Optimal Scheduling of Microgrid Considering the Interruptible Load Shifting Based on Improved Biogeography-Based Optimization Algorithm
Abstract
:1. Introduction
2. Multi-Objective Optimization Operation of Microgrid under Grid-Connected Mode
2.1. System Power Generation Models
2.1.1. Model of WT Generator
2.1.2. Model of PV Generator
2.1.3. Model of MT Fuel Cost
2.1.4. Model of Fuel Cell Cost
2.1.5. Model of Storage Battery
2.2. The Key Technologies for Optimal Dispatch of Microgrid
2.2.1. The Objective Function
- Cost of the operating
- Cost of pollution
2.2.2. Constraints
- The total power constraint;
- The output power constraint of micro energy generator unit;
- The transmission power constraint;
- The climbing rate limit;
- Energy storage battery constrains.
2.2.3. The Objective Function Added the Interruptible Load Shifting
Algorithm 1 The Calculation of the Total Shifting Time. |
|
3. Biogeography-Based Optimization Algorithm
3.1. The Basic Biogeography-Based Optimization Algorithm
- Initialization
- Migration
- Mutation
3.2. Improved BBO Algorithm
- Adaptive determination mechanism of migration rate
- Dynamic migration mechanism
3.3. The Algorithm Flow
4. Simulation Results and Discussion
4.1. Calculation Parameters and Power Data Settings
4.2. Simulation Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, J.J.; Qi, B.X.; Rong, Z.K.; Peng, K.; Zhao, Y.L.; Zhang, X.H. Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement. Energy 2020, 217, 119387. [Google Scholar] [CrossRef]
- Kiptooa, M.K.; Lotfy, M.E.; Adewuyi, O.B.; Conteh, A.; Howlader, A.M.; Senjyu, T. Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies. Energy Convers. Manag. 2020, 215, 112917. [Google Scholar] [CrossRef]
- Yong, L.; Zou, Y.; Tan, Y.; Cao, Y.; Liu, X.; Shahidepour, M.; Tian, S.; Bu, F. Optimal Stochastic Operation of Integrated Low-Carbon Electric Power, Natural Gas, and Heat Delivery System. IEEE Trans. Sustain. Energy 2018, 9, 273–283. [Google Scholar]
- Samy, M.M.; Barakata, S.; Ramadan, H.S. Techno-economic analysis for rustic electrification in Egypt using multi-source renewable energy based on PV/wind/FC. Int. J. Hydrogen Energy 2020, 45, 11471–11483. [Google Scholar] [CrossRef]
- Tanmay, D.; Ranjit, R.; Krishna, M.K. Impact of the penetration of distributed generation on optimal reactive power dispatch. Prot. Control Mod. Power Syst. 2020, 5, 2–26. [Google Scholar]
- Takano, H.; Goto, R.; Hayashi, R.; Asano, H. Optimization Method for Operation Schedule of Microgrids Considering Uncertainty in Available Data. Energies 2021, 14, 2487. [Google Scholar] [CrossRef]
- Lingmin, C.; Jiekang, W.; Fan, W.; Huiling, T.; Chanjie, L.; Yan, X. Energy flow optimization method for multi-energy system oriented tocombined cooling, heating and power. Energy 2020, 211, 118536. [Google Scholar] [CrossRef]
- Tantrapon, K.; Jirapong, P.; Thararak, P. Mitigating microgrid voltage fluctuation using battery energy storage system with improved particle swarm optimization. Energy Rep. 2020, 6, 724–730. [Google Scholar] [CrossRef]
- Nemati, M.; Braun, M.; Tenbohlen, S. Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming. Appl. Energy 2018, 210, 944–963. [Google Scholar] [CrossRef]
- Nagapurkar, P.; Smith, J.D. Techno-economic optimization and environmental Life Cycle Assessment (LCA) of microgrids located in the US using genetic algorithm. Energy Convers. Manag. 2019, 181, 272–291. [Google Scholar] [CrossRef]
- Roy, K.; Mandal, K.K.; Mandal, A.C.; Patra, S.N. Analysis of energy management in micro grid—A hybrid BFOA and ANN approach. Renew. Sustain. Energy Rev. 2018, 82, 4296–4308. [Google Scholar] [CrossRef]
- Cunbin, L.; Jianye, Z.; Peng, L. Multi-objective Optimization Model of Micro-grid Operation Considering Cost, Pollution Discharge and Risk. Proc. CSEE 2014, 34, 3073–3079. [Google Scholar]
- Chen, J.; Yang, X.; Zhu, L.; Zhang, M.; Li, Z. Microgrid multi-objective economic dispatch optimization. Proc. CSEE 2013, 33, 57–66. (In Chinese) [Google Scholar]
- Chen, D.; Gong, Q.; Zhang, M.; Liu, D.; Du, L.; Shao, Q. Multi-objective optimal dispatch in wind power integrated system incorporating energy-environmental efficiency. Proc. CSEE 2011, 31, 10–17. (In Chinese) [Google Scholar]
- Zhao, L.; Ju, G.; Lü, J. An improved genetic algorithm in multi-objective optimization and its application. Proc. CSEE 2008, 28, 96–102. (In Chinese) [Google Scholar]
- Faisal, A.; Mohamed, H.; Koivo, N. Online management of microgrid with battery storage using multi-objective optimization. In Proceedings of the International Conference on Power Engineering, Energy and Electrical Drives, Setubal, Portugal, 12–14 April 2007; pp. 231–236. [Google Scholar]
- Ma, X.; Wu, Y.; Fang, H.; Sun, Y. Optimal sizing of hybrid solar-wind distributed generation in an island micro grid using improved bacterial foraging algorithm. Proc. CSEE 2011, 31, 17–25. [Google Scholar]
- Li, P.; Xu, W.; Zhou, Z.; Li, R. Optimal Operation of Microgrid Based on Improved Gravitational Search Algorithm. Proc. CSEE 2014, 34, 3073–3079. [Google Scholar]
- Zheng, Z.; Ai, Q.; Xu, W.; Shi, J.; Xie, D.; Han, L. A multi-objective dispatch optimization strategy for economic operation of smart grids. Power Syst. Technol. 2010, 34, 7–13. (In Chinese) [Google Scholar]
- Liu, D.; Guo, J.; Huang, Y.; Wang, W. Dynamic economic dispatch of wind integrated power system based on wind power probabilistic forecasting and operation risk constraints. Proc. CSEE 2013, 33, 9–15. (In Chinese) [Google Scholar]
- Mohammadi, S.; Mozafari, B.; Solimani, S.; Niknam, T. An adaptive modified firefly optimization algorithm based on Hong’s Point Estimate Method to optimal operation management in a microgrid with consideration of uncertainties. Energy 2013, 51, 339–348. [Google Scholar] [CrossRef]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Khurmi, R.S.; Sedha, R.S. Materials Science. S. Chand. 2008. Available online: https://refhub.elsevier.com/S0360-3199(18)31672-0/sref36 (accessed on 2 September 2021).
- Giovanni, C.; Luca, M. Resolution of Spike Overlapping by Biogeography-Based Optimization. Electronics 2021, 10, 1469. [Google Scholar]
- Khosravi, K.; Bordbar, M.; Paryani, S.; Saco, P.M.; Kazakis, N. New hybrid-based approach for improving the accuracy of coastal aquifer vulnerability assessment maps. Sci. Total Environ. 2021, 767, 145416. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, 2nd ed.; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Opposition-based differential evolution. IEEE Trans. Evolut. Comput. 2008, 12, 64–79. [Google Scholar] [CrossRef] [Green Version]
DG | Output Power/kW | Depreciable Life/a | Operation and Maintenance Coefficient (USD/kW·h) | |
---|---|---|---|---|
Pmax | Pmin | |||
WT | 50 | 0 | 10 | 0.0042 |
PV | 40 | 0 | 20 | 0.0014 |
BAT | 30 | −30 | 10 | 0.0064 |
FC | 40 | 8 | 10 | 0.0042 |
MT | 65 | 14 | 10 | 0.0059 |
Function | Algorithm | Average Value | Standard Deviation | Function Evaluation Times | Success Rate |
---|---|---|---|---|---|
Ackley | IBBO | 1.1949 × 10−12 | 4.7684 × 10−23 | 140,640 | 100 |
PSO | 6.1748 × 10−3 | 3.2709 × 10−6 | 155,850 | 90 | |
GA | 5.7820 × 10−2 | 3.6079 × 10−3 | 536,120 | 73.33 | |
BBO | 7.1061 × 10−1 | 2.6396 × 10−1 | 1,329,270 | 23.33 | |
Griewank | IBBO | 7.3121 × 10−13 | 3.6763 × 10−27 | 124,320 | 100 |
PSO | 1.2079 × 10−4 | 3.8624 × 10−6 | 105,810 | 100 | |
GA | 9.3740 × 10−2 | 5.0897 × 10−3 | 237,910 | 100 | |
BBO | 6.4551 × 10−1 | 1.3315 × 10−2 | — | 0 |
Optimization Method | Maximum Iteration Value/Times | Convergence Iterations/Times | Operating Costs/USD |
---|---|---|---|
IBFA | 500 | 263 | 223 |
IPSO | 500 | 212 | 218 |
BBO | 500 | 275 | 212 |
IBBO | 500 | 161 | 204 |
Scenario | Case | Comprehensive Operating Cost/USD |
---|---|---|
1 | Non-load shifting | 204.06 |
2 | Taking no account of shifting time | 190.34 |
3 | Taking account of shifting time | 195.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Deng, H.; Wang, J. Optimal Scheduling of Microgrid Considering the Interruptible Load Shifting Based on Improved Biogeography-Based Optimization Algorithm. Symmetry 2021, 13, 1707. https://doi.org/10.3390/sym13091707
Li B, Deng H, Wang J. Optimal Scheduling of Microgrid Considering the Interruptible Load Shifting Based on Improved Biogeography-Based Optimization Algorithm. Symmetry. 2021; 13(9):1707. https://doi.org/10.3390/sym13091707
Chicago/Turabian StyleLi, Bo, Hongsheng Deng, and Jue Wang. 2021. "Optimal Scheduling of Microgrid Considering the Interruptible Load Shifting Based on Improved Biogeography-Based Optimization Algorithm" Symmetry 13, no. 9: 1707. https://doi.org/10.3390/sym13091707
APA StyleLi, B., Deng, H., & Wang, J. (2021). Optimal Scheduling of Microgrid Considering the Interruptible Load Shifting Based on Improved Biogeography-Based Optimization Algorithm. Symmetry, 13(9), 1707. https://doi.org/10.3390/sym13091707