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and Prasenjit Choudhury 1

����������
�������

Citation: Pramanik, P.K.D.; Biswas,

S.; Pal, S.; Marinković, D.; Choudhury,
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Abstract: In mobile crowd computing (MCC), smart mobile devices (SMDs) are utilized as computing
resources. To achieve satisfactory performance and quality of service, selecting the most suitable
resources (SMDs) is crucial. The selection is generally made based on the computing capability of an
SMD, which is defined by its various fixed and variable resource parameters. As the selection is made
on different criteria of varying significance, the resource selection problem can be duly represented
as an MCDM problem. However, for the real-time implementation of MCC and considering its
dynamicity, the resource selection algorithm should be time-efficient. In this paper, we aim to find out
a suitable MCDM method for resource selection in such a dynamic and time-constraint environment.
For this, we present a comparative analysis of various MCDM methods under asymmetric conditions
with varying selection criteria and alternative sets. Various datasets of different sizes are used for
evaluation. We execute each program on a Windows-based laptop and also on an Android-based
smartphone to assess average runtimes. Besides time complexity analysis, we perform sensitivity
analysis and ranking order comparison to check the correctness, stability, and reliability of the
rankings generated by each method.

Keywords: mobile cloud; mobile grid; dynamic resource selection; MCDM; entropy; EDAS; ARAS;
MABAC; MARCOS; COPRAS; time complexity analysis

1. Introduction

The trend in the miniaturization of electronics has paved the way for smart mobile
devices (SMDs) to be incorporated with significant computing capabilities. They are
being loaded with several processing cores, specialized processors for different purposes,
sizeable memory, and fat batteries. This has prompted users to prefer SMDs, which include
smartphones and tablets, as the primary computing device leaving behind desktops and
laptops. In general, though the SMDs are used frequently, they are not being used most
of the time but their owners. The SMDs’ processing units are discretely utilized only for
a few hours a day, on average [1–3]. The rest of the time, the processing modules remain
idle, so a significant computing resource has been wasted. These wasted computing cycles
can be utilized by lending them to more needy applications which are in want of extra
computing resources to carry out some computing-intensive task [4–7]. If a collection of
such unused computing resources is connected cumulatively, it can deliver an economical
and sustainable HPC environment [8–10].
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1.1. Mobile Crowd Computing

In mobile crowd computing (MCC), public-owned SMDs are used as computing
resources [11]. The increasing use of SMDs has fueled the possibilities of MCC to a great
extent. An estimation by Statista, a leading market and consumer data provider, suggests
that the number of global smartphone users will reach 4.3 billion in 2023 from 3.8 billion
in 2021 [12]. Due to this widescale SMD user base, there is a great probability of finding
a sufficient number of SMDs not only at a populous place but also at scantily crowded
locations. Therefore, due to the infrastructural flexibility and the omnipresence of SMDs,
an ad-hoc HPC can be formed anywhere, allowing to achieve on-demand pervasive and
ubiquitous computing [13]. And in the waking of the IoT and the IoE, the need for local
processing is growing [14] because most of these applications are time-constrained and
cannot afford to send data to a remote cloud for processing [15]. MCC can offer a local
computing facility to these applications as ad-hoc mobile cloud computing [16–18] and
as edge computing [19–21]. Besides the ad-hoc use of MCC, it can always be used for
organizational computing infrastructure by making use of the in-house SMDs.

1.2. Resource Selection in Mobile Crowd Computing

The effectivity (e.g., response time, throughput, turnaround time, etc.) and reliability
(e.g., fault tolerance, ensuring resource availability, device mobility handling, minimized
hands-off, etc.) of MCC largely depend on selecting the right resources for job scheduling.
That is why it is very crucial to select the most suitable resources among the currently
available ones [22]. In this paper, we considered only the computing resources of the SMDs
as selection criteria. Among others, the computing capability is one of the most important
selection criteria as this would eventually influence the response time, throughput, and
turnaround time for any given task. However, selecting SMDs based on their computing
factors, which are conflicting in nature, is non-trivial.

As mentioned earlier, there might be quite many SMDs available at a certain place (lo-
cal MCC, connected through a WLAN or other short-range communication means) [23,24]
or for a certain application (global MCC, connected through the internet) to be considered
as computing resources [25–27]. Among this sizable pool of resources, which of them
would be most suitable? The selection problem has been aggravated by the fact that the
number of SMD makers launch different devices with a variety of hardware resources
regularly. Hence, in most of the cases, the available SMDs in an MCC would be vastly
heterogeneous in terms of hardware (e.g., CPU & GPU clock frequency, number of cores,
primary memory size, secondary memory size, battery capacity, etc.); and with different
specifications, the SMDs boast varying computing capacities [28].

Along with the hardware specifications of the SMDs, another aspect is needed to be
considered while selecting an SMD as a computing device—the present status of different
resources of an SMD such as CPU & GPU load, available memory, available battery, signal
strength, etc. Irrespective of their actual capacity, the resource usability depends on their
actual availability. To elaborate this, let us consider the following scenario:

Two SMDs, M1 and M2, have the CPU frequencies 1.8 GHz and 2.2 GHz, respectively.
Their present CPU loads are 30% and 90%, respectively. In this case, though M2 has a more
capable CPU, as an immediate computing resource, M1 would be preferable because it has
a much lower CPU load, i.e., it is more usable than M2.

The values of these variable parameters change depending on the SMD usage by its
user. That is why, instead of selecting the SMDs based only on the hardware specifications,
the current status of these parameters is needed to be considered. For a better QoS of MCC,
it is crucial to select the most suitable SMDs with the best usable resources to offer at the
moment of job submission and during its execution.

In general, considering all these diverse specifications, selecting the right SMD or a
set of SMDs, in terms of computing resources, among many available SMDs in the MCC
network, can be considered an MCDM problem.
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1.3. Resource Selection as an MCDM Problem

Deciding on the best candidates from some alternatives based on multiple pre-set
criteria is known as the MCDM problem. Suppose there is a finite set of distinct alternatives
{A1, A2, . . . , An}. The alternatives are evaluated using a set of criteria {C1, C2, . . . , Cm}. A
performance score pik is calculated for each alternative Ai ∀ i = 1, 2, . . . , n with respect to the
criterion Cj ∀ j = 1, 2, . . . , m. Based on the calculated performance scores, an MCDM method
orders the alternatives from the best to the worst. Here, the alternatives are homogeneous
in nature, but the criteria may not be. They can be expressed in different units which do not
have any apparent interrelationship. The criteria may be conflicting to each other; i.e., some
may have maximizing objectives while others have minimizing objectives. The criteria
may also have some weight, signifying their importance in the decision-making [29]. The
common stages of a typical MCDM method are shown in Figure 1.

Symmetry 2021, 13, x FOR PEER REVIEW 3 of 51 
 

1.3. Resource Selection as an MCDM Problem 
Deciding on the best candidates from some alternatives based on multiple pre-set 

criteria is known as the MCDM problem. Suppose there is a finite set of distinct 
alternatives {A1, A2, …, An}. The alternatives are evaluated using a set of criteria {C1, C2, 
…, Cm}. A performance score pik is calculated for each alternative Ai ∀ i = 1, 2, …, n with 
respect to the criterion Cj ∀ j = 1, 2, …, m. Based on the calculated performance scores, an 
MCDM method orders the alternatives from the best to the worst. Here, the alternatives 
are homogeneous in nature, but the criteria may not be. They can be expressed in different 
units which do not have any apparent interrelationship. The criteria may be conflicting to 
each other; i.e., some may have maximizing objectives while others have minimizing 
objectives. The criteria may also have some weight, signifying their importance in the 
decision-making [29]. The common stages of a typical MCDM method are shown in Figure 
1. 

 
Figure 1. Typical MCDM stages. 

In our SMD selection problem, the alternatives are the SMDs available in the MCC at 
the time of job submission, and the criteria are different parameters considered for SMD 
selection (e.g., CPU frequency, RAM, CPU load, etc.). The MCDM solutions provide a 
ranking of the available SMDs based on the selection criteria. From this ranked list, the 
resource management module of the MCC selects the top-ranked SMD(s) for job 
scheduling. 

Over the years, several algorithms have been developed which contributed 
significantly to the evolution of the expanding field of MCDM. These methods differ in 
terms of their computational logic and assumption, applicability, calculation complexities, 
and ability to withstand variations in the given conditions. Table 1 lists some of the 
popular MCDM approaches and the most noteworthy representatives of each approach. 

Table 1. The popular MCDM approaches and their respective popular representatives. 

MCDM Approach Representative 
Example 

Reference 

Distance-based method TOPSIS [30,31] 
EDAS [32] 

Area-based comparison and approximation method MABAC [33,34] 

Ratio-based additive method 
ARAS [35,36] 
SAW [37] 

COPRAS [38,39] 

Algorithms that work under compromising situations 

VIKOR [40,41] 
CoCoSo [42] 

MARCOS [43] 
RAFSI [29] 

1.4. Paper Objective 
Though the resource selection problem in MCC is an ideal MCDM problem, we could 

not find any significant work on this topic. In fact, MCDM is not sufficiently explored to 
solve the resource selection problems in analogous distributed computing systems. As 
discussed in Section 2, very few works have attempted using MCDM methods for 

Identifying and selecting    the effective resource features as decision criteria. Determining the weights of resource features. Ranking the available resources by applying some MCDM method.
Figure 1. Typical MCDM stages.

In our SMD selection problem, the alternatives are the SMDs available in the MCC at
the time of job submission, and the criteria are different parameters considered for SMD
selection (e.g., CPU frequency, RAM, CPU load, etc.). The MCDM solutions provide a
ranking of the available SMDs based on the selection criteria. From this ranked list, the
resource management module of the MCC selects the top-ranked SMD(s) for job scheduling.

Over the years, several algorithms have been developed which contributed signifi-
cantly to the evolution of the expanding field of MCDM. These methods differ in terms
of their computational logic and assumption, applicability, calculation complexities, and
ability to withstand variations in the given conditions. Table 1 lists some of the popular
MCDM approaches and the most noteworthy representatives of each approach.

Table 1. The popular MCDM approaches and their respective popular representatives.

MCDM Approach Representative Example Reference

Distance-based method
TOPSIS [30,31]
EDAS [32]

Area-based comparison and
approximation method MABAC [33,34]

Ratio-based additive method
ARAS [35,36]
SAW [37]

COPRAS [38,39]

Algorithms that work under
compromising situations

VIKOR [40,41]
CoCoSo [42]

MARCOS [43]
RAFSI [29]

1.4. Paper Objective

Though the resource selection problem in MCC is an ideal MCDM problem, we could
not find any significant work on this topic. In fact, MCDM is not sufficiently explored to
solve the resource selection problems in analogous distributed computing systems. As
discussed in Section 2, very few works have attempted using MCDM methods for resource
selection in the allied domains such as grid computing, cloud computing, and mobile
cloud.
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However, witnessing the wide-scale applications of MCDM, especially in decision-
making problems, we believe that it can also offer promising solutions for resource selection
in MCC and other similar computing systems, which is not explored so far. For real-time
resource selection in a dynamic environment like MCC, adopting the MCDM approach
that provides consistent and considerably accurate SMD selection decisions is necessary,
balancing various parameters at a reasonable time complexity. In view of that, the key
objective of this paper is to find out, among several existing MCDM methods, which one
would be the most suitable for this particular problem scenario.

In this paper, we aim to assess and compare the performance of different MCDM
methods in selecting SMDs as computing resources in MCC. The comparative assessment
is made in terms of the correctness and robustness of the SMD rankings given by each
method and the precise run-time of each method.

1.5. Paper Contribution

This paper presents a comparative study of five MCDM methods under asymmetric
conditions with varying criteria and alternative sets for resource selection in MCC. The
followings are the main contributions of the paper:

• We use five distinct MCDM algorithms for the comparative analysis—EDAS, ARAS,
MABAC, COPRAS, and MARCOS.

• The five algorithms that are used in this study are of distinctive nature in terms of
their fundamental procedure. Moreover, the combination of the considered MCDM
methods comprises some popularly used methods and some recently proposed meth-
ods. This diverse combination for a comparative study of MCDM methods is quite
rare in the literature.

• To check the impact of the number of alternatives and criteria on the performance of
the MCDM methods, we consider four data sets of different sizes. Each of the methods
is implemented on all four datasets.

• We carry out an extensive comparative analysis of the results for all the considered
scenarios under different variations of criteria and alternative sets. The comparative
analysis is done on two aspects: (a) an exhaustive validation and robustness check
and (b) the time complexity of each method.

• Along with the time complexity of each MCDM method, the actual runtime of each
method on two different types of devices (laptop and smartphone) are compared and
analyzed for each considered scenario.

• We found hardly any work in which computational and runtime-based comparison
of different MCDM methods has been carried out apart from the validation and
robustness check. To be specific, this paper is the first of its kind that compares the
MCDM methods of different categories for resource selection in MCC or any other
distributed mobile computing systems.

1.6. Paper Organization

The rest of this paper is presented as follows. In Section 2, we collate some of the
related work and discuss their findings. Section 3 discusses the objective weighting method
(Entropy) and other MCDM methods used in the study and their respective algorithms. In
Section 4, we furnish the research methodology, which includes the details of data collection,
choosing the resource selection criteria, and different experimental cases (datasets) to be
considered for the study. Section 5 presents the experimental details and results of the
comparative analysis. Section 6 presents a critical analysis of the experimental findings and
the rationality and practicability of this study. Finally, Section 7 concludes the paper while
pointing out the limitations of this study and mentioning the future scopes and research
prospects for improving this work. Table 2 lists the acronyms used in this paper and their
full forms.
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Table 2. List of acronyms.

Acronym Full Form
AHP Analytic Hierarchy Process
ANP Analytic Network Process

ARAS Additive Ratio Assessment
BWM Best Worst Method

CoCoSo Combined Compromise Solution
COMET Characteristic Objects METhod
COPRAS Complex Proportional Assessment
COPRAS COmplex PRoportional ASsessment

CPU Central Processing Unit
DEA Data Envelopment Analysis
DMU Decision Making Unit
EDAS Evaluation based on Distance from Average Solution
EDAS Evaluation based on Distance from Average Solution

ELECTRE ELimination Et Choix Traduisant la REalité
ESM Even Swaps Method

GDSS Group Decision Support System
GPU Graphics Processing Unit
GRA Grey Relational Analysis
HPC High Performance Computing
IoE Internet of Everything
IoT Internet of Things

MABAC Multi-Attributive Border Approximation Area Comparison
MACBETH Measuring Attractiveness by a Categorical Based Evaluation Technique
MARCOS Measurement of Alternatives and Ranking according to COmpromise Solution

MARE Multi-Attribute Range Evaluations
MAUT Multi-Attribute Utility Theory
MCC Mobile Crowd Computing

MCDM Multi Criteria Decision Making
MEW Multiplicative Exponential Weighting

MOORA Multi-Objective Optimization on the basis of Ratio Analysis
MULTIMOORA Multiplicative MOORA

PAPRIKA Potentially All Pairwise RanKings of all possible Alternatives
PIPRECIA PIvot Pairwise RElative Criteria Importance Assessment

PROMETHEE Preference Ranking Organization METHod for Enrichment Evaluation
RAFSI Ranking of Alternatives through Functional mapping of criterion sub-intervals into a Single Interval
RAM Random Access Memory

REMBRANDT Ratio Estimations in Magnitudes or deci-Bells to Rate Alternatives which are Non-DominaTed
SAW Simple Additive Weighting

SMART Simple Multi-Attribute Rating Technique
SMD Smart Mobile Device
SoC System on Chip

SWARA Stepwise Weight Assessment Ratio Analysis
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
VIKOR Više Kriterijumska optimizacija i Kompromisno Rešenje

WASPAS Weighted Aggregated Sum Product Assessment
WPM Weighted Product Method
WSM Weighted Sum Model

2. Related Work

MCDM techniques have been used for decision-making in several application domains
for a long time [44,45]. They have been extensively used in engineering [46]. Table 3 lists
some major application areas of MCDM along with respective references. However, this
list is in no way comprehensive but only representative. To make the list short, we majorly
considered the review or survey articles. In the following, we discuss some scholarly works
in the context of our study.

Like web service selection [47,48], MCDM methods are also popularly used for cloud
service selection [49–51]. Youssef [52] used a combination of TOPSIS and BWM to rank
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cloud service providers based on nine service evaluation criteria, including sustainability,
response time, usability, interoperability, cost, maintainability, reliability, scalability, and
security. Singla et al. [53] used Fuzzy AHP and Fuzzy TOPSIS to select optimal cloud
services in a dynamic mobile cloud computing environment. They considered resource
availability, privacy, capacity, speed, and cost as selection criteria.

MCDM methods are being used to improve the efficiency and effectiveness of job
offloading in mobile cloud computing [54,55]. To save the energy of a mobile device,
Ravi and Peddoju [56] used TOPSIS for selecting suitable service providers such as cloud,
cloudlet, and peer mobile devices to offload the computation tasks. They considered the
waiting time, the energy required for communication, the energy required for processing
in mobile devices, and connection time with the resource as the selection criteria.

Mishra et al. [57] proposed an adaptive MCDM model for resource selection in fog
computing, which can accommodate the new-entrant fog nodes without reranking all the
alternatives. The proposed method is claimed to have less response time and is suitable for
a dynamic and distributed environment.

To ensure the quality of the collected data in mobile crowd sensing applications, Gad-
ElRab and Alsharkawy [58] used the SAW method for selecting the most efficient devices
based on computation capabilities, available energy, sensors attached to the device, etc.

Nik et al. [59] used the TOPSIS method to select the resource with the best response
time for asynchronous replicated systems in a utility-based computing environment. To
achieve a shorter response time, they considered four QoS parameters (efficiency, freshness
of data, reliability, and cost) as selection criteria.

MCDM methods have been used for resource selection in grid computing as well.
Mohammadi et al. [60] used AHP and TOPSIS combinedly for grid resource ranking
considering cost, security, location, processing speed, and round-trip time as criteria.
Abdullah et al. [61] used the TOPSIS method to select resources for fair load balancing in a
multi-level computing grid. For resource selection, they considered three criteria expected
completion time, resource reliability, and the resource’s load. Kaur and Kadam [62] used
MCDM methods for a two-phased resource selection in grid computing. They applied the
SAW method to rank the best resources in the local or lower level and then used enriched
PROMETHEE-II combined with AHP for a global resource selection or to select the best
resources across all the top-ranked resources at each local level.

Several works are proposed for evaluation and selection of smartphones [63–69], but
in all these works, smartphones were considered as consumer devices. Various aspects
were considered for selection by matching with the consumers’ choice and interest. We
could not find any work that applied MCDM for smartphone selection as a computing
resource.

Triantaphyllou, in his book [70], extensively compared the popular MCDM methods
such as WSM, WPS, TOPSIS, ELECTRE, and AHP (along with its variants). The methods
were discussed based on real-life issues, both theoretically and empirically. A sensitivity
analysis was performed on the considered methods, and the abnormalities with some
of these methods were rigorously analyzed. Velasquez and Hester [71] performed a
literature review of several MCDM methods, viz., MAUT, AHP, fuzzy set theory, case-
based reasoning, DEA, SMART, goal programming, ELECTRE, PROMETHEE, SAW, and
TOPSIS. This study aimed to analyze the advantages and disadvantages of the considered
methods and examine their suitability in specific application scenarios.
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Table 3. Examples of various applications of MCDM methods.

Application Areas of MCDM Methods Selected References

Finance and economics [72–74]
Waste management [75–78]

Engineering and production [79–82]
Organisations and corporates [83–86]

Business process and operations [87–90]
Supply chain management [91–94]

Energy sector [95–98]
Civil engineering [99–101]

Building construction and management [102–105]
City and society [106–108]

Education and e-learning [109–112]
Careers and job [113–116]
Transportation [117–120]

Healthcare [121–123]

Several other works attempted to present comparative studies of different MCDM
methods with respect to different application areas. Table 4 presents a comprehensive
list of such works. However, despite our best effort, we could not find any comparative
analysis of MCDM methods for resource selection in a dynamic environment like MCC or
any other related applications. From the table, it can also be observed that barring only a
few works, none has conducted time complexity analysis. Furthermore, we found not a
single paper that calculated the actual runtime of the MCDM algorithms. These unique
contributions of our paper make it exclusive.

Table 4. Survey of comparative analysis of different MCDM methods.

Reference
MCDM Methods

Compared Application Focus

Analysis Performed

Sensitivity
Analysis

Result
Comparison

Statistical
Test/Analysis

Rank
Reversal

Computation/
Time

Complexity

[124]
ELECTRE, TOPSIS,

MEW, SAW, and four
versions of AHP

General MCDM
problem of ranking

√ √ √ √

[125] AHP and SAW Ranking cloud
render farm services

√ √ √

[126] TOPSIS, AHP, and
COMET

Assessing the
severity of chronic

liver disease

√ √

[127]
CODAS, EDAS,
WASPAS, and

MOORA

Selecting material
handling equipment

√ √

[128] TOPSIS, DEMATEL,
and MACBETH

ERP package
selection

√ √ √

[129] AHP, ELECTRE,
TOPSIS, and VIKOR

Enhancement of
historical buildings

√ √

[130] MOORA, TOPSIS,
and VIKOR

Material selection of
brake booster valve

body

√ √

[131] AHP, TOPSIS, and
VIKOR

Manufacturing
process selection

√ √ √

[132]
Multi-MOORA,

TOPSIS, and three
variants of VIKOR

Randomly generated
MCDM problems

(i.e., decision
matrices) as

per [124].

√ √ √
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Table 4. Cont.

Reference
MCDM Methods

Compared Application Focus

Analysis Performed

Sensitivity
Analysis

Result
Comparison

Statistical
Test/Analysis

Rank
Reversal

Computation/
Time

Complexity

[133]
WPM, WSM, revised
AHP, TOPSIS, and

COPRAS

Sustainable housing
affordability

√ √ √

[134]
SAW, TOPSIS,

PROMETHEE, and
COPRAS

Stock selection using
modern portfolio

theory

√ √

[135] COMET, TOPSIS,
and AHP

Assessment of
mortality in patients
with acute coronary

syndrome

√ √

[136]

SWARA, COPRAS,
fuzzy ANP, fuzzy

AHP, fuzzy TOPSIS,
SAW, and EDAS

Risk assessment in
public-private

partnership projects

√ √ √

[137]
WSM, VIKOR,
TOPSIS, and

ELECTRE

Ranking renewable
energy sources

√ √ √

[138]
WSM, WPM,

WASPAS, MOORA,
and MULTIMOORA

Industrial robot
selection

√ √ √

[139] WSM, WPM, AHP,
and TOPSIS

Seismic vulnerability
assessment of RC

structures

√ √ √

[140] AHP, TOPSIS, and
PROMETHEE

Determining
trustworthiness of

cloud service
providers

√ √ √

[141] TOPSIS and VIKOR

Finding most
important product
aspects in customer

reviews

√ √

[142] MABAC and
WASPAS

Evaluating the effect
of COVID-19 on

countries’
sustainable

development

√ √ √

[143]

WSM, TOPSIS,
PROMETHEE,
ELECTRE, and

VIKOR

Utilization of
renewable energy

industry

√ √ √

[144] WSM, TOPSIS, and
ELECTRE

Flood disaster risk
analysis

√ √ √

[145]
MAUT, TOPSIS,

PROMETHEE, and
PROMETHEE GDSS

Choosing contract
type for highway
construction in

Greece

√ √

[146]
TOPSIS, VIKOR,

EDAS, and
PROMETHEE-II

Suitable biomass
material selection for

maximum bio-oil
yield

√ √

[147] TOPSIS, VIKOR, and
COPRAS

COVID-19 regional
safety assessment

√ √ √

[148] EDAS and TOPSIS General MCDM
problem

√ √ √ √
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Table 4. Cont.

Reference
MCDM Methods

Compared Application Focus

Analysis Performed

Sensitivity
Analysis

Result
Comparison

Statistical
Test/Analysis

Rank
Reversal

Computation/
Time

Complexity

[149]
AHP, TOPSIS,

ELECTRE III, and
PROMETHEE II

Building
performance
simulation

√ √ √

[150] AHP, fuzzy AHP,
and ESM

Aircraft type
selection

√ √

[151] AHP, TOPSIS, and
SAW

Intercrop selection in
rubber plantations

√ √

[152] AHP, TOPSIS, SAW,
and PROMETHEE Employee placement

√ √

[153]

TOPSIS, VIKOR,
improved ELECTRE,

PROMETHEE II,
and WPM

Mining method
selection

√ √

[154] AHP, SMART, and
MACBETH

Incentive-based
experiment (ranking
coffee shops within
university campus)

√ √

[155] AHP, fuzzy AHP,
and fuzzy TOPSIS Supplier selection

√ √

[156]
TOPSIS, SAW,
VIKOR, and

ELECTRE

Evaluating the
quality of urban life

√ √ √ √

[157] AHP, MARE,
ELECTRE III Equipment selection

√ √

[158] VIKOR and TOPSIS
Forest fire

susceptibility
mapping

√ √

[159]
PIPRECIA, MABAC,

CoCoSo, and
MARCOS

Measuring the
performance of

healthcare supply
chains

√ √ √ √

[160]
MOORA,

MULTIMOORA,
and TOPSIS

Optimize the process
parameters in the
electro-discharge

machine

√ √ √

[161] AHP, AHP TOPSIS,
and fuzzy AHP

Mobile-based
culinary

recommendation
system

√ √ √

[162] TOPSIS, COPRAS,
and GRA

Evaluation of
teachers

√ √ √

[163]
AHP, TOPSIS,

ELECTRE III, and
PROMETHEE II

Urban sewer
network plan

selection

√ √

[164] TOPSIS and AHP Dam site selection
using GIS

√ √

This
paper

EDAS, ARAS,
MABAC, COPRAS,

and MARCOS

Resource selection in
mobile crowd

computing

√ √ √ √
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3. Research Background

This section briefly discusses the key methods considered for the comparative study
and their corresponding computational algorithms.

3.1. MCDM Methods Considered for the Comparative Study

This section briefly describes five MCDM methods considered for the comparative
analysis along with their computation algorithms. In this paper, we derived the preferential
order of the alternatives based on the following aspects:

(a) Separation from average solution (EDAS method).
(b) The relative positioning of the alternatives with respect to the best one (ARAS

method).
(c) Utility-based classification and preferential ordering on the proportional scale (CO-

PRAS method).
(d) Approximation of the positions of the alternatives to the average solution area

(MABAC method).
(e) Compromise solution while trading of the effects of the criteria on the alternatives

(MARKOS method).

We considered the widely used MCDM methods as a representation of each above-
mentioned class. In Table 5, we present a comparative analysis of the merits and demerits
of the considered MCDM methods. Since the calculation time is vital in our problem
(resource selection in MCC) and subjective bias might affect the final solution, we avoided
considering the pairwise comparison methods such as AHP, ANP, ELECTRE, MACBETH,
REMBRANDT (multiplicative AHP), PAPRIKA, etc.

Table 5. Merits and demerits of the MCDM methods considered in this study.

MCDM Method Merits Demerits

EDAS

• Useful when there are conflicting criteria and
decision-making fluctuations

• Provides realistic solutions as it does not
consider extreme ideal points

• Operates with a difference from average
solution instead of distance

• Free from rank reversal issue

• In many real-life cases, the average point does
not reveal the true picture

• This method is more suited for
risk-neutral cases

ARAS

• Simple computational steps with lesser
complexity

• Can operate under the compromising situation
• A relative measurement in terms of the ratio

• ARAS works reasonably well only when the
number of alternatives is limited

MABAC

• Stability in result
• Systematic computation with a precise and

rational solution
• Free from rank reversal
• Can work with large criteria set

• Does not consider non-compensation of criteria

COPRAS

• Evaluates influence of maximizing and
minimizing criteria separately

• Simple calculation
• Free from rank reversal

• Provides unstable results in case of data
variation, and the results may not reveal the
true nature of the data

MARCOS

• Consideration of the anti-ideal and ideal
solution at the very beginning of the formation
of the decision matrix

• Determination of utility degree for both
solutions,

• Can work with a large set of criteria and
alternatives

• Stability in solution

• Works on compromising results
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3.1.1. EDAS Method

EDAS is a recently developed distance-based algorithm that considers the average
solution as a reference point [32]. The alternative with a higher favorable deviation,
i.e., the positive distance from average (PDA), is preferred compared to non-favorable
deviation, i.e., the negative distance from average (NDA). As a result, EDAS provides a
reasonably robust solution, free from outlier effect and rank reversal problem, and decision-
making fluctuations [165]. However, the EDAS method does not portray a favorable result.
Therefore, this method is more suited in the case of risk aversion considerations. The
procedural steps of EDAS are described below.

Step 1: Calculation of the average solution
The average solution is the midpoint for all alternatives in the solution space with

respect to a particular criterion and is calculated by:

AVj =
∑m

i=1 xij

m
; j = 1, 2, . . . , n (1)

Step 2: Calculation of PDA and NDA
PDA and NDA are the dispersion measures for each possible solution with respect

to the average point. An alternative with higher PDA and lower NDA is treated as better
than the average one. The PDA and NDA matrices are defined as:

PDA = [PDAij]m×n (2)

NDA = [NDAij]m×n (3)

where:

PDAij =


max(0, (xij − AVj))

AVj
, if jth criterion is profit type

max(0, (AVj − xij))
AVj

, if jth criterion is cost type
(4)

and:

NDAij =


max(0, (AVj − xij))

AVj
, if jth criterion is profit type

max(0, (xij − AVj))
AVj

, if jth criterion is cost type
(5)

It can be inferred that if PDA > 0, then the corresponding NDA = 0, and if NDA > 0,
then the PDA = 0 for an alternative with respect to a particular criterion.

Step 3: Determine the weighted sum of PDA and NDA for all alternatives

SPi = ∑n
j=1 wj PDAij (6)

SNi = ∑n
j=1 wj NDAij (7)

where, wj is the weight of jth criterion.
Step 4: Normalization of the values of SP and SN for all the alternatives
The normalization of linear form for SP and SN values are obtained by using the

following expression:

NSPi =
SPi

max
i

(SPi)
(8)

NSNi = 1− SNi

max
i

(SNi)
(9)

Step 5: Calculation of the appraisal score (AS) for all alternatives
Here the appraisal score denotes the performance score of the alternatives.

ASi =
1
2
(NSPi + NSNi) (10)
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where, 0 ≤ ASi ≤ 1. The alternative having the highest ASi is ranked first and so on.

3.1.2. ARAS Method

ARAS method uses the concept of utility values for comparing the alternatives. In
this method, a relative scale (i.e., ratio) is used to compare the alternatives with respect
to the optimal solution [35,166,167]. This method uses a simple additive approach while
working under compromising situations effectively and with lesser computational com-
plexities [168,169]. However, it is observed that ARAS works reasonably well only when
the number of alternatives is limited [170]. The procedural steps of ARAS are described
below.

Step 1: Formation of the decision matrix

X =
[
xij
]

m×n (11)

Step 2: Determination of the optimal value
The optimal value for jth criterion is given by:

xij =

 max
i

xij, for profit type

min
i

xij, for cost type
(12)

Step 3: Formation of the normalized decision matrix
The criteria have different dimensions. Normalization is carried out to achieve di-

mensionless weighted performance values for all alternatives under the influences of the
criteria. In this case, we follow a linear ratio approach for normalization. However, we
consider the optimum point as the base level. Therefore, in the normalized decision matrix,
we include the optimum value, and the order of the matrix is (m + 1)× n. In the ARAS
method, a two-stage normalization is followed for the cost type of criteria. The normalized
decision matrix is given by:

R =
[
rij
]
(m+1)×n (13)

where:

rij =


xij

∑m
i=0 xij

, for profit type criteria
1/xij

∑m
i=0 1/xij

, for cost type criteria
(14)

If in case of cost type criteria xij = 0, we consider rij = 0.
Step 4: Derive the weighted normalized decision matrix

V =
[
vij
]
(m+1)×n (15)

where:
vij = rij ×wj (16)

and i = 0, m.
Step 5: Calculation of the optimality function value for each alternative

∅i = ∑n
j=1 vij (17)

where, i = 0, m.
Higher is the value of ∅i, better is the alternative.
Step 6: Find out the priority order of the alternatives based on utility degree with respect to

the ideal solution
∂i =

∅i
∅0

(18)

where, i = 0, m and ∂i ∈ [0, 1].
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Obviously, the bigger value of ∂i is preferable. It is pretty certain that the optimality
function ∅i maintains a direct and proportional relationship with the performance values
of the alternatives and weights of the criteria. Hence, the greater the value of ∅i, more
is the effectiveness of the corresponding solution. The degree of utility is essentially the
usefulness of the corresponding alternative with respect to the optimal one.

3.1.3. MABAC Method

MABAC uses two areas: an upper approximation area (UAA) for favorable or ideal
solutions and a lower approximation area (LAA) for non-favorable or anti-ideal solu-
tions for performance-based classifications of the solutions. This method provides lesser
computational complexities compared to the EDAS and ARAS methods. Further, since
this method does not involve distance-based separation measures, it generates stable
results [33]. MABAC compares the alternatives based on relative strength and weak-
ness [171]. Because of its simplicity and usefulness, MABAC has been a widely popular
method in various applications, for example, social media efficiency measurement [172],
health tourism [173], supply chain performance assessment [159], portfolio selection [174],
railway management [175], medical tourism site selection [176], and selection of hotels [177].
The procedural steps of MABAC are described below.

Step 1: Normalization of the criteria values
Here, a linear max-min type scheme is used. The usefulness of normalization is

explained in the descriptions of the previous algorithms.

rij =


(xij − x−i )
(x+i − x−i )

, for beneficial criteria

(xij − x+i )
(x−i − x+i )

, for nonbenificial criteria
(19)

where, x+i and x−i are the maximum and minimum criteria values, respectively.
Step 2: Formulate the weighted normalization matrix (Y)
Elements of Y are given by:

yij = wj
(
rij + 1

)
(20)

where, wj is the criteria weight.
Step 3: Determination of the Border Approximation Area (BAA)
The elements of the BAA (T) are denoted as:

T =
[
tj
]

1×n (21)

where:
tj =

(
∏m

i=1 yij

)1/m
(22)

where, m is the total number of alternatives and tj corresponds to each criterion.
Step 4: Calculation of the matrix Q related to the separation of the alternatives from BAA

Q = Y − T (23)

A particular alternative ai is said to be belonging to the UAA (i.e., T+) if qij > 0 or
LAA (i.e., T−) if qij < 0 or BAA (i.e., T) if qij = 0. The alternative ai is considered to be the
best among the others if more numbers of criteria pertaining to it possibly belong to T+.
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Step 5: Ranking of the alternatives
It is done according to the final values of the criterion functions as given by:

Si = ∑n
j=1 qij for j = 1, 2, . . . , n and i = 1, 2, . . . , m (24)

The higher the value is, more is the preference.

3.1.4. COPRAS Method

The COPRAS method calculates the utility values of the alternatives under the direct
and proportional dependencies of the influencing criteria for carrying out preferential rank-
ing [38,178,179]. The procedural steps for finding out the utility values of the alternatives
using the COPRAS method are discussed in the following. The alternatives are ordered in
descending order based on the obtained utility values.

Step 1: Construct the normalized decision matrix using the simple proportional approach

d̃IJ =
dij

∑m
i=1 dij

(25)

where, dij is the performance value of the ith alternative with respect to jth criterion (i = 1, 2,
. . . , m; j = 1, 2, . . . , n)

Step 2: Calculation of the sums of the weighted normalized values for optimization in ideal
and anti-ideal effects

The ideal and anti-ideal effects are calculated as:

G+i =
k

∑
j=1

d̃IJ. ε j (26)

G−i =
n

∑
j=k+1

d̃IJ. ε j (27)

where, k is the number of maximizing (i.e., profit type) criteria and ε j is the significance of
the jth criterion.

In case of G+i, all d̃IJ values are corresponding to the beneficial or profit type criteria,
and for G−i, we take the performance values of the alternatives related to cost type criteria.

Step 3: Calculation of the relative weights of the alternatives
The relative weight for any alternative (ith) is given as:

Ωi = G+i +
min

i
G−i ∑m

i=1 G−i

G−i ∑m
i=1

min
i
G−i

G−i

∼= G+i +
∑m

i=1 G−i

G−i ∑m
i=1 (

1
G−i

)
(28)

The Ωi value corresponding to the ith alternative signifies the degree of satisfaction of
that with respect to the given conditions. The greater is the value of Ωi better is the relative
performance of the concerned alternative, and hence, higher is the position. Therefore, the
most rational and efficient DMU should have Ωi max i.e., the optimum value. The relative
utility of a particular DMU or alternative is determined by comparing the Ωi value of any
DMU with respect to the Ωi max value, corresponding to the most effective one.

The utility for each alternative is given by:

Ui =
Ωi

Ωi max
× 100% (29)

Needless to say, the Ui value for the most preferred choice is 100%.
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3.1.5. MARCOS Method

MARCOS belongs to a strand of MCDM algorithms that derives solutions under
compromise situations. However, unlike the previous versions, MARCOS starts with
including ideal and anti-ideal solutions in the fundamental decision matrix at the very
beginning. Likewise, COPRAS also finds out the utility values. However, here the decision-
maker can make a trade-off among the ideal and anti-ideal solutions to arrive at the utility
values of the alternatives. The MARCOS method is also capable of handling a large set
of alternatives and criteria [43,180,181]. The procedural steps of MARCOS are described
below.

Step 1: Formation of the extended decision matrix (D*) by including the anti-ideal solution
(S−) values in the first row and the ideal solution (S+) values in the last row

S− and S+ are defined by:

S− =

 min
i

xij, when j ∈ profit type

max
i

xij, when j ∈ cost type
(30)

S+ =

 max
i

xij, when j ∈ profit type

min
i

xij, when j ∈ cost type
(31)

The anti-ideal solution represents the worst choice, whereas the ideal solution is the
reference point that shows the best possible characteristics given the set of constraints, i.e.,
criteria.

Step 2: Normalization of D*
The normalized values are given by:

rij =

{ xS+
xij

, when j ∈ cost type
xij

xs+
, when j ∈ profit type

(32)

Since it is preferred to set apart from the anti-ideal reference point, in MARCOS, the
normalization is carried out using a linear ratio approach with respect to the anti-ideal
solution.

Step 3: Formation of weighted D*
After normalization, the weighted normalized matrix with elements vij is formulated

by multiplying the normalized value of each alternative with the corresponding weight of
the criteria, as given below:

vij = wjrij (33)

Step 4: Calculation of utility degrees of the alternatives for S+ and S−

The utility degree of a particular alternative with respect to given conditions represents
its relative attractiveness of the same. The utility degrees are calculated as follows:

K−i =
γi
γs−

(34)

K+
i =

γi
γs+

(35)

where:

γi =
n

∑
j=1

vij (36)

Step 5: Calculation of values of utility functions for S+ and S−
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The utility function resembles the trade-off that the observed or considered alternatives
make vis-à-vis the ideal and anti-ideal reference points, and are given by:

f
(
K−i
)
=

K+
i

K+
i + K−i

(37)

f
(
K+

i
)
=

K−i
K+

i + K−i
(38)

The decision is made related to the selection of a particular alternative is based on
utility functional values. The utility function exhibits the relative position of the concerned
alternative with respect to the reference points. The best alternative is closest to the ideal
reference and, subsequently, distant from the anti-ideal one compared to other available
choices.

Step 6: Calculation of the utility function values for the alternatives
The utility function value for ith alternative is calculated by:

f(Ki) =
K+

i + K−i

1 +
1− f(K+

i )
f(K+

i )
+

1− f(K−i )
f(K−i )

(39)

The alternative having the highest utility function value is ranked first over the others.

3.2. Entropy Method for Criteria Weight Calculation

Each selection criterion carries some weight. The weights define the importance of
the criteria in the decision-making. To determine the criteria weights, we applied the most
popularly used entropy method. The entropy method works on objective information
following the concept of the probabilistic information theory [182]. The objective weighting
approach can mitigate the man-made instabilities in the subjective weighting approach and
gives more realistic results [183]. The entropy method shows its efficacy in dealing with
imprecise information and dispersions while offsetting the subjective bias [184,185]. Extant
literature shows a colossal number of applications of the Entropy method for determining
criteria weights in various situations (for example [174,186–190]). The steps of the entropy
method are given below:

Suppose, X =
[
xij
]

m×n represents the decision matrix where m is the number of
alternatives and n is the number of criteria.

Step 1: Normalization of the decision matrix
Normalization is carried out to bring the performance values of all alternatives subject

to different criteria to a common unitless form having scale values ε(0,1). Here we follow
the linear normalization scheme.

Entropy value signifies the level of disorder. In the case of criteria weight determina-
tion, a criterion with a higher Entropy value indicates that that particular criterion contains
more information.

The normalization matrix is represented as (R)m×n where the elements rij are given
by:

rij =


(

xij−xjmin

)
(

xjmax−xjmin

) , for profit type criteria

(xjmax−xij)(
xjmax−xjmin

) , for cost type criteria
(40)

Step 2: Calculation of Entropy values
The Entropy value for ith alternative for jth criterion is given by:

Hj = −k
m

∑
i=1

fij ln
(
fij
)

(41)
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where, k is a constant value and is defined by:

k = 1/ ln(m) (42)

and:
fij =

rij

∑m
i=1 rij

(43)

If fij = 0 then,
fij ln(fij) = 0 (44)

Step 3: Calculation of criteria weight
The weight for each criterion is given by:

wj =
1−Hj

n−∑n
j=1 Hj

(45)

Here, the higher the value of wj is, more is the information contained in the jth criterion.

4. Research Methodology

This section discusses the research framework used in this paper and provides the
computational steps of the MCDM algorithms applied for carrying out the comparative
analysis in a dynamic environment. Figure 2 depicts the steps followed in this research
work.
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4.1. Resource Selection Criteria

For the experimental purpose, in this paper, we considered a generalized scenario for
the resource requirement of the MCC computing jobs. Generally, an SMD’s computing
capability is determined by typical resource parameters such as CPU and GPU power,
RAM, battery, signal strength (for data transfers), etc. Here, we considered thirteen criteria
for SMD selection, as shown in Table 6. Out of these, eight are profit criteria, i.e., their
maximized values would be ideal for selection, whereas five are cost criteria, i.e., their
minimized values should be ideal.

Table 6. List of selection criteria.
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Code C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Effect direction (+) (+) (+) (+) (+) (+) (+) (+) (−) (−) (−) (−) (−)

However, depending on specific applications and specific job types, the criteria and
their weights would vary. For example, a CPU-bound job may not use GPU cores, while
some highly computing-intensive jobs (such as image and video analysis, complex scientific
calculations, etc.) would use GPU more than the CPU. Similarly, the RAM size would be a
decisive factor for a data-intensive job that might not be so important for a CPU-intensive
job. Here, we chose the criteria that would, in general and overall, be considered for
selecting an SMD as a computing resource.

4.2. Data Collection

To collect the SMD data to be used in the comparative analysis, we considered a local
MCC scenario at the Data Engineering Lab of the Department of Computer Science &
Engineering at National Institute of Technology, Durgapur. We collected data from the
users’ SMD connected to the Wi-Fi access point deployed at this lab, which is generally
accessed by the institute’s research scholars, the project students, faculty members, and the
technical staff. We developed a logger program using the Python 3.6 environment. The
Python script constantly monitored the wireless network interfaces. Whenever an SMD
gets connected to the access point, the logger program collects the required data and stores
them in a database within the MCC coordinator. All the devices connected to the access
point were identified (UID) using their MAC addresses. The overall MCC setup and data
collection scenario is shown in Figure 3.

In another experiment for local MCC [191], we logged the SMD information for
nearly eight months of several users (whoever connected to the access point during this
period). Among them, we picked the users who were more consistent with high presence
frequency and less sparsity. For this study, we considered such 50 SMDs, selected randomly.
We collected various information related to the users and their SMDs. However, in this
paper, we used only that information required for this experiment. To be specific, here, we
considered a total of thirteen resource parameters that are important in the decision-making
process for selecting an SMD as a suitable resource in MCC, as shown in Table 6. It can be
seen from the table that some resource parameters are fixed, i.e., they would not change
their values in their lifetime (e.g., C1, C2, C3, C4, C6, and C13), while some parameters’
values are changed dynamically (e.g., C5, C7, C8, C9, C10, C11, and C12). We considered



Symmetry 2021, 13, 1713 19 of 51

some instantaneous values of all the parameters and used the same for all experimental
illustrations for the experimental purpose.
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4.3. Experiment Cases

As in this study, we wanted to assess the effect of the number of criteria and alter-
natives in the selection outcome and computational complexity; we considered different
variations of the selection criteria and alternatives for comparison. Accordingly, we gener-
ated four case scenarios, as discussed in the following subsections. Each case has a different
number of alternatives (SMDs) and criteria. The reason behind choosing four datasets of
different sizes is to assess the performance of the MCDM methods under different MCC
scenarios.

4.3.1. Case 1: Full List of Alternatives and Full Criteria Set

This scenario considers the full list of alternatives under comparison (i.e., 50) subject
to the influence of full criteria set consisting of 13 different criteria, as shown in Table 6.
Accordingly, the decision matrix (50 × 13) is given in Table 7.

Table 7. Decision matrix (Case 1).

Profit Criteria Cost Criteria
SMD C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

M1 2.2 2 650 8 895 2700 15 4 92 27 43 45 14
M2 1.5 4 450 4 3831 4000 39 4 16 76 39 40 10
M3 1.5 2 650 6 2694 2700 12 3 44 67 38 40 28
M4 1.3 8 650 8 518 4000 11 5 89 78 42 42 10
M5 1.3 8 650 8 1807 3000 10 4 13 8 31 38 10
M6 1.7 8 450 8 1982 3000 68 5 64 32 32 35 14
M7 2.5 2 400 6 3857 3500 18 1 60 16 38 36 10
M8 2.5 4 624 8 558 4000 56 5 99 87 50 48 10
M9 1.7 2 450 8 1908 2700 57 4 26 4 30 34 28
M10 2.5 2 450 6 1767 4000 24 2 53 93 45 44 10
M11 2.5 2 400 4 2853 4000 94 3 53 47 40 40 10
M12 2.2 2 624 6 3535 2700 24 3 26 67 37 39 28
M13 2.2 8 710 4 1734 3500 50 1 19 63 34 38 28
M14 1.5 8 650 4 2954 3000 59 5 15 3 34 33 10
M15 2.2 8 650 6 1916 3000 11 1 19 77 32 39 14
M16 1.3 2 400 6 870 2700 90 5 44 89 35 43 10
M17 1.5 4 400 4 2911 3500 17 2 18 96 36 47 10
M18 1.7 8 450 6 3876 4000 63 4 4 0 45 42 10
M19 1.3 4 650 6 944 2700 75 1 2 72 30 43 14
M20 1.7 2 450 6 2855 4000 22 5 62 9 32 40 10
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Table 7. Cont.

Profit Criteria Cost Criteria
SMD C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
M21 1.3 4 450 6 2973 3500 18 1 78 92 40 45 14
M22 1.5 8 624 8 3521 4000 22 1 42 44 38 37 10
M23 1.3 4 400 6 1734 3500 84 4 95 24 43 39 28
M24 2.5 2 710 4 3986 3000 16 1 8 57 36 40 28
M25 1.5 4 624 6 2851 3500 31 4 71 2 39 42 10
M26 1.7 4 710 6 2983 3000 50 1 61 58 38 45 10
M27 2.2 2 710 8 1932 4000 87 3 57 21 39 43 14
M28 2.5 2 624 6 972 4000 87 5 77 80 43 46 28
M29 1.3 2 710 6 2579 4000 16 2 69 0 41 40 14
M30 1.3 4 710 6 3537 3500 37 2 4 16 37 37 28
M31 2.5 2 650 4 809 2700 89 5 70 3 41 39 14
M32 1.3 4 450 4 3769 3500 56 2 5 35 33 40 28
M33 1.3 8 400 4 799 3000 39 1 65 47 35 44 10
M34 2.2 4 710 4 1938 4000 17 5 48 11 36 40 28
M35 1.3 8 710 6 2755 3000 92 4 1 48 34 39 14
M36 1.3 2 450 4 2663 2700 30 1 56 46 37 41 10
M37 2.5 8 450 4 1789 2700 12 2 4 15 32 36 14
M38 1.3 4 710 6 759 3500 44 2 66 0 34 35 28
M39 2.2 4 400 4 1748 3000 58 5 99 22 45 44 10
M40 1.3 8 450 8 2690 4000 56 4 22 13 33 34 28
M41 1.5 8 624 8 898 3500 82 4 47 22 34 36 10
M42 2.5 2 450 8 3681 3000 62 5 26 68 35 37 28
M43 1.3 8 624 8 2790 4000 16 3 84 15 37 39 14
M44 1.3 8 400 4 1582 3000 26 4 18 0 32 33 14
M45 2.5 8 650 4 2628 3500 69 4 94 11 42 40 28
M46 2.5 2 400 6 619 3000 52 2 40 52 41 39 14
M47 1.3 2 400 6 2760 2700 69 1 31 38 37 38 10
M48 2.5 8 624 8 1673 2700 29 5 26 7 35 36 28
M49 1.7 4 650 4 1647 3000 48 3 43 0 34 37 10
M50 1.3 8 450 6 1753 4000 29 3 91 64 39 45 28

4.3.2. Case 2: Lesser Number of Alternatives and Full Criteria Set

In this minimized dataset, we assume that only ten SMDs available for crowd comput-
ing (typically in a small-scale MCC). In this case, we shortened the number of alternatives.
Here, the decision-maker would be able to compare the MCDM methods on a limited
number of alternatives for the full list of criteria. For simplicity, we selected one smartphone
model out of each group of five starting from the beginning, i.e., M5, M10, M15, and so on.
The decision matrix (10 × 13) is given in Table 8.

Table 8. Decision matrix (Case 2).

Profit Cost
SMD C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

M1 1.3 8 650 8 1807 3000 10 4 13 8 31 38 10
M10 2.5 2 450 6 1767 4000 24 2 53 93 45 44 10
M15 2.2 8 650 6 1916 3000 11 1 19 77 32 39 14
M20 1.7 2 450 6 2855 4000 22 5 62 9 32 40 10
M25 1.5 4 624 6 2851 3500 31 4 71 2 39 42 10
M30 1.3 4 710 6 3537 3500 37 2 4 16 37 37 28
M35 1.3 8 710 6 2755 3000 92 4 1 48 34 39 14
M40 1.3 8 450 8 2690 4000 56 4 22 13 33 34 28
M45 2.5 8 650 4 2628 3500 69 4 94 11 42 40 28
M50 1.3 8 450 6 1753 4000 29 3 91 64 39 45 28
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4.3.3. Case 3: Total Number of Alternatives and a Smaller Number of Criteria

In a situation, depending on the MCC application requirement, the full criteria set
may not need to be considered. For these cases, only a small number of crucial criteria
may be defined. To represent such a scenario, in this case, we considered a minimized
dataset by eliminated some criteria from the original dataset. We assumed that some
criteria (e.g., CPU and battery temperature and signal strength) could be kept out of the
selection matrix and, if required, could be set as threshold criteria straightforwardly. For
example, suppose the threshold for temperature is set at 40 ◦C. In that case, all the SMDs
having a temperature more than this would be filtered out and would not be considered
for the selection, irrespective of other resource specifications. We also removed information
of GPU, assuming that the tasks are CPU bound only and they do not require to exploit the
power of GPU, i.e., the jobs are sequential and not parallel. It can also be vice versa, i.e.,
we could consider GPU where the MCC job involves mostly parallel processing. Table 9
shows the criteria considered, and in Table 10, the decision matrix (50 × 6) is presented.

Table 9. Minimized selection criteria.
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Code C1 C2 C4 C6 C7 C9

Effect direction (+) (+) (+) (+) (+) (−)

Table 10. Decision matrix (Case 3).

Profit Cost Profit Cost
SMD C1 C2 C4 C6 C7 C9

SMD C1 C2 C4 C6 C7 C9
M1 2.2 2 895 2700 15 92 M26 1.7 4 2983 3000 50 61
M2 1.5 4 3831 4000 39 16 M27 2.2 2 1932 4000 87 57
M3 1.5 2 2694 2700 12 44 M28 2.5 2 972 4000 87 77
M4 1.3 8 518 4000 11 89 M29 1.3 2 2579 4000 16 69
M5 1.3 8 1807 3000 10 13 M30 1.3 4 3537 3500 37 4
M6 1.7 8 1982 3000 68 64 M31 2.5 2 809 2700 89 70
M7 2.5 2 3857 3500 18 60 M32 1.3 4 3769 3500 56 5
M8 2.5 4 558 4000 56 99 M33 1.3 8 799 3000 39 65
M9 1.7 2 1908 2700 57 26 M34 2.2 4 1938 4000 17 48
M10 2.5 2 1767 4000 24 53 M35 1.3 8 2755 3000 92 1
M11 2.5 2 2853 4000 94 53 M36 1.3 2 2663 2700 30 56
M12 2.2 2 3535 2700 24 26 M37 2.5 8 1789 2700 12 4
M13 2.2 8 1734 3500 50 19 M38 1.3 4 759 3500 44 66
M14 1.5 8 2954 3000 59 15 M39 2.2 4 1748 3000 58 99
M15 2.2 8 1916 3000 11 19 M40 1.3 8 2690 4000 56 22
M16 1.3 2 870 2700 90 44 M41 1.5 8 898 3500 82 47
M17 1.5 4 2911 3500 17 18 M42 2.5 2 3681 3000 62 26
M18 1.7 8 3876 4000 63 4 M43 1.3 8 2790 4000 16 84
M19 1.3 4 944 2700 75 2 M44 1.3 8 1582 3000 26 18
M20 1.7 2 2855 4000 22 62 M45 2.5 8 2628 3500 69 94
M21 1.3 4 2973 3500 18 78 M46 2.5 2 619 3000 52 40
M22 1.5 8 3521 4000 22 42 M47 1.3 2 2760 2700 69 31
M23 1.3 4 1734 3500 84 95 M48 2.5 8 1673 2700 29 26
M24 2.5 2 3986 3000 16 8 M49 1.7 4 1647 3000 48 43
M25 1.5 4 2851 3500 31 71 M50 1.3 8 1753 4000 29 91
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4.3.4. Case 4: Minimized Number of Alternatives and Criteria

In this case, we considered the combination of a minimized set of alternatives and
criteria. This scenario considers a limited number of choices and the influence of a limited
number of criteria. We considered the alternatives as selected in Case 2 and the criteria as
listed in Table 9. Hence, in this case, our decision matrix is of dimension 10 × 6, as shown
in Table 11.

Table 11. Decision matrix (Case 4).

Profit Cost Profit Cost
SMD C1 C2 C4 C6 C7 C9

SMD C1 C2 C4 C6 C7 C9
M1 1.3 8 1807 3000 10 13 M30 1.3 4 3537 3500 37 4
M10 2.5 2 1767 4000 24 53 M35 1.3 8 2755 3000 92 1
M15 2.2 8 1916 3000 11 19 M40 1.3 8 2690 4000 56 22
M20 1.7 2 2855 4000 22 62 M45 2.5 8 2628 3500 69 94
M25 1.5 4 2851 3500 31 71 M50 1.3 8 1753 4000 29 91

5. Experiment, Results, and Comparative Analysis

In this section, we present the details of the experiment for the comparative study,
including the results and critical discussion. The experiment focuses on the comparative
ranking for the SMD selection using five distinct MCDM methods and to find their time
complexities under different scenarios by varying the criteria and/or alternative sets.

5.1. Experiment

We applied the entropy method and the five MCDM methods (i.e., EDAS, ARAS,
MABAC, COPRAS, and MARCOS) on four datasets, as discussed in Section 4.3. The
algorithms were implemented using a spreadsheet (MS Excel) as well as through hand-
coded programming (using Java). However, for ranking and sensitivity analysis, we used
the spreadsheet calculation, and to estimate the runtime, we considered the programming
outturn. The details of the programmatical implementation are discussed in Section 5.4.
The aggregate rankings of the SMDs were derived from each MCDM method for each
dataset. We checked the consistencies among the results of the individual MCDM methods
and the final aggregate ranks. We also compared the robustness and stability in the
performance of the MCDM methods applied in this paper. Finally, the actual runtimes of
each method under different scenarios were calculated.

5.2. Results

In this section, we report the details of the experimental results of SMD rankings using
the considered MCDM methods, obtained through the spreadsheet calculation.

Table 12 shows the criteria weights calculated for Case 1 using the Entropy method
where ∑ wj = 1 and Cj represents the criteria, where j = 1, 2, 3, . . . , 13. It is seen that the
weights of the criteria are reasonably distributed. However, based on the values of the
decision matrix, the Entropy method calculates higher weights (>10%) for C1, C2, and C4
while assigning the least weights to C11 and C12.

Table 12. Criteria weights (Case 1).

Criteria
(+) (+) (+) (+) (+) (+) (+) (+) (−) (−) (−) (−) (−)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Hj 0.8436 0.8556 0.8985 0.8862 0.9456 0.8998 0.9178 0.9128 0.9498 0.9552 0.9816 0.9696 0.8996
wj 0.1442 0.1332 0.0936 0.1050 0.0501 0.0924 0.0758 0.0804 0.0463 0.0414 0.0170 0.0281 0.0926

We used these criteria weights to rank the alternatives based on the decision matrix of
Table 7, applying the five MCDM methods considered in this paper. Tables 13–17 present
the rankings of the alternatives based on the final score values as derived by using the five
MCDM algorithms. From Table 13, we observe that considering the average solution point
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as the reference, M19, M14, M36, M41, and M7 are the top performers while proportional
assessment methods such as ARAS and COPRAS respectively yield M36, M14, M26, M19,
M31 and M19, M14, M41, M36, M6 as better performers (see Tables 14 and 16). It is observed
that the top-performing DMUs show reasonable consistency. However, Tables 15 and 17
show that the relative ranking results derived by MABAC and MARCOS are weekly
consistent with previous rankings.

Table 13. Ranking results of EDAS method (Case 1).

SMD SP SN NSP NSN AS Rank

M1 0.137 0.227 0.423 0.256 0.340 35
M2 0.145 0.146 0.446 0.521 0.484 25
M3 0.031 0.269 0.096 0.117 0.106 50
M4 0.251 0.224 0.771 0.266 0.518 21
M5 0.277 0.117 0.852 0.616 0.734 30
M6 0.246 0.057 0.758 0.811 0.785 7
M7 0.165 0.217 0.508 0.289 0.398 5
M8 0.230 0.174 0.708 0.429 0.568 32
M9 0.146 0.188 0.450 0.383 0.416 15
M10 0.115 0.241 0.354 0.211 0.283 44
M11 0.210 0.157 0.648 0.486 0.567 16
M12 0.098 0.225 0.300 0.261 0.281 45
M13 0.195 0.187 0.601 0.386 0.493 23
M14 0.311 0.066 0.957 0.782 0.870 2
M15 0.190 0.170 0.583 0.444 0.514 33
M16 0.168 0.247 0.517 0.189 0.353 22
M17 0.086 0.246 0.265 0.193 0.229 34
M18 0.325 0.030 1.000 0.902 0.951 47
M19 0.132 0.199 0.408 0.346 0.377 1
M20 0.155 0.156 0.476 0.489 0.482 26
M21 0.039 0.272 0.120 0.110 0.115 48
M22 0.233 0.123 0.718 0.597 0.658 11
M23 0.112 0.210 0.344 0.312 0.328 37
M24 0.162 0.305 0.499 0.000 0.250 46
M25 0.132 0.094 0.406 0.692 0.549 41
M26 0.092 0.131 0.283 0.569 0.426 18
M27 0.221 0.100 0.680 0.672 0.676 29
M28 0.209 0.249 0.644 0.184 0.414 10
M29 0.111 0.218 0.343 0.284 0.314 31
M30 0.131 0.164 0.403 0.464 0.433 28
M31 0.251 0.185 0.772 0.392 0.582 14
M32 0.105 0.202 0.324 0.339 0.331 36
M33 0.131 0.236 0.403 0.226 0.315 40
M34 0.156 0.171 0.480 0.440 0.460 27
M35 0.298 0.059 0.919 0.806 0.862 24
M36 0.048 0.283 0.146 0.070 0.108 3
M37 0.238 0.163 0.732 0.465 0.599 49
M38 0.079 0.204 0.243 0.330 0.287 13
M39 0.159 0.159 0.490 0.478 0.484 43
M40 0.259 0.119 0.796 0.610 0.703 8
M41 0.292 0.054 0.897 0.823 0.860 4
M42 0.229 0.197 0.705 0.353 0.529 19
M43 0.214 0.129 0.660 0.577 0.619 12
M44 0.208 0.155 0.639 0.492 0.566 17
M45 0.273 0.145 0.839 0.524 0.682 20
M46 0.094 0.194 0.289 0.365 0.327 9
M47 0.110 0.215 0.339 0.296 0.317 38
M48 0.306 0.119 0.941 0.611 0.776 39
M49 0.107 0.087 0.330 0.716 0.523 6
M50 0.113 0.236 0.347 0.227 0.287 42
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Table 14. Ranking results of ARAS method (Case 1).

SMD Ø ∂ Rank

M1 0.0170 0.4682 38
M2 0.0187 0.5148 29
M3 0.0144 0.3967 49
M4 0.0202 0.5564 18
M5 0.0220 0.6075 19
M6 0.0219 0.6032 9
M7 0.0175 0.4836 10
M8 0.0211 0.5827 33
M9 0.0199 0.5505 12
M10 0.0169 0.4660 39
M11 0.0195 0.5382 20
M12 0.0163 0.4504 42
M13 0.0189 0.5208 26
M14 0.0264 0.7279 2
M15 0.0188 0.5181 13
M16 0.0175 0.4836 27
M17 0.0159 0.4400 34
M18 0.0242 0.6688 45
M19 0.0211 0.5810 4
M20 0.0191 0.5262 24
M21 0.0149 0.4114 48
M22 0.0204 0.5635 16
M23 0.0174 0.4805 36
M24 0.0164 0.4515 41
M25 0.0252 0.6964 47
M26 0.0180 0.4973 3
M27 0.0204 0.5636 30
M28 0.0190 0.5245 15
M29 0.0151 0.4173 25
M30 0.0194 0.5356 22
M31 0.0232 0.6390 5
M32 0.0176 0.4860 32
M33 0.0166 0.4591 40
M34 0.0187 0.5148 28
M35 0.0314 0.8678 23
M36 0.0139 0.3845 1
M37 0.0209 0.5777 50
M38 0.0153 0.4226 14
M39 0.0191 0.5271 46
M40 0.0212 0.5859 11
M41 0.0228 0.6292 7
M42 0.0194 0.5359 21
M43 0.0203 0.5616 17
M44 0.0176 0.4866 31
M45 0.0222 0.6122 35
M46 0.0161 0.4455 8
M47 0.0160 0.4421 43
M48 0.0230 0.6335 44
M49 0.0174 0.4815 6
M50 0.0173 0.4788 37
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Table 15. Ranking results of MABAC method (Case 1).

SMD Sum (Si) Rank

M1 0.03195 27
M2 0.03147 28
M3 −0.15444 49
M4 0.16694 13
M5 0.17633 36
M6 0.18871 10
M7 0.04362 8
M8 0.22907 25
M9 −0.03533 3
M10 0.03880 26
M11 0.10172 16
M12 −0.04397 39
M13 0.08626 20
M14 0.18429 9
M15 0.11832 41
M16 −0.08972 15
M17 −0.11263 43
M18 0.24866 45
M19 −0.05184 2
M20 0.06734 24
M21 −0.13421 48
M22 0.20566 6
M23 −0.08945 42
M24 −0.04221 37
M25 0.08176 33
M26 0.03081 22
M27 0.22863 30
M28 0.09664 5
M29 0.00047 17
M30 0.00290 32
M31 0.08230 21
M32 −0.11850 46
M33 −0.10883 44
M34 0.08986 19
M35 0.19310 31
M36 −0.22082 7
M37 0.07870 50
M38 −0.04703 23
M39 0.00801 40
M40 0.14808 14
M41 0.25900 1
M42 0.09494 18
M43 0.17503 11
M44 −0.00397 34
M45 0.17100 29
M46 −0.02276 12
M47 −0.12598 35
M48 0.22869 47
M49 0.03112 4
M50 −0.04263 38
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Table 16. Ranking results of COPRAS method (Case 1).

SMD Q U Rank

M1 0.0179 64.9117 37
M2 0.0197 71.0934 27
M3 0.0155 56.0973 48
M4 0.0204 73.9355 21
M5 0.0245 88.6082 31
M6 0.0234 84.7260 5
M7 0.0188 68.0132 6
M8 0.0213 76.9171 32
M9 0.0188 68.0153 15
M10 0.0173 62.4978 45
M11 0.0207 74.9901 18
M12 0.0175 63.3945 43
M13 0.0201 72.7658 22
M14 0.0265 95.7698 2
M15 0.0200 72.5035 35
M16 0.0181 65.5115 24
M17 0.0165 59.5152 36
M18 0.0276 100.0000 47
M19 0.0183 66.3093 1
M20 0.0199 71.8945 25
M21 0.0155 56.0524 49
M22 0.0219 79.3701 12
M23 0.0184 66.4712 34
M24 0.0170 61.4502 46
M25 0.0206 74.4798 41
M26 0.0189 68.2442 20
M27 0.0221 79.8561 30
M28 0.0201 72.7628 10
M29 0.0176 63.5321 23
M30 0.0190 68.7025 29
M31 0.0210 75.9422 16
M32 0.0178 64.2474 39
M33 0.0175 63.4732 42
M34 0.0195 70.4855 28
M35 0.0246 89.1578 26
M36 0.0149 54.0259 4
M37 0.0220 79.7600 50
M38 0.0173 62.5282 11
M39 0.0197 71.0975 44
M40 0.0225 81.2178 9
M41 0.0247 89.3269 3
M42 0.0207 74.8716 19
M43 0.0214 77.2569 14
M44 0.0217 78.6526 13
M45 0.0227 82.2271 17
M46 0.0176 63.8470 8
M47 0.0178 64.3700 40
M48 0.0234 84.6420 38
M49 0.0209 75.5957 7
M50 0.0184 66.4773 33
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Table 17. Ranking results of MARCOS method (Case 1).

SMD f(Ki
−) f(Ki

+) f(Ki) Rank

M1 0.22525 0.77475 0.56639 21
M2 0.22525 0.77475 0.44928 36
M3 0.22525 0.77475 0.46898 34
M4 0.22525 0.77475 0.71421 8
M5 0.22525 0.77475 0.52483 33
M6 0.22525 0.77475 0.66153 27
M7 0.22525 0.77475 0.43151 14
M8 0.22525 0.77475 0.85395 40
M9 0.22525 0.77475 0.48326 3
M10 0.22525 0.77475 0.54869 23
M11 0.22525 0.77475 0.54848 24
M12 0.22525 0.77475 0.57561 19
M13 0.22525 0.77475 0.71049 9
M14 0.22525 0.77475 0.51506 29
M15 0.22525 0.77475 0.58988 44
M16 0.22525 0.77475 0.35342 18
M17 0.22525 0.77475 0.32342 45
M18 0.22525 0.77475 0.64073 47
M19 0.22525 0.77475 0.37309 16
M20 0.22525 0.77475 0.46101 35
M21 0.22525 0.77475 0.41076 42
M22 0.22525 0.77475 0.64097 15
M23 0.22525 0.77475 0.56692 20
M24 0.22525 0.77475 0.54920 22
M25 0.22525 0.77475 0.50493 37
M26 0.22525 0.77475 0.50176 30
M27 0.22525 0.77475 0.74105 31
M28 0.22525 0.77475 0.86193 5
M29 0.22525 0.77475 0.44699 2
M30 0.22525 0.77475 0.54493 26
M31 0.22525 0.77475 0.54586 25
M32 0.22525 0.77475 0.42421 41
M33 0.22525 0.77475 0.31499 48
M34 0.22525 0.77475 0.70693 10
M35 0.22525 0.77475 0.63373 32
M36 0.22525 0.77475 0.15851 17
M37 0.22525 0.77475 0.44642 50
M38 0.22525 0.77475 0.52343 38
M39 0.22525 0.77475 0.48990 28
M40 0.22525 0.77475 0.71645 7
M41 0.22525 0.77475 0.67559 13
M42 0.22525 0.77475 0.73176 6
M43 0.22525 0.77475 0.67850 12
M44 0.22525 0.77475 0.33304 46
M45 0.22525 0.77475 0.87019 43
M46 0.22525 0.77475 0.43541 1
M47 0.22525 0.77475 0.22286 39
M48 0.22525 0.77475 0.82558 49
M49 0.22525 0.77475 0.37653 4
M50 0.22525 0.77475 0.67977 11

To find out the aggregate ranking, we used the final score values of the alternatives
as obtained using different algorithms and applied the SAW method [192] for objective
evaluation as adopted in [159]. Table 18 exhibits the relative positioning of the alternatives
by different MCDM methods and their aggregate ranks derived by using SAW. In this
context, Table 19 shows the findings of the rank correlation tests among the results obtained
by using different methods and the final rank obtained by SAW. For this, we derived the
following two correlation coefficients:
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Table 18. Comparative analysis of the rankings by different MCDM methods (Case 1).

SMD
Ranking Results Final

Rank
(SAW)EDAS ARAS MABAC COPRAS MARCOS

M1 35 38 27 37 21 33
M2 25 29 28 27 36 27
M3 50 49 49 48 34 48
M4 21 18 13 21 8 14
M5 30 19 36 31 33 31
M6 7 9 10 5 27 10
M7 5 10 8 6 14 7
M8 32 33 25 32 40 32
M9 15 12 3 15 3 8
M10 44 39 26 45 23 35
M11 16 20 16 18 24 21
M12 45 42 39 43 19 38
M13 23 26 20 22 9 20
M14 2 2 9 2 29 4
M15 33 13 41 35 44 36
M16 22 27 15 24 18 22
M17 34 34 43 36 45 43
M18 47 45 45 47 47 47
M19 1 4 2 1 16 1
M20 26 24 24 25 35 24
M21 48 48 48 49 42 49
M22 11 16 6 12 15 12
M23 37 36 42 34 20 37
M24 46 41 37 46 22 40
M25 41 47 33 41 37 41
M26 18 3 22 20 30 16
M27 29 30 30 30 31 30
M28 10 15 5 10 5 9
M29 31 25 17 23 2 18
M30 28 22 32 29 26 26
M31 14 5 21 16 25 15
M32 36 32 46 39 41 44
M33 40 40 44 42 48 45
M34 27 28 19 28 10 23
M35 24 23 31 26 32 25
M36 3 1 7 4 17 2
M37 49 50 50 50 50 50
M38 13 14 23 11 38 19
M39 43 46 40 44 28 42
M40 8 11 14 9 7 11
M41 4 7 1 3 13 3
M42 19 21 18 19 6 17
M43 12 17 11 14 12 13
M44 17 31 34 13 46 29
M45 20 35 29 17 43 28
M46 9 8 12 8 1 6
M47 38 43 35 40 39 39
M48 39 44 47 38 49 46
M49 6 6 4 7 4 5
M50 42 37 38 33 11 34
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Table 19. Correlation test I (Case 1).

Coefficient Final Rank EDAS Rank ARAS Rank MABAC Rank COPRAS Rank MARCOS
Rank

Kendall’s tau SAW_Rank 0.817 ** 0.778 ** 0.829 ** 0.830 ** 0.510 **
Spearman’s rho SAW_Rank 0.947 ** 0.917 ** 0.960 ** 0.951 ** 0.704 **

** Correlation is significant at the 0.01 level (2-tailed).

Kendall’s τ: Let, {(a1, b1), (a2, b2), . . . , (an, bn)} is a set of observations for two random
variables A and B where all ai and bi (i = 1, 2, . . . , n) values are unique. Then, Kendall’s τ
is calculated as follows:

τ =
(No. o f concordent pairs)− (No. o f discordent pairs)(

n
2

) (46)

Spearman’s ρ: Any pair (ai, bi) and
(
aj, bj

)
where i < j is said to be concordant if

either both ai > aj and bi > bj or ai < aj and bi < bj hold good. The Spearman’s ρ is
calculated as follows:

ρ = 1−
6 ∑ d2

i
n (n2 − 1)

(47)

here, di is the difference between two ranks of each observation, and n is the number of
observations.

The aggregated final rank in terms of consistency is: MABAC > COPRAS > EDAS >
ARAS > MARCOS. Similarly, we derived the ranking of alternatives subject to the influence
of the criteria for the other cases (Case 2 to 4). Tables 20–22 show the criteria weights for
Case 2–4 as derived from the performance values of the alternatives subject to influences of
the criteria involved. In Case 2, we used the full set of criteria but a reduced number of
alternatives, while in Case 3, we used the full set of alternatives subject to a reduced set of
criteria. In Case 4, we considered a reduced set for both alternatives and criteria. It may
be noted from Table 20 that C1, C2, and C13 obtain higher weights (more than 10%) while
C4 and C8 are holding the least weight. It suggests that when we reduce the number of
alternatives, there is a change in the derived criteria weights (see Tables 12 and 20). The
same phenomenon is observed when we compared the derived criteria weights for the
reduced set of criteria (for Cases 3 and 4, see Tables 21 and 22).

Table 20. Criteria weights (Case 2).

Criteria
(+) (+) (+) (+) (+) (+) (+) (+) (−) (−) (−) (−) (−)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Hj 0.6296 0.8716 0.7732 0.9319 0.8127 0.8225 0.8202 0.9197 0.8744 0.9120 0.9181 0.9015 0.7753
wj 0.1818 0.0630 0.1113 0.0334 0.0919 0.0871 0.0882 0.0394 0.0617 0.0432 0.0402 0.0484 0.1103

Table 21. Criteria weights (Case 3).

Criteria
(+) (+) (+) (+) (+) (−)

C1 C2 C4 C6 C7 C9

Hj 0.8436 0.8556 0.9456 0.8998 0.9178 0.9498
wj 0.2660 0.2457 0.0925 0.1705 0.1398 0.0854
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Table 22. Criteria weights (Case 4).

Criteria
(+) (+) (+) (+) (+) (−)

C1 C2 C4 C6 C7 C9

Hj 0.6296 0.8716 0.8127 0.8225 0.8202 0.8744
wj 0.3169 0.1098 0.1602 0.1519 0.1538 0.1075

Tables 23–25 show the alternatives’ comparative ranking under Case 2–4, respec-
tively. After obtaining the ranking of the alternatives by various algorithms, we found the
aggregate rank by using the SAW method based on the appraisal scores.

Table 23. Comparative analysis of the ranking by different MCDM methods (Case 2).

SMD
Comparative Ranking Final

Rank
(SAW)EDAS ARAS MABAC COPRAS MARCOS

M1 3 5 6 2 6 4
M10 9 8 9 9 5 9
M15 8 9 3 8 7 7
M20 7 4 4 6 4 5
M25 5 2 5 5 10 6
M30 6 7 8 7 8 8
M35 1 1 1 1 3 1
M40 4 6 7 4 1 2
M45 2 3 2 3 9 3
M50 10 10 10 10 2 10

Table 24. Comparative analysis of the ranking by different MCDM methods (Case 3).

SMD
Ranking Results Final

Rank
(SAW)EDAS ARAS MABAC COPRAS MARCOS

M1 50 48 46 48 42 50
M2 16 23 21 23 4 13
M3 48 50 49 50 22 46
M4 41 34 29 34 50 44
M5 40 42 44 42 32 43
M6 20 27 32 26 34 29
M7 10 9 18 11 25 15
M8 32 33 20 33 3 18
M9 26 20 9 20 48 31
M10 38 36 19 36 35 33
M11 11 12 4 14 13 7
M12 36 40 37 40 8 23
M13 4 6 3 6 30 4
M14 5 7 15 7 10 6
M15 24 4 41 3 44 30
M16 13 16 11 16 26 16
M17 43 44 48 43 46 49
M18 34 39 33 37 14 28
M19 1 2 2 2 2 2
M20 44 45 35 45 18 35
M21 46 43 42 44 12 39
M22 12 14 8 15 7 5
M23 37 30 40 30 37 36
M24 22 24 24 24 1 14
M25 49 47 45 47 24 45
M26 42 38 38 39 17 34
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Table 24. Cont.

SMD
Ranking Results Final

Rank
(SAW)EDAS ARAS MABAC COPRAS MARCOS

M27 30 31 34 31 11 22
M28 17 19 12 18 29 21
M29 19 18 10 19 40 24
M30 21 15 31 12 9 17
M31 28 28 27 28 43 37
M32 15 13 26 9 6 11
M33 27 29 36 29 45 40
M34 29 32 16 32 27 26
M35 31 26 25 27 33 32
M36 2 1 14 1 19 1
M37 47 49 50 49 23 47
M38 8 5 6 4 28 9
M39 45 46 43 46 47 48
M40 6 8 7 8 20 8
M41 9 10 13 10 41 19
M42 14 17 17 17 5 10
M43 23 21 22 21 16 20
M44 18 25 30 25 39 27
M45 33 35 39 35 38 38
M46 3 3 1 5 15 3
M47 35 37 28 38 49 42
M48 39 41 47 41 21 41
M49 7 11 5 13 31 12
M50 25 22 23 22 36 25

Table 25. Comparative analysis of the ranking by different MCDM methods (Case 4).

SMD
Comparative Ranking Final

Rank
(SAW)EDAS ARAS MABAC COPRAS MARCOS

M1 9 10 10 10 8 10
M10 6 5 2 5 2 3
M15 5 6 5 6 3 6
M20 7 8 7 8 10 8
M25 8 7 8 7 7 7
M30 4 4 6 3 4 4
M35 1 1 4 1 1 1
M40 3 3 3 4 9 5
M45 2 2 1 2 5 2
M50 10 9 9 9 6 9

Now, for comparative analysis of various MCDM methods, it is important to see
the consistency of their results with the final preferential order. Hence, we performed a
non-parametric rank correlation test. Table 19 for Case 1 and Tables 26–28 for Case 2–4
exhibit the results of correlation tests. From Table 26, we find that COPRAS > EDAS >
ARAS > MABAC (MARCOS shows non-consistency with the final ranking). Table 27
indicates that EDAS > ARAS > COPRAS > MABAC > MARCOS, while from Table 28, we
trace that COPRAS > ARAS > EDAS > MABAC > MARCOS in terms of consistency of their
individual results with final ranking order as obtained by using SAW.
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Table 26. Correlation test II (Case 2).

Coefficient Final Rank EDAS Rank ARAS Rank MABAC Rank COPRAS Rank MARCOS
Rank

Kendall’s tau SAW_Rank 0.778 ** 0.556 * 0.556 * 0.778 ** 0.067
Spearman’s rho SAW_Rank 0.903 ** 0.758 * 0.709 * 0.927 ** 0.139

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

Table 27. Correlation test III (Case 3).

Coefficient Final Rank EDAS Rank ARAS Rank MABAC Rank COPRAS Rank MARCOS
Rank

Kendall’s tau SAW_Rank 0.763 ** 0.701 ** 0.659 ** 0.700 ** 0.407 **
Spearman’s rho SAW_Rank 0.917 ** 0.870 ** 0.840 ** 0.866 ** 0.585 **

** Correlation is significant at the 0.01 level (2-tailed).

Table 28. Correlation test IV (Case 4).

Coefficient Final Rank EDAS Rank ARAS Rank MABAC Rank COPRAS Rank MARCOS
Rank

Kendall’s tau SAW_Rank 0.733 ** 0.867 ** 0.733 ** 0.911 ** 0.511 *
Spearman’s rho SAW_Rank 0.891 ** 0.952 ** 0.867 ** 0.964 ** 0.685 *

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

5.3. Sensitivity Analysis

Some of the essential requirements for MCDM-based analysis are the rationality, stabil-
ity, and reliability of the rankings [193]. There are several variations in the given conditions,
for instance, change in the weights of the criteria, MCDM algorithms and normalization
methods, and deletion/inclusion of the alternatives that often lead to instability of the
results [171,194,195]. Sensitivity analysis is conducted to experimentally check the robust-
ness of the results obtained using MCDM based analysis [196,197]. A particular MCDM
method shows stability in the result if it can withstand variations in the given conditions,
such as fluctuations in the criteria weights.

For the sensitivity analysis, we used the scheme followed in [198], which simulates
different experimental scenarios by interchanging criteria weights. Tables 29–32 present
the experimentations vis-à-vis the four cases used in this study. Here, the numbers in italics
denote that the cell values of that particular column interchange their weights [199–201], in
each experiment. In this scheme, we attempt to interchange weights of optimum and sub-
optimum criteria, beneficial and cost type of criteria to simulate various possible scenarios
for examining the stability of the ranking results obtained by various MCDM methods.

Figure 4 depicts the comparative variations in the rankings of the alternatives as
derived by using five MCDM algorithms under different experimental set up for Case 1.
We observe that all five considered MCDM methods provide reasonable stability in the
solution while COPRAS and ARAS perform comparatively better. Table 33 highlights the
correlation of the actual ranking with those obtained by changing the criteria weights (see
Table 29). In the same way, we carried out the sensitivity analysis for all MCDM methods
for Cases 2 to 4. Tables 34–36 show the results of the correlation test as we do for Case 1.
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Table 29. Interchange of criteria weights for sensitivity analysis (Case 1).

Criteria
Criteria Weights under Different Experimental Cases

Original Exp1 Exp2 Exp3 Exp4

C1 0.1441964 0.0169798 0.0501301 0.1441964 0.1441964
C2 0.1331763 0.1331763 0.1331763 0.1331763 0.1331763
C3 0.0936409 0.0936409 0.0936409 0.0936409 0.0936409
C4 0.1049768 0.1049768 0.1049768 0.1049768 0.1049768
C5 0.0501301 0.0501301 0.1441964 0.0501301 0.0925919
C6 0.0924398 0.0924398 0.0924398 0.0924398 0.0924398
C7 0.0757997 0.0757997 0.0757997 0.0757997 0.0757997
C8 0.0803856 0.0803856 0.0803856 0.0803856 0.0803856
C9 0.0462696 0.0462696 0.0462696 0.0462696 0.0462696
C10 0.0413577 0.0413577 0.0413577 0.0413577 0.0413577
C11 0.0169798 0.1441964 0.0169798 0.0925919 0.0169798
C12 0.0280555 0.0280555 0.0280555 0.0280555 0.0280555
C13 0.0925919 0.0925919 0.0925919 0.0169798 0.0501301

Table 30. Interchange of criteria weights for sensitivity analysis (Case 2).

Criteria
Criteria Weights under Different Experimental Cases

Original Exp1 Exp2 Exp3 Exp4

C1 0.1818299 0.1112996 0.0334131 0.1102984 0.1818299
C2 0.063014 0.063014 0.063014 0.063014 0.063014
C3 0.1112996 0.1818299 0.1112996 0.1112996 0.1112996
C4 0.0334131 0.0334131 0.1818299 0.0334131 0.0334131
C5 0.0919374 0.0919374 0.0919374 0.0919374 0.0919374
C6 0.0871434 0.0871434 0.0871434 0.0871434 0.0871434
C7 0.0882454 0.0882454 0.0882454 0.0882454 0.0882454
C8 0.0394249 0.0394249 0.0394249 0.0394249 0.0394249
C9 0.061668 0.061668 0.061668 0.061668 0.061668
C10 0.0431881 0.0431881 0.0431881 0.0431881 0.0431881
C11 0.0401855 0.0401855 0.0401855 0.0401855 0.1102984
C12 0.0483521 0.0483521 0.0483521 0.0483521 0.0483521
C13 0.1102984 0.1102984 0.1102984 0.1818299 0.0401855

Table 31. Interchange of criteria weights for sensitivity analysis (Case 3).

Criteria
Criteria Weights under Different Experimental Cases

Original Exp1 Exp2 Exp3 Exp4

C1 0.2660 0.0854 0.0925 0.2660 0.2660
C2 0.2457 0.2457 0.2457 0.2457 0.1705
C4 0.0925 0.0925 0.2660 0.0854 0.0925
C6 0.1705 0.1705 0.1705 0.1705 0.2457
C7 0.1398 0.1398 0.1398 0.1398 0.1398
C9 0.0854 0.2660 0.0854 0.0925 0.0854

Table 32. Interchange of criteria weights for sensitivity analysis (Case 4).

Criteria
Criteria Weights under Different Experimental Cases

Original Exp1 Exp2 Exp3 Exp4

C1 0.3168661 0.1074659 0.1098115 0.3168661 0.3168661
C2 0.1098115 0.1098115 0.3168661 0.1074659 0.1098115
C4 0.1602149 0.1602149 0.1602149 0.1602149 0.1518606
C6 0.1518606 0.1518606 0.1518606 0.1518606 0.1602149
C7 0.153781 0.153781 0.153781 0.153781 0.153781
C9 0.1074659 0.3168661 0.1074659 0.1098115 0.1074659



Symmetry 2021, 13, 1713 34 of 51Symmetry 2021, 13, x FOR PEER REVIEW 34 of 51 
 

 
Figure 4. Pictorial representation of sensitivity analysis (Case 1) (a) EDAS, (b) COPRAS, (c) ARAS, 
(d) MARCOS, (e) MABAC. 

  

Figure 4. Pictorial representation of sensitivity analysis (Case 1) (a) EDAS, (b) COPRAS, (c) ARAS, (d) MARCOS,
(e) MABAC.



Symmetry 2021, 13, 1713 35 of 51

Table 33. Correlation test V (sensitivity analysis—Case 1).

Coefficient Method Scenario Exp1 Exp2 Exp3 Exp4

Kendall’s tau

EDAS

Original

0.789 ** 0.729 ** 0.799 ** 0.824 **
ARAS 0.812 ** 0.781 ** 0.868 ** 0.896 **

MABAC 0.616 ** 0.749 ** 0.780 ** 0.882 **
COPRAS 0.799 ** 0.755 ** 0.827 ** 0.874 **
MARCOS 0.734 ** 0.752 ** 0.796 ** 0.881 **

Spearman’s rho

EDAS

Original

0.932 ** 0.892 ** 0.938 ** 0.952 **
ARAS 0.948 ** 0.936 ** 0.971 ** 0.981 **

MABAC 0.816 ** 0.914 ** 0.935 ** 0.979 **
COPRAS 0.939 ** 0.910 ** 0.950 ** 0.973 **
MARCOS 0.905 ** 0.914 ** 0.945 ** 0.974 **

** Correlation is significant at the 0.01 level (2-tailed).

Table 34. Correlation test VI (sensitivity analysis—Case 2).

Coefficient Method Scenario Exp1 Exp2 Exp3 Exp4

Kendall’s tau

EDAS

Original

0.911 ** 0.733 ** 0.689 ** 0.867 **
ARAS 0.778 ** 0.689 ** 0.956 ** 0.733 **

MABAC 0.556 * 0.200 0.556 * 0.600 *
COPRAS 0.911 ** 0.689 ** 0.867 ** 0.778 **
MARCOS 0.511 * 0.111 0.556 * 0.867 **

Spearman’s rho

EDAS

Original

0.976 ** 0.806 ** 0.806 ** 0.939 **
ARAS 0.903 ** 0.806 ** 0.988 ** 0.879 **

MABAC 0.709 * 0.370 0.758 * 0.745 *
COPRAS 0.964 ** 0.830 ** 0.939 ** 0.915 **
MARCOS 0.673 * 0.212 0.661 * 0.964 **

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

Table 35. Correlation test VII (sensitivity analysis—Case 3).

Coefficient Method Scenario Exp1 Exp2 Exp3 Exp4

Kendall’s tau

EDAS

Original

0.665 ** 0.685 ** 0.980 ** 0.863 **
ARAS 0.767 ** 0.706 ** 0.985 ** 0.878 **

MABAC 0.615 ** 0.628 ** 0.976 ** 0.830 **
COPRAS 0.778 ** 0.719 ** 0.982 ** 0.879 **
MARCOS 0.946 ** 0.956 ** 1.000 ** 0.979 **

Spearman’s rho

EDAS

Original

0.844 ** 0.863 ** 0.998 ** 0.964 **
ARAS 0.923 ** 0.870 ** 0.999 ** 0.974 **

MABAC 0.799 ** 0.811 ** 0.998 ** 0.956 **
COPRAS 0.926 ** 0.880 ** 0.998 ** 0.974 **
MARCOS 0.992 ** 0.994 ** 1.000 ** 0.998 **

** Correlation is significant at the 0.01 level (2-tailed).

5.4. Time Complexity Analysis

This section reports the time complexity analysis and the runtimes of the five MCDM
methods considered in this study, as summarized in Table 37. All the methods have a
worst-case time complexity of O(mn), where m is the number of alternatives and n is the
number of considered criteria. However, EDAS, MABAC, and COPRAS exhibit Ω(m + n)
as the best-case time complexity if the decision matrix is already prepared. But if the matrix
is constructed in runtime, the best-case time complexity for these methods also would be
Ω(mn).
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Table 36. Correlation test VIII (sensitivity analysis—Case 4).

Coefficient Method Scenario Exp1 Exp2 Exp3 Exp4

Kendall’s tau

EDAS

Original

0.600 * 0.600 * 1.000 ** 1.000 **
ARAS 0.600 * 0.556 * 1.000 ** 1.000 **

MABAC 0.556 * 0.289 1.000 ** 1.000 **
COPRAS 0.556 * 0.511 * 1.000 ** 1.000 **
MARCOS 1.000 ** 0.867 ** 1.000 ** 1.000 **

Spearman’s rho

EDAS

Original

0.709 * 0.770 ** 1.000 ** 1.000 **
ARAS 0.745 * 0.685 * 1.000 ** 1.000 **

MABAC 0.709 * 0.345 1.000 ** 1.000 **
COPRAS 0.721 * 0.673 * 1.000 ** 1.000 **
MARCOS 1.000 ** 0.952 ** 1.000 ** 1.000 **

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

Table 37. Time complexity and runtimes for each MCDM method under various considerations.

Method

Time Complexity

Case

Average Runtime on Laptop
(Milliseconds)

Average Runtime on
Smartphone

(Milliseconds)

Best Case Average
Case

Worst
Case

Data in
Memory

Data in
Secondary

Storage

Data in
Memory

Data in
Phone

Storage

Entropy
(criteria
weight

calculation)

Ω(m + n) θ(mn) O(mn)

Case 1 0.28391 135.1061 0.69546 1.16032
Case 2 0.08841 125.0397 0.17581 0.36809
Case 3 0.12917 124.2696 0.34542 0.73407
Case 4 0.06234 83.45512 0.09523 0.28998

EDAS Ω(m + n) θ(mn) O(mn)

Case 1 0.36754 124.50158 2.02136 2.46483
Case 2 0.08993 65.93222 0.42106 0.63313
Case 3 0.16748 67.90012 0.97938 1.36073
Case 4 0.06874 54.86296 0.22848 0.39752

ARAS Ω(mn) θ(mn) O(mn)

Case 1 0.30266 139.12975 0.87001 1.32013
Case 2 0.06918 65.64650 0.22711 0.41631
Case 3 0.08789 62.64661 0.44734 0.80465
Case 4 0.04303 49.42035 0.12672 0.30301

MABAC Ω(m + n) θ(mn) O(mn)

Case 1 0.27496 118.52908 1.03990 1.50524
Case 2 0.0904 64.17373 0.26752 0.45166
Case 3 0.11870 66.00892 0.53094 0.90594
Case 4 0.07156 52.62466 0.14914 0.34052

COPRAS Ω(m + n) θ(mn) O(mn)

Case 1 0.12264 122.95953 0.61347 1.05754
Case 2 0.04076 64.35327 0.13521 0.34481
Case 3 0.05597 64.29061 0.32844 0.69645
Case 4 0.03058 50.04589 0.08334 0.25656

MARCOS Ω(mn) θ(mn) O(mn)

Case 1 0.30410 127.74245 0.85634 1.29126
Case 2 0.06955 64.84879 0.21106 0.40832
Case 3 0.09898 64.22248 0.44186 0.81885
Case 4 0.04487 53.29281 0.12259 0.29045

Depending on the MCC application and architecture, the MCC coordinator where
the SMD selection program would run might be a computer or an SMD. That is why, to
check the performance of the MCDM methods, we checked the runtime of each of them by
running on a laptop and a smartphone.

To run the MCDM algorithms on the laptop, we used Java (version 16) as the pro-
gramming language and MS Excel (version 2019) as the database. The programs were
executed on a laptop with AMD Ryzen 3 dual-core CPU (2.6 GHz, 64 bit) and 4 GB of RAM,
operating on Windows 10 (64-bit). To run the programs on a smartphone, we designed an



Symmetry 2021, 13, 1713 37 of 51

app that could accommodate and run Java program scripts; and in this case, we used a text
file to store the decision matrix. The programs were executed on an SoC with 1.95 GHz
Snapdragon 439 (12 nm), octa-core (4 × 1.95 GHz Cortex-A53 and 4 × 1.45 GHz Cortex
A53) CPU, and Adreno 505 GPU, with 3 GB of RAM, operating on Android 11.

The MCDM module may get the decision matrix either from the secondary storage
or primary memory. We generally might store the database on the secondary storage
when we need to maintain the log for future analysis and prediction. But, updating the
SMD resource values in the decision matrix on the secondary storage and retrieving them
frequently for decision making involves considerable overhead. Alternatively, the decision
matrix could be updated dynamically where the SMD resource values come directly to the
coordinator’s memory. Compared to secondary storage, accessing memory takes negligible
time.

Since in MCC, the SMDs are mobile, the available SMDs (alternatives) continuously
change. Existing SMDs may leave, and new SMDs may join the network randomly. Also,
the status of the variable resources (e.g., C5, C7, C8, C9, C10, C11) of each SMD varies
time-to-time depending on its usage. In fact, in a typical centralized MCC, a data logging
program always runs in the background to track the values of these recourses. This leads
to change the decision matrix continuously. And based on the changed decision matrix,
the SMD ranking also changes. It is desirable to store the decision matrix in the memory in
such a dynamic scenario as long as resource selection is required.

Therefore, to have a comparative analysis in this aspect, we calculated the runtime
considering both the scenarios: (a) when the dataset was fetched from the secondary storage
and (b) when it was preloaded on RAM. The execution time was calculated using a timer (a
Java function) in the program. The timer counted the time from data fetching (either from
RAM or storage) to completion of the program execution. We executed each algorithm
twenty times and took the average runtime. To eliminate the outliers, we discarded the
particular execution instances that were abnormally protracted.

From Table 37, it can be observed that the average runtimes of the MCDM programs,
when they are executed on a laptop, are significantly higher when the decision matrix
is in the secondary storage as compared to when it is in memory. However, when these
programs are executed on the smartphone, this difference is not that high. This is because
the typical storage used in smartphones is much faster than the hard disks of laptops.
Another point is worth mentioning that we used text files as a database to execute the
programs on the smartphone in our study. If it were other traditional database applications,
the time taken to fetch the dataset from the phone storage would probably be much
higher. In that case, the difference between the dataset in memory and storage would be
significantly larger.

In our comparative analysis, we executed each algorithm ten times for each case.
The average runtimes of ten executions were noted. The runtime of any program varies
depending on several internal and external factors. That is why we took the average of
ten execution instances. However, it is observed that the runtime variations are much
higher on a laptop than on a smartphone. This is because the number of background
processes typically run on laptops is significantly higher than on smartphones. Also, the
resource scheduling in a laptop is more complex than in a smartphone. Nevertheless,
the variations in each execution could be more neutralized if the number of considered
execution instances is increased.
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6. Discussion

In this section, we discuss the experimental findings and our observations. We also
present a critical discussion on the judiciousness and practicability of this work and the
findings.

6.1. Findings and Observations

In this section, we discuss the observations on the findings obtained through data
analysis. As already mentioned, we have four conditions:

• Condition 1: Full set (Case 1: complete set of 13 criteria and 50 alternatives)
• Condition 2: Reduction in the number of alternatives keeping the criteria set unaltered

(Case 2: reduced set of 10 alternatives and complete set of 13 criteria)
• Condition 3: Variation in the criteria set (Case 3: reduced set of 6 criteria) keeping the

alternative set the same (i.e., 50)
• Condition 4: Variations in both alternative and criteria sets (Case 4: reduced set of

10 alternatives and 6 criteria).

For all conditions, we noticed some variations in the relative ranking orders. By
further introspecting the results obtained from different methods and their association
with the final ranking (obtained by using SAW), we found that for Case 1, MABAC and
COPRAS are more consistent. For Case 2, COPRAS and EDAS outperformed others in
terms of consistency with the final ranking. For Case 3, we observed that EDAS and ARAS
showed better consistency while COPRAS performed reasonably well. For Case 4, we
found that COPRAS and ARAS showed relatively better consistency with the final ranking.
Therefore, the first level inference advocates in favor of COPRAS for all conditions under
consideration.

Moving further, we checked for stability in the results. We performed a sensitivity
analysis for all methods under all conditions, as demonstrated in Section 5.3. Here also, we
noticed mixed performance. However, COPRAS shows reasonably stable results under all
conditions given the variations in the criteria weights except Case 4.

Therefore, it may be concluded that given our problem statement and experimental
setup, COPRAS has performed comparatively well under all case scenarios, while ARAS
being its nearest competitor in this aspect. For both methods, the procedural steps are
less in number, simple ratio-based or proportional approach is followed, i.e., no need to
identify anti-ideal and ideal solutions or calculate distance. Therefore, the result does not
show any aberrations. It may, however, be interesting to examining the performance of
the algorithms when criteria weights are predefined, i.e., not depending on the decision
matrix.

We further investigated the time complexities of the MCDM algorithms used in this
paper to find out the most time-efficient one. All the considered MCDM methods perform
equally in this aspect, though the best-case time complexity for EDAS, MABAC, and
COPRAS is better than others. Figures 5–8 graphically present the case-wise comparisons
of the runtimes of each MCDM method for all the scenarios. Our experiment observed that
the COPRAS method exhibits the most petite runtime for each dataset (cases) for all the
considered scenarios, i.e., whether the dataset is in the secondary storage or memory or the
program is run on a laptop or smartphone. Specifically, considering the average runtime
for all the cases and scenarios, the ranking of the MCDM methods as per their runtime (RT)
is: RTCOPRAS < RTMARCOS < RTARAS < RTMABAC < RTEDAS.
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Figure 6. Runtime comparison of MCDM methods on the laptop for each case when the dataset is in the secondary storage.

However, this rank does not hold true for all the executions in each case. For example,
from Figure 6, it can be noted that ARAS and MABAC took less time to execute in Case
1. In practice, Case 3 probably would be more common than other cases for a typical
MCC application, i.e., there would be few numbers of SMDs available as computing
resources and the application demanding a certain number of selection criteria. For this
case, COPRAS took 0.05597 milliseconds on average if it runs on a laptop while the dataset
resides in the memory and 0.32844 milliseconds for a smartphone. For a dynamic resource
selection in MCC, this time requirement is tolerable. However, when the dataset is on the
secondary storage, the runtime increases exponentially in the case of the laptop but not a
smartphone.
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Figure 7. Runtime comparison of MCDM methods on the smartphone for each case when the dataset is in the phone
storage.
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The runtime for both the MCDM method and Entropy calculation should be con-
sidered to get the effective runtime for the ranking process. Like the MCDM methods,
for Entropy calculation also, when the dataset is on the secondary storage, the runtime
increases exponentially in the case of the laptop but not a smartphone, as shown in Figure 9.
Therefore, we can postulate that if the MCC coordinator is a laptop or desktop computer,
the dataset needs to be stored in the memory before resource selection.
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Considering the above discussions, it can be deduced that the COPRAS method is
the most suitable for resource selection in MCC in terms of correctness, robustness, and
computational (time) complexity.

6.2. Rationality and Practicability

In this section, we present a critical discussion on the rationality and practicability of
this study.

6.2.1. Assertion

In the previous section, we conclusively observed that for resource selection in MCC,
the COPRAS method is the most favorable in all respect. However, it should not be
misinterpreted that the COPRAS method is the ideal solution for resource selection in MCC.
In fact, optimized resource selection in a dynamic environment like MCC is an NP-hard
problem. Hence, practically no solution can be claimed as optimal. We only assert that
we found that COPRAS scales favorably in all aspects compared to other methods. But
this does not mean that COPRAS is the ideal solution. There is always scope to explore
further for a more suitable multi-criteria resource selection algorithm that would be more
computing and time-efficient.

Moreover, it should be noted that the effectiveness of an MCDM solution depends
on the particular problem and the data. In real implementations of MCC, the actual SMD
data would certainly change, be it for different instances of the same MCC system or in
different MCC systems. Because due to the dynamic nature of a typical MCC, the SMDs
are not fixed. Even if the SMDs are fixed in an MCC for a certain period, their resource
values will vary depending on the applications running on them and their users’ device
usage behavior. Moreover, since the need for computing resources varies according to
application requirements, the selection criteria and weights also differ accordingly. In these
cases, the datasets would vary from those we used in our experiment. But the problem
behavior and data types would be the same for all MCC applications and throughout their
different execution instances. Hence, a solution found suitable for the given dataset would
be applicable to any similar dataset for MCC. Even if the size of the datasets varies in
different MCC, the finding of this study will hold true because we found that COPRAS
performed comparatively better in all four datasets of different sizes considered in the
experiment.
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6.2.2. Application

The resource selection module is generally incorporated in the resource manager
module of a typical distributed system. And the resource manager module generally is part
of the middleware of a 3-tier system. Therefore, in the actual designing and implementation
of an MCC system, the MCDM-based resource selection algorithm would be integrated
into the middleware of MCC. This resource selection algorithm should generate a ranked
list of the available SMDs based on their resources. The MCC job scheduler would dispatch
the MCC jobs to the top-ranked SMDs from the list. This would ensure a better turnaround
time and throughput and, in turn, better QoS of the MCC.

6.2.3. Implications

The findings of this paper would allow the MCC system designers and developers
to adopt the right resource selection method for their MCC based on its scale and also
on the preference and priority of the resource types. This would also contribute to man-
agerial decision-making for implementing organizational MCC. As the study simulates
different scenarios and compares the available options, it would be a likely reference for
the decision-makers to choose the right MCDM method for resource selection and consider
the appropriate size of the employed MCC and decide on the right number of selection
criteria.

Furthermore, the pronouncements of this paper shall allow the researchers to choose a
suitable MCDM method with reasonably higher accuracy and lesser run time complexity to
solve real-life problems similar to the one discussed in this paper. Not only the researchers
in the area of MCC and other allied fields (e.g., mobile grid computing, mobile cloud
computing, and other related forms of distributed computing), this study would be of
interest also to the people from the MCDM field who might find it motivating to nurture
this problem domain and come up with some novel or improved methods that would be
more suitable to address the associated resource dynamicity.

7. Conclusions, Limitations, and Further Research Scope

In this concluding section, we recap and summarize the presented problem, experi-
mental work, and findings. We also point out the shortfalls of this study and identify the
future scopes and research prospects to expand this work.

7.1. Summary

In mobile crowd computing (MCC), the computing capabilities of smart mobile devices
(SMDs) are exploited to execute resource-intensive jobs. For better quality of service,
selecting the most capable SMDs is essential. Since the selection is made based on several
diverse SMD resources, the SMD selection problem can be described as multicriteria
decision-making (MCDM) problem.

In this paper, we performed a comparative assessment of different MCDM methods
(EDAS, ARAS, MABAC, MARCOS, and COPRAS) to rank the SMDs based on their resource
parameters, among a number of available SMDs, for being considered as computing
resources in MCC. The assessment was done in terms of ranking robustness and the
execution time of the MCDM methods. Considering the dynamic nature of MCC, where
the resource selection is supposed to be on-the-fly, the selection process needs to be as less
time-consuming as possible. For selection criteria, we considered the fixed (e.g., CPU and
GPU power, RAM and battery capacity, etc.) and the variable (e.g., current CPU and GPU
load, available RAM, battery remaining, etc.) resource parameters.

We used the final score values of the alternatives as obtained by using different
algorithms and applied the SAW method for arriving at the aggregate ranking of the
alternatives. We also carried out a comparison of the ranking performance of the MCDM
methods used in this study. We investigated their consistency with respect to the aggregate
ranking and their stability through sensitivity analysis.
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We calculated the time complexities of all the methods. We also assessed the actual
runtime of all the methods by executing them on a Windows-based laptop and an Android-
based smartphone. To assess the effect of the size of the dataset, we executed the MCDM
methods with four datasets of different sizes. To have datasets of varied sizes, we varied
the number of selection criteria and alternatives (SMDs) separately. For each dataset, we
executed the programs considering two scenarios, when the dataset resides in the primary
memory and when it is fetched from secondary memory.

7.2. Observation

It is observed that in terms of correctness, consistency, and robustness, the COPRAS
method exhibits better performance under all case scenarios. As per time complexity, all
the five MCDM methods are equal, i.e., O(mn), where m× n is the decision matrix (m is
the number of SMDs and n is the number of selection criteria). However, EDAS, MABAC,
and COPRAS have a better best-case (Ω(m + n)) complexity. Overall, COPRAS has been
shown to consume the least runtime for each execution case, i.e., for all four matrix sizes,
on the laptop as well as on the smartphone.

7.3. Conclusive Statement

The COPRAS method is found to be better than other MCDM methods (EDAS, ARAS,
MABAC, and MARCOS) for all test parameters and in all test scenarios. Hence, it can be
concluded that among the existing MCDM methods, COPRAS would be the most suitable
choice for resource ranking to select the best resource in MCC and other similar problem
setups.

7.4. Limitations and Improvement Scopes

We used the entropy method to calculate the criteria weights. It is an objective
approach in which the criteria weights depend on the decision matrix values. In a dynamic
environment like MCC, the SMDs may join and leave the network frequently, and the
status of their variable resources also changes as per device usage. This results in frequent
alteration in the decision matrix. This implies that the entropy calculation should be done
every time for criteria weight determination, which is a real overhead.

Here, the criteria weights were calculated dynamically based on the present resource
status of the SMDs, expressed in metric terms. We did not take into account the criteria
preferences in line with the resource specification preference of the MCC applications. As
the dataset gets changed based on varying criteria and alternative sets, the criteria weights
also get changed according to the performance values of the alternatives. Hence, this
approach might not provide the optimal resource ranking as per the real applicational
requirements. So, our future study can explore the possibility of defining the criteria
weights based on the required resource specifications of a typical MCC user or application.

Furthermore, we opted for the most straightforward normalization technique, i.e.,
linear normalization. But there are various normalization techniques in practice that could
be used. Therefore, there is a scope to study the effect of different normalization techniques
in the ranking and execution performance of the MCDM methods.

7.5. Open Research Prospects

Since the MCC environment is really dynamic in nature, i.e., not only the SMDs
but also the status of the resource parameters of each existing SMDs change frequently.
Therefore, the resource selection not only needs to be optimal but also to be adaptive in an
unpredictable MCC environment. This opens up scope for exploring an adaptive MCDM
method that would well acclimate the frequent variation in the alternatives and their values
(i.e., the data matrix). Ideally, whenever there is a change in the alternative list or in the
performance score, the MCDM method should be able to reflect this change in the overall
ranking without reranking the whole list. This would not only minimize the SMD selection
and decision-making time but also truly reflect the dynamic and scalable nature of MCC,
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which is not in the case of the traditional MCDM methods. Also, there is a requirement for
further research on realizing an MCDM method that would be suitable for a distributed
resource selection in an inter-MCC system.
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180. Stević, Ž.; Brković, N. A Novel Integrated FUCOM-MARCOS Model for Evaluation of Human Resources in a Transport Company.

Logistics 2020, 4, 4. [CrossRef]
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