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Abstract: There are many typical symmetric large plastic deformation problems in aluminum alloy
stamping. Warm stamping technology can improve the formability of materials and obtain parts
with high-dimensional accuracy. Friction behavior in the stamping process is significant for the
forming quality. An accurate friction coefficient is helpful in improving the prediction accuracy of
forming defects. It is hard to obtain a unified and precise friction model through simple experiments
due to the complicated contact conditions. To explore the effect of friction behavior on the forming
quality, warm friction experiments of the AA6061 aluminum alloy and P20 steel with different
process parameters were carried out using a high-temperature friction tester CFT-I (Equipment
Type), including temperatures, the interface load, and sliding speeds. The variation curves of the
friction coefficient with various parameters were obtained and analyzed. The results show that
the friction coefficient increases with temperature and decreases with the sliding speed and load.
Then, the influences of process parameters on the surface morphology of the samples after friction
were observed by an optical microscope; adhesive wear occurred when the temperature increased,
and the surface scratch increased and deepened with the increase in the load. Finally, the friction
coefficient models of the speed and load were established by analyzing the data with Original
software. Compared with the experimental and the finite element analysis results of the symmetrical
part, the errors of the velocity friction model in thickness and springback angle are less than 4% and
5%, respectively. The mistakes of the load friction model are less than 6% and 7%, respectively. The
accuracy of the two friction models is higher than that of the constant friction coefficient. Therefore,
those coefficient models can effectively improve the simulation accuracy of finite element software.

Keywords: warm forming; friction coefficient; sliding speed; interface load; symmetrical part

1. Introduction

At present, lightweight technology can effectively improve fuel efficiency and has
become the trend of the development of the automobile industry [1]. Because of its high
strength–weight ratio, good corrosion resistance, and good thermal conductivity, aluminum
alloy is the go-to alloy in the automobile, aerospace, and shipbuilding industries [2]. The
formability of aluminum alloy is not as good as that of traditional low-carbon steel at room
temperature [3]. There are many typical symmetric plastic deformation problems in the
aluminum alloy forming process. These include drawing cylindrical parts, rounding holes,
flanging circular plates, necking, expanding, bulging, etc. Compared with the cold forming
process, warm forming can minimize springback, improve the formability of aluminum
alloy and expand its application range [4]. Warm stamping is a new process that can
effectively enhance the deep drawing formability of aluminum alloy, increase the strength
of materials, reduce the internal stress, reduce the springback, and significantly improve
the surface quality and forming accuracy [5]. The warm stamping of aluminum alloys is a
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complicated thermal-mechanical coupling process, and friction behavior is the critical factor
influencing the forming quality and die life [6]. The rheological stress and forming force
of hot aluminum sheets in different areas change, making the friction more complex. The
actual friction coefficient constantly changes. Usually, the Coulomb friction law or constant
friction factor model is widely used in sheet metal forming numerical simulation software,
and the friction factor is often input as a regular [7], which results in a deviation between
the actual value and the numerical simulation results. However, the friction behavior of
the stamping process is quite complex, including the changing interaction variables in the
forming process, deformation, forming speed, materials, surface roughness, tool geometry,
etc. Therefore, to improve the accuracy of numerical simulation results, it is necessary
to profoundly and systematically study the friction and contact problems in the forming
process of aluminum alloy sheets and obtain the accurate friction factor of the aluminum
alloy under different process conditions.

Some researchers developed the sliding friction and designed a tester to obtain the
friction coefficient at high temperatures. Yoshikiyo Tamai et al. [8] studied the effects of
positive pressure, sliding speed, and punch stroke on the friction coefficient through the
friction measuring device, and found that the friction coefficient decreases with the increase
in positive pressure and sliding speed, and slightly increases with the rise of punch stroke.
Imanol Gil et al. [9] studied the influences of positive pressure on the friction coefficient of
DX54D in the forming process by using a self-designed friction measuring device. They pro-
posed that the friction coefficient of the three materials showed the same variation law. They
all decreased gradually with the increase in positive pressure. Dou et al. [10] established
friction experiments on AA6111 aluminum alloy under warm forming conditions and ob-
tained the friction coefficient model related to speed. Dohda et al. [11] reviewed the friction
during metal high-temperature forming. He summarized the friction coefficient of the plate
and bar formed under different test equipment at high temperatures. Marzouki et al. [12]
carried out the pin–disk friction experiment at 400 ◦C and investigated the effectiveness of
varying tool coatings in hot stamping. Andrzej Matuszak et al. [13] simulated the friction
contact state between a steel plate and tool during the forming process. They established
a linear regression model to predict the dispersion effect. However, most researchers
analyzed only hot or cold forming and did not consider warm forming too much. They did
not verify the friction coefficient model by combining finite element software and the actual
test. Therefore, they could not accurately obtain the friction coefficient of symmetrical parts
in the warm forming process.

In this work, we use a CFT-I friction tester to measure the friction coefficient between
aluminum alloy (AA 6061) and P20 steel. Then, the more practical coefficient models are
established based on experimental parameters. The surface morphology of samples is
observed and analyzed. Finally, the model effectiveness is verified by combining finite
element software and actual experiments with the typical symmetrical part.

2. Materials and Methods
2.1. Materials

The axisymmetric material used in this study was AA6061-T6 aluminum alloy with
a thickness of 1 mm produced by Southwest Aluminum Co., Ltd. (Chongqing, China).
The chemical composition is shown in Table 1. The sheet was cut into samples with
10 mm × 20 mm. The hardness of P20 after quenching and tempering reached HRC56,
after which surfaces were polished with 240, 400, and 800 grits sandpaper in turn to obtain
the same final surface finish and the contact surface roughness. Ra was 0.2~0.6 µm and
0.8~1.3 µm, respectively. Then, the samples were immersed in acetone solution to prevent
the surface from contaminants with oil; then, they were cleaned, dried, and sealed. Please
refer to Figure 1.
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Table 1. Chemical composition of AA6061-T6 aluminum alloys (wt.%); data from [14].

Components Si Fe Cu Mg Zn Ti Cr Mn Al

Mass fraction 0.62 0.33 0.17 0.90 0.02 0.02 0.17 0.06 Rest
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(b) Surface topography of P20.

2.2. Test Equipment

A CFT-I tester (Zhongke Kaihua Technology Development Co., Ltd., Lanzhou, China)
was used as shown in Figure 2a. The instrument can measure various friction experiments
at varying temperatures, of which the working principle is shown in Figure 2b. Before the
repeated symmetrical movement, the heating chamber was fixed on the test platform to
achieve reciprocating motion. Then, the sample was heated in the furnace. The platform
installed with the die sample could move up and down along the Z-axis during the test.
After moving down, the computer program applied the normal load to the contact surface.
The die block remained fixed during the friction movement, and the platform with the
heating furnace and the aluminum alloy disk sample repeatedly moved along the x-axis.
The equipment parts are shown in Figure 2c. Firstly, the temperature controller raised
the temperature to be lower than the target temperature at a higher rate, then raised the
temperature to the target temperature at a lower rate. The temperature controller could
ensure uniform temperature distribution of the sample for 5 min [15]. Then, it immediately
carried out the friction test. After the test, the pieces were removed from the friction disc
and cooled naturally at room temperature (Figure 2d). The reciprocating platform with
the heating furnace and aluminum alloy disk sample moved reciprocally along the x-axis,
driven by the servo motor.

The force sensor recorded the load and tangential friction force in real time, transmit-
ting measured data to the computer during the friction process. Coulomb’s law Equation
was used to calculate the real-time friction coefficient µ.

2.3. Experimental Arrangement

The friction mechanism of aluminum alloy in the warm forming process is complex,
with many influencing factors, including speed, temperature, load, stroke, and surface
roughness. The orthogonal experiment measured the friction coefficient under different
process parameters, including temperature, average load, sliding speed, boundary lubrica-
tion, and sliding stroke (refer to Table 2). Boundary lubrication sprayed high-temperature
anti-oxidant lubricant (molybdenum disulfide and boron nitride) evenly on the sheet metal
surface to form a thin oil film; the thickness was less than 0.1 µm.
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Table 2. Parameter setting of AA6061 aluminum alloy friction test.

Temperature
(◦C)

Load Fz
(N)

Speed V
(mm/s)

Stroke L
(mm) Lubrication

25 10 20 20 Boundary Lubrication

100 20 30 20 Boundary Lubrication

150 30 40 20 Boundary Lubrication

200 40 50 20 Boundary Lubrication

250 50 60 20 Boundary Lubrication

3. Results and Discussion
3.1. Relationship between Temperature and Friction

(1) The relationship between friction coefficient and temperature
Under boundary lubrication, the sliding speed of 30 mm/s, and the load of 20 N, we

measured the friction coefficients between the aluminum alloy and tool. The data were read
twice per second with varying temperatures (25 ◦C, 100 ◦C, 150 ◦C, 200 ◦C, and 250 ◦C).
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The value trend is shown in Figure 3, indicating that time and temperatures influenced
the friction coefficient. The curve consisted of three stages. (I) The sharp increase stage
(0~2 s). In the initial stage, the friction force increased rapidly to near 0.2. The main reason
was the conversion from static friction to dynamic friction. The velocity changed from
unstable to stable, which overcame the maximum static friction. (II) The decline slowly
stage (2~4 s). The friction coefficient decreased slightly by 0.02~0.05. The main reason
was that the friction coefficient changed from static friction to dynamic friction after the
relative sliding of the plate, and the friction coefficient decreased somewhat. (III) The
rise slowly stage (4~15 s). The lubricant on the aluminum alloy surface reduced slightly
with further increased friction time. The friction produces surface micro convex bodies
embedded, increasing the actual contact area and the slow increase in friction coefficient.
In addition, with the growth of temperature, the friction coefficient also increased. The rise
in the friction coefficient was primarily due to the increase in temperature that led to the
decrease in lubricating oil viscosity, the destruction of the oxide film on the surface of the
aluminum alloy, and the transfer adhesion of the aluminum alloy’s surface.
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Figure 3. Variation curves of the friction coefficient with time at different temperatures.

The average friction values were calculated by taking the first 5 s, and the variation
curve of friction coefficient with the temperature is shown in Figure 4. The curve had
three major stages: the slow rise stage (from 25 ◦C to 100 ◦C), where the friction coefficient
increased from 0.13 to 0.155; the rapid increase stage (from 100 ◦C to 200 ◦C), 0.155 to 0.195;
the steady stage (from 200 ◦C 250 ◦C), where the friction coefficient eventually increased
slowly with the further growth of temperature.
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(2) The surface morphology changes with temperature
The surface morphology of aluminum alloy after friction at different temperatures

was analyzed using a VK-X100 laser scanning microscope (KEYENCE, Osaka, Japan). Refer
to Figure 5. When the temperature was 25 ◦C, there were a few scratches on the surface of
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aluminum alloy, abrasive wear, accompanied by a small amount of fine abrasive particles.
When the temperature was 100 ◦C, the scratches on the surface of the aluminum alloy
increased, the depth increased, and the wear particles decreased. When the temperature
was 150 ◦C, the scratches increased, and the depth also increased. When the temperature
was 200 ◦C, the scratches reduced, and the surface quality was relatively good, indicating
a slight adhesive wear. When the temperature rose to 250 ◦C, the adhesive wear on the
aluminum alloy surface intensified, and the metal fell off and tore on the surface, resulting
in severe adhesive wear, as shown in Figure 5d. By analyzing the surface morphology
at different temperatures and considering the production cost and heating conditions in
actual production, the warm temperature was chosen to be 200 ◦C.
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3.2. Relationship between Sliding Speed and Friction

(1) Friction coefficient vs. speed
With the boundary lubrication condition, the temperature was 200 ◦C, the load was

20 N, and five different speeds (20 mm/s, 30 mm/s, 40 mm/s, 50 mm/s, and 60 mm/s)
were carried out. The variation curves of the friction coefficient are presented (Figure 6)
and showed that the five friction curves had the same inclination. The front increased
rapidly and decreased slightly, rose, and, finally, entered a relatively constant stage. The
reason was a layer of foreign matter on the friction surface, usually including moisture,
metal oxides, and deposited lubricating materials. Aluminum oxidation is fast since it has a
very high oxygen affinity. Therefore, in the initial stage, the oxide film easily separated the
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surfaces of the two materials, the two metals almost had no actual contact, and the oxide
film had a low shear strength. The film (deposited layer) broke during the initial friction,
cleaning the surface contact and increasing adhesion between the contact surfaces. The
inclusion of trapped abrasive particles and the roughness of the matrix led to the increase
in the plowing effect, which increased the friction [16].
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The surface plowing increased the temperature and deformed the surface layer, result-
ing in metal loss. In addition, the increase in adhesion and hardening may have also played
a particular role. After a certain period of friction, the growth of roughness and other
parameters could reach a specific steady-state value, so the friction coefficient remained
unchanged in the remaining time. The friction coefficient gradually decreased with the
increase in sliding speed due to the change of the shear rate. These materials had greater
strength at higher shear strain rates, resulting in a lower actual contact area and lower
friction coefficient [17].

(2) Surface morphology influenced by speed
After the friction experiment, the friction surface morphology was analyzed with

different speeds (20 mm/s, 30 mm/s, 50 mm/s, and 60 mm/s) (Figure 7). When the
speed was 20 mm/s, some furrow wear and adhesive wear occurred on the surface of
the aluminum alloy. There was a small amount of fine abrasive particles, resulting in the
damage and wear of the surface oxide layer, more scratches, and a reduced contact area.
When the speed was 30 mm/s, the scratches reduced from 9.4 µm to 8.7 µm, and some
adhesion pits and scratches formed on the surface. When the speed was 50 mm/s, the
scratches decreased from 8.7 µm to 7.6 µm, and a small number of adhesion pits were on
the surface. When the speed was 60 mm/s, the scratches reduced from 7.6 µm to 6.6 µm.
In conclusion, with the increase in sliding speed, a thin film protective layer formed on the
sheet surface, which reduced the contact area and decreased the friction coefficient.
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3.3. Relationship between Load and Friction

(1) Friction coefficient vs. load
When the temperature was 200 ◦C and the speed was 20 mm/s, the relationship

between the load and friction coefficient was measured under five groups of different loads
(10 N, 20 N, 30 N, 40 N, and 50 N), as shown in Figure 8.
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Figure 8. Relation curve between load and friction.

The figure shows that the friction coefficient first rose sharply, then decreased and
rose, finally, maintained near an equilibrium value, and fluctuated up and down. Analyses
of the reason showed that an increase in load would increase the wear and loss of metal,
damage the surface layer, and increase the contact strength between surfaces. In addition,
the friction between surfaces would increase the temperature. This effect would increase
adhesion and the deformation of the surface layer, resulting in further metal loss—finally,
the friction coefficient decreased with the increase in the average load.

(2) Surface morphology influenced by load
When the temperature was 200 ◦C and the speed was 20 mm/s, the effects of different

normal loads (10 N, 20 N, 30 N, 40 N, and 50 N) on the surface micromorphology were
observed and analyzed in Figure 9.
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From the surface topography, the friction coefficient decreased with the increase in
normal force, which was consistent with the principle of tribology. The wear mechanism
was the rise of load which led to an increase in metal wear and loss, wear and wear rate, and
surface roughness. In addition, it led to a rise of surface temperature and the generation
of friction heat on the contact surface, which reduced the material strength and gradually
flattened the protrusion. The high temperature would produce a stable state and high
sliding speed, reduce the shear force, and reduce the friction coefficient. In the friction
process, with the increase in the normal load, the volume wear increased, the surface
roughness increased, and a large amount of wear debris entered the furrow, increasing the
actual contact area.

3.4. Variable Friction Coefficient Model

(1) Friction model with velocity
When the temperature was 200 ◦C, friction experiments were carried out under differ-

ent sliding velocity (20 mm/s, 30 mm/s, 40 mm/s, 50 mm/s, and 60 mm/s) and different
normal loads (10 N, 20 N, 30 N, 40 N, and 50 N). The measured friction coefficients are
in Table 3.

Table 3. Friction coefficient under different velocities and loads.

Loads/(N)
Speed/(mm/s) 20 30 40 50 60

10 0.161 0.129 0.106 0.091 0.080

20 0.139 0.122 0.098 0.084 0.075

30 0.128 0.113 0.095 0.081 0.073

40 0.121 0.109 0.090 0.077 0.069

50 0.116 0.105 0.087 0.074 0.067

The relationship curves between friction coefficient and sliding speed are shown in
Figure 10. The friction coefficient decreased with the increase in sliding velocity, and the
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curve trend conformed to the inverse function. Therefore, the relationship expression of
the inverse function was:

µ =
a

v + b
+ c (1)

where µ is the friction coefficient, v is the sliding speed, and a, b, and c are constants.
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Figure 10. The relationship between friction coefficient and sliding speed.

The inverse function was used to fit the friction coefficient and sliding speed with the
Origin software, and the fitting results under different loads (10 N, 20 N, 30 N, 40 N, and
50 N) were as shown in Figure 11.
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The reasonable degree of a, b, and c values and equations under the five different load
conditions are shown in Table 4. The fitting degree between the inverse function and the
actual value was more than 0.95, indicating that the fair values of a, b and c was effective.
In order to verify the correctness of the model, with a constant load of 20 N, a = 6.28091,
b = 19.1928, c = 0.0002, and the fitting degree of the equation was 0.99952. Therefore, the
friction coefficient equation was:

µ =
6.28091

v + 19.1928
+ 0.0002 (2)

Table 4. Coefficient values (a, b, c) and fitting degree of fitting under different loads.

Load (N) a b c Fitting Degree

10 6.28091 19.1928 0.0002 0.99952
20 13.4913 52.5212 −0.04617 0.98962
30 21.6248 82.6499 −0.08171 0.98727
40 33.9018 118.9243 −0.12183 0.97968
50 74.8708 197.9574 −0.02264 0.98295

When 20 N, the calculated values of six groups of different sliding speeds (15 mm/s,
25 mm/s, 35 mm/s, 45 mm/s, 55 mm/s, and 65 mm/s) in the friction coefficient Equation (2)
were calculated to compare with the measured values tested on the CFT-I Friction tester.
The results are shown in Table 5, and the errors between the predicted values and the
measured values were less than 5%, which thoroughly verified the effectiveness of the new
friction model.

Table 5. Comparison between measured values of friction coefficient and calculated values of
friction model.

Velocity (mm/s) Measured Values (µ) Calculated Values (µ) Error (%)

15 0.179 0.184 2.79
25 0.139 0.142 2.16
35 0.119 0.116 −2.52
45 0.102 0.098 −3.92
55 0.082 0.085 3.66
65 0.072 0.075 4.17
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(2) Friction model with average load
Under different speeds (20 mm/s, 30 mm/s, 40 mm/s, 50 mm/s, and 60 mm/s), the

curve of friction coefficients with the load (10 N, 20 N, 30 N, 40 N, 50 N) were measured, as
shown in Figure 12. The friction coefficient decreased appropriately with the increase in
the speed and load. The friction coefficient was modeled according to the changing trend.
Based on Zhao [18] and Dou [10], the new friction model was:

µ = µ0

(
Fn

F0

)a−1
+ b (3)

where µ is the friction coefficient, F0 is the reference load; Fn is the average load, µ0 is the
friction coefficient under the reference load, A0 is the model index (F0 > 0, 0.5 ≤ a0 ≤ 1),
and b0 is the coefficient. The reference load was F0 = 15 N and measured µ0 = 0.148.
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Figure 12. Relationship between friction coefficient and sliding speed.

An inverse function was used to fit with the expression with the Origin software. The
fitting results under different sliding speeds (20 mm/s, 30 mm/s, 40 mm/s, 50 mm/s, and
60 m/s) are shown in Figure 13.
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From the fitting curve, the fitting effects were quite good. The values of a, b, and the
fitting degree were calculated as shown in Table 6. The fitting degrees were more than 0.95,
which meant that the fair values of a and b were practical.

Table 6. Fitting results of a and b under different speeds.

Speed/(mm/s) a b Fitting Degree

20 0.79523 −0.0001 0.99941
30 0.89554 −0.02476 0.99144
40 0.91826 −0.04682 0.99856
50 0.92796 −0.06115 0.99552
60 0.94392 −0.07116 0.99483

The validity of the model was further verified. When the speed was 20 mm/s, the
fitted a = 0.79523, b = 0.0001, and the fitting degree of the function curve was 0.99941.
Therefore, the fitting effect was good, and the relationship function was:

µ = 0.148(Fn/15)−0.20477 − 0.0001 (4)

Five groups of different speeds (15 mm/s, 25 mm/s, 45 mm/s, 55 mm/s, and 65 mm/s)
were selected for measurement and compared with the calculated values of the friction
model. As shown in Table 7, the overall errors of models were less than 7%, which proved
the effectiveness of the prediction model.

Table 7. Comparison between measured and calculated values of friction model.

Load (N) Measured Value (µ) Calculated Values (µ) Error (%)

5 0.179 0.185 3.24
15 0.148 0.148 0
25 0.130 0.133 2.26
35 0.119 0.124 4.03
45 0.115 0.118 2.54
55 0.108 0.113 4.42
65 0.102 0.110 6.42

(3) Mix friction model with velocity and average load
The experimental data were analyzed by the SPSS software. Since the friction co-

efficient was a continuous numerical variable, multiple linear regression analyses could
have been adopted. The analysis results of the regression equation are as follows in
Tables 8 and 9.
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Table 8. Model summary b.

Model R R2 R2 of after Adjustment Error in Standard Estimation

1 0.974 a 0.948 0.943 0.005841
a Dependent variable: friction coefficient; b predictive variables: (constant), load, speed.

Table 9. Coefficient a table.

Model
Non Standardized

Coefficient
B Standard Error

Standardization
Coefficient t Significance Tolerance VIF

Constant 0.179 0.004 41.639 0.000
Speed −0.002 0.000 −0.912 −18.716 0.000 1.000 1.000
Load −0.001 0.000 −0.340 −6.937 0.000 1.000 1.000

a Dependent variable: friction coefficient.

The analysis of the results from the chart was as follows: the fitting degree of the
friction coefficient regression model R2 = 0.974 and the appropriate degree of the Equa-
tion were good. The significance of the model p < 0.05 meant that the load and speed
variables significantly affected the friction coefficient. The velocity could substantially
negatively affect the friction coefficient, and the influence coefficient was −0.002 < 0, signifi-
cance p < 0.05. The load could also significantly negatively affect the friction coefficient, and
the influence coefficient was −0.001 < 0, significance p < 0.05, respectively. Additionally,
the standard deviation of the regression equation conformed to the normal distribution, as
shown in Figure 14.
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Based on the above analysis, the regression equation was:

µ = 0.179 − 0.002v − 0.001F (5)

where v is the velocity and F is the load. The absolute value of the standardized regression
coefficient of the speed was 0.912, and the load was 0.340. Therefore, the influence of speed
on the friction coefficient was more potent than that of the load.

3.5. Application and Verification of Symmetrical Parts

The friction model was input into the ABAQUS software to verify the effectiveness
of the variable friction model in predicting the numerical simulation of symmetrical parts
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stamping. The typical symmetrical part of a U-shape was simulated, and its specific
parameters were 30 mm in width, 50 mm in length, the fillet radius of the punch and die
was 10 mm, the distance between straight wall parts on both sides of the die was 50 mm,
the stamping depth was 50 mm, the thickness was 1 mm, and the die gap was 1.1 mm. The
U-shaped model is shown in Figure 15.
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In the warm stamping simulation, the temperature significantly impacted material
properties. The thermal–mechanical coupling analysis method had to follow the flow strain
and heat transfer law at warm temperatures. During the simulation, it was necessary to set
the nonlinear parameters related to the temperature, such as the elastic modulus, Poisson’s
ratio, stress–strain, thermal conductivity, specific heat, etc. The physical parameters of the
aluminum alloy are shown in Table 10, while the physical parameters of the P20 steel are
shown in Table 11.

Table 10. Physical parameters of aluminum alloy AA6061 [17].

Temperature
(◦C)

Young’s
Modulus

(GPa)

Density
(kg/m3)

Yield Stress
(MPa)

Thermal
Expansion
(µm/(m·K))

Thermal
Conductivity

(W/(m·K))

Heat Capacity
(J/(kg·K))

25 68.9 2700 276 22 167 896
37.8 68.54 2685 274.4 23.45 170 920
93.3 66.19 2685 264.6 24.61 177 978

148.9 63.09 2667 248.2 25.67 184 1004
204.4 59.16 2657 218.6 26.6 192 1028
260 53.99 2657 159.7 27.56 201 1052

315.6 47.48 2630 66.2 28.53 207 1078
371.1 40.34 2620 34.5 29.57 217 1104
426.7 31.72 2602 17.9 30.71 223 1133

Table 11. Thermophysical parameters of P20 [18].

Density/(kg/m3)
Poisson’s

Ratio
Yield

Stress/(MPa)
Thermal

Expansion/(µm/(m·K))
Thermal

Conductivity/(W/(m·K))
Specific Heat

Capacity/(J/(kg·K))

7.81 × 103 0.275 836 12.8 35.7 460

In ABAQUS, we set the symmetrical part as the shell and isotropic homogeneous
material. The tool material attribute was solid, and the material was homogeneous. The
dynamic coupling analysis algorithm was selected to turn on geometric nonlinearity. Under
the condition of the hot forming of parts, the selection of stamping process parameters is in
Table 12. The displayed thermal–mechanical coupling model was selected as the analysis
model. Refer to Table 12 for input values when inputting the simulation process parameters.
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Table 12. The simulation process parameters of warm stamping.

Sheet
Temperature

(◦C)

Holding Time
(min)

Tooling
Temperature

(◦C)

Transfer Time
(s)

Blank Holder
Force (N)

Punch
Pressure (MPa)

Punch Speed
(mm/s)

200 4 60 3 30 3.0 20

When setting process parameters, we selected the “power/temperature displace-
ment/explicit” type in the finite element analysis. In the first step, the blank holder moved
downward, and in the second step, the punch moved downward and the blank holder
kept still. Different friction coefficient conditions were introduced into the simulation softly.
Thermal conductivity values were input from Table 10; the natural convection coefficient
between the sheet and the air was 29 W/m2/K, and the heat exchange coefficient between
the tool and cooling water was 1200 W/m2/K. The die surface was the master surface, and
the blank surface was the slave surface; three reference points were set by “rigid body”
and constrained the punch, die, and blank holder. The boundary condition was set by
the displacement/rotation angle type and fixed. In the first step, the holder moved down
20 mm, and the amplitude type was a smooth analysis. In the second step, the punch
moved downward 60 mm; the blank temperature was 200 ◦C and the die temperature was
25 ◦C. The grid shape was tetrahedral, the element type was temperature displacement
coupling, and the grid number was 18654.

According to reference [11], there are three types of lubrication for sheet forming:
fluid lubrication (µ ≤ 0.03), mixed lubrication (0.03 < µ ≤ 0.1), and boundary lubrication
(0.1 < µ < 0.3). The friction states were mostly boundary lubrication and mixed lubrication in
the actual stamping process. Therefore, four types were selected for simulation: a constant
friction coefficient of 0.12 (boundary lubrication), velocity friction model, load friction
model, and mixed friction model. The variable friction coefficient model passed through
the user subroutine “fric_coef” of ABAQUS. Figure 16 shows the thickness distributions
cloud diagrams with different friction conditions.
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Figure 16. Diagram of thickness distribution. (a) µ = 0.12; (b) velocity friction model; (c) load friction
model; (d) mix friction model.

An actual warm forming stamping test was carried out after the finite element sim-
ulation. The test device included a temperature detection and control system, induction
heating furnace, water-cooled U-shaped warm stamping die, hydraulic press, etc., as
shown in Figure 17a. The temperature control system used an infrared thermometer to
heat the plate temperature and die surface temperature, and controlled the temperature
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through cooling water. After heating the induction furnace, we performed the experiments
quickly. The die was P20 steel without heating, cooled by a cooling water pipe. The formed
U-shaped parts are shown in Figure 17b.
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(1) Thickness analysis of symmetrical part (U-Bend)
For warm stamping symmetrical parts, the thickness of the actual stamping parts was

measured with a micrometer, and 18 measuring points were the symmetrical center in
the plate width direction. The thickness distribution curve was determined by a constant
friction coefficient (0.08, 0.12), variable friction coefficient model, and actual measured
values, as shown in Figure 18. We found that the thickness distribution of the variable
friction models was closer to the actual values.
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(2) Springback analysis of symmetrical part
The springback of the symmetrical part reflected the error between the actual value

and the design value. The smaller the springback was, the better the accuracy was. We
selected a constant friction coefficient of 0.12, and variable friction coefficient models for
the simulation analysis and measured the springback angle after bending. The definition
of the springback angle is shown in Figure 19a. The flange bending angle was θ1 and
sidewall bending angle was θ2; the corresponding springback angles were ∆θ1 = 90◦ − θ2
and ∆θ1 = 90◦ − θ1 respectively. The measurement values and simulation results of
different friction models are shown in Figure 19b. We measured five times to reduce the
measurement error, and the average values were taken as the practical values; 6.7◦ and
−7.2◦, respectively. In the ABAQUS simulation post-processing, the springback under
constant friction coefficient of 0.12 was 5.6◦ and −6.2◦, respectively. The errors with the
actual values were 16.4% and 13.9%, respectively. With the mix friction coefficient model,
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the springback was 5.6◦ and −6.2, and the errors were 3.0% and 4.2%; with the speed
friction model, the springback was 6.4◦ and −6.9◦, and the errors were 4.5% and 4.2%;
when the load friction model was used, the springback was 6.3◦ and −6.8◦, and the errors
were 6.0% and 6.5%, as shown in Table 13. Therefore, the mix friction model value was
closer to the actual value than the others, reflecting the friction characteristics.
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Figure 19. Springback: (a) springback angle; (b) springback angle measurement under different
friction coefficients.

Table 13. Simulation and measurement of springback angle (◦).

Springback Angle
(◦) Measured Values Constant Friction

Coefficient (0.12)
Mix Friction

Mode
Speed Friction

Model
Load Friction

Model

∆θ1 6.7 5.6 (error 16.4%) 6.5 (error 3.0%) 6.4 (error 4.5%) 6.3 (error 6.0%)
∆θ2 −7.2 −6.2 (error 13.9%) −6.9 (error 4.2%) −6.9 (error 4.2%) −6.8 (error 5.6%)

4. Conclusions

The friction properties of the AA6061 aluminum alloy and P20 steel were tested by the
CFT-I friction tester under different temperatures, sliding speed, and normal load. Variable
friction coefficient models based on the sliding speed and normal load were established
and validated. The surface morphology was observed and analyzed. The results were
as follows:

(1) The friction coefficient increased with the temperature, the increasing trend slowed
down, and it tended to be stable with time; the friction coefficient decreased with speed
and the load growth. Surface scratches increased and deepened with the interfacial load
and sliding speed increase. The surface morphology changed with the rise of temperature
and the quality was good at 200 ◦C; this was a warm forming temperature.

(2) The variable friction coefficient models of sliding speed and load were established
through an analysis, of which the fitting was good, with errors less than 5% and 7%,
respectively. The results showed the new friction models had a better accuracy.

(3) The stamping simulation of the symmetrical U-Bend parts used the variable friction
coefficient model established by the finite element analysis software and friction test.
The simulation analysis results showed that the thickness distribution and springback of
variable friction coefficient models were less than the constant friction coefficient (less than
6%). The mix friction model value was closer to the actual value. Therefore, the variable
friction coefficient models could improve the simulation accuracy.
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