Practical Criteria for -Tensors and Their Application
Abstract
:1. Introduction
2. Practical Criteria for the -Tensor
3. An Algorithm for Identifying -Tensors
- (a)
- the total number of tensors, the number of -tensors, the number of tensors which are not -tensor, and the number of tensors, which are not checkable by using Algorithm 1;
- (b)
- The calculations of Algorithm 1 only depend on the elements of the tensor, so Algorithm 1 stops after a finite amount of steps.
Algorithm 1 An algorithm for identifying -tensors |
|
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, G.; Qi, L.; Yu, G. The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 2013, 20, 1001–1029. [Google Scholar] [CrossRef]
- Liu, J.; Musialski, P.; Wonka, P.; Ye, J. Tensor completion for estimating missing valuesin visual data. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 35, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Moakher, M. On the averaging of symmetric positive-definite tensors. J. Elast. 2006, 82, 273–296. [Google Scholar] [CrossRef]
- Nikias, C.L.; Mendel, J.M. Signal processing with higher-order spectra. IEEE Signal Process. Mag. 1993, 10, 10–37. [Google Scholar] [CrossRef]
- Ni, Q.; Qi, L.; Wang, F. An eigenvalue method for the positive definiteness identification problem. IEEE Trans. Automat. Control 2008, 53, 1096–1107. [Google Scholar] [CrossRef] [Green Version]
- Michael, N.; Qi, L.; Zhou, G. Finding the largest eigenvalue of a non-negative tensor. SIAM J. Matrix Anal. Appl. 2010, 31, 1090–1099. [Google Scholar]
- Oeding, L.; Ottaviani, G. Eigenvectors of tensors and algorithms for Waring decomposition. J. Symb. Comput. 2013, 54, 9–35. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yang, Q. Singular values of nonnegative rectangular tensors. Front. Math. China 2011, 6, 363–378. [Google Scholar] [CrossRef]
- Brachat, J.; Comon, P.; Mourrain, B.; Tsigaridas, E. Symmetric tensor decomposition. Linear Algebra Appl. 2010, 433, 1851–1872. [Google Scholar] [CrossRef] [Green Version]
- Cichocki, A.; Zdunek, R.; Phan, A.H.; Amari, S.I. Nonnegative Matrix and Tensor Factorizations; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 25, pp. 1–3. [Google Scholar]
- Tartar, L. Mathematical Tools for Studying Oscillations and Concentrations: From Y oung Measures to H-Measures and Their Variants. In Multiscale Problems in Science and Technology; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–84. [Google Scholar]
- Zhang, L.; Qi, L.; Zhou, G. -tensors and some applications. SIAM J. Matrix Anal. Appl. 2014, 35, 437–452. [Google Scholar] [CrossRef]
- De Lathauwer, L.; De Moor, B.; Vandewalle, J. A multilinear singular value decomposition. SIAM J. Matrix Anal. 2000, 21, 1253–1278. [Google Scholar] [CrossRef] [Green Version]
- Qi, L. Eigenvalues of a real supersymetric tensor. J. Symb. Comput. 2005, 40, 1302–1324. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yang, Q. Fruther results for Perron-Frobenius theorem for nonnegative tensors. SIAM J. Mayrix Anal. Appl. 2010, 31, 2517–2530. [Google Scholar] [CrossRef]
- Li, C.Q.; Li, Y.T.; Xu, K. New eigenvalue inclusion sets for tensor. Numer. Linear Algebra Appl. 2014, 21, 39–50. [Google Scholar] [CrossRef]
- Kolda, T.G.; Mayo, J.R. Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 2011, 32, 1095–1124. [Google Scholar] [CrossRef] [Green Version]
- Lim, L.H. Singular values and eigenvalues of tensors: A variational approach. In Proceedings of the IEEE International Workshop on Computational Advances in Multisensor Adaptive Processing, Puerto Vallarta, Mexico, 13–15 December 2005; pp. 129–132. [Google Scholar]
- Qi, L. Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 2007, 325, 1363–1377. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Wang, F.; Wang, Y. Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 2009, 118, 301–316. [Google Scholar] [CrossRef] [Green Version]
- Ni, G.; Qi, L.; Wang, F.; Wang, Y. The degree of the E-characteristic polynomial of an even order tensor. J. Math. Anal. Appl. 2007, 329, 1218–1229. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Qi, L.; Wei, Y. -tensors and nonsingular -tensors. Linear Algebra Appl. 2013, 439, 3264–3278. [Google Scholar] [CrossRef]
- Kannana, M.R.; Mondererb, N.S.; Bermana, A. Some properties of strong -tensors and general -tensors. Linear Algebra Appl. 2015, 476, 42–55. [Google Scholar] [CrossRef]
- Hu, S.; Li, G.; Qi, L.; Song, Y. Finding the maximum eigenvalue of essentially nonnegative symmetric tensors via sum of squares programming. J. Optim. Theory Appl. 2013, 158, 713–738. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Li, G.; Qi, L. A tensor analogy of Yuans theorem of the alternative and polynomial optimization with sign structure. J. Optim. Theory Appl. 2016, 168, 446–474. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.F.; Dai, Y.H.; Nie, J.W. All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 2014, 35, 1582–1601. [Google Scholar] [CrossRef]
- Li, C.Q.; Wang, F.; Zhao, J.X.; Li, C.; Zhu, Y.; Li, Y. Criterions for the positive definiteness of real supersymmetric tensors. J. Comput. Appl. Math. 2014, 255, 1–14. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Sang, H.; Liu, P.; Huang, G.
Practical Criteria for
Li M, Sang H, Liu P, Huang G.
Practical Criteria for
Li, Min, Haifeng Sang, Panpan Liu, and Guorui Huang.
2022. "Practical Criteria for
Li, M., Sang, H., Liu, P., & Huang, G.
(2022). Practical Criteria for