] revealed an EOQ inventory model with imperfect
items and partial backordering. They assumed a percent of the products in a lot is imperfect
and the imperfect items are replenished by perfect ones at a higher cost. The objective
is to obtain the optimal value of the length period and the percent of period duration
in which the inventory level is positive. Some imperfect production models with trade
credit have been studied, in recent years, by (among others) Wang et al. [53], Alamri
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et al. [54], Palanivel and Uthayakumar [55], Aghili and Hoseinabadi [56], Tsao et al. [57,58],
Khanna et al. [59], Liao et al. [60], Kazemi et al. [61], Liao et al. [62], Mashud et al. [63], and
Srivastava et al. [64].

We remark, in passing to the next section, that the mathematical analytic solution
procedures, which we have used in the mathematical analysis and discussions of the
inventory and supply chain models considered in this article, are full of elaborate usages of
the intricate techniques of calculus in determining the continuity, convexity, monotonicity
(increasing or decreasing), and differentiability properties of the object functions (that is,
the total optimal cost functions). We have stated our main results of this investigation in
the form of five theorems (Theorems 1 to 5), which we have proved by appealing also to
two Lemmas (Lemma 1 and Lemma 2). For the sake of brevity and compact presentation,
the proof of Lemma 2 has been given in the Appendix A instead of the main text. It is quite
natural to expect such a format and style in a mathematically oriented article. Furthermore,
as we have already mentioned, for the accuracy, completeness, and safe applicability
of the results and discussions presented in this article, the usage of the mathematical
analytic solution procedures, which are based upon the elaborate and intricate techniques
of calculus, is essential here.

2. Mathematical Formulation of the Supply Chain Model and Its Analysis

Based on the above assumptions, the inventory level drops at the demand rate and
the defective rate during the time interval [0, td]. Then, the inventory level drops to zero
due to the demand and the deterioration with the expiration dates during the time interval
[td, T]. Furthermore, the variations in the inventory level with respect to time t can be
expressed below.

The differential equation representing the inventory status during the time interval
t ∈ [0, ts], ts =

y
x , is given by

dI1(t)
dt

= −D (1)

where t is restricted, as in Equation (2). Under the condition I1(0) = y, by solving
Equation (1), we obtain

I1(t) = y− Dt, 0 < t ≤ ts (2)

In the second interval [ts, td], the differential equation represents the inventory status:

dI2(t)
dt

= −D, ts ≤ t ≤ td (3)

Under the condition I2(td) = (1− p)y− Dtd, Equation (3) yields

I2(t) = (1− p)y− Dt, ts ≤ t ≤ td (4)

During the third interval [td, T], the change in the inventory level is represented by
the following differential equation:

dI3(t)
dt

+ θ(t) · I3(t) = −D, td ≤ t ≤ T (5)

Under the condition I3(T) = 0, the solution of Equation (5) is given by

I3(t) = D(1 + m− t) · ln( 1 + m− t
1 + m− T

), td ≤ t ≤ T (6)

Making use of the continuity property of I2(td) = I3(td), it follows from Equations (4)
and (6) that

(1− p)y− Dtd = D(1 + m− td) ln(
1 + m− td
1 + m− T

) (7)
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which implies that the order quantity is given by

y =
D

(1− p)
[td + (1 + m− td) · ln(

1 + m− td
1 + m− T

)] (8)

Substituting Equation (8) into Equations (2) and (4), we get

I1(t) =
D

(1− p)
[td + (1 + m− td) · ln(

1 + m− td
1 + m− T

)− (1− p)t] (9)

and
I2(t) = D[td + (1 + m− td) · ln(

1 + m− td
1 + m− T

)− t] (10)

Additionally, this article focuses on ts ≤ td, so we have T ≤ R∗ if and only if ts ≤ td.
Here,

R∗ = (1 + m)− (1 + m− td) · e
− [(1−p)x−D]td

D(1+m−td) (11)

We now calculate the annual total relevant cost which results from the following components:

1. Order cost = o
T

2. The holding cost (excluding interest charges) after receiving y units at time 0 is
given below:
Case 1. When 0 < T < td,
The holding cost

= h
T [
∫ y

x
0 (y− Dt)dt +

∫ T
y
x

D(T − t)dt] = hD
(1−p) [

(1−p)T
2 + pDT

x(1−p) ]

Case 2. When td ≤ T

The holding cost = h
T

{∫ y
x

0 I1(t)dt +
∫ td

y
x

I2(t)dt+
∫ T

td
I3(t)dt

}

= h
T

{
D
2 t2

d + D(1 + m− td) · td ln( 1+m−td
1+m−T ) +

pD2

x(1−p)2

×[td + (1 + m− td) · ln( 1+m−td
1+m−T )]

2
+ D

2 (1 + m− td)
2 · ln( 1+m−td

1+m−T )

+D
4 (1 + m− T)2 − D

4 (1 + m− td)
2
}

3. The procurement cost per replenishment cycle is:
Case 1. When 0 < T < td
The procurement cost = cy

T = cD
(1−p)

Case 2. When td ≤ T
The procurement cost = cy

T = cD
(1−p)T [td + (1+m− td) · ln( 1+m−td

1+m−T )]

4. The screening cost per replenishment cycle is
Case 1. When 0 < T < td
The screening cost = sy

T = sD
(1−p)

Case 2. When td ≤ T
The screening cost = sy

T = sD
(1−p)T [td + (1+m− td) · ln( 1+m−td

1+m−T )]

5. The cost of deteriorated units
Case 1. When 0 < T < td
The cost of deteriorated units is zero.
Case 2. When td ≤ T
The cost of deteriorated units = c

T [(1− p)y− DT]

=
cD
T

[td + (1+m− td) · ln(
1 + m− td
1 + m− T

)− T]
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6. The interest charged for advance payment per replenishment cycle is

cIk DT
T (

N∫
−L

αdt) + cIk D
T
∫ T+N

N α(T + N − t)t

= αcIk DT
T (N + L) + αcIk DT2

2T

7. The interest charged for cash payment per replenishment cycle is

cIkDT
T

(

N∫
0

βdt) +
cIkD

T

∫ T+N

N
β(T + N − t)dt =

βcIkDTN
T

+
βcIkDT2

2T

8. The interest charged for credit payment per replenishment is
Case 1. When N ≤ M and M ≤ T ≤ T + N
The interest charged for credit payment

=
τcDIk

T

{
ρ[
∫ T+N

M
(T + N − t)dt]+(1−ρ)[

∫ T

M
(T − t)dt

}

=
τcDIk

2T

{
ρ(T + N −M)2+(1−ρ

)
(T −M)2

}
Case 2. When N ≤ M and T ≤ M ≤ T + N
The interest charged for credit payment

=
τcDIk

T

[
ρ
∫ T+N

M
(T + N − t)dt

]
=

τcDIk
2T

[
ρ(T + N −M)2

]
Case 3. When N ≤ M and T + N ≤ M
The interest charged for credit payment is zero.
Case 4. When N > M and M ≤ T
The interest charged for credit payment

=
τcDIk

T

{
ρ[
∫ N

M
Tdt +

∫ T+N

N
(T + N − t)dt]+(1−ρ)[

∫ T

M
(T − t)dt

}

=
τcDIk

2T

{
ρ[T2 + 2(N −M)T] + (1−ρ

)
(T −M)2

}
Case 5. When N > M and M ≥ T
The interest charged for credit payment

= τcDIk
T

{
ρ
[∫ N

M Tdt +
∫ T+N

N (T + N − t)dt]}
= τcDIk

2T
{

ρ[T2 + 2T(N −M)
]
}

9. The interest earned for credit payment per replenishment is
Case 1. When N ≤ M and M ≤ T ≤ T + N
The interest earned for credit payment

= τνDIe
T

{
ρ
∫ M

N (t− N)dt+(1−ρ
)∫ M

0 tdt
}
= τνDIe

2T

[
ρ(M− N)2+(1−ρ

)
M2]

Case 2. When N ≤ M and T ≤ M ≤ T + N
The interest earned for credit payment

=
τνDIe

T

{
ρ
∫ M

N
(t− N)dt + (1− ρ)[

∫ T

0
tdt +

∫ M

T
Tdt
]
}
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=
τνDIe

2T

{
ρ(M− N)2 + (1− ρ)

[
T2+2T(M− T)]}

Case 3. When N ≤ M and T + N ≤ M
The interest earned for credit payment

=
τνDIe

T

{
ρ[
∫ T+N

N
(t− N)dt +

∫ M

T+N
Tdt] + (1− ρ)[

∫ T

0
tdt +

∫ M

T
Tdt]

}

=
τνDIe

2T

{
ρ[T2 + 2T(M− T − N)] + (1− ρ) [T2 + 2T(M− T)]

}
Case 4. When N > M and M ≤ T
= τνDIe

T [(1− ρ)
∫ M

0 tdt] = τνDIe
2T [(1− ρ)M2]

Case 5. When N > M and N ≥ T

= τνDIe
T

{
(1− ρ)[

∫ T
0 tdt +

∫ M
T Tdt]

}
= τνDIe

T
{
(1− ρ)[T2 + 2T(M− T)]

}
Finally, the total annual relevant cost TC(T) is obtained as follows:
TC(T) = ordering cost + stock holding cost (excluding interest charges) + procurement

cost + screening cost + deterioration cost + interest charged – interest earned.
Furthermore, we obtain the following cases:
Case I. Suppose that N ≤ M
Case (I-1). Suppose that td < M− N < M

TC(T) =


TC1(T) if 0 < T < td
TC2(T) if td ≤ T < M− N
TC3(T) if M− N ≤ T < M
TC4(T) if M ≤ T ≤ R∗

(12)

where

TC1(T) = o
T + hD

(1−p) [
(1−p)T

2 + pDT
x(1−p) ] +

(c+s)D
1−p + cIk DT

T [α(N + L) + β N]

+ cIk DT2

2T (α + β)− τνDIe
2T

{
ρ[T2 + 2T(M− T − N)] + (1− ρ)[T2 + 2T(M− T)]

} (13)

TC2(T) = o
T + h

T

{
D
2 t2

d + D(1 + m− td) · td · >ln( 1+m−td
1+m−T ) +

pD2

x(1−p)2 [td + (1 + m− td)

× ln( 1+m−td
1+m−T )]

2 + D
2 (1 + m− td)

2 · ln( 1+m−td
1+m−T ) +

D
4 (1 + m− T)2 − D

4 (1 + m− td)
2
}

+ (c+s)D
(1−p)T [td + (1 + m− td) · ln( 1+m−td

1+m−T )] +
cD
T [td + (1 + m− td) · ln( 1+m−td

1+m−T )− T]

+ cIk DT
T [α(N + L) + βN] + cIk DT2

2T (α + β)− τνDIe
2T

{
ρ[T2 + 2T(M− T − N)]

+(1− ρ)[T2 + 2T(M− T)]
}

(14)

TC3(T) = o
T + h

T

{
D
2 t2

d + D(1 + m− td) · td · ln( 1+m−td
1+m−T ) +

pD2

x(1−p)2 [td + (1 + m− td)

× ln( 1+m−td
1+m−T )]

2 + D
2 (1 + m− td)

2 · ln( 1+m−td
1+m−T ) +

D
4 (1 + m− T)2 − D

4 (1 + m− td)
2
}

+ (c+s)D
(1−p)T [td + (1 + m− td) · ln( 1+m−td

1+m−T )] +
cD
T [td + (1 + m− td) · ln( 1+m−td

1+m−T )− T]

+ cIk DT
T [α(N + L) + β N] + cIk DT2

2T (α + β) + τcDIk
2T [ρ(T + N −M)2

]
− τνDIe

2T

{
ρ(M− N)2 + (1− ρ)[T2 + 2T(M− T)]

}
(15)

TC4(T) = o
T + h

T

{
D
2 t2

d + D(1 + m− td) · td · ln( 1+m−td
1+m−T ) +

pD2

x(1−p)2 [td + (1 + m− td)

× ln( 1+m−td
1+m−T )]

2 + D
2 (1 + m− td)

2 · ln( 1+m−td
1+m−T ) +

D
4 (1 + m− T)2 − D

4 (1 + m− td)
2
}

+ (c+s)D
(1−p)T [td + (1 + m− td) · ln( 1+m−td

1+m−T )] +
cD
T [td + (1 + m− td) · ln( 1+m−td

1+m−T )− T]

+ cIk DT
T [α(N + L) + βN] + cIk DT2

2T (α + β) + τcDIk
2T [ρ(T + N −M)2

+(1−ρ)(T −M)2]− τνDIe
2T [ρ(M− N)2 + (1− ρ)M2]

(16)

Since TC1(td) = TC2(td), TC2(M − N) = TC3(M − N) and TC3(M) = TC4(M),
TC(T) is continuous and well-defined on T > 0.
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Case (I-2). Suppose that M− N < td < M

TC(T) =


TC1(T) if 0 < T < M− N
TC5(T) if M− N ≤ T < td
TC3(T) if td ≤ T < M
TC4(T) if M ≤ T ≤ R∗

(17)

where

TC5(T) = o
T + hD

(1−p) [
(1−p)T

2 + pDT
x(1−p) ] +

(c+s)D
1−p + cIk DT

T [α(N + L) + βN]

+ cIk DT2

2T (α + β) + τcDIk
2T [ρ(T + N −M)2

]
− τνDIe

2T

{
ρ(M− N)2

+(1− ρ)[T2 + 2T(M− T)]
} (18)

Since TC1(M − N) = TC5(M − N), TC5(td) = TC3(td) and TC3(M) = TC4(M),
TC(T) is continuous and well-defined on T > 0.

Case (I-3). Suppose that M− N < M < td

TC(T) =


TC1(T) if 0 < T < M− N
TC5(T) if M− N ≤ T < M
TC6(T) if M ≤ T < td
TC4(T) if td ≤ T ≤ R∗

(19)

where

TC6(T) = o
T + hD

(1−p) [
(1−p)T

2 + pDT
x(1−p)

]
+ (c+s)D

1−p + cIk DT
T [α(N + L) + βN]

+ cIk DT2

2T (α + β) + τcDIk
2T [ρ(T + N −M)2+(1 − ρ)(T −M

)2
]

− τνDIe
2T [ρ(M− N)2 + (1− ρ)M2]

(20)

Since TC1(M − N) = TC5(M − N), TC5(M) = TC6(M) and TC6(td) = TC4(td),
TC(T) is continuous and well-defined on T > 0.

Case II. Suppose that N > M
Case (II-1). Suppose that td < M

TC(T) =


TC7(T) if 0 < T < td
TC8(T) if td ≤ T < M
TC9(T) if M ≤ T ≤ R∗

(21)

where

TC7(T) = o
T + hD

(1−p) [
(1−p)T

2 + pDT
x(1−p)

]
+ (c+s)D

1−p + cIk DT
T [α(N + L) + βN]

+ cIk DT2

2T (α + β) + τcDIk
2T

{
ρ[T2 + 2T(N −M)

]
}

− τνDIe
2T

{
(1− ρ)[T2 + 2T(M− T)]

} (22)

TC8(T) = o
T + h

T

{
D
2 t2

d + D(1 + m− td) · td · ln( 1+m−td
1+m−T ) +

pD2

x(1−p)2 [td + (1 + m− td)

× ln( 1+m−td
1+m−T )]

2 + D
2 (1 + m− td)

2 · ln( 1+m−td
1+m−T ) +

D
4 (1 + m− T)2 − D

4 (1 + m− td)
2
}

+ (c+s)D
(1−p)T [td + (1 + m− td) · ln( 1+m−td

1+m−T )] +
cD
T [td + (1 + m− td) · ln( 1+m−td

1+m−T )− T]

+ cIk DT
T [α(N + L) + βN] + cIk DT2

2T (α + β) + τcDIk
2T

{
ρ[T2 + 2T(N −M)]

}
− τνDIe

2T
{
(1− ρ)[T2 + 2T(M− T)]

}
(23)
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TC9(T) = o
T + h

T

{
D
2 t2

d + D(1 + m− td) · td · ln( 1+m−td
1+m−T ) +

pD2

x(1−p)2 [td + (1 + m− td)

× ln( 1+m−td
1+m−T )]

2 + D
2 (1 + m− td)

2 · ln( 1+m−td
1+m−T ) +

D
4 (1 + m− T)2 − D

4 (1 + m− td)
2
}

+ (c+s)D
(1−p)T [td + (1 + m− td) · ln( 1+m−td

1+m−T )] +
cD
T [td + (1 + m− td) · ln( 1+m−td

1+m−T )− T]

+ cIk DT
T [α(N + L) + β N] + cIk DT2

2T (α + β) + τcDIk
2T

{
ρ[T2 + 2T(N −M)]

+(1−ρ ) (T −M)2
}
− τνDIe

2T (1− ρ)M2

(24)

Since TC7(td) = TC8(td) and TC8(M) = TC9(M), TC(T) are continuous and well-
defined on T > 0.

Case (II-2). Suppose that td ≥ M

TC(T) =


TC7(T) if 0 < T < M
TC10(T) if M ≤ T < td
TC9(T) if td ≤ T ≤ R∗

(25)

where

TC10(T) = o
T + hD

(1−p) [
(1−p)T

2 + pDT
x(1−p) ] +

(c+s)D
1−p + cIk DT

T [α(N + L) + βN]

+ cIk DT2

2T (α + β) + τcDIk
2T

{
ρ[T2 + 2T(N −M)] + (1−ρ ) (T −M)2

}
− τνDIe

2T (1− ρ)M2

(26)

Since TC7(M) = TC10(M) and TC10(td) = TC9(td), TC(T) is continuous and well-
defined on T > 0.

3. The Convexity and Monotonicity Properties of TCi(T)
(i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

In this section, we continue the derivations described in above section and adopt
Equations (13)–(16), (18), (20), (22)–(24) and (26) to find the first-order and the second-order
derivatives of the annual total relevant costs TCi(T) with respect to T in order to obtain
the convexity properties as follows:

TC′1(T) =
1

T2

{
−o +

hD
2

[1 +
2pD

x(1− p)2 ]T
2 +

cIkD
2

(α + β)T2 +
τνDIe

2
T2

}
(27)

TC′′1(T) =
2o
T3 > 0 (28)

TC′2(T) = 1
T2

{
−o + h · G(T) + [ (2−p)c+s

1−p ] · [D(1 + m− td) · T
1+m−T − Dtd

−D(1 + m− td) · ln( 1+m−td
1+m−T )] +

cIk D
2 (α + β)T2 + τνDIe

2 T2
} (29)

TC′′2(T) = 1
T3

{
2o + h · H(T) + [ (2−p)c+s

1−p ] · [D(1 + m− td) ·
(1+m)T

(1+m−T)2

−3D(1 + m− td)
T

1+m−T + 2Dtd + 2D(1 + m− td) · ln( 1+m−td
1+m−T )]

} (30)

TC′3(T) = 1
T2

{
−o + h · G(T) + [ (2−p)c+s

1−p ] · [D(1 + m− td) · T
1+m−T − Dtd

−D(1 + m− td) · ln( 1+m−td
1+m−T )] +

cIk D
2 (α + β)T2 + τcDIk

2

{
ρ [T2 − (N −M)2]

}
+ τvDIe

2 [ρ(M− N)2 + (1− ρ)T2]
} (31)

TC
′′

3(T) = 1
T3

{
2o + h · H(T) + [ (2−p)c+s

1−p ] · [D(1 + m− td) ·
(1+m)T

(1+m−T)2

−3D(1 + m− td)
T

1+m−T + 2Dtd + 2D(1 + m− td) · ln( 1+m−td
1+m−T )]

+τcDIkρ (N −M)2 − τvDIeρ(M− N)2
} (32)
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TC′4(T) = 1
T2

{
−o + h · G(T) + [ (2−p)c+s

1−p ] · [D(1 + m− td) · T
1+m−T − Dtd

−D(1 + m− td) · ln( 1+m−td
1+m−T )] +

cIk D
2 (α + β)T2 + τcDIk

2

{
ρ [T2 − (N −M)2]

+(1− ρ)(T2 −M2)
}
+ τvDIe

2 [ρ(M− N)2 + (1− ρ)M2]
} (33)

TC′′ 4(T) = 1
T3

{
2o + h · H(T) + [ (2−p)c+s

1−p ] · [D(1 + m− td) ·
(1+m)T

(1+m−T)2

−3D(1 + m− td)
T

1+m−T + 2Dtd + 2D(1 + m− td) · ln( 1+m−td
1+m−T )]

+τcDIk[ρ (N −M)2 + (1− ρ)M2]− τvDIe[ρ(M− N)2 + (1− ρ)M2]
} (34)

TC′5(T) = 1
T2

{
−o + hD

2 [1 + 2pD
x(1−p)2 ]T2 + cIk D

2 (α + β)T2 + τcDIk
2

{
ρ [T2 − (N −M)2]

}
+ τvDIe

2 [ρ(M− N)2 + (1− ρ)T2]
} (35)

TC′′ 5(T) =
1

T3

{
2o + τcDIkρ (N −M)2 − τvDIeρ(M− N)2

}
(36)

TC′6(T) = 1
T2

{
−o + hD

2 [1 + 2pD
x(1−p)2 ]T2 + cIk D

2 (α + β)T2 + τcDIk
2

{
ρ [T2 − (N −M)2]

+(1− ρ)(T2 −M2)
}
+ τvDIe

2 [ρ(M− N)2 + (1− ρ)M2]
} (37)

TC′′ 6(T) = 1
T3

{
2o + τcDIk[ρ (N −M)2 + (1− ρ)M2]− τvDIe[ρ(M− N)2 + (1− ρ)M2]

}
(38)

TC′7(T) = 1
T2

{
−o + hD

2 [1 + 2pD
x(1−p)2 ]T2 + cIk D

2 (α + β)T2 + τcDIk
2 ρT2

+ τvDIe
2 (1− ρ)T2

} (39)

TC′′ 7(T) =
2o
T3 > 0 (40)

TC′8(T) = 1
T2

{
−o + h · G(T) + [ (2−p)c+s

1−p ][D(1 + m− td)
T

1+m−T

−Dtd − D(1 + m− td) · ln( 1+m−td
1+m−T )] +

cIk D
2 (α + β)T2 + τcDIk

2 ρT2

+ τvDIe
2 (1− ρ)T2

} (41)

TC′′ 8(T) = 1
T3

{
2o + h · H(T) + [ (2−p)c+s

1−p ][D(1 + m− td)
(1+m)T

(1+m−T)2

−3D(1 + m− td)
T

1+m−T + 2Dtd + 2D(1 + m− td) · ln( 1+m−td
1+m−T )]

} (42)

TC′9(T) = 1
T2

{
−o + h · G(T) + [ (2−p)c+s

1−p ][D(1 + m− td)
T

1+m−T

−Dtd − D(1 + m− td) · ln( 1+m−td
1+m−T )] +

cIk D
2 (α + β)T2 + τcDIk

2 [T2 − (1− ρ)M2]

+ τvDIe
2 (1− ρ)M2

} (43)

TC′′ 9(T) = 1
T3

{
2o + h · H(T) + [ (2−p)c+s

1−p ][D(1 + m− td)
(1+m)T

(1+m−T)2

−3D(1 + m− td)
T

1+m−T + 2Dtd + 2D(1 + m− td) · ln( 1+m−td
1+m−T )]

+τcDIk(1− ρ)M2 − τvDIe(1− ρ)M2} (44)

TC′10(T) = 1
T2

{
−o + hD

2 [1 + 2pD
x(1−p)2 ]T2 + cIk D

2 (α + β)T2 + τcDIk
2 [T2 − (1− ρ)M2]

+ τvDIe
2 (1− ρ)M2

} (45)

and
TC′′ 10(T) =

1
T3

{
2o + τcDIk(1− ρ)M2 − τvDIe(1− ρ)M2

}
(46)

where

G(T) = D(1 + m− td) · td
T

1+m−T + 2pD2

x(1−p)2 (1 + m− td)[td + (1 + m− td)

× ln( 1+m−td
1+m−T )] ·

T
1+m−T + D

2 (1 + m− td)
2 · T

1+m−T −
D
2 (1 + m− T)T

−D
2 t2

d − D(1 + m− td) · td · ln( 1+m−td
1+m−T )−

pD2

x(1−p)2 [td + (1 + m− td) · ln( 1+m−td
1+m−T )]

2

−D
2 (1 + m− td)

2 · ln( 1+m−td
1+m−T )−

D
4 (1 + m− T)2 + D

4 (1 + m− td)
2

(47)
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and

H(T) = D(1 + m− td)td
T2

(1+m−T)2 +
D
2 (1 + m− td)

2 T2

(1+m−T)2 +
D
2 T2

−2D(1 + m− td) · td
T

1+m−T − D(1 + m− td)
2 T

1+m−T + D(1 + m− T)T
+Dt2

d + 2D(1 + m− td)td · ln( 1+m−td
1+m−T ) + D(1 + m− td)

2 ln( 1+m−td
1+m−T )

+D
2 (1 + m− T)2 − D

2 (1 + m− td)
2 + 2pD2

x(1−p)2 (1 + m− td)
2 T2

(1+m−T)2

+ 2pD2

x(1−p)2 (1 + m− td)[td + (1 + m− td) · ln( 1+m−td
1+m−T )]

T2

(1+m−T)2

− 4pD2

x(1−p)2 (1 + m− td)[td + (1 + m− td) · ln( 1+m−td
1+m−T )]

T
1+m−T

+ 2pD2

x(1−p)2 [td + (1 + m− td) · ln( 1+m−td
1+m−T )]

2

(48)

Obviously, it is shown that TC1(T) and TC7(T) are convex functions on (0, ∞), respec-
tively.

Now, we let
W1= 2o− τvIeDρ(M− N)2 (49)

W2= 2o− τvIeD[ρ(M− N)2 + (1− ρ)M2] (50)

and
W3= 2o− τvIeD(1− ρ)M2 (51)

Then, we have the following convexity results.

Lemma 1. Each of the following assertions holds true:

(A) TCr(T) (r = 2, 8) is convex on [td, ∞).
(B) If W2 ≥ 0 , then TCl(T) (l = 3, 4, 5, 6, 9, 10) is convex on [td, ∞).
(C) If W1 < 0, then TCi(T) (i = 3, 5) is increasing on [td, ∞).
(D) If W2 < 0, then TCj(T) ( j = 4, 6) is increasing on [td, ∞).
(E) If W3 < 0, then TCk(T) ( k = 9, 10) is increasing on [td, ∞).

Remark 1. In our proof of Lemma 1, we need the assertions of Lemma 2.

Lemma 2. Each of the following assertions holds true:

(A) G(T) > 0 if T ≥ td

(B) D(1 + m− td)
T

1+m−T − Dtd − D(1 + m− td) · ln( 1+m−td
1+m−T ) > 0 if T ≥ td

(C) H(T) > 0 if T ≥ td

(D)
D(1 + m− td)

(1+m)T
(1+m−T)2 − 3D(1 + m− td)

T
1+m−T

+2Dtd + 2D(1 + m− td) · ln( 1+m−td
1+m−T ) > 0

if T ≥ td

Remark 2. The proof of Lemma 2 is given in the Appendix A.

Proof of Lemma 1.

(A) Lemma 2(C) and 2(D) reveal that TC′′ r(T) > 0 (r = 2, 8) for T ≥ td.
Furthermore, TCr(T) (r = 2, 8) is convex on [td, ∞) .

(B) If W2 > 0, then W1 > 0 and W3 > 0. Moreover, Equations (32), (34), (36), (38), (44)
and (46), together with Lemma 2(C) and 2(D), yield

TC′′ i(T) >
1

T3

{
2o− τvDIeρ(M− N)2

}
> 0, i = 3 and 5
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TC′′ j(T) >
1

T3

{
2o− τvDIe[ρ(M− N) + (1− ρ)M2]

}
> 0 , j = 4 and 6

and
TC′′ k(T) >

1
T3

{
2o− τvDIe[(1− ρ)M2]

}
> 0 , k = 9 and 10 (52)

The above results imply that TCl(T) (l = 3, 4, 5, 6, 9, 10) is convex on [td, ∞).
(C) When W1 < 0, from Equations (31) and (33) and Lemma 2(A) and 2(B), we have the

following results:
TC′ i(T) > 1

2T2

{
−2o + τvDIeρ(M− N)2

}
> 0 , i = 3 and 5

Furthermore, TCi(T) (i = 3, 5) is increasing on [Td, ∞) .
(D) When W2 < 0, from Equations (35) and (37) and Lemma 2(A) and 2(B), we have the

following results:

TC′ j(T) >
1

2T2

{
−2o + τvDIe[ρ(M− N)2 + (1− ρ)M2

}
> 0 , j = 4 and 6

Furthermore, TCj(T) ( j = 4, 6) is increasing on [td, ∞).
(E) When W3 < 0, from Equations (43) and (45) and Lemma 2(A) and 2(B), we have the

following results:

TC′k(T) >
1

2T2

{
−2o + τvDIe(1− ρ)M2

}
> 0 , k = 9 and 10

Furthermore, TCk(T) (k = 9, 10) is increasing on [td, ∞). This completes the proof of
Lemma 1. �

4. The Main Theorems for Optimal Replenishment Cycle Time T∗ of TC(T)

In this section, we apply the convexity and monotonicity properties in order to develop
efficient decision rules for the optimal replenishment cycle time T∗ of TC(T).

4.1. Decision Rule of the Optimal Replenishment Cycle Time T∗ When N ≤ M
4.1.1. Decision Rule of the Optimal Replenishment Cycle Time T∗ When td < M− N < M

From Equation (12), we have

TC(T) =


TC1(T) if 0 < T < td
TC2(T) if td ≤ T < M− N
TC3(T) if M− N ≤ T < M
TC4(T) if M ≤ T < R∗

All TCi(T) (i = 1, 2, 3, 4) and TC(T) are defined on T > 0. From Equations (27), (29),
(31) and (33), we have

TC′1(td) = TC′2(td) =
∆1

t2
d

TC′2(M− N) = TC′3(M− N) =
∆2

(M− N)2

TC′3(M) = TC′4(M) =
∆3

M2

and
TC′4(R∗) =

∆∗

R∗2

where
∆1 = −o +

hD
2

[1 +
2pD

x(1− p)2 ]t
2
d +

cIkD
2

(α + β)t2
d +

τνDIe

2
t2
d (53)
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∆2 = −o + h · G(M− N) + [ (2−p)c+s
1−p ] · [D(1 + m− td) ·

(M−N)
1+m−(M−N)

− Dtd

−D(1 + m− td) · ln( 1+m−td
1+m−(M−N)

)] + cIk D
2 (α + β)(M− N)2 + τνDIe

2 (M− N)2 (54)

∆3 = −o + h · G(M) + [ (2−p)c+s
1−p ] · [D(1 + m− td) · M

1+m−M − Dtd

−D(1 + m− td) · ln( 1+m−td
1+m−M )] + cIk D

2 (α + β)M2 + τcDIk
2

{
ρ [M2 − (N −M)2]

}
+ τvDIe

2 [ρ(M− N)2 + (1− ρ)M2]

(55)

and
∆∗ = −o + h · G(R∗) + [ (2−p)c+s

1−p ] · [D(1 + m− td) · R∗
1+m−R∗ − Dtd

−D(1 + m− td) · ln( 1+m−td
1+m−R∗ )] +

cIk D
2 (α + β)R∗2 + τcDIk

2

{
ρ [R∗2 − (N −M)2]

+(1− ρ)(R∗2 −M2)
}
+ τvDIe

2 [ρ(M− N)2 + (1− ρ)M2]

(56)

From the above results, we have ∆1 < ∆2. In addition, if W1 ≥ 0, then ∆1 < ∆2 <
∆3 < ∆∗. Otherwise, if W1 < 0, we obtain 0 < ∆2 < ∆3 < ∆∗. From the above discussions,
the following results are achieved.

Theorem 1. Suppose that td < M− N < M. Then, each of the following results holds true:

(I) If W1 ≥ 0, then

(A) If ∆1 < 0, ∆2 < 0, ∆3 < 0 and ∆∗ < 0, then TC(T∗) = TC4(R∗).
(B) If ∆1 < 0, ∆2 < 0, ∆3 < 0 and ∆∗ ≥ 0, then TC(T∗) = TC4

(
T∗4
)
.

(C) If ∆1 < 0, ∆2 < 0, ∆3 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC3(T∗3 ).
(D) If ∆1 < 0, ∆2 ≥ 0, ∆3 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC2(T∗2 ).
(E) If ∆1 ≥ 0, ∆2 ≥ 0, ∆3 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC1

(
T∗1
)
.

(II) If W1 < 0, then

(A) If ∆1 < 0, ∆2 ≥ 0, ∆3 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC2(T∗2 ).
(B) If ∆1 ≥ 0, ∆2 ≥ 0, ∆3 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC1

(
T∗1
)
.

Proof. The proof of Theorem 1 follows immediately from the above discussions. �

4.1.2. Decision Rule of the Optimal Replenishment Cycle Time T∗ When M− N < td < M

From Equation (17), we have

TC(T) =


TC1(T) i f 0 < T < M− N
TC5(T) i f M− N ≤ T < td
TC3(T) i f td ≤ T < M
TC4(T) i f M ≤ T ≤ R∗

Herein, TC5(T) is defined on T > 0 as well. Equations (27), (31) and (35) imply that

TC′1(M− N) = TC′5(M− N) =
∆4

(M− N)2

and
TC′5(td) = TC′3(td) =

∆5

t2
d

where
∆4 = −o + hD

2 [1 + 2pD
x(1−p)2 ](M− N)2 + cIk D

2 (α + β)(M− N)2 + τvDIe
2 (M− N)2 (57)

and

∆5 = −o + hD
2 [1 + 2pD

x(1−p)2 ]t2
d +

cIk D
2 (α + β)t2

d +
τcDIk

2

{
ρ [t2

d − (N −M)2]
}

+ τvDIe
2 [ρ(M− N)2 + (1− ρ)t2

d]
} (58)
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From the above results, we have these three situations: one is ∆4 < ∆5 < ∆3 < ∆∗ if
W2 ≥ 0, another is ∆4 < ∆5 < ∆3 < ∆∗ and 0 < ∆3 < ∆∗ if W2 < 0 and W1 ≥ 0, and the
other is 0 < ∆4 < ∆5 < ∆3 < ∆∗ if W1 < 0. Furthermore, we have the following results.

Theorem 2. Suppose that M− N < td < M Then, each of the following results holds true:

(I) If W2 ≥ 0, then

(A) If ∆4 < 0, ∆5 < 0, ∆3 < 0 and ∆∗ < 0, then TC(T∗) = TC4(R∗).
(B) If ∆4 < 0, ∆5 < 0, ∆3 < 0 and ∆∗ ≥ 0, then TC(T∗) = TC4(T∗4 ).
(C) If ∆4 < 0, ∆5 < 0, ∆3 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC3(T∗3 ).
(D) If ∆4 < 0, ∆5 ≥ 0, ∆3 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC5(T∗5 ).
(E) If ∆4 ≥ 0, ∆5 ≥ 0, ∆3 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC1(T∗1 ).

(II) If W2 < 0 and W1 ≥ 0, then

(A) If ∆4 < 0, ∆5 < 0 and ∆3 ≥ 0, then TC(T∗) = TC3(T∗3 ).
(B) If ∆4 < 0, ∆5 ≥ 0 and ∆3 ≥ 0, then TC(T∗) = TC5(T∗5 ).
(C) If ∆4 ≥ 0, ∆5 ≥ 0 and ∆3 ≥ 0, then TC(T∗) = TC1(T∗1 ).

(III) If W1 < 0, then

(A) If ∆4 ≥ 0, ∆5 ≥ 0 and ∆3 ≥ 0, then TC(T∗) = TC1(T∗1 ).

Proof. The proof of Theorem 2 follows immediately from the above discussions. �

4.1.3. The Decision Rule of the Optimal Replenishment Cycle Time T∗ When
M− N < M < td

TC(T) =


TC1(T) if 0 < T < M− N
TC5(T) if M− N ≤ T < M
TC6(T) if M ≤ T < td
TC4(T) if td ≤ T ≤ R∗

Likewise, TC6(T) is defined on T > 0, Equations (33), (35) and (37) imply that

TC′5(M) = TC′6(M) =
∆6

M2

and
TC′6(td) = TC′4(td) =

∆7

t2
d

where
∆6 = −o + hD

2 [1 + 2pD
x(1−p)2 ]M2 + cIk D

2 (α + β)M2 + τcDIk
2

{
ρ [M2 − (N −M)2]

}
+ τvDIe

2 [ρ(M− N)2 + (1− ρ)M2]
(59)

and

∆7 = −o + hD
2 [1 + 2pD

x(1−p)2 ]t2
d +

cIk D
2 (α + β)t2

d +
τcDIk

2

{
ρ [t2

d − (N −M)2]

+(1− ρ)(t2
d −M2)

}
+ τvDIe

2 [ρ(M− N)2 + (1− ρ)M2]
(60)

In addition, there are three situations to occur here: one is ∆4 < ∆6 < ∆7 < ∆∗

when W2 ≥ 0, another is ∆4 < ∆6 and 0 < ∆6 < ∆7 < ∆∗ when W2 < 0 and W1 ≥ 0,
and the other is 0 < ∆4 < ∆6 < ∆7 < ∆∗ when W1 < 0. Furthermore, we have the
following results.

Theorem 3. Suppose that M− N < M < td. Then, each of the the following results holds true:

(I) If W2 ≥ 0, then

(A) If ∆4 < 0, ∆6 < 0, ∆7 < 0 and ∆∗ < 0, then TC(T∗) = TC4(R∗).
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(B) If ∆4 < 0, ∆6 < 0, ∆7 < 0 and ∆∗ ≥ 0, then TC(T∗) = TC4(T∗4 ).
(C) If ∆4 < 0, ∆6 < 0, ∆7 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC6(T∗6 ).
(D) If ∆4 < 0, ∆6 ≥ 0, ∆7 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC5(T∗5 ).
(E) If ∆4 ≥ 0, ∆6 ≥ 0, ∆7 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC1(T∗1 ).

(II) If W2 < 0 and W1 ≥ 0, then

(A) If ∆4 < 0, ∆6 ≥ 0, ∆7 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC5(T∗5 ).
(B) If ∆4 ≥ 0, ∆6 ≥ 0, ∆7 ≥ 0 and ∆∗ ≥ 0, then TC(T∗) = TC1(T∗1 ).

(III) If W1 < 0, then ∆4 > 0 and TC(T∗) = TC1(T∗1 ).

Proof. The proof of Theorem 3 follows immediately from the above discussions. �

4.2. The Decision Rule of the Optimal Replenishment Cycle Time T∗ When N > M
4.2.1. The Decision Rule of the Optimal Replenishment Cycle Time T∗ When td < M

From Equation (21), we have

TC(T) =


TC7(T) i f 0 < T < td
TC8(T) i f td ≤ T < M
TC9(T) i f M ≤ T ≤ R∗

All TCv(T) (v = 7, 8, 9) are defined on T > 0. From Equations (39), (41), and (43),
we have

TC′7(td) = TC′8(td) =
∆8

t2
d

TC′8(M) = TC′9(M) =
∆9

M2

and
TC′9(R∗) =

∆∗∗

R∗2

where

∆8 = −o +
hD
2

[1 +
2pD

x(1− p)2 ]t
2
d +

cIkD
2

(α + β)t2
d +

τcDIk
2

ρt2
d +

τvDIe

2
(1− ρ)t2

d (61)

∆9 = −o + h · G(M) + [ (2−p)c+s
1−p ][D(1 + m− td)

M
1+m−M − Dtd

−D(1 + m− td) · ln( 1+m−td
1+m−M )] + cIk D

2 (α + β)M2 + τcDIk
2 ρM2

+ τvDIe
2 (1− ρ)M2

(62)

and
∆∗∗ = −o + h · G(R∗) + [ (2−p)c+s

1−p ][D(1 + m− td)
R∗

1+m−R∗ − Dtd

−D(1 + m− td) · ln( 1+m−td
1+m−R∗ )] +

cIk D
2 (α + β)R∗2 + τcDIk

2 [R∗2 − (1− ρ)M2]

+ τvDIe
2 (1− ρ)M2

} (63)

Additionally, if W3 ≥ 0, then ∆8 < ∆9 < ∆∗∗. Otherwise, if W3 < 0, we have ∆8 < ∆9
and 0 < ∆9 < ∆∗∗. Furthermore, we have the following Theorem.

Theorem 4. Suppose that td < M Then, each of the following results holds true:

(I) If W3 ≥ 0, then

(A) If ∆8 < 0, ∆9 < 0 and ∆∗∗ < 0, then TC(T∗) = TC9(R∗).
(B) If ∆8 < 0, ∆9 < 0 and ∆∗∗ ≥ 0, then TC(T∗) = TC9(T∗9 ).
(C) If ∆8 < 0, ∆9 ≥ 0 and ∆∗∗ ≥ 0, then TC(T∗) = TC8(T∗8 ).
(D) If ∆8 ≥ 0, ∆9 ≥ 0 and ∆∗∗ ≥ 0, then TC(T∗) = TC7(T∗7 ).

(II) If W3 < 0, then

(A) If ∆8 < 0, ∆9 ≥ 0 and ∆∗∗ ≥ 0, then TC(T∗) = TC8(T∗8 ).
(B) If ∆8 ≥ 0, ∆9 ≥ 0 and ∆∗∗ ≥ 0, then TC(T∗) = TC7(T∗7 ).
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Proof. The proof of Theorem 4 follows immediately from the above discussions. �

4.2.2. Decision Rule of the Optimal Replenishment Cycle Time T∗ When td ≥ M

From Equations (25), we have

TC(T) =


TC7(T) if 0 < T < M
TC10(T) if M ≤ T < td
TC9(T) if td ≤ T ≤ R∗

Herein, TC10(T) is defined on T > 0. From Equations (39), (43), and (45), we have

TC′7(M) = TC′10(M) =
∆10

M2

and
TC′10(td) = TC′9(td) =

∆11
t2
d

where

∆10 = −o +
hD
2

[1 +
2pD

x(1− p)2 ]M
2 +

cIkD
2

(α + β)M2 +
τcDIk

2
ρM2 +

τvDIe

2
(1− ρ)M2

}
(64)

and

∆11 = −o + hD
2 [1 + 2pD

x(1−p)2 ]t2
d +

cIk D
2 (α + β)t2

d +
τcDIk

2 [t2
d − (1− ρ)M2]

+ τvDIe
2 (1− ρ)M2

} (65)

Likewise, if W3 ≥ 0, then ∆10 < ∆11 < ∆∗∗. Otherwise, if W3 < 0, we have 0 < ∆10 <
∆11 < ∆∗∗. From above arguments, we have the following theorem.

Theorem 5. Suppose that td ≥ M Then, each of the following results holds true:

(I) If W3 ≥ 0, then

(A) If ∆10 < 0, ∆11 < 0 and ∆∗∗ < 0, then TC(T∗) = TC9(R∗).
(B) If ∆10 < 0, ∆11 < 0 and ∆∗∗ ≥ 0, then TC(T∗) = TC9(T∗9 ).
(C) If ∆10 < 0, ∆11 ≥ 0 and ∆∗∗ ≥ 0, then TC(T∗) = TC10(T∗10).
(D) If ∆10 ≥ 0, ∆11 ≥ 0 and ∆∗∗ ≥ 0, then TC(T∗) = TC7(T∗7 ).

(II) If W3 < 0, then ∆10 ≥ 0 and TC(T∗) = TC7(T∗7 ).

Proof: The proof follows immediately from the above discussions. �

5. Illustrative Numerical Examples

In this section, we will provide numerical examples to illustrate the theoretical results.
We assume that the maximum lifetime of the deteriorating items is 2 years (m = 2).

The computed results are shown in Tables 1–9.
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Table 1. The optimal replenishment policy used Theorem 1(I).

Theorem 1(I) If W1 ≥ 0

td = 0.008, N = 0.01

∆1 ∆2 ∆3 ∆∗ o h M R∗ T∗ TC(T∗)

(A) <0 <0 <0 <0 0.200 1.5 0.02 0.0237 R∗ = 0.0237 1329.5

(B) <0 <0 <0 ≥0 0.150 1.5 0.02 0.0237 T∗4 = 0.0218 1327.4

(C) <0 <0 ≥0 ≥0 0.080 1.5 0.02 0.0237 T∗3 = 0.0166 1323.7

(D) <0 ≥0 ≥0 ≥0 0.010 1.5 0.02 0.0237 T∗2 = 0.0086 1317.9

(E) ≥0 ≥0 ≥0 ≥0 0.005 1.5 0.02 0.0237 T∗1 = 0.0072 1317.2

Table 2. The optimal replenishment policy used Theorem 1(II).

Theorem 1(II) If W1 < 0

o = 0.002, N = 0.01, M = 0.02

∆1 ∆2 ∆3 ∆∗ h D x p Ik td R∗ T∗ TC(T∗)

(A) <0 ≥0 ≥0 ≥0 0.01 95 1000 0.001 0.13 0.002 0.0210 T∗2 = 0.0021 1238.6

(B) ≥0 ≥0 ≥0 ≥0 1.50 100 300 0.010 0.15 0.008 0.0237 T∗1 = 0.0014 1316.1

Table 3. The optimal replenishment policy used Theorem 2(I).

Theorem 2(I) If W2 ≥ 0

td = 0.012, R∗ = 0.1240

∆4 ∆5 ∆3 ∆∗ o h N M T∗ TC(T∗)

(A) <0 <0 <0 <0 6.00 0.01 0.01 0.02 R∗ = 0.1240 1315.4

(B) <0 <0 <0 ≥0 4.00 0.01 0.01 0.02 T∗4 = 0.1190 1299.2

(C) <0 <0 <0 ≥0 0.01 0.01 0.01 0.02 T∗3 = 0.0131 1239.5

(D) <0 ≥0 ≥0 ≥0 0.01 1.50 0.01 0.02 T∗2 = 0.0106 1240.3

(E) ≥0 ≥0 ≥0 ≥0 0.01 2.00 0.01 0.02 T∗1 = 0.0094 1240.6

Table 4. The optimal replenishment policy used Theorem 2(II) and (III).

Theorem 2(II) If W2 < 0 and W1 ≥ 0

∆4 ∆5 ∆3 ∆∗ o h D c v x Ik Ie td

(A) <0 <0 ≥0 ≥0 0.0005 0.0001 94 0.005 3 100 0.14 0.10 0.0125

(B) <0 ≥0 ≥0 ≥0 0.0020 0.0100 95 3.000 4 1000 0.13 0.12 0.0120

(C) ≥0 ≥0 ≥0 ≥0 0.0020 0.1000 95 3.000 4 1000 0.13 0.12 0.0120

Theorem 2(II) If W2 < 0 and W1 ≥ 0

∆4 ∆5 ∆3 ∆∗ N M R∗ T∗ TC(T∗)

(A) <0 <0 ≥0 ≥0 0.012 0.013 0.0133 T∗3 = 0.0125 941.4161

(B) <0 ≥0 ≥0 ≥0 0.010 0.020 0.1240 T∗5 = 0.0104 1238.82

(C) ≥0 ≥0 ≥0 ≥0 0.010 0.020 0.1240 T∗1 = 0.0094 1238.9

Theorem 2(III) If W1 < 0

∆4 ∆5 ∆3 ∆∗ o h D c v x Ik Ie td N

(A) ≥0 ≥0 ≥0 ≥0 0.0002 0.01 95 3 4 100 0.13 0.12 0.012 0.01

Theorem 2(III) If W1 < 0

∆4 ∆5 ∆3 ∆∗ M R∗ T∗ TC(T∗)

(A) ≥0 ≥0 ≥0 ≥0 0.02 0.1240 T∗1 = 0.0033 1238.6
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Table 5. The optimal replenishment policy used Theorem 3(I).

Theorem 3(I) If W2 ≥ 0

∆4 ∆6 ∆7 ∆∗ o h td N M R∗ T∗ TC(T∗)

(A) <0 <0 <0 <0 8 1 0.025 0.01 0.02 0.0827 R∗ = 0.0827 4057.5

(B) <0 <0 <0 ≥0 6 1 0.025 0.01 0.02 0.0827 T∗4 = 0.0795 4033.2

(C) <0 <0 ≥0 ≥0 0.1 1 0.025 0.01 0.02 0.0827 T∗6 = 0.0225 3919.9

(D) <0 ≥0 ≥0 ≥0 0.1 2 0.025 0.01 0.02 0.0827 T∗5 = 0.0168 3922.8

(E) ≥0 ≥0 ≥0 ≥0 0.1 8 0.025 0.01 0.02 0.0827 T∗1 = 0.0089 3933.3

Table 6. The optimal replenishment policy used Theorem 3(II) and (III).

Theorem 3(II) If W2 < 0 and W1 ≥ 0

td = 0.025

∆4 ∆6 ∆7 ∆∗ o h D N M R∗ T∗ TC(T∗)

(A) <0 ≥0 ≥0 ≥0 0.004 0.01 200 0.010 0.020 0.1232 T∗5 = 0.0102 2608.0

(B) ≥0 ≥0 ≥0 ≥0 0.001 0.10 300 0.010 0.020 0.0827 T∗1 = 0.0037 3911.4

Theorem 3(III) If W1<0

(A) ≥0 ≥0 ≥0 ≥0 0.001 0.01 300 0.025 0.003 0.020 0.0827 T∗1 = 0.0042 3910.8

Table 7. The optimal replenishment policy used Theorem 4(I).

Theorem 4(I) If W3 ≥ 0

∆8 ∆9 ∆∗∗ o h D td N M R∗ T∗ TC(T∗)

(A) <0 <0 <0 2.00 1.0 200 0.01 0.03 0.02 0.0497 R∗ = 0.0497 2672.5

(B) <0 <0 ≥0 1.00 0.5 100 0.01 0.03 0.02 0.0986 T∗9 = 0.0570 1334.7

(C) <0 ≥0 ≥0 0.10 1.0 200 0.01 0.03 0.02 0.0497 T∗8 = 0.0151 2618.0

(D) ≥0 ≥0 ≥0 0.01 2.0 100 0.01 0.03 0.02 0.0986 T∗7 = 0.0092 1306.4

Table 8. The optimal replenishment policy used Theorem 4(II).

Theorem 4(II) If W3 < 0

∆8 ∆9 ∆∗∗ o h D td N M R∗ T∗ TC(T∗)

(A) <0 ≥0 ≥0 0.01 0.10 250 0.01 0.04 0.03 0.0398 T∗8 = 0.0103 3262.4

(B) ≥0 ≥0 ≥0 0.01 2.00 250 0.01 0.04 0.03 0.0398 T∗7 = 0.0058 3264.2

Table 9. The optimal replenishment policy used Theorem 5(I) and 5(II).

Theorem 5(I) If W3 ≥ 0

∆10 ∆11 ∆∗∗ o h D td N M R∗ T∗ TC(T∗)

(A) <0 <0 <0 10 1.0 300 0.03 0.04 0.02 0.0991 R∗ = 0.0991 4074.2

(B) <0 <0 ≥0 0.2 1.0 100 0.03 0.04 0.02 0.2878 T∗9 = 0.0362 1312.7

(C) <0 ≥0 ≥0 0.05 1.0 100 0.03 0.04 0.02 0.2878 T∗10 = 0.0279 1308.0

(D) ≥0 ≥0 ≥0 0.01 1.0 100 0.03 0.04 0.02 0.2878 T∗7 = 0.0121 1306.1

Theorem 5(II) If W3 < 0

(A) ≥0 ≥0 ≥0 0.005 1.0 300 0.03 0.04 0.02 0.0991 T∗7 = 0.0049 3915.4

Example 1. h = 1.5, c = 3, ν = 4, D = 100, x = 300, p = 0.01, s = 10, td = 0.008,
N = 0.01 year, M = 0.02 year, L = 0.3, Ik= $0.15/$/year, Ie = $0.12/$/year, τ = 0.3, α = 0.3,
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β = 0.4 and ρ = 0.3, Theorem 1(I) (if W1 ≥ 0) is applied to obtain optimal solution The
computed result is shown in Table 1.

Example 2. o = 0.0002, c = 3, ν = 4, s = 10, N = 0.01 year, M = 0.02 year, L = 0.3,
Ie = $ 0.12/$/year, τ = 0.3, α = 0.3, β = 0.4 and ρ = 0.3, Theorem 1(II) (if W1 < 0) is applied
to obtain optimal solution. The computed result is shown in Table 2.

Example 3. c = 3, ν = 4, D = 95, x = 300, p = 0.01, s = 10, td = 0.012, N = 0.01 year,
M = 0.02 year, L = 0.3, Ik = $0.15/$/year, Ie = $ 0.12/$/year, τ = 0.3, α = 0.3, β = 0.4 and
ρ = 0.3, Theorem 2(I) (if W2 ≥ 0) is applied to obtain optimal solution. The computed result
is shown in Table 3.

Example 4. p = 0.01, s = 10, L = 0.3, τ = 0.3, α = 0.3, β = 0.4 and ρ = 0.3, Theorem 2(II) (if
W2 < 0 and W1 ≥ 0) and Theorem 2(III) (if W1 < 0) are applied to obtain optimal solution.
The computed result is shown in Table 4.

Example 5. c = 3, ν = 4, D = 300, x = 1000, p = 0.001, s = 10, td = 0.025, N = 0.01 year,
M = 0.02 year, L = 0.3, Ik = $0.13/$/year, Ie = $ 0.12/$/year, τ = 0.3, α = 0.3, β = 0.4 and
ρ = 0.3, Theorem 3(I) (if W2 ≥ 0) is applied to obtain optimal solution. The computed result
is shown in Table 5.

Example 6. c = 3, ν = 4, x = 1000, p = 0.001, s = 10, td = 0.025, M = 0.02 year, L = 0.3,
Ik = $0.13/$/year, Ie = $ 0.12/$/year, τ = 0.3, α = 0.3, β = 0.4 and ρ = 0.3, Theorem 3(II) (if
W2 < 0 and W1 ≥ 0) and Theorem 3(III) (if W1 < 0) are applied to obtain optimal solution.
The computed result is shown in Table 6.

Example 7. c = 3, ν = 4, x = 1000, p = 0.001, s = 10, td = 0.01, N = 0.03 year, M = 0.02 year,
L = 0.3, Ik = $0.13/$/year, Ie = $ 0.12/$/year, τ = 0.3, α = 0.3, β = 0.4 and ρ = 0.3, Theorem 4(I)
(if W3 ≥ 0) is applied to obtain optimal solution. The computed result is shown in Table 7.

Example 8. o = 0.01, c = 3, ν = 4, D = 250, x = 1000, p = 0.001, s = 10, td = 0.01,
N = 0.04 year, M = 0.03 year, L = 0.3, Ik = $0.13/$/year, Ie = $ 0.12/$/year, τ = 0.3, α = 0.3,
β = 0.4 and ρ = 0.3, Theorem 4(II) (if W3 < 0) is applied to obtain optimal solution. The
computed result is shown in Table 8.

Example 9. h = 1, c = 3, ν = 4, D = 250, x = 1000, p = 0.001, s = 10, = 0.03, N = 0.04
year, M = 0.02 year, L = 0.3, Ik = $0.13/$/year, Ie = $ 0.12/$/year, τ = 0.3, α = 0.3, β = 0.4
and ρ = 0.3, Theorem 5(I) (if W3 ≥ 0) and Theorem 5(II) (if W3 < 0) are applied to obtain
optimal solution. The computed result is shown in Table 9.

Additionally, in Tables 1–9, R∗ and ∆∗ is defined as Equations (11) and (56), respec-
tively. T∗ is the optimal cycle time so that TC(T∗) is the minimum.

6. Conclusions and Potential Directions for Further Research

In our present investigation, we have established a sustainable inventory system in
which the retailer sells the non-instantaneous deteriorating item that is fully deteriorated
close to its expiry date and has imperfect quality such as those in seasonal products, food
products, electronic components, and others. In order to manage the quality of the items, an
inspection will occur during the state in which there is no deterioration. On the other hand,
the supplier demands the retailer a distinct payment scheme, such as partial prepayment
or cash and trade credit; in turn, the retailer grants customers partial cash and trade credit.

We have observed that some of the optimization methods lack mathematical rigor,
and some of them are based on intuitive arguments, which result in the solution procedures
being questionable from the logical viewpoints of mathematical analysis, such as those
in the earlier works by Chang et al. (2004), Ouyang et al. (2006), and Cheng and Wang
(2009). They ignored explorations of interrelations of functional behaviors of the total cost
function to locate the optimal solution, so those shortcomings will naturally influence
the implementation of their considered inventory model. Essentially, in order to explore
the functional behaviors (such as continuity, monotonicity (increasing and decreasing)
properties, differentiability, etc.) of the object functions (that is, the total cost functions),
one can and should apply the mathematically accurate and reliable solution procedures.
Moreover, if the object function (that is, the total cost functions) are convex, it is easier to
find the optimal solution by using the convexity property. Consequently, the discussion
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of the convexity of the total annual cost function is one of the main research topics of
this article.

The object function (that is, the total cost function) of this article is a piecewise continu-
ous function; it is increasing or decreasing in its own domain and we discuss the continuity
of the object function, especially at its extreme point(s). Furthermore, the main purpose of
this article has been to provide accurate and reliable mathematical analytic solution proce-
dures for different scenarios by studying the convexity of the total annual cost function
and the functional behaviors of the object function. For the proposed models, the convexity
of the object functions has been proved and the closed-form optimal solution has been
derived. Numerical examples, which illustrate the behavior of proposed models and the
applied solution method, have been considered; a retailer, using the model obtained in this
article, can effectively determine the optimal replenishment cycle.

Finally, the limitation of this article is that we have concentrated upon the inventory
system without shortage, which can affect the supply chain from the producer to the
retailer. Furthermore, this model has the potential to be extended to incorporate inflation
and quantity discount effects, different demand forms such as credit-linked promotion-
dependent demand, and other issues under the system with shortages. Additionally, this
article has considered the deterministic situation, so considering the stochastic situation,
such as stochastic demand, can be another future research direction on the subject of
this article.
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Notations
If and where needed, additional notations will be introduced throughout the paper.

o the ordering cost in dollars per order;

h
unit stock holding cost, excluding interest charges
($/unit/year);

y the order quantity in units;
c unit purchasing cost ($/unit);
ν unit selling price ($/unit), (ν > c);
D the market annual demand rate in units;
x the screening rate, (x > D);
p the percentage of defective items in y;
s the screening cost per unit;

m
the expiration date or the maximum lifetime of the
deteriorating item in years, (0 < m < 5);
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θ(t)
the time-varying deterioration rare at time t, where
0 ≤ θ(t) ≤ 1;

td the fresh product time;
ts the screening time per cycle;
M the upstream credit period by the supplier to the retailer;
N the downstream credit period by the retailer to customers;
Ie the interest earned per dollar per year;
Ik the interest charged by the supplier per dollar per year;

L
the length of time in years during which the prepayments
are paid;

α
the fraction of procurement cost to be prepaid before the
time of delivery, 0 ≤ α ≤ 1;

β
the fraction of procurement cost to be paid at the time of
delivery, 0 ≤ β ≤ 1;

τ

the fraction of procurement cost granted a credit period
from the supplier to the retailer, 0 ≤ τ ≤ 1 and
α + β + τ= 1;

ρ
the fraction of the sales revenue offered a credit period by
the retailer to the customers, 0 ≤ ρ ≤ 1;

TC(T) the total annual relevant cost in dollars;
T the length of inventory cycle time in years, T ≤ m;
T∗ the (fixed) optimal cycle time of TC(T);

I1(t)
the inventory level at time t ∈ [0, ts] in which the product
has no deterioration;

I2(t)
the inventory level at time t ∈ [ts, td] in which the product
has no deterioration;

I3(t)
the inventory level at time t ∈ [td, T] in which the product
has deterioration;

Assumptions

1. All deteriorating items continuously deteriorate with time and cannot be sold when time
exceeds the expiration date m. To make the problem tractable, we assume the same as in
Wang et al. [65] and Chen et al. [16], that the deterioration rate is θ(t) = 1

1+m−t , 0 ≤ t ≤ T ≤ m.
2. There is no replacement or repair of deteriorated items during the replenishment cycle time

(0, T].
3. The demand rate is known and constant.
4. Shortages are not allowed.
5. The replenishment rate is infinite.
6. The time horizon is infinite.
7. There exists an inspection process that is 100% effective.
8. The screening rate is faster than the demand rate.
9. The supplier imposes a prepayment policy to the retailer, in which the retailer should prepay

a fraction of procurement cost (α percent) at the moment they place an order to the supplier
(at time L), they pay another β percentage of procurement cost at time 0 upon the receipt of
all items, and receive an upstream credit period of M years on the remaining τ portion of
procurement cost.

10. During the selling period, the retailer offers the partial trade credit to his customers, in which
their customers must immediately make a partial payment (at the rate 1− ρ) to the retailer
in cash at the time of purchasing items and then receive credit period N on the outstand-
ing amount.

11. If M ≥ N, then the retailer deposits the sales revenue into an interest bearing account. If
M ≥ T + N (i.e., the permissible delay period is longer than the time at which the retailer
receives the last payment from its customers), then the retailer receives all revenue and pays off
the entire purchase cost at the end of the permissible delay M. Otherwise, (if M ≤ T + N), the
retailer pays the supplier the sum of all units sold by M− N and the collateral deposit received
from N to M, keeps the profit for the use of the other activities, and starts paying for the interest
charges on the items sold after M− N.
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12. If N ≥ M, then the retailer finances and pays its supplier the entire amount of the delayed
payment (1− ρ)cDT at the end of the trade credit M, and then pays down the loan after time
N at which the retailer starts to receive sales revenue from its customers. For the collateral
deposit the retailer deposits the sales revenue into an interest bearing account until the end
of the permissible delay M. If T ≥ M, then the retailer pays the supplier all units sold by M,
keeps the profit for the use of the other activities, and starts paying for the interest charges on
the items sold after M.

Appendix A

Proof of Lemma 2. In proving Lemma 2, we consider the assertions of Lemma 2 item-wise.

(A) Taking the first-order derivative of G(T) with respect to T, we obtain

G′(T) = D(1+m−td)tdT
(1+m−T)2 + 2pD2

x(1−p)2 {[td + (1 + m− td)·

ln( 1+m−td
1+m−T )] ·

(1+m−td)T
(1+m−T)2 + (1+m−td)

2T
(1+m−T)2 }

+D
2 (1 + m− td)

2 · T
(1+m−T)2 +

DT
2

> 0

and

G(td) =
pD2

x(1− p)2 > 0

Furthermore, we see that G(T) > 0 if T ≥ td.
(B) We define g(T) as follows:

g(T) = D(1 + m− td)
T

1 + m− T
− Dtd − D(1 + m− td) · ln(

1 + m− td
1 + m− T

)

Taking the first-order derivative of g(T) with respect to T, we derive

g′(T) =
D(1 + m− td)T

(1 + m− T)2 > 0

and
g(td) = 0

Furthermore, we have

D(1 + m− td)
T

1 + m− T
− Dtd − D(1 + m− td) ln(

1 + m− td
1 + m− T

) > 0 if T ≥ td

(C) Taking the first-order derivative of H(T) with respect to T, we obtain

H′(T) = 4pD2

x(1−p)2 (1 + m− td)[td + (1 + m− td) · ln( 1+m−td
1+m−T )]

T2

(1+m−T)3

+ 6pD2

x(1−p)2 (1 + m− td)
2 T2

(1+m−T)3

and

H(td) =
Dt3

d
(1 + m− td)

+
2pD2

x(1− p)2 ·
t3
d

(1 + m− td)
> 0

Furthermore, we have H(T) > 0 if T ≥ td.
(D) We define h(T) by

h(T) = D(1 + m− td)
(1+m)T

(1+m−T)2 − 3D(1 + m− td)
T

1+m−T + 2Dtd

+2D(1 + m− td) · ln( 1+m−td
1+m−T )
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Taking the first-order derivative of h(T) with respect to T, we find that

h′(T) = D(1 + m− td)
2T2

(1 + m− T)3 > 0

and

h(td) =
Dt2

d
(1 + m− td)

> 0

So, we finally have

D(1 + m− td)
(1+m)T

(1+m−T)2 − 3D(1 + m− td)
T

1+m−T

+2Dtd + 2D(1 + m− td) · ln( 1+m−td
1+m−T ) > 0

(A1)

if T ≥ td.
We thus have completed the proof of Lemma 2. �
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