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Abstract: This is a pedagogical introduction to the physics of confinement on R3 × S1, using SU(2)
Yang–Mills with massive or massless adjoint fermions as the prime example; we also add funda-
mental flavours to conclude. The small-S1 limit is remarkable, allowing for controlled semiclassical
determination of the nonperturbative physics in these, mostly non-supersymmetric, theories. We
begin by reviewing the Polyakov confinement mechanism on R3. Moving on to R3 × S1, we show
how introducing adjoint fermions stabilizes center symmetry, leading to abelianization and semiclas-
sical calculability. We explain how monopole–instantons and twisted monopole–instantons arise. We
describe the role of various novel topological excitations in extending Polyakov’s confinement to
the locally four-dimensional case, discuss the nature of the confining string, and the θ-angle de-
pendence. We study the global symmetry realization and, when available, present evidence for the
absence of phase transitions as a function of the S1 size. As our aim is not to cover all work on the
subject, but to prepare the interested reader for its study, we also include brief descriptions of topics
not covered in detail: the necessity for analytic continuation of path integrals, the study of more
general theories, and the ’t Hooft anomalies involving higher-form symmetries.
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1. Introduction

I have overheard graduate students, after having taken a standard quantum field
theory course, say that “confinement occurs because the beta function is negative and the
coupling becomes strong at long distances”. Loosely, I translate this to “it’s complicated
and I won’t think about it”. That the students’ explanation is insufficient is underscored by
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the fact that we now know, due to insight from supersymmetry [1], of gauge theories where
the coupling becomes strong, but which become nontrivial conformal field theories at long
distances. Conversely, while confinement is a nonperturbative phenomenon, as evidenced
by the framework described in these notes, it does not always require strong coupling.

Nonetheless, the students’ attitude is not unreasonable: in real-world QCD, the long-
distance physics of chiral symmetry breaking and the emergence of hadrons occurs at
strong coupling, making it difficult to handle analytically. Hence, many are happy to leave
the study of strong-coupling phenomena to experiments, performed either in the lab or on
the computer (while others stick to the already mentioned supersymmetric world; a full
disclosure requires us to state that these notes will also not remain immune to the charms of
supersymmetry). Indeed, the numerical approach to lattice QCD has been very successful
in relating the short-distance description in terms of quark and gluon fields to the hadron
physics emerging at long distances.

In summary, “confinement” is 45+ years old news and we have gotten used to
it. It is believed to be a property of pure Yang–Mills theory, but we have no proof;
for extra motivation, see the Clay Institute website (accessed on 7 January 2022) https:
//www.claymath.org/millennium-problems. (The quotation marks indicate the need to
more carefully define what we mean. See Sections 2.6, 3.1 and 3.4.3). Even more mod-
est a goal, a physicist’s analytical understanding in continuum asymptotically-free pure
Yang–Mills theory on R4 is lacking. We do have analytical understanding via the strong-
coupling expansion on the lattice, but this is far from the continuum limit. There is also the
overwhelming numerical evidence from lattice simulations.

At this point, let me make a disclaimer and a recommendation. The disclaimer is that I
can not possibly review all existing analytical—theoretically controlled or otherwise—and
numerical approaches to confinement. The recommendation is, for an overview of the
existing approaches to confinement, to consult the comprehensive and refreshingly (self-)
critical monograph [2] (a minor warning is that its relatively small size is both a blessing
and a curse).

After this preamble, we now turn to the topic of these notes.

1.1. What Are These Lectures About?

These lectures are about an approach to the study of confinement that emerged within
the past decade or so. This is an analytical approach to confinement, within asymptotically
free QFT in four dimensions (thus, not using AdS/CFT and other string-inspired tools [3])
that is under theoretical control. In the case at hand, a weak-coupling semiclassical expan-
sion using objects defined in the UV theory is valid, and the physics is weakly coupled at
all scales, all the way from the UV to the IR. This makes the R3 × S1 setup distinct from the
few analytical approaches on R4 that do not involve uncontrolled approximations, notably
Seiberg–Witten theory [4]. This is Yang–Mills theory with extended N = 2 supersymmetry,
with a soft mass term preserving minimal N = 1 supersymmetry. Here, owing to super-
symmetric dualities, the IR physics has a weakly coupled description and confinement
can be shown to be due to the condensation of monopole or dyon particles, in a kind of
dual Higgs mechanism. Other examples, also in theories with (extended) supersymmetry,
describe a type of confinement dual to the confinement of electric charges: the confinement
of monopoles via nonabelian strings, see, e.g., [5] and references therein.

The scope of these lectures is as follows: we study the R3 × S1 approach to nonper-
turbative physics on the example of four-dimensional SU(2) nonabelian gauge theory
with a number of Weyl fermions, denoted by n f , in the adjoint (or vector) representation
of the gauge group. The theory is asymptotically free for n f ≤ 5. The fermions can be
taken massless, or be given gauge invariant Majorana masses. The masses of the different
flavours can be taken different, but for our discussions here we shall assume them to be
of the same order and denote their overall scale by m. As mentioned before, the class
of theories with calculable nonperturbative dynamics is larger, but we stick to SU(2) for
pedagogical reasons. While there are many interesting observations to be made upon
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replacing SU(2) with SU(N), there is already more than enough material to cover; thus,
introducing more group theory is left for future self-study.

When formulated on R4, analytical approaches to the nonperturbative physics de-
termining the vacuum structure and symmetry realization are not available, due to the
strong-coupling infrared problem. Here, we shall study the above class of theories, but for-
mulated on R3 × S1, with periodic boundary conditions for the fermions. Thus, our S1

is not a thermal circle (which would require anti-periodic boundary conditions for the
fermions) but a compact spatial direction of circumference L. (A purist would then insist
that we refer to R1,2 × S1 instead, but as most of our studies will be Euclidean, for brevity
we stick with R3× S1). As we shall explain, calculability is ensured by taking the size of the
S1 circle to be smaller than the inverse of the strong coupling scale of the four-dimensional
theory Λ, often called the “confinement scale”.

Before we continue, we note that the idea of the “femto-universe”, where Yang–
Mills theory is considered in a small volume, was first put forward by Bjorken long
ago [6]. (Incidentally, Bjorken is also the one rumoured to have coined the phrase “voodoo
QCD”, presumably to characterize approaches to nonperturbative physics whose validity
is not a priori clear and is hard to justify, except for agreement with a set of data, often
judiciously chosen. Jokes aside, while modelling the dynamics have their raison d’être, our
emphasis here is on studying gauge theories from first principles and without uncontrolled
approximations, hence we stay far from such approaches). He envisaged, however, taking
all three directions of space smaller than the confinement scale, of order ∼ 1 Fermi, hence
the name. Significant effort has gone into studying the physics of Yang–Mills theories
on small spatial three-tori since [7] (see the review [8]). It turns out that formulating the
perturbative and semiclassical expansion on a small T3 is quite complex and difficult to
handle. In addition there is a center-symmetry breaking phase transition separating the
small-T3 theory from the infinite volume one. However, it also turns out that taking two of
the dimensions of the T3 be infinite, thus considering the limit R1 × T3 → R1,2 × S1, brings,
in a large class of theories, great advantages with respect to calculability, at least to leading
order in the semiclassical expansion (due to important insight from the 1990s, see [9,10]
and Section 3). A center-symmetry breaking phase transition upon compactification can
also be avoided.

It was first realized by Ünsal [11,12] that, for LΛ� π, the nonperturbative physics of
these theories can be studied in a weak-coupling semiclassical expansion. One can show
that a nonperturbative mass gap for the gauge fluctuations is generated, a confining string
can be seen to form when charged probes are inserted in the vacuum, and, in the theories
with chiral symmetries, one can study their realization in the ground state and show
their spontaneous breakdown. In addition, a center-symmetry breaking phase transition,
typically expected after compactification, can be avoided, and one can argue for a smooth
connection to the R4 theory of ultimate interest.

The space of SU(2) theories with adjoint fermions, defined by the parameters Λ, n f , m,
and the S1 size L, can be roughly split into three classes, each with distinct calculable
dynamics at LΛ � π. We enumerate them below in the order we study them in these
lectures. We introduce our jargon (dYM, QCD (adj), and SYM) and also briefly advertise
their main properties that shall be explained below:

1. dYM, or deformed Yang–Mills theory [13,14]: for our purpose, this theory is defined
in a UV complete manner as Yang–Mills theory with two or more massive adjoint
fermions, whose mass is taken m ∼ 1/L. The fermions decouple from the physics at
energy scales� 1/L, but leave an important imprint: center stability and abelian-
ization, ensuring calculability of the long-distance physics. Confinement and the
θ-angle dependence can be analytically studied. Notice that dYM is in the universality
class of pure Yang–Mills theory. It is believed to be continuously (i.e., without phase
transition) connected to the R4 pure Yang–Mills theory. The agreement with lattice
data, particularly regarding topological properties is quite remarkable.
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2. QCD (adj), or adjoint QCD, is the theory with 2 ≤ n f ≤ 5 massless adjoint Weyl
fermions. The long distance physics of confinement and chiral symmetry breaking at
LΛ� π is calculable [11]. The study of this theory highlights the importance of novel
topological excitations in the dynamics of confinement and chiral symmetry breaking,
the so-called “magnetic bions”. The structure of confining strings is markedly different
from that in dYM, reflecting certain recently found “generalized” ’t Hooft anomalies,
a topic that we can not cover in any detail here, see [15–17].

3. SYM, or supersymmetric-Yang–Mills, is the same as QCD (adj), but with n f = 1.
This theory stands out as it automatically has N = 1 supersymmetry (for m = 0
only). Thus, it can be studied using the powerful tools of holomorphy introduced by
Seiberg [1]. In addition, similar to QCD (adj), it also becomes semiclassical at small L,
allowing for a calculation of the mass gap and confinement properties, not accessible to
the “power of holomorphy”. It turns out that the structure of confining strings in SYM
is similar to that in QCD (adj) for similar anomaly-related reasons. Most tantalizingly,
in the semiclassical limit one finds a novel kind of topological excitation [18–21]
the so-called “neutral bions”, ensuring center-stability and abelianization. These
topological excitations highlight the need for analytic continuation of path integrals
and are, ultimately, relevant for the idea of “resurgence”, also outside the topic of
these lectures (see [22] for a review).

Obviously, by varying the mass parameters of the fermions (i.e., taking some masses
to be� 1/L allows for the decoupling of flavours) one can arrange for interesting renor-
malization group flows between the above theories. In some cases, one can also make
conjectures about the nature of the thermal deconfinement transition in pure Yang–Mills
theory which can be confronted by lattice data (we shall consider an example in these notes).

Summary of Section 1.1: The answer to the question posed in the title of this section is: we
shall explain in some detail how the nonperturbative properties listed above arise in the
LΛ� π limit.

1.2. Why Study Small-L Theories? In Lieu of Conclusion

Skeptical students (and colleagues) often ask: “You are going to tell us how to study
gauge theories on a small circle. To boot, you study theories with unphysical—adjoint, not
fundamental as in the standard model—fermion representations. This is definitely not the
real world. Why bother?” This is a fair question: if your interest is mainly in a calculation
of hadron spectra that can be directly compared with experiment, stop reading; if you
are interested in the inner workings of QFT, stay on. As my goal is not to (over-) sell you
anything, I will simply tell you why I think this topic is interesting.

First, as we shall see, the stories I will tell about confinement, chiral symmetry breaking,
and the thermal deconfinement transition are rather elegant. It is a rare luxury to be able to
make statements about the nonperturbative phase structure of a locally four-dimensional
quantum field theory. To a theoretical physicist, this alone is quite satisfying. It makes the
study intrinsically worthwhile and fun.

Second, it can be expected that, while honestly studying a theoretically controlled
regime, one may encounter surprising new features that are more generally valid. The re-
cent resurgence of interest, reviewed in [22], in “resurgence in QFT”—studying the nature
of the divergent perturbative series in QFT and their resummation—did, in fact, arise from
these small-L studies. This was due to, among others, the peculiar nature of the magnetic
and neutral bion topological molecules. Other unusual features observed in the calculable
regime, in addition to the many novel and strange topological excitations [23–26], include
the appearance of doubly-exponential nonperturbative effects [27,28] and the emergence of
latticized dimensions in the abelian large-N limit [29].

Third, the theoretically-controlled study of the symmetry realization at small-L has led
to the conjectured existence of novel possible phases of various theories on R4, as in [30–32].
Admittedly, one needs dedicated numerical studies to confirm or refute these conjectured
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phases. Further, we can also use SYM with soft-breaking mass on R3 × S1 to make conjec-
tures about the nature of the thermal phase transition in pure YM theory [21,33,34]. These
thermal conjectures are borne out by the available numerical experiments.

Fourth, the small-L theories offer an interesting arena to study the realization, at vari-
ous energy scales [35–38], of the recently discovered ’t Hooft anomalies involving traditional
global symmetries (“0-form”) as well as higher-form symmetries [15–17]. One’s hope, then,
is that this will lead to better understanding of these anomalies and their implications.

Finally, I will also mention that theories with fundamental fermions have been incor-
porated in an interesting way [39]. They exhibit various nonperturbative properties of real
QCD in a calculable setup. At small-L, chiral symmetry is broken by the expectation value
of a monopole operator, and one can argue that a chiral phase transition between the small
and large L theories is absent. We explain this in detail, for SU(2) QCD(F), in Section 7.

Summary of Section 1.2: The calculable nonperturbative dynamics on R3 × S1 offers a
rare theoretical opportunity to analytically study nonperturbative phenomena in 4D gauge
theories. My answer to the question posed in the title of this Section is that this alone makes
these explorations worthwhile, as they extend our understanding of the nonperturbative
properties of quantum field theories in ways that are not always obvious from the start.

In lieu of conclusion: Our hope is that these notes give the necessary background, collected
all in one place, to help the interested reader through the literature on R3 × S1 compacti-
fications. Their main emphasis is on introducing the ideas and techniques used to study
the small-L calculable regime in a range of different theories, focusing on IR energy scales
µ� 1/L and exhibiting the physics of confinement and (chiral) symmetry breaking. On a
few occasions, as in Sections 7.2 and 4.1, the backreaction of the IR physics on the UV modes
of mass 1/L will be also mentioned. We stress that, despite the fact that the small-L theory
is weakly coupled at all scales, there are situations (as mentioned in Section 4.2.2) where
accounting for this backreaction is a nontrivial open problem. As the reader will no doubt
notice, the continuity of the symmetry realization towards large-L is largely conjectural,
with evidence based on comparisons with lattice data or on other expectations, such as
consistency with anomalies. Notably a theoretical proof of (the absence of) large-L/small-L
continuity in most of the theories we discuss, apart from SYM, is not known. Clearly, there
is room to advance our understanding.

1.3. Philosophy and a Reader’s Guide

These notes assume some background knowledge. This includes the basics of non-
abelian gauge theory and asymptotic freedom, as well as some familiarity with ’t Hooft–
Polyakov monopoles, chiral anomalies, instantons, and the dilute instanton gas approxima-
tion, in quantum mechanics and on R4 (references covering some of this material in more
depth are provided throughout). A few general remarks regarding the philosophy behind
these notes are due:

1. As the notes are rather long, every subsection ends with a paragraph summarizing
the main results. This should help the returning reader while allowing those familiar
with the subject of a given Section to quickly review its content.

2. We have tried to balance hand-waving explanations and careful derivations, often
leaning towards the former. We feel that keeping in mind the order of magnitude and
the leading parametric dependence of the physical quantities is more important for a
qualitative understanding than the precise numerical factors. (We did, however, make
every effort to have the correct numerical coefficients when they really matter—in
discussions of charge quantization, monodromies, and other topological features).
This attitude will be pervasive on many occasions in these notes and various factors
we omit can be found in the literature.

3. Throughout the notes, some straightforward technical derivations are relegated to
exercises, intended to improve the reader’s appreciation of the topics. These are
especially recommended to those encountering them for the first time. However,
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the notes can be read without solving the exercises, by simply understanding (and
trusting) the statements they make.

To help the readers—who might have vastly different backgrounds and interests—
through these long notes, we now include some guidance of how one may go through the
various Sections. We stress that to understand the post-2010 developments, familiarity with
background discussed in two of the eight Sections of these notes, Sections 2 and 3, is an
absolute necessity. Due to their importance they take about half of the space.

The first is Section 2, where we discuss in detail Polyakov’s confinement on R3, known
since the 1970s.

The second is Section 3, devoted to notions specific to R3 × S1. These include the
holonomy, center symmetry, its relation to confinement/deconfinement, as well as the
holonomy (or “GPY”) potential, familiar from the 1980s. These are discussed in Sections 3.1
and 3.2. A newer, crucial development on R3 × S1 is the “dissociation” of an instanton
into its monopole–instanton constituents, the “M” and “KK” monopole–instantons (for
SU(2)), discovered in the 1990s and explained in Section 3.3. The final crucial set of ideas,
from the 2000s, is the perturbative center-symmetry stabilization due to massive or massless
adjoints, the subject of Section 3.4 and Appendices B and C. Readers familiar with the
subjects of Sections 2 and 3 can proceed directly to the Sections devoted to studying the
nonperturbative dynamics of the classes of theories they may be interested in.

Section 4 discusses deformed Yang–Mills theory, adjoint QCD is the subject of Section 5,
and super-Yang–Mills is in Section 6. The many topics discussed for each class of theories
can be found in the table of contents.

Section 7 is devoted to a detailed description of SU(2) QCD with fundamental quarks
in the context of colour–flavour–center-symmetric compactifications.

Section 8 contains much briefer descriptions and references involving all classes of
theories discussed here, but for SU(N) gauge groups with N > 2, as well as other classes
of theories and gauge groups.

2. Flashback to the 1970s: Polyakov Confinement on R3

We begin our journey towards confinement on R3 × S1 by studying a theory in R3.
This is the so-called “Polyakov model” [40,41]. More recent treatments can be found in
Witten’s lectures in Vol. 2 of [42] and, for example, in the textbooks by Shifman [43] and
Banks [44]. As this is not material taught in standard QFT courses, we include an extended
discussion, intended to be self-contained (The familiar reader can skip this Section and
move to Section 3 discussing R3 × S1).

The Polyakov model is an SU(2) gauge theory with a real adjoint scalar field in three
dimensional spacetime. On R4, this theory is known as the bosonic sector of the “Georgi-
Glashow model”, a pre-cursor of modern electro-weak theory, which lacks the Z-boson
mediated neutral currents. The gauge field is Aa

µ; see Appendix A for a summary of our
notation and a few warnings about possible confusions. The real scalar field in the adjoint
representation of SU(2) shall be labeled Aa

4, with some hindsight aimed towards our future
R3 × S1 study. The theory has the Euclidean Lagrangian:

L =
1

4g2
3

Fa
µνFµν a +

1
2g2

3
(Dµ A4)

a(Dµ A4)
a +

λ

g2
3
(Aa

4 Aa
4 − v2)2 , (1)

where the 3D gauge coupling g2
3 has dimension of mass and the gauge field Aa

µ and scalar
Aa

4 both have mass dimension one. We have normalized the entire Lagrangian so that
the action S =

∫
d3xL has an overall factor 1/g2

3. As g2
3 is dimensionful, the role of h̄,

the semiclassical expansion parameter is played by a ratio E/g2
3, where E is a relevant

energy scale, the nature of which shall be revealed below. Finally, λ is a dimensionless
coupling, which shall be assumed to be O(1) or smaller (also see further below).
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2.1. Perturbative Analysis of the IR Theory

The potential for the adjoint (triplet, or vector) scalar Aa
4 is similar to that found for the

Higgs field in the standard model. To minimize the energy, we let A4 have an expectation
value (vev), which we take along the third “isospin” direction:

〈Aa
4〉 = δa3v . (2)

Expanding around the vev for A4, it is easy to see that the gauge symmetry is broken,
SU(2) → U(1). For the choice of vev we have made, the massless gauge boson is A3

µ,
while A1

µ ± iA2
µ are massive W± bosons. Their mass, as can be seen from (1), is of order v.

The A1
4 and A2

4 components of the triplet scalar are “eaten” by the massive gauge bosons,
while the fluctuation of A3

4 around the vev (2), the radial component of the higgs field, has
mass which depends on the parameter λ and is of order

√
λv. For λ ∼ 1, this is of the

same order as the mass of the W-bosons, while taking λ� 1 makes for a hierarchy in the
massive spectrum.

Next, observe that in this model, there are two dimensionful parameters: the scale
of the vev (2), v, and the scale set by the 3D gauge coupling, g2

3. In our classical analysis,
the scale v sets the mass of the heavy W-bosons and radial higgs mode A3

4. We shall call
the vev v the scale of “abelianization”, i.e., the scale below which the nonabelian degrees of
freedom decouple and the only relevant (here: massless) degree of freedom is that of the
U(1) “photon” A3

µ.
If we had set the v2 to zero (or taken it negative), we would not have had a “Mexican

hat” potential for the triplet scalar, and the theory would remain nonabelian at all scales.
What, then, are the IR dynamics expected of such an SU(2) theory (+adjoint scalar) in 3D?
Based solely on dimensional analysis, one expects that at scales of order g2

3, the 3D theory
becomes strongly coupled. Such behaviour is typical in lower dimensional theories, where
the couplings have positive mass dimension. These represent relevant parameters whose
importance grows in the IR. Formally, as in any theory with dimensionful coupling constant,
one can define a dimensionless coupling using an appropriate power of the relevant energy
scale µ. In our case, as g2

3 has dimension of mass (and is, by standard power-counting,

a relevant coupling) the dimensionless combination is g2
3

µ , showing that this coupling grows

in the IR and becomes large when µ ∼ g2
3. Those not familiar with these sort of arguments

should follow the more explicit discussion between Equations (3) and (4) below.
However, if the scale v is taken to be v � g2

3, the abelianization of the theory stops
the running of the coupling towards large values in the IR. At energies less than v, the
theory is free, as there is only the A3

µ photon and there are no U(1)-charged particles that
are light. (Notice that this is crucial in 3D, where a U(1) theory with light charged particles
becomes strongly coupled in the IR). The point we shall make more explicit below is that our
analysis of the spectrum above is sensible only in the v� g2

3 limit. Thus, the dimensionless

expansion parameter in our theory is expected to be g2
3

v � 1. Its smallness guarantees the
validity of the (essentially classical) analysis above.

Let us elaborate on the above two paragraphs. To this end, we write an effec-
tive Lagrangian governing the physics at µ � min(v,

√
λv). We claim that it has the

schematic form:

Le f f =
1

4g2
3
(F3

µν)
2

[
1 + C

g2
3

v

]
+ . . . , (3)

where C is a numerical coefficient. The overall term multiplying the square brackets is
self-explanatory: we simply kept the kinetic term for the massless photon A3

µ from (1) and
ignored the terms involving massive fields (this is equivalent to the “tree-level” integrating
out the heavy fields; here, it amounts to crossing them out). The second term in the brackets
can be seen as the result of the calculation of the one-loop graph shown in Figure 1 (naturally,
there are higher loop corrections not shown), and the dots in (3) denote higher-dimensional
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terms suppressed by powers of the W-boson mass v (e.g.,∼ (F3
µν)

3, not showing the Lorentz
index contractions), which are irrelevant at µ� v. (This is similar to the Heisenberg–Euler
Lagrangian in QED describing the photon self-interactions at energies below the mass of
the electron). The precise calculation of the second term in the brackets requires some
care. However, simple dimensional analysis suffices to guess the parametric scaling of the
operator given in the term in Le f f multiplied by C. The normalization of our Lagrangian (1)
determines the scaling of vertices and propagators and thus the final scaling of the one-loop
result, as explained in the caption of Figure 1. 

Figure 1. The one-loop heavy W-boson contribution to the photon kinetic term. From (1), all vertices

come with a factor 1
g2

3
and the W-boson propagator is ∼ g2

3
k2+v2 . Thus, the loop integral scales as

∫ d3k
(k2+v2)2 ∼ 1

v , producing the second term in Le f f of (3), with a calculable coefficient C. (For this

estimate, the momenta at the interaction vertices can be taken to act on the external A3
µ to produce

the field strength in (3)).

To conclude, the dimensional analysis explained in Figure 1 determines the form of
the term in square brackets in (3). It tells us that the U(1) gauge coupling in the effective
theory of the massless modes is of the form

1
g2

e f f
=

1
g2

3
+

C
v
+ . . . , (4)

Given by the sum of a tree-level term and the loop corrections. It is clear from (4)
that perturbation theory breaks down whenever the second term becomes bigger than
the first, i.e., when v � g2

3. Conversely, as advertised earlier, when v � g2
3 the one-loop

correction is small and the semiclassical (for now: perturbative) approximation works,
at the usual physicist level of rigour. (The precise calculation reveals the true behaviour:
the sign of C is negative. Taken at face value, it implies that the coupling of the massless
photon blows up at a finite value of v, indicating a breakdown of the abelian effective
field theory. This is another way to see the relevant nature of the gauge coupling in the
3D Yang–Mills theory. See [45] for a calculation in a supersymmetric 3D theory. For a
nonsupersymmetric theory, this behaviour can be inferred from the R3 × S1 calculation in
QCD (adj) [46], after throwing out the contributions of adjoint fermions and Kaluza–Klein
modes on the circle). As already declared, this is the limit we shall be exploring to study
the physics of the Polyakov model semiclassically.

Summary of Section 2.1: The upshot of our analysis here is that the perturbative IR
physics of (1), taken with v� g2

3, is rather boring: there is a free massless photon, which
has irrelevant self interactions due to the “. . .” terms in (3). However, as we shall see in the
following sections, nonperturbative effects due to (1), still calculable in the semiclassical
limit, completely change the IR behaviour. A mass gap for the perturbatively free IR U(1)
theory is generated nonperturbatively, giving rise to confinement of probe electric charges.

2.2. Finite Action Monopole–Instantons in the Polyakov Model

The striking fact about the Polyakov model is that the simple free-photon Lagrangian (3)
does not give a correct account of the IR physics. Nonperturbative effects, not accounted
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for by any finite number of loop diagrams, as that in Figure 1, completely change the
long distance physics. The goal of this section is to discuss the objects responsible for this
change of IR behaviour: the “monopole–instantons” of the Polyakov model (1). It is their
proliferation in the vacuum that ultimately causes confinement of fundamental charges.

The monopole–instantons are finite Euclidean action solutions of the equations of
motion of the Polyakov model (1), akin to the famous Belavin–Polyakov–Schwarz–Tyupkin
(BPST) instantons in R4. In order to exhibit them in a straightforward manner, we shall
work in the λ = 0 limit, where Aa

4 is a scalar field without a potential and thus v is arbitrary.
Studying this limit is, strictly speaking, not necessary in the purely 3D theory. However,
in our R3 × S1 study, the physics of the compactified 4D theory will force us into a regime
where the scalar potential is small, i.e., λ� 1. The λ = 0 limit is known as the “Bogomolny–
Prasad–Sommerfield”, or BPS, limit, known to simplify the study of monopole–instantons.
(As stated earlier, some familiarity of the reader with ’t Hooft–Polyakov monopoles is
assumed here and our discussion may appear terse. For a review of BPS monopoles, see
Harvey’s lectures [47] (our monopole–instantons are related to the finite-energy solitonic
monopole solutions on R1,3 discussed there by forgetting the time direction). A pedagogical
reference that also goes beyond the BPS limit is E. Weinberg’s book [48]. As an aside,
the BPS limit is natural in supersymmetric theories, where a vanishing potential, λ = 0, is
perturbatively stable).

In the λ = 0 limit, we can simplify matters further if we write (1) in a “4D” form as
follows. Let us introduce indices M, N = 1, 2, 3, 4 and extend the Euclidean metric to the
usual 4D one. Then, observe that

L =
1

4g2
3

Fa
µνFµν a +

1
2g2

3
(Dµ A4)

a(Dµ A4)
a =

1
4g2

3
Fa

MN FMN a , (5)

where Fa
MN = ∂M Aa

N − ∂N Aa
M + i([AM, AN ])

a, and Fa
µ4 = (Dµ A4)

a, i.e., ∂4 ≡ 0; the de-
pendence on the fictitious (for now) 4th dimension is neglected. Again, I stress that this
4D terminology is simply convenient for the study of the R3 theory, where no ∂4 appears,
and will only become indispensable once we transition to R3 × S1. Further, let us also
introduce the components of the field-strength tensor:

Ba
µ =

1
2

εµνλFνλ a , Ea
µ = (Dµ A4)

a = Fa
µ4 , (6)

and call these fields “magnetic” and “electric”, respectively (ε123 = 1). Notice that the
names we attach to the above B and E are a convenient choice of words and should not be
taken literally, as these are Euclidean R3 fields. If we go to Minkowski space, R1,2, by say,
declaring x1 to be the Euclidean version of time, B1 will represent the true magnetic field (a
pseudoscalar F23 in 3D) while B2 and B3 are actually electric fields, related to F12 and F13
by (6). On the other hand, Eµ is simply the covariant derivative of a scalar. (There exists
confusing nomenclature in the literature related to taking the “electric” and “magnetic”
labels attached to E and B seriously. The reason these names stuck will become clear shortly.
It would be nice to banish them, but they have by now been deeply ingrained, so we use
them but remember the context). Now, using (6), we can rewrite (5) (for brevity, we do
not distinguish upper and lower indices, all are assumed to be lowered/raised by the unit
metric) as follows

L =
1

2g2
3

[
(Ba

µ)
2 + (Ea

µ)
2
]
=

1
2g2

3

[
(Ea

µ ∓ Ba
µ)

2 ± 2Ea
µBa

µ

]
. (7)

The above equation, due to the positivity of (Ea
µ ± Ba

µ)
2, implies that the (positive

definite) Euclidean action obeys an inequality known as the “BPS bound”

S =
∫

d3xL ≥ ± 1
g2

3

∫
d3xEa

µBa
µ ≡ SBPS . (8)



Symmetry 2022, 14, 180 11 of 109

What is interesting about these manipulations? Suppose we are looking for finite
Euclidean action solutions of the equations of motion of (5), i.e., for instantons. Finiteness
of the action requires that E2 and B2, and hence, (E± B)2 and E · B are all integrable on
R3. Then, (8) implies that the action will reach its minimum value SBPS = 1

g2
3

∫
d3x|Ea

µBa
µ|

whenever E = ±B. Solutions of the equations of motion of (5) which obey Ea
µ = Ba

µ are
called “self-dual”, while the ones where Ea

µ = −Ba
µ are the “anti-self-dual” ones. Further,

we notice that Ea
µBa

µ is a total divergence, hence (taking the positive sign for definiteness
and using d2sµ to denote the surface element)

SBPS =
1
g2

3

∫
d3xEa

µBa
µ =

1
g2

3

∫
d3x∂µ(Aa

4Ba
µ) =

1
g2

3

∮

S2

d2sµ Aa
4Ba

µ, (9)

showing that SBPS can be written as an integral over an S2 at Euclidean space–time infinity.
Thus, the minimum value of the action is determined by boundary conditions at infinity,
determined by the behaviour of the Higgs field vev v and “magnetic” field Ba

µ at infinity.
Let us concentrate on the simplest self-dual Euclidean solutions of finite action,

the spherically symmetric ones. We shall now give their form and in later Sections discuss
their relation to the static ’t Hooft–Polyakov monopole solutions on R1,3 (it is, in fact, this
relation that has made the name “monopole–instantons” stick to the instanton solutions of
the 3D Polyakov model). The solutions are known as the “BPS monopoles”. The solution
centered at the origin r = 0 of R3 is

Aa
4 = −navP(vr) , Aa

µ = εaµνnν
1− A(vr)

r
. (10)

Here, na = ra

r is a unit vector in R3, and you should imagine that all indices are
lifted and lowered with Kronecker deltas. The functions P(x) = coth x − 1

x → 1 − 1
x ,

A(x) = x
sinh x → O(xe−x), where both limits are as x → ∞. For the BPS self-dual monopole–

instanton (10), the field strength can be straightforwardly calculated. It is given in terms of
two functions F1(v, r) = v2

sinh vr

(
1
vr − coth vr

)
→ v2O(e−vr) and F2(v, r) = v2

sinh2 vr
− 1

r2 →
− 1

r2 , so that

Ba
µ = Ea

µ = (δµa − nµna)F1(v, r) + nµnaF2(v, r)→ −nµna

r2 as r → ∞ . (11)

Notice that the solution has a characteristic core size, of order v−1, inside which the
field configuration is nonabelian and quite complicated. However, as r � v−1, the fields
drastically simplify, as shown above. The solution given above is everywhere regular and is
known as the “hedgehog” gauge solution. This is due to the fact that the isospin orientation
of the B field at spatial infinity varies as a function of direction. The action of the BPS
monopole is easily computed from (10), (11), and (9) as an integral over spatial infinity

S0 =
1
g2

3

∮

S2

d2sµ Aa
4Ba

µ =
v
g2

3

∮

S2

d2sµ nµ

r2 =
4πv
g2

3
. (12)

Notice that the action is large in the semiclassical limit v� g2
3. The anti-BPS solution

is given by the same Equations (10) and (11), but with Aa
µ and Ba

µ taken with opposite sign.

Exercise 1: Verify that (10) solves the equations of motion of (5) and that the field
strength is given by (11).

Before we continue, let us also give the large-r asymptotics of the BPS monopole–
instanton solution in a gauge where the hedgehog has been combed, the so-called “string”
gauge. (The hedgehog cannot be combed everywhere without a singularity. One needs
to cover R3 by at least two coordinate charts to describe the string-gauge solution for all
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r, θ, and φ. We shall not dwell on this as it will not be relevant for us. The formulae of the
string gauge solution covering also all r < v in the two coordinate patches can be found
in e.g., [26], along with the gauge transformations relating them to the regular hedgehog
solution). In this gauge, the B (and E) field far away from the core of the monopole–
instanton is rotated to point solely in the third isospin direction, so it really resembles the
field of a pointlike charge under the unbroken U(1). The A4 and B field, given now as a
matrix in the SU(2) Lie algebra, approach, as r � v,

A4(r)→
vσ3

2
, Br →

1
r2

σ3

2
, (13)

with exponentially small angular-direction components Bθ,φ → v2O(e−vr) (we defined
the polar-coordinate components of B via Bµdxµ = Brdr + Bθdθ + Bφdφ). In this gauge,
we can write the action (9) as S0 = v

g2
3

∮
S2

d2~s · ~B3 ≡ 4πv
g2

3
Qm , with Qm = 1, where we

defined the “magnetic charge” in the usual way, as the integral of the “magnetic field” ~B3

at spatial infinity

Qm =
1

4π

∮

S2

d2~s · ~B3 . (14)

The minimal action (anti-) BPS solutions have Qm = ±1. The Qm = 1 solutions given
here are also the lowest action ones. Outside of the core (of order v−1), the field configura-
tion is determined by the essentially abelian B3

µ (and E3
µ) field. This is schematically shown

in Figure 2. We stress that the long-range abelian field, the charge, and the action of the
monopole–instanton are the main features relevant for our discussion, while the details of
the core are inessential.

Figure 2. A representation of a monopole–instanton solution in R3, showing the scales characterizing
the λ < 1 spherically-symmetric monopole–instanton: the nonabelian core of size v−1, the outside
core region of size (

√
λv)−1 with abelian Eµ field, and the “long-range” region r > (

√
λv)−1 where

only an abelian ~B field in the unbroken-U(1) is present. For our applications, only the long-range
region will be relevant, as the monopole–instantons are well separated in the dilute-gas approximation.
The action of the λ � 1 solution is approximately the BPS action (9), S0 = 4πv

g2
3

, and the magnetic
charge (14) is unity.

Here, we presented these solutions in the BPS limit λ = 0, where no potential for the
A4 field is present. The BPS monopole–instantons also carry long-range “electric” fields
E3

µ ∼ nµ/r2. In the nonsupersymmetric 3D Polyakov model, and in most of our future
R3 × S1 applications, λ � 1 is finite, causing A4 to become massive. Denoting the A4
mass by m4 ∼

√
λv, the corresponding (now non-BPS) monopole–instantons have an E
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field that dies exponentially away from the core, E3
µ ∼ nµe−m4r/r2, thus they carry no

long-range “electric” fields. We stress, however, the most relevant feature: the “magnetic”
field remains long-range, B3

µ ∼ nµ/r2, also for λ 6= 0. The action is, as before, given by S0
of (9), with small, for λ� 1, corrections. (When λ 6= 0, the monopole–instanton solutions
are no longer (anti-) self-dual. Exact analytic forms of the solutions do not exist, and they
have to be studied numerically or by employing matched asymptotic expansions to find
approximate solutions in different regions of space. See [26] for some expressions and
references). A cartoon, useful for our future applications, of the field configuration at large
distances is given in Figure 2.

Summary of Section 2.2: The (anti-) BPS monopole–instanton solutions (10) are finite
action (9) Euclidean solutions of the classical equations of motion of the λ = 0 Polyakov
model (1). Most importantly for our application, even for nonzero λ� 1, these instantons
carry long-range “magnetic” fields B3

µ ∼ nµ/r2 and thus have “magnetic” charges (14).
Their action S0 is given by (9), up to small-λ corrections.

2.3. Monopole–Instantons and the IR: I. First Pass

Armed with the knowledge of finite action instantons in the Polyakov model, we
now return to study the IR physics in the semiclassical v � g2

3 regime. Recall from
Section 2.1 that, perturbatively, the IR theory is the rather boring one of a massless photon
and nothing else.

In the semiclassical limit, the theory is weakly coupled and we expect, using our
intuition from quantum mechanics, that summing up the contributions of the trivial and
nontrivial saddle points of the path integral will give a good guidance to the physics.

To use quantum mechanics as a motivation, recall the example of the double well
potential [40,41,49–51]. The energy of the ground state receives perturbative contributions
calculated using an expansion around a minimum. At any finite order, these corrections
are blind to tunneling and the existence of the second minimum. There are also nontrivial
saddle points: instantons, anti-instantons, instanton-anti-instantons, etc. When summed
over, their contributions imply that the true ground state is the symmetric linear combina-
tion of states built around the two minima. The energy splitting between the symmetric
and anti-symmetric combinations is also determined. There is a lot of structure here, which
in many cases can be made quite precise, see the review [22], relevant to the fascinating
and difficult topic of “resurgence” theory (that we cannot go into).

Saddle points are classical solutions extremizing the action functional. Ordinary
perturbation theory, as in Section 2.1, is an expansion in small fluctuations around the
trivial saddle point of the path integral, i.e., around the classical solution A4 = v, Aµ = 0
with action S = 0. However, in Section 2.2 we found that there are other saddle points
of the path integral, the monopole–instantons with action (9) S0 = 4πv

g2
3
� 1. The natural

question that arises, then, is whether and how these other saddles affect the IR physics?
We shall begin answering this question using the Euclidean path integral framework.

We found the nontrivial solutions of the equations of motion, the monopole–instantons
with action S0 = 4πv

g2
3
� 1. Next, we recall the equivalence between Euclidean field theory

(here obtained from a d = 2 + 1 quantum field theory) and classical statistical mechanics
(in d = 3). It implies that the Euclidean path integral can be given a probability interpreta-
tion: any field configuration will occur with probability proportional to its “Boltzmann”
factor e−S. Thus, we expect that in the Euclidean path integral of the Polyakov model,
such as the one representing the vacuum to vacuum amplitude, monopole–instanton
field configurations can contribute, with probability governed by their action, ∼ e−S0 .
A monopole–instanton is a field configuration in the R3 spacetime, which is characterized
by its location (the position of its center) and characteristic core size ∼ v−1, or core volume
v−3. Such a fluctuation can spontaneously appear anywhere in R3. If we take a box in R3

of volume V, the classical statistical mechanics interpretation leads one to expect that a
monopole–instanton fluctuation in the path integral can appear with probability Vv3e−S0 ,
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where Vv3 represents the “entropy” enhancement and e−S0 the “energy” suppression. Thus,
the probability of a monopole–instanton fluctuation per unit spacetime volume is ∼ v3e−S0 .

To get an idea about the effect of this nonperturbative fluctuation, let us study the
gauge-invariant two-point field-strength correlation function, say 〈B3

µ(~x)B3
µ(~y)〉. The per-

turbative contribution is easily evaluated, as per Section 2.1,

〈B3
µ(~x)B3

µ(~y)〉
∣∣

pert. ∼
g2

3
|~x−~y|3 . (15)

This is simply the contribution of the massless photon, and the r.h.s. can be guessed
by dimensional analysis (once again, the coefficient is calculable but inessential). As per
our discussion above, a monopole–instanton fluctuation can also appear and contribute to
this two-point function. Suppose now that such a fluctuation appears at some point~r ∈ R3,
with (per unit-volume) probability ∼ v3e−S0 . As in the quantum mechanics instanton
calculus, we sum over d3r, the possible positions of the instanton (as the fluctuation is
equally likely to appear anywhere, at least in this leading approximation). We also recall
that for an instanton at~r, the long-range “magnetic” field is ~B3(~x)|1−inst. at~r ∼ ~x−~r

|~x−~r|3 . Thus,
we find that the 1-instanton contribution to the two-point function is given by

〈~B3(x) · ~B3(y)〉
∣∣
1−instanton ∼ v3e−S0

∫
d3r ~B3(~x)|1−inst. at~r · ~B3(~y)|1−inst. at~r

∼ v3e−S0

∫
d3r

~x−~r
|~x−~r|3 ·

~y−~r
|~y−~r|3 ∼

v3e−S0

|~x−~y| . (16)

To find the last equality, one can calculate the integral over d3r, or simply recall from
electrostatics that it represents the interaction energy of two electric charges at ~x and ~y.

Let us now add the perturbative (15) and 1-instanton (16) contribution to the two-
point function

〈B3
µ(~x)B3

µ(~y)〉
∣∣

pert.+1−inst. ∼ g2
3

(
1

|~x−~y|3 + Ce
− 4πv

g2
3

v2

|~x−~y|

)
, (17)

where C is a dimensionless constant (dependent on g2
3/v) that also incorporates a proper

integration over the collective coordinates of the monopole–instanton (this detail shall not
concern us here).

Most important for what follows is the structure of (17). In the second term, we restored
the explicit small-coupling dependence of S0. This emphasizes the fact that the two terms
have very different behaviour as g2

3/v → 0: the second term in (17) is nonperturbative,
i.e., nonanalytic in the small dimensionless parameter. The most important conclusion that
one can draw from the two-point correlator (17) is that, despite its exponential smallness

in the g2
3

v � 1 limit, the nonperturbative term dominates the long-distance behaviour of
the two-point function, as it becomes more important for exponentially large separations,

|~x−~y|2 � v−2e
4πv
g2

3 . Thus, the effect of nonperturbative fluctuations is to significantly alter
the IR physics. The behaviour of (17) also indicates that a nonperturbative mass scale
appears in the IR theory, given by the inverse of the square root of the crossover distance
indicated above

m2
IR ∼ v2e−S0 = v2e

− 4πv
g2

3 . (18)

The appearance of an IR mass scale also makes one suspect that the true behaviour of
the correlator (17) at large distances may have an exponential rather than a powerlaw falloff.

In what follows, we shall argue that the above guess is essentially correct. We shall
show that the IR physics of the Polyakov model is even “more boring” than the free massless
photon of Section 2.1—it is, instead, gapped, with a nonperturbative mass gap given by
mIR. Perhaps some of the boredom will disappear when we show that, upon insertion of
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fundamental probe electric charges, the same mechanism that gave rise to a nonvanishing
mass gap, mIR, is also responsible for the confinement of these charged probes.

However, before we get there, we must address the deficiencies in our “derivation”
of (17). Let us first recall the relevant lessons we learned. Think of the monopole–instantons
as particles of size 1/v3 and a “Boltzmann” suppression factor e−S0 . In a box of 3-volume
V, a monopole–instanton can appear with probability V

(1/v)3 e−S0 , indicating the “energy”

suppression e−S0 and “entropy” enhancement Vv3. Note that for large Vv3 the entropy
contribution wins over the Boltzmann suppression, and one has to account for the appear-
ance of multiple monopole–instanton fluctuations. This is one of the main points we need
to address to improve upon (17). In the quantum mechanics double-well problem, this is
addressed by summing up multiple instanton contributions using the dilute instanton gas
approximation, and we shall do a similar summation here.

In the model at hand, one encounters another issue not present in quantum mechanics,
due to the long-range instanton interactions. One expects the probability that two such
objects appear to scale as v6e−2S0 e−Sinter. . Here, Sinter. is due to the fact that the monopole–
instantons have a long-range “magnetic” field and hence non-negligible interactions at long
distances (as opposed to the double-well instantons in quantum mechanics which have
exponentially suppressed long-distance interactions). Thus, the action of a pair of such
objects taken some distance apart will be larger or smaller than 2S0, depending on whether
they attract or repel. The long-range interactions between two monopole–instantons is due
to their long-range B3

µ tail and we expect them to have Coulomb-like interactions at large
separations (recall the end of Section 2.2, where we argued that at λ 6= 0, the E3

µ field is
exponentially damped away from the instanton core, as pictured in Figure 2).

Thus, in order to properly calculate correlation functions such as (17), we have to
account for the contribution of multiple monopole–instantons (as in quantum mechanics)
and for their long-range interactions (a feature not present in quantum mechanics). The pic-
ture that will emerge is that the sum over saddle points of the Euclidean path integral
of the Polyakov model can be recast in the form of the partition function of a classical
gas of monopole–instantons and anti-monopole–instantons, with pairwise Coulomb in-
teractions at large separations. This classical gas is “grand-canonical”, i.e., the number of
either monopole–instantons and anti-monopole–instantons is not fixed. What is fixed is
the “fugacity” e−S0 that each object’s contribution to the partition function is weighted
by. If the gas is sufficiently dilute, accounting for only the long-range interactions should
suffice to describe the physics, as the various monopole–instantons never significantly
overlap. The semiclassical expansion parameter controlling the diluteness of the gas is now
e−S0 � 1.

Summary of Section 2.3: In this Section, we saw the first indication that monopole–
instanton fluctuations drastically alter the perturbative IR physics of the Polyakov model,
leading to the appearance of a new infrared scale (18). However, to proceed, we need to
develop more technology to properly study the effect of multiple instantons and their interac-
tions.

2.4. Monopole–Instantons and the IR: II. Duality, ’t Hooft Vertices, and Monopole Operators

The IR physics of the 3D Polyakov model is most conveniently described using a
dual language. (Recently, 3D dualities more general than the one we use in these notes
have received some attention. For a pedagogical introduction and review, see [52]). The
dual description employs the fact that, in 3D, a photon has one polarization and is thus
equivalent to a scalar field. The duality that we shall perform is thus valid in the IR
theory (3) of the UV SU(2) model (1). Recall that to obtain the IR theory, the W-bosons
are integrated out, and the only light degree of freedom is A3

µ (and possibly the A3
4 neutral

scalar, which remains massless for λ = 0). The long distance theory is defined by the
action (3),

Le f f . =
1

4g2
3

F2
µν, (19)
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and a path integral over the Aµ field modulo gauge transformations. For brevity, we shall
henceforth omit the isospin index on the fields Aµ and Fµν, with the understanding that
these are the massless modes describing the unbroken U(1) subgroup of SU(2). There are
no charged degrees of freedom in this theory and the path integral over Aµ can be rewritten
as a path integral over Fµν, with an additional constraint imposed to ensure that the field
strength obeys the Bianchi identity εµνλ∂µFνλ = 0 (which guarantees that, locally, F is the
curl of a vector). The constraint can be imposed via a Lagrange multiplier scalar field σ.
To avoid the appearance of factors of i in the action, we shall now go to Minkowski space
with metric (+,−,−) and ε012 = +1. The action is

SMink.[Fµν, σ] = − 1
4g2

3

∫
d3xFµνFµν − 1

8π

∫
d3x ∂µσ Fνλεµνλ (20)

and the path integral is over Fµν and σ. Integrating out σ imposes the Bianchi identity for
Fµν, i.e., gives back the Minkowski space version of the original theory (19). On the other
hand, integrating out Fµν, and substituting back into (20) its saddle point value

Fµν = − g2
3

4π
εµνλ∂λσ, (21)

we obtain the “dual photon” action

SMink.[σ] =
1
2

g2
3

(4π)2

∫
d3x∂λσ∂λσ . (22)

The field σ will be called, from now on, the “dual photon”. The description in terms
of the dual photon is often called the “magnetic description”, in contrast with the electric
description in terms of a U(1) gauge field.

The duality relation (21) shows how to map local gauge invariant operators between
the electric description (19) and the magnetic one (22). For future use, we note that the
spatial gradients of σ give the F0i, i = 1, 2, components of the field strength, i.e., they
represent the true electric field on the R1,2 Minkowski space. The time derivative of σ,
on the other hand, represents the F12 component, i.e., the only magnetic field component
on R1,2.

There are, however, other operators that will be of interest to us, that may be slightly
less familiar. Begin, in the electric theory (19), where one can define line operators repre-
senting the insertion of static nondynamical charge probes, such as

WQe(~x∗) = eiQe
∫

dx0 A0(~x∗ ,x0), (23)

the Wilson line representing a static electric charge Qe located at ~x∗ ∈ R2. Such operators
are meant to be inserted in the path integral and are important to the study of confinement.
Thus, it will be of interest to us to learn how Wilson lines are represented in the dual
theory (22).

Conversely, in the magnetic theory (22), one can define operators that create “fluxons”.
To justify their introduction, notice that the dual photon theory (22) has a global symmetry

under which σ shifts by a constant. The corresponding current is jµ =
g2

3
16π2 ∂µσ, which

is mapped by (21) to jµ = − 1
8π εµνρFνρ. Thus, the shift symmetry of the dual photon

maps to the “0-form” magnetic symmetry of the electric 3D U(1) theory, whose current
is conserved due to the Bianchi identity. We note that this magnetic symmetry is an
“emergent” symmetry of the IR U(1) theory, and is not present in the SU(2) UV theory of
the Polyakov model. In fact, its breaking by the UV SU(2) theory is crucial for the physics
of confinement. (This is also not a symmetry in the compact-U(1) lattice theory which
also exhibits confinement [41,53]. For a study of the compact U(1) theory, including in the
Hamiltonian formalism, see [54]).
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The charge corresponding to the σ-shift symmetry is

Q =
g2

3
16π2

∫
d2x∂0σ↔ − 1

4π

∫
d2xF12, (24)

and maps to the integral over R2 of the magnetic field F12. In a canonical quantization of
the σ theory (22), the state

eiσ(~x∗)|0〉 (25)

is an eigenstate of Q with eigenvalue 1, as you will show in the following.

Exercise 2: Canonically quantize the dual theory (22) (for brevity, omitting hats
over operators). Show that the canonical commutation relations imply that
Qe±iσ(~x∗)|0〉 = ±e±iσ(~x∗)|0〉, i.e., the operator e±iσ(~x∗) creates a unit magnetic flux,
a “fluxon” at ~x∗ ∈ R2.

Notice that in the electric description (19) the operator eiσ, creating a pointlike fluxon
with − 1

4π

∫
d2xF12 = 1, does not have a simple description. This is an example of a “disor-

der” operator which does not have a local expression in terms of the electric theory fields.
Conversely, the Wilson loop operator (23) is simple in the electric theory, but not in

the magnetic theory (22), where it is represented by a disorder operator. As Wilson loops
are important for the study of confinement, let us now flesh out the details. As already
discussed WQe(~x∗) describes the insertion at ~x∗ of a static electric probe charge Qe. A static
charge at the origin of R2 creates electric field ~E(~r) ∼ Qe

~r
r2 (for the proportionality constant,

consult Exercise 3 below). By Gauss’ law, a line integral of the electric field over a loop
C ∈ R2 enclosing the charge can be used to find the charge, Qe ∼

∮
C

~E · d~s, with~s normal

to C. From the duality relation (21), we have that Qe ∼
∮
C

~E · d~s ∼
∮
C

d~l · ~∇σ, where

~l is tangent to C. In other words, we have shown that the σ field has nonvanishing
monodromy, proportional to Qe, around loops surrounding static electric charges (see
Figure 3). (A nonzero monodromy simply means that σ is not single-valued around electric
charges: taking C to be a circle parametrized by a polar angle, we have

∮
C d~l · ~∇σ =

σ(2π)− σ(0) ∼ Qe). Thus, the Wilson loop operator WQe(~x∗) should be defined by the
following prescription: when inserted in the path integral of the dual photon theory, impose
boundary conditions on the σ field in the path integral, requiring it to have monodromy
∼ Qe along the line ~x = ~x∗ in R3. To determine the coefficient, consider the following

Figure 3. The photon–dual photon duality (21) maps an electric charge Qe into a vortex of the dual
photon field, with monodromy determined by the charge. As shown in Exercise 3, the monodromy
equals ±2π for “quarks” in the fundamental of SU(2). A fundamental Wilson loop is thus mapped
to a disorder operator for the σ field, defined by imposing 2π monodromy of the dual photon around
the loop.
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Exercise 3.1: Our electric theory (19), which descends from an SU(2) gauge
theory (1), is an example of a compact U(1) theory—electric charge under the
unbroken U(1) is quantized, with the smallest value corresponding to sources in
the fundamental representation of SU(2).

To tackle this problem, we use the fact that a static charge in the fundamental
representation of SU(2) can be introduced by inserting a fundamental Wilson line,
W(~x∗) = tr Pei

∫
dx0 Aa

0(~x∗ ,x
0)Ta

in the path integral, see the discussion around (43).
This leads, in the unbroken-U(1) theory, to the insertion of the sum of two
operators such as (23). Here, P denotes path ordering, which can be ignored
when projecting (ignoring the massive components of Aµ) to the U(1) sector.
Thus, introducing a static fundamental charge corresponds to adding a term∫

dx0 A3
0(~x∗, x0)(T3)ii, with i = 1 or i = 2, to the Minkowski space version of the

IR theory action (19). Here (T3)ij denotes the ij-th entry of the Cartan generator
of SU(2).

Notice that the insertion of a static charge in the fundamental representation
of SU(2) at ~x∗ ∈ R2 corresponds to adding

∫
dx0 A3

0(~x∗, x0)(T3)ii, with i = 1 or
i = 2, to the Minkowski-space unbroken-U(1) theory action. Following the above
discussion, be mindful of the coefficients and show that the monodromy of the σ
field around a static charge in the fundamental of SU(2) is ±2π.

Exercise 3.2: The result of this Exercise can be used to further the study of the
deconfinement transition briefly described in Section 4.3. We include it here as
it may help solidify the understanding of the charge–vortex duality of Figure 3.
Consider the following static σ-field configuration:

σ(~r) = q1θ(~r−~r1) + q2θ(~r− ~r2) , (26)

where θ(~r) is the angle the vector~r ∈ R2 makes with, say, the positive-x axis. This
“two-vortex” configuration has σ monodromy 2πq1 around~r1 and 2πq2 around
~r2. Thus, according to the duality, it represents two electric charges. As per
Exercise 3.1, if |q1,2| = 1, these are fundamental charges. While the angle θ(~r) is
not defined at~r = 0, showing that a UV definition is needed (such as a lattice
cutoff), this does not affect the calculation of the interaction energy between
the charges. Use the dual photon action (22) to calculate the interaction energy
between the charges represented by (26). Letting ~R = ~r1 −~r2, show that the
interaction energy is

E(R) = −q1q2
g2

3
8π

log
R
a

, (27)

such that e.g., like charges logarithmically repel (here a is some irrelevant short
distance cutoff needed to define the vortex configurations). As a sanity check, also
convince yourself that for |q1| = |q2| = 1, the same interaction energy between
static fundamental charges can be obtained from the electric theory. (There are
various ways to do this problem, but the relation ∂iθ(~r) = εij∂j log |~r| and judicial
integration by parts helps).

The conclusion from Exercise 3 is that, to permit the insertion of static fundamental
charge probes, which are natural in the UV SU(2) theory, 2π monodromies of the σ field
should be allowed. These only make sense if the dual photon field is regarded as a compact
scalar field, σ ≡ σ + 2π, i.e., the field σ is a map from the R3 spacetime to the S1 field space.
We also notice that the 2π periodicity of σ is consistent with the eiσ being a well-defined
operator (while a π periodicity would not be consistent).

In Exercise 2, you showed that in the canonical picture the operator eiσ creates “flux-
ons”, pointlike excitations for which − 1

4π

∫
d2xF12 = 1. Notice that the unit magnetic flux

of the “fluxon” just given is equal to the magnetic charge of the monopole–instanton (14)
with |Qm| = 1 (recall that B3

3 = F12). This suggests that magnetic monopole–instantons
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of unit charge (14) can be interpreted as tunneling events between states differing by one
flux quantum. This can be argued by deforming the integral over S2 in (14) to equal the
difference between two R2-integrals such as (24), specifying the number of fluxons in the
states at the initial and final time ±T (as stressed in [44]). That the number of fluxons can
change reflects the fact that (24) is not conserved in the full theory.

In fact, we shall now argue an important relation valid for the Polyakov model and
also useful for our future R3 × S1 studies: in the Euclidean path integral of the dual-
photon theory, insertions of e±iσ(x), with x ∈ R3, represent the appearance, at x, of a
monopole–instanton of minimal “magnetic” charge (14), discussed in Section 2.2. (To avoid
confusion, the object e±iσ represents the insertion of a pointlike object, i.e., the structure
of the monopole–instanton inside its core (∼ v−1) is ignored. This suffices in the dilute
gas approximation where only the long-distance monopole–instanton interactions are
important). To begin, define the following object (usually called generating functional)

〈ei
∫

d3xρ(x)σ(x)〉 ≡ ζ−1
∫
Dσ e−

κ
2
∫

d3x(∂µσ)2+i
∫

d3xρ(x)σ(x) , where κ ≡ g2
3

(4π)2 , (28)

and ζ is a normalization factor ensuring that the l.h.s. equals unity when ρ = 0. It is a

standard result that 〈ei
∫

d3xρ(x)σ(x)〉 = e
− 1

8πκ

∫
d3xd3x′ρ(x) 1

|x−x′ | ρ(x′)
. We next concentrate on a

particular form of ρ(x) = ρN(x):

ρN(x) =
N

∑
a=1

qaδ(3)(x− xa), (29)

where qa are integers. Notice that ρN(x) can be interpreted as the charge density at x of a
gas of N pointlike charges qa located at xa ∈ R3.

Exercise 4: Show that, with ρ(x) = ρN(x),

〈ei
∫

d3xρ(x)σ(x)〉 = e
− 1

4πκ ∑
a>b

qaqb
|xa−xb | , (30)

where divergent terms with a = b have been omitted (these divergences are to be
absorbed in the UV definition of the monopole–instanton fugacities, see further
below). As a corollary, show that with the same omission,

〈eiq1σ(x1)+iq2σ(x2)〉 = e
− 4π

g2
3

q1q2
|x1−x2 | . (31)

For future use, note that integration over the zero mode of σ gives
2π∫
0

dσ0e
iσ0

N
∑

a=1
qa

.

For integer qa this is only nonzero provided
N
∑

a=1
qa = 0.

To interpret the last relation, we now do the following

Exercise 5: Consider two monopole–instantons of Section 2.2, one at x1 ∈ R3

and the other at x2 ∈ R3. According to the discussion there, for λ � 1 we
ignore their E3

µ fields. (These extra interactions present for λ = 0 have to be
accounted for in SYM. We shall do so when we discuss the supersymmetric
case. Notice that the calculation of the “electric” long-range interactions present
when λ = 0 is significantly more involved than Exercise 5 (see the discussion
in Section 2.3 of [55] and references therein). However, the result can be stated
simply). Let the monopole–instantons have magnetic charges qi = ±1, i = 1, 2.
Let also |x1 − x2| � v−1, so that the cores of the monopole–instantons do not
overlap. Outside their cores the field reduces to the sum of the abelian magnetic
monopole terms, B3

µ(y) ' q1B3
µ(y− x1) + q2B3

µ(y− x2) (with B3
r = 1/r2 around
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each monopole–instanton). Compute the interaction action of the two monopole–
instantons by calculating the contribution to the action S = 1

2g2
3

∫
d3y(B3

µ(y))2

from the region outside the cores, extract the interaction term, and show that

e−Sinter. = e
− 4π

g2
3

q1q2
|x1−x2 | , (32)

exactly reproducing the r.h.s. of (31).

Notice that the above result has a simple intuitive explanation: two magnetic monopoles,
considered as static particles in R3, interact via a magnetic version of the Coulomb law.
If q1 and q2 are of the same sign, the probability to find the two charges close to each other,
controlled by e−Sinter. , is vanishingly small, corresponding to repulsion. Conversely, if the
charges have opposite signs, the probability grows with decreasing separation, showing
that the charges attract.

The conclusion we draw from comparing (31) with (32) is that, in the long-distance
abelian IR theory, in the dilute gas regime where monopole–instantons are sufficiently
far away so that their cores do not overlap, the appearance of a monopole–instanton of
magnetic charge q, at x ∈ R3, can be represented by inserting v3e−S0 eiqσ(x) in the path
integral of the dual-photon theory. The v3e−S0 fugacity factor was already discussed in
Section 2.3. The novelty here is that the eiqσ(x) insertions correctly account for the long-
distance interactions of the monopole–instantons of magnetic charge q (= ±1).

We can now introduce the following mnemonic accounting for nonperturbative fluctu-
ations in the Euclidean path integral of the dual photon theory (again, we leave SYM for
later). The semiclassical saddles of lowest action are (approximately-) BPS and anti-BPS
monopole–instantons of minimal charge ±1. We denote them by M and M∗, respectively,
and associate with them the following “’t Hooft vertices” [56], or “monopole operators”:

M at x : v3e−S0 eiσ(x) , (33)

M∗ at x : v3e−S0 e−iσ(x) .

In the classical 3D statistical mechanics picture, the v3e−S0 factor can be interpreted as
the fugacity of M or M∗.

Similar vertices can also be written in the electroweak sector of the 4D standard model,
where the instantons generate exponentially suppressed B+ L violating interactions, as first
presented by ’t Hooft [56,57]. The main difference with the present setup is that the 4D
instantons have no Coulomb-like long-range interactions, so no analogue of the e±iσ factors
are present. (Nonetheless, one can account to the interactions between instantons due
to gauge field exchange by modifying the ’t Hooft vertex to include the interactions of
instantons with gauge fields (see the description in [43])).

A slight subtlety that we shall ignore is that there is additional dependence on the
dimensionless coupling constant g2

3/v, which multiplies both M and M∗ above. These
factors arise upon taking into account the integration over collective coordinates and the
determinants in the monopole–instanton backgrounds and give a power-law dependence
on the dimensionless coupling of the pre-exponential factor in the ’t Hooft vertices. As this

power-law dependence can not compete (at small g2
3/v) with the exponential e−S0 = e

− 4πv
g2

3 ,
we shall ignore it. We shall often refer to the neglect of these pre-exponential terms in (33)
as working with “exponential-only accuracy”. (For the interested reader, the computation
of these pre-exponential terms has been performed (to one-loop order) in the greatest
detail in SYM in works such as [21,34]. Accounting for collective coordinate integrations is
discussed in many textbooks, e.g., [43,49–51]).

Summary of Section 2.4: In this Section, we introduced a duality transformation in the
abelian IR theory of the Polyakov model, leading to the dual-photon description. We
discussed the mapping of operators between the electric and magnetic description. We
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showed that the insertion of a fundamental Wilson loop corresponds to the requirement of
a 2π monodromy of the dual photon field around the loop. We also showed that the dual
photon picture allows one to incorporate the effect of monopole–instantons in the dilute gas
approximation, accounting for their long-range interactions. In the following Sections, we
shall sum over all possible insertions of “monopole operator” (33) in the partition function
of the dual theory to find the effect of the monopole–instanton fluctuations in the dilute
gas approximation and to study the physics of confinement.

2.5. Monopole–Instantons and the IR: III. Dilute Gas and Mass Gap

Now that we have completed all preparatory work, we are ready to start enjoying
the fruits of our labour. Our IR theory is, at the perturbative level, defined via a path
integral of the dual photon theory with action (22). We argued in Section 2.3 that including
nonperturbative monopole–instanton fluctuations changes the IR physics. We shall now
include the fluctuations of arbitrary numbers of monopole–instantons and anti-monopole–
instantons.

Consider the probability of a fluctuation of n monopole–instantons M and m anti-
monopole–instantons M∗ in the Euclidean path integral. Per our discussion above (33), we
expect that such a fluctuation corresponds to the insertion in the σ-theory Euclidean path
integral of the following object

Pn,m =

(
v3e−S0

)n

n!

(
v3e−S0

)m

m!

∫
d3(n+m)r e

i
n+m
∑

a=1
qaσ(ra)

=

(
v3e−S0

)n

n!

(
v3e−S0

)m

m!

∫
d3(n+m)r ei

∫
d3xσ(x)ρn+m(x) , (34)

where ρn+m(x) is defined in (29) via the n + m qa and ra.
As the notation is somewhat condensed, let us elaborate. Here the index a runs

from 1 to n + m, i.e., runs over both M and M∗. qa denote the corresponding charges,
which take values +1 or −1 (we only take into account q = ±1, as all other monopole–
instantons of higher charges have higher action and their effect will be exponentially
suppressed compared to e−S0). Likewise, ra ∈ R3 are the corresponding positions of M
or M∗. The measure d3(n+m)r should be understood to mean the product over all n + m

dra’s. The v3e−S0 factors are the fugacities of these objects, while the term e
i

n+m
∑

a=1
qaσ(ra)

(also
written in terms of the charge density ρn+m in the second equality above) accounts for the
long-distance Coulomb interactions of the n + m M and M∗, as discussed in the previous
Section. The factors of n! and m! take into account the fact that these fluctuations are
indistinguishable: a fluctuation of a monopole–instanton M at r1 and another one, M′ at r2,
is the same as M′ at r1 and M at r2.

We now insert Pn,m into the Euclidean path integral of σ, to obtain the partition
function of the IR theory accounting for the appearance of the n, m fluctuation:

Zn,m =

= ζ−1
∫
Dσ e−

κ
2
∫

d3x(∂µσ)2
Pn,m

= ζ−1
(
v3e−S0

)n

n!

(
v3e−S0

)m

m!

∫
d3(n+m)r

∫
Dσ e−

κ
2
∫

d3x(∂µσ)2
e

i
n+m
∑

a=1
qaσ(ra)

= ζ−1
∫
Dσ e−

κ
2
∫

d3x(∂µσ)2

(∫
d3rv3e−S0 eiσ(r)

)n

n!

(∫
d3rv3e−S0 e−iσ(r)

)m

m!
(35)

The second line is simply a rearrangement of the first, taking into account that all n
M terms have identical form, as do all m M∗ terms. Notice that if we integrate over σ, we
find the n + m-particle contribution to the grand-canonical partition function of a classical
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nonrelativistic 3d Coulomb gas. (In fact, the treatment that we give it here corresponds to
the Debye–Hückel approximation in the theory of charged gases [40,41]).

Next we want to sum over all values of n, m, i.e., over all possible M and M∗ fluctua-
tions. Recall now that in (28) we introduced the ζ−1 factor simply to make the normalization
convenient and that, with ζ−1 present, the IR theory partition function (35) with n = m = 0
would be trivial. Thus, to obtain our IR theory partition function, when summing over
n and m we drop this factor. The partition function of our IR theory with all monopole–
instantons summed over becomes

Z =
∞

∑
n,m=0

ζZn,m

=
∫
Dσ e−

κ
2

∫
d3x(∂µσ)2




∞

∑
n=0

(∫
d3rv3e−S0 eiσ(r)

)n

n!







∞

∑
m=0

(∫
d3rv3e−S0 e−iσ(r)

)m

m!




=
∫
Dσ e−

∫
d3x κ

2 (∂µσ)2
e
∫

d3xv3e−S0 eiσ(x)
e
∫

d3xv3e−S0 e−iσ(x)
, (36)

where, on the last line, we performed the sums over n and m.
Combining everything, we find that the IR theory partition function, accounting for

arbitrary (anti-) monopole–instantons in the dilute gas approximation, is

Z =
∫
Dσ e−

∫
d3x[ κ

2 (∂µσ)2−2v3e−S0 cos σ] , (37)

hence, the Euclidean action of the IR dual-photon theory is, after shifting the potential by
an inessential constant:

SIR =
∫

d3x
g2

3
(4π)2

[
1
2

∂µσ∂µσ +
2v3

κ
e
− 4πv

g2
3 (1− cos σ)

]
, κ =

g2
3

(4π)2 . (38)

For future use, let us note an important implication of the above summation of the
dilute instanton gas contributions, which is quite generally valid. It shows that semiclassical
objects of positive fugacity (as our monopole–instantons) contribute a negative term to
the ground state energy: evaluated at σ = 0, the minimum of the potential in (37), their
effect is to give a negative contribution to the ground state energy (this is well known
in quantum mechanics of the double-well potential, where tunneling lowers the ground
state energy). In the future, we shall call objects of positive fugacity “real saddles” (see
Sections 6.1 and 6.3).

Another remark we elaborate on in Sections 4 and 4.2.3 is due here as well. The effective
action given below contains only the leading terms in a combined perturbative expansion
in powers of g2

3/v and a semiclassical expansion in powers e−S0 . The higher-order terms
in the semiclassical expansion in the Polyakov model have not received much scrutiny on
their own, but we expect that they share many features with the ones briefly discussed for
R3 × S1 theories in Section 6.3. (N.B., as these notes were being finalized, ref. [58] appeared,
discussing these issues).

Notice that the potential term generated by summing over M and M∗ simply looks
like adding to the dual photon action the ’t Hooft vertices of M and M∗ (33), a result due to
the dilute-gas approximation.

We can now take stock and discuss what the result (38) represents. We immediately
notice that the dual photon field acquires a mass. As written, the potential in (38) has a
unique minimum at σ = 0 (recall that σ has a 2π periodicity). Expanding the potential
around the minimum, we see that the mass of the dual photon is

m2
σ =

2v3

κ
e
− 4πv

g2
3 , (39)
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in agreement with our earlier guess (18), and with exponential-only accuracy (in fact, a more
precise calculation gives an extra factor of v2/g4

3 due to monopole–instanton collective
coordinate integrations; in what follows, we simply absorb these into the definition of mσ).
Thus, at weak coupling, we find that an exponential scale hierarchy is generated:

v� g2
3 � mσ ∼ ve−4πv/g2

3 . (40)

It is the separation of the various scales due to the v� g2
3 weak-coupling condition

(recall Section 2.1) which makes our effective field theory treatment useful. In contrast
with instanton calculations in 4D QCD [51], the weak-coupling (due to Higgsing) leads
to the important difference that the instanton size is fixed and the problem of large-size
instantons does not arise.

Let us also discuss the scales characterizing the dilute monopole–instanton gas.
The probability (per unit volume) of a monopole–instanton fluctuation implies that the
number of instantons per unit volume is v3e−S0 . Thus, the typical separation between
instantons is ¯̀ ∼ v−1eS0/3. Notice that this is exponentially larger than the W-boson Comp-
ton wavelength v−1. The inverse dual-photon mass defines another length scale m−1

σ ∼ `D,
called the Debye screening length (this terminology is borrowed from the charged non-
relativistic plasma). From (40), we have that `D ∼ v−1eS0/2 � ¯̀, i.e., the Debye length is
exponentially larger than the typical distance ¯̀ between M and M∗. Thus, the validity of
the dilute gas treatment can be rephrased by requiring that there be a large number of M
and M∗ in a Debye volume. This hierarchy of length scales is illustrated on Figure 4.

Exercise 6: Further properties of the system can be studied using, instead of (37),
the following

Z[η] ≡
∫
Dσ e−

∫
d3x[ κ

2 (∂µ(σ−η))2+m2
σ(1−cos σ)] . (41)

Reverse the arguments leading to (37) to show that a nonzero η corresponds to
the insertion of ei

∫
d3xη(x)ρn+m(x) in the sum over monopole–instantons. In other

words, argue that Z[η] is a generating functional for correlation functions of the
monopole–instanton magnetic charge density. Show that the average charge
density vanishes, 〈ρ(x)〉 = −i δZ[η]

δη(x)

∣∣
η=0 = 0 and find the scale of exponential

fall-off of the two-point function 〈ρ(x)ρ(y)〉.

Figure 4. An illustration of the scale hierarchy, controlled by the exponentially large eS0 , between the
various length scales characterizing the the dilute M–M∗ monopole–instanton gas. The dual photon
Compton wavelength (the Debye screening length) is the largest length scale. A Debye volume
contains a large number of M and M∗ fluctuations.

A final comment, before we continue to discuss confinement, relates to terminology.
One often hears that confinement is due to “magnetic monopole condensation”, in a manner
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dual to the usual Higgs mechanism. While this is demonstratively true in the Seiberg–
Witten theory, where magnetic monopoles are particle-like physical excitations, in the
Polyakov model, as well as in its R3 × S1 generalizations, this terminology should be taken
with a grain of salt. The “monopoles” discussed here, leading to the mass gap generation,
are instantons. They are pseudoparticles (in ’t Hooft’s terminology [56]) localized in
spacetime, thus existing only “for an instant”. It is the proliferation of these Euclidean
monopole–instanton fluctuations in the vacuum that leads to the mass gap and, as we show
next, to confinement. (The relation of the monopole–instantons on R3 × S1 to physical
monopole particles on R4 whose condensation (in Seiberg–Witten theory) leads to a dual
superconductivity is, at best, far from straightforward; see the discussion in [18]).

To end this Section, we rewrite (38) in terms of the dual photon mass mσ, absorbing
the inessential (for the present discussion) coefficient into its definition, a form that we shall
use from now on:

SIR =
∫

d3x
g2

3
(4π)2

[
1
2

∂µσ∂µσ + m2
σ(1− cos σ)

]
. (42)

Summary of Section 2.5: The major result obtained here is the IR effective action for the
dual photon field (42). It shows that calculable nonperturbative effects at weak coupling
generate an exponentially small mass gap mσ (39). The exponential hierarchy of scales (40)
arises due to v� g2

3 and is responsible for calculability and for the utility of the effective
field theory approach to describing the long-distance physics.

2.6. Monopole–Instantons and the IR: IV. Confinement and the String Tension

We have come close to the end of our discussion of the Polyakov model. To pro-
ceed, as indicated in the Introduction, we first need to define what we mean by “confine-
ment”. The most precise definition of confinement applies to theories without fundamental-
representation dynamical fields, such as pure Yang–Mills theory, or Yang–Mills theory
with adjoint-representation fields, in any dimension. The Polyakov model falls in the
latter class, as do most theories we discuss in these notes. The modern-day way to phrase
this distinction is to note the presence of a “1-form” Z2 (for SU(2) gauge group) center
symmetry in theories without dynamical fundamental fields. This symmetry shall be more
carefully defined in Section 3.1, in a way sufficient for our discussion. Here we note that the
so-called “generalized global symmetries”, of which 1-form symmetries are an example,
act not on local fields (operators) but on extended objects, such as Wilson line operators.
The most familiar symmetries usually discussed in QFT courses—those acting on local
fields and operators—are called “0-form symmetries” in this generalized framework. We
refer the reader to [15] for a detailed definition of higher-form symmetries in the continuum
and to [2] for a lattice description of center symmetry. We note that both the lattice and
continuum ways of thinking about the 1-form center symmetry are quite useful. Center
symmetry will play an important role in our R3 × S1 discussion and we shall introduce
the relevant aspects in what follows. For now, we proceed with a somewhat hand-waving
discussion of confinement.

Confinement is probed for by studying the potential energy between probe static
“quarks”. We shall take these to be nondynamical colour sources in the fundamental
representation of the gauge group (one can think of them as the limit of heavy m → ∞
dynamical fields). As already mentioned, recall Exercise 3.1, to study the way the dynamics
react to nondynamical fundamental probes, one inserts a fundamental Wilson loop in the
path integral of the theory and studies its expectation value.

The Wilson loop along a closed spacetime contour C is defined as

W[C] = tr Pe
i
∮
C

Aa
µTadxµ

, (43)
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where the trace is in the fundamental representation (and so are the generators Ta) and
P denotes path ordering along the contour C. That W[C] is gauge invariant follows from
the following:

Exercise 7: Consider the open Wilson line defined as Pe
i

x2∫
x1

dxµ Aa
µ(x)Ta

, where the
integral is over any path from x1 to x2. Notice that path ordering is defined similar
to the usual time ordering appearing in the Dyson formula, only with respect
to a parameter τ parameterizing the spacetime contour xµ(τ). Show (there are
various ways to proceed: it helps to first consider x2 and x1 infinitesimally close
and then exponentiate the result, or one might write a differential equation w.r.t.
one of the end points, or consult a textbook proof, say [59]) that under gauge
transformations, Aµ → g(Aµ − i∂µ)g†,

Pe
i

x2∫
x1

dxµ Aa
µ(x)Ta

→ g(x1)Pe
i

x2∫
x1

dxµ Aa
µ(x)Ta

g(x2)
† . (44)

Then, argue that if the path C is closed, so that g(x1) = g(x2), W[C] is invariant.

Taking the contour C to be the one shown in Figure 5, we interpret the insertion of
W[C] as the creation of a quark–antiquark pair, which we let separate a distance R, then
propagate for some time T, and then annihilate it. The expectation value of this Wilson
loop operator, taking R and T to infinity, can then be interpreted as giving the potential
energy V(R) between the static sources:

〈W[C]〉 = e−V(R)T . (45)

Figure 5. The rectangular Wilson loop used to study the potential between probe fundamental sources.

For brevity, the coefficient multiplying the exponent here is set to unity. In reality,
the Wilson loop operator suffers renormalization, which affects precisely this prefactor (as
divergences are local, they effect the operator defined on the loop C, but not the potential
we are interested in). This is already seen in the calculation of W[C] in QED. We say
that the theory is confining if, in the infinite T and infinite R limit, V(R) = ΣR, with Σ a
proportionality constant of mass dimension two known as the string tension. (A general
result following from reflection positivity is that the static potential can not grow faster than
R [60]). The expectation value of W[C], for large loops C, is then said to obey the “area law”
〈W[C]〉 = e−ΣArea [C]. (Running somewhat ahead, we shall see below that for theories with
dynamical fundamental matter fields, an area law does not hold due to string breaking.
Thus such theories are not “confining” in the sense discussed here [61] (see also [2]).)
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For confining theories at strong coupling, the area law has been demonstrated numeri-
cally, using lattice gauge theory, or via the analytic strong-coupling expansion on the lattice.
The presence of a linear confining potential V(R) = ΣR can be intuitively explained by the
presence of a string, or a colour-field flux tube whose tension or energy per unit length is Σ.
The world sheet of the string spans the area of the Wilson loop in Figure 5, leading to the
area law.

In free Maxwell theories, the dependence of the expectation value of W[C] on C,
for large contours, can be easily calculated. One finds that V(R) is the Coulomb potential in
the relevant dimension. This result applies to our perturbatively-free IR theory (19), where
V(R) is logarithmic, as appropriate in 3D.

Our goal in this Section is to show that in the Polyakov model, after taking into account
the monopole–instanton gas, W[C] obeys the area law. To this end, imagine that we insert
a Wilson loop operator W[C] in the path integral of the SU(2) theory. As we want to
study large loops, with size larger than v−1 (as well as 1/mσ), it makes sense to use the
IR effective field theory (38), but to do this, we have to reduce W[C] from (43) to a form
using the relevant IR variables. We do this in two steps: first we reduce W[C] to the Cartan-

subalgebra variables: W[C] of Equation (43) becomes WIR[C] = e
i
2
∮
C

A3
µdxµ

+ e
− i

2
∮
C

A3
µdxµ

,
i.e., the sum of two U(1) Wilson loop operators of charges ±1/2. This is expected, as an
SU(2)-doublet quark has two components that have opposite charges under the unbroken
U(1). As our long-distance theory is abelian, we may as well consider separate insertions
of the charges ±1/2 Wilson loops in the long-distance theory partition function. Notice,
however, that in the UV theory these contribution come as a sum, as indicated above.

Thus, let us introduce the U(1) Wilson loop of quantized integer charge q, where we
dropped the isospin index,

Wq[C] = e
i q

2
∮
C

Aµdxµ

. (46)

Here, q = ±1 corresponds to fundamental representation probes, while, e.g., q = 2
would be one of the three component of the adjoint (vector) representation, which has
Cartan-U(1) charges ±2 and 0. The definition of Wq[C] given on the r.h.s. of (46) is in
terms of the electric variables appropriate to the electric version of the IR theory (19).
As discussed in Section 2.4 (recall Exercise 3), in the dual-photon theory, the insertion of the
operator Wq[C] in the path integral is defined by the prescription to integrate over σ-field
configurations that have a 2πq monodromy around the contour C.

This can also be expressed in a way that we shall not utilize and only mention for
completeness. It is, however, very useful for numerical calculations of string tensions in
more complicated models; for details, see [35,62]. Integrate by parts in the exponent of
(46) to rewrite Wq[C] = exp(i q

2

∫
S,∂S=C d2sµ 1

2 εµνλFνλ), where sµ is normal to the surface S
spanning C. As this form involves only the gauge invariant field strength, it can be written
via ∂µσ using the duality relation (21). Then insert Wq into the path integral of the dual
photon theory to find its expectation value. At the semiclassical level, one calculates this
integral by solving the classical equation of motion for σ. One finds that the contribution of
the Wq insertion to the equation of motion requires 2πq jump of σ upon crossing S, ensuring
correct monodromy around C. We also note that Polyakov used the instanton gas picture to
justify a calculation essentially identical to the one we describe [40,41], but using the results
of Exercise 6 along the way. Another approach to calculating string tensions, allowing
smooth interpolation between the logarithmic Coulomb behaviour of the quark–antiquark
potential at short distances and the confining behaviour at distances greater than `D, was
developed in [63].

We can now proceed and calculate the expectation value of the Wilson loop in the
theory (42). All we need to do is compute

〈Wq[C]〉 = Z−1
∫
Dσ “Wq[C]” e

− g2
3

(4π)2
∫

d3x[ 1
2 (∂µσ)2+m2

σ(1−cos σ)]
, (47)
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where the insertion of “Wq[C]” indicates, as shown in Figure 6, that the path integral has to
be taken over σ-field configurations with 2πq monodromy around any loop L linked with
C. Calculating this path integral precisely is beyond our current ability. However, we shall
now show that a classical field configuration, i.e., a saddle point of the path integral (47),
with the correct monodromy around C exists. Furthermore, we shall argue that the action
of this classical field configuration is proportional to the area of C, for sufficiently large C.
Thus, evaluating the path integral (47) in the saddle point approximation gives rise to the
area law

〈Wq[C]〉 ∼ e−Sclass [σq [C]] = e−ΣqArea(C) . (48)

Figure 6. The charge-q Wilson loop Wq[C] requires a 2πq monodromy of σ around any loop L linked
with C. To obtain an analytic expression, we imagine that C is in the xy-plane and take it to be
infinitely large, running around the perimeter of the plane.

As per remark after (45), calculating the prefactor is both difficult and not of particular
interest to us. The quantity Σq is the string tension of the confining string, labelled by
the charge q. In what follows we shall consider the minimal charge q = 1, corresponding
to a fundamental SU(2) colour source, but shall make some comments about adjoint
charges later.

It should be clear that even the saddle point evaluation of (47) is not easy, as one
needs to analytically find classical σ-field configurations that extremize the action in (47)
and have the right monodromy, for general contours C. To simplify matters and find an
analytic handle, we imagine that the Wilson loop C is a planar one, encompassing the entire
xy-plane (i.e., we take the loop from Figure 6 to be similar to the one on Figure 7). In this
limit, having a 2π monodromy around C implies that as one crosses the z = 0 plane from
z = −∞ to z = +∞, the σ field should exhibit a 2π jump. Further, in the limit when C
is very (infinitely) large, we expect that the classical solution for σ will not depend on x
and y. Thus, we have reduced the problem to a rather manageable one, namely to find a
solution of the classical equation of motion −∂2

zσ + m2
σ sin σ = 0, such that σ(−∞) = 2π

and σ(+∞) = 0. Needless to say, this solution is easy to find analytically, as the equation
is easily integrable. It is known as the domain wall, or (better) kink, solution of the sin-
Gordon model. The analytic form of the domain wall solution is easy to find, but it is also
instructive to use simple reasoning to find an estimate for its action.
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Figure 7. Continuing the Euclidean picture to Minkowski space. Taking x to be the Euclidean time,
we intersect the Wilson loop with a fixed-time plane (shown by the dotted line) and plot the resulting
field configuration in Figure 8.

Recall that the σ = 0 and σ = 2π ground states are identified (thus, the σ-field
configuration we are looking for is not a true domain wall, which requires distinct vacuum
states on the two sides, but we shall continue to use this name). First, the domain wall is x, y-

independent, so the domain wall action Sclass. =
g2

3
(4π)2

∫
d3x
[

1
2 (∂µσ)2 + m2

σ(1− cos σ)
]

will
be proportional to the area of the xy-plane, which we denote as Axy. (One can numerically
solve for contours of arbitrary shape and confirm this for very large C, see [35,62] and
Figure 8). Further, as z→ ±∞, the solution ends up in a state where the potential vanishes.
As the σ field is massive, these vacuum values at infinity will be approached exponentially.
Thus, we expect that the change δσ = 2π across the domain wall occurs over some finite
distance δz. Then, an estimate of the action is g2

3 Axy(δz( 2π
δz )

2 + m2
σδz), dropping numerical

constants. To find the minimal action, extremize w.r.t. δz to find δz ∼ m−1
σ and find

the action:
Sclass. = Axy

1
2π2 g2

3mσ . (49)

Figure 8. A plot of the spatial field configuration of static quark/antiquark sources taken at a finite
separation, obtained as explained in Figure 7, after taking T to infinity. The potential energy density
of the σ field is shown. Far from the sources, one can check that the σ field profile approaches that of
the analytic solution from Figure 9. The gradient of the σ field is nonzero only in a flux tube region of
width 1/mσ connecting the static sources. In terms of the electric variables, recall the duality relation
(21), the ~E -field flux of the sources is collimated in a flux tube (line in R2), the semiclassical confining
string of the Polyakov model. (This Figure is taken from [35,62] with the sole purpose to qualitatively
illustrate the physics. The numerical methods used to obtain them are explained in these references).
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Thus, the Wilson loop path integral, evaluated at the saddle point (48), yields for the
fundamental Wilson loop

W1[Cxy] ∼ e−AxyΣ1 , and string tension Σ1 =
1

2π2 g2
3mσ . (50)

The precise numerical coefficient in (49) can be found in the following

Exercise 8: Show that the z-dependent domain wall solution with boundary
conditions as shown in Figure 9 is

σ(z) = 4 arctan e−mσz. (51)

Then, compute its action per unit area and show that it is as given in (49).
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Figure 9. The domain wall solution (51) plotted for mσ = 1. It is clear that the thickness of the wall is
a few times the Compton wavelength of the dual photon, as the naive estimate shows.

Equation (49) is the fruit of our long labour through the many steps of this rather long
Section 2. The upshot is that we have shown that large fundamental Wilson loops in the
Polyakov model obey an area law. We have obtained this result by calculating the path
integral (47) of the dual-photon theory in the saddle point approximation (whose validity
requires a large action, and is, a posteriori, justified in the limit of large area). We have
found that the fundamental string tension is Σ1 ∼ g2

3mσ and is determined by the dual
photon mass due to the proliferation of monopole–instantons.

In addition to having calculated the string tension (50), we can now also elaborate
on the emergence of the confining string by interpreting the result of the calculation in
Minkowski spacetime. Begin by considering (see Figure 7) the Wilson loop surrounding
the xy-plane whose expectation value (50) we computed. The profile of the σ field as
a function of z is as shown in Figure 9. Of course, for a finite-size loop, this z-only
dependence should hold far away from the edges. This can be verified numerically, see
Figure 8. A detailed numerical analysis shows that the value of the string tension (49)
for infinite separation of the sources (computed using (51)) is quickly achieved by the
string configuration on the figure, already for quark–antiquark separations of a few (O(10))
dual-photon Compton wavelengths.

Now we imagine taking the x direction to be the Euclidean time and take a cross
section of the picture across the dotted plane (along yz) in Figure 7. The result is shown
in Figure 8. The intersections of the dotted plane with the Wilson loop are the locations
of the static quark sources. The σ-field configuration is such that σ is constant above and
below the z = 0 plane (the plane of the Wilson loop), and the gradient is only nonzero in
the region indicated by the dotted lines. The width of this region is proportional to the
dual photon Compton wavelength. Now recall that from the duality (21), the gradient of σ
is a 90-degree rotation of the electric field ~E . Thus, we conclude that the electric field of
the quark–antiquark pair is zero everywhere except for a flux tube region of width 1/mσ
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connecting the sources. This flux tube is the confining string, which, of course, is a line,
as our space is R2.

We find that confinement of colour caused the electric field of the static sources, instead
of representing the dipole picture found in Maxwell electrodynamics, to become collimated
in the flux tube (line) between the two quarks. The relevant scales we found are the string
tension, ∼ g2

3mσ, and the width of the flux tube, ∼ 1/mσ.
We are now almost ready to move to R3 × S1. But before doing this, let us go back to

the beginning of this Section 2.6 and the 1-form Z2 center symmetry mentioned there. It
was stated there that it is the theory without fundamental dynamical quarks that enjoys
the Z2 center symmetry. Using the picture of confinement that we developed, we can
now physically explain the distinction between theories with Z2 center symmetry (the
ones without dynamical fundamental representation quarks) and those without Z2 center
symmetry (the ones with finite-mass fundamental representation quarks).

We used the IR theory of the Polyakov model to find the string tension confining q = 1
quark sources, i.e., fundamental representation quarks. But what about higher charges,
for example q = 2? As explained above, this includes adjoint representation colour sources.
In the IR theory, one can find, similar to what we did here, configurations composed of
two domain walls that create a 2π × 2 monodromy of the σ field and thus carrying the
necessary flux to confine q = 2 sources (see Section 4.2.2). Thus, one would conclude that
q = 2 colour sources are also confined. However, q = 2 is the charge of adjoint fields
(the W-bosons) under the unbroken U(1), in our normalization where fundamentals have
q = 1. In the IR theory, the W bosons were integrated out, as they had mass mW ∼ v. Now
imagine having a q = 2 confining flux tube, whose energy grows linearly as Σ2R, where
R is the separation between the q = 2 sources. Clearly, there exists an R sufficiently large
so that Σ2R > 2mW . But then, energetics suggests that it would be advantageous for a
W± pair to be created out of the vacuum, as this would lower the energy: the W+ would
combine with the q = −2 source into an uncharged object, as would the W− with the q = 2
source. In other words, the pair creation of W± would break the q = 2 flux tube. The linear
potential turns into a constant at large R, as the screened sources do not interact. Thus,
confinement, the area law, and the linear potential have disappeared.

We learn two lessons from this discussion:

1. First, we learn that in the Polyakov model, there is a breakdown of the IR effective
field theory in a q = 2 flux tube background for asymptotically large R, due to the
breaking of the confining flux tubes. This is a qualitative argument, but there is no
reason to doubt its correctness, despite the fact that calculating the W± pair-creation
probability in the flux tube background is a difficult problem.

2. Another lesson one can draw from the above is the following. We could repeat the
argument in the theory with dynamical fundamental quarks, no matter how heavy: a
q = 1 flux tube with tension Σ1 will, upon increasing R, find it energetically advanta-
geous to break by the pair creation of a heavy quark–antiquark pair, which will then
screen the fundamental sources. Thus, in the theory with dynamical fundamental
charges, the Wilson loop can not have an area law, as the string connecting fundamen-
tal sources is unstable to pair creation. (It is clear, then, that there is no clear-cut notion
of confinement in the standard model, which has dynamical fundamental quarks.
In fact, there is no symmetry distinction [61] between the confined and Higgs phases
(see also [2] and, for recent developments, [64,65])).

It would seem, then, that there is some property that distinguishes the theory with
or without dynamical fundamental fields, and that this property is related to the stability
of confining strings. In fact, there is a global symmetry that acts on flux tubes (which are
lines in space, hence the name “1-form” symmetry, meaning that the symmetry acts on line
operators). This 1-form center symmetry ensures the stability of flux tubes. In our SU(2)
theory, it is a Z2 symmetry. This means that a single flux tube (q = 1) is stable, but two
flux tubes (combined, two q = 1 tubes correspond to q = 2) are unstable, as explained
above. For more formal definitions, see [2] for a lattice perspective and [15] for a modern
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“generalized symmetry” perspective. We shall use and explain in more detail a restricted
notion of center symmetry in Section 3.1. As explained in Section 3.4.3, it will play an
important role in our construction.

Summary of Section 2.6: We showed that the fundamental representation Wilson loop in
the Polyakov model obeys an area law. We found that there is a linear confining potential
between fundamental representation static colour sources. We determined the string
tension (50) in terms of the fundamental parameters of the UV SU(2) theory. We also
explained the semiclassical nature of the confining flux tube, see Figure 8, and estimated its
parameters. Finally, we qualitatively discussed the role of the “1-form” Z2 center symmetry.
This symmetry distinguishes SU(2) theories with or without dynamical fundamental
representation fields and its presence ensures the stability of confining flux tubes.

3. From R3 to R3 × S1: Generalities

We are now ready to move from R3 towards R3 × S1. However, before studying
confinement, we have to come to grips with some developments dating back to the 1980s
and 1990s. The first is the so-called “GPY”-potential, found in studies of high-temperature
gauge theories [66]. The second concerns the properties of monopole–instanton solutions
in circle compactified theories discovered simultaneously (and independently) in studies
of quantum field theory [10] and string-theory D-branes [9,67].

3.1. Holonomy, Polyakov Loop, Center Symmetry, and the Weyl Chamber

The first thing we shall do is to “dispose” of the Higgs field Aa
4 of the Polyakov

model (1) as an entity distinct from the gauge field. More precisely, we shall incorporate
it into the theory as an intrinsic part of the 4D SU(2) theory: the component of the gauge
connection in the S1 direction.

In other words, we shall now reverse the logic around (5), where we used the 4th
dimension as a formal tool to study the BPS limit of monopole–instanton solutions. Ex-
plicitly, we now consider a 4D gauge theory with one coordinate compactified on a circle,
i.e., x4 ≡ x4 + L, where L is the S1 circumference. We use M and N to denote R4 in-
dices, while µ and ν are R3 indices; M = 4 denotes the S1 component. The 4D Euclidean
Lagrangian is

L4d =
1

4g2
4

Fa
MN FMN a − iθq, (52)

and g4 denotes the dimensionless 4D gauge coupling taken at some UV scale to be specified
later, θ is the theta-angle, and q is the topological charge density. (See Equation (71) and
Exercise 11. The topological term will not be important until the next Section and so we
omit it in what follows. We assume familiarity with the standard construction of θ vacua in
Yang–Mills theory (see [43])).

Without loss of generality (this may require a (necessarily short) explanation. On a
general compact manifold, one needs to introduce coordinate patches and relate the gauge
fields on different patches via transition functions (gauge group elements). S1 can be
considered as an interval [0, L] with A(0) and A(L) related by a transition function. One
can show that there exists a gauge transformation making the transition function unity,
implying A(0) = A(L)), the gauge fields can be taken periodic on the S1: Aa

M(x4 + L) =
Aa

M(x4). Expanding AM in Fourier (also called Kaluza–Klein, KK, or Matsubara) modes
on the S1, it is easy to see that modes with x4-dependence carry momentum quantized in
units of 1/L.

Our studies of the nonperturbative properties of the R3 × S1 gauge theory will, as in
the Polyakov model, use a tower of effective theories. As alluded to in the Introduction,
and will be discussed in more detail below, to ensure calculability, we shall take the highest
energy scale in the problem to be the compactification scale 1/L. To reduce the 4D theory to
one where excitations of mass ≥ 1/L are integrated out, we proceed, at tree level, to neglect
all x4 dependence, taking ∂4 = 0 in (52). Then, we obtain an effective IR theory valid on
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R3, at energy scales µ� 1
L by integrating the 4D Lagrangian L4d over x4. The resulting 3D

Lagrangian is:

L3d =
L

4g2
4

Fa
µνFµν a +

L
2g2

4
(Dµ A4)

a(Dµ A4)
a + . . . . (53)

This Lagrangian is quite similar to (5). One difference is the replacement 1/g2
3 → L/g2

4.
This is simply the way the 3D (dimensionful) and 4D (dimensionless) couplings are related
upon compactification, not taking into account quantum corrections. The factor of L in
the numerator occurs as we integrated (52) over the S1 coordinate to obtain (53). This is a
correct procedure at tree level, but the question of how the quantum loop corrections affect
L3d needs to be addressed. In particular, in a 4D theory, the coupling g2

4 runs logarithmically
and one needs to indicate what scale this coupling is taken at in (53). We shall make this
more precise in what follows (although we shall not delve into all detail, as some of it
is inessential for our purposes). At this point, we appeal to common sense: the natural
expectation is that the relevant scale should be of order 1/L, as neglecting the Kaluza–Klein
modes means that all excitations heavier than 1/L have been integrated out.

The other difference between (5) and L3d of (53) are the “. . .” terms. These indicate that
quantum corrections can generate terms of a form different from the ones already shown
in L3d. We can appeal to symmetries and dimensional analysis to guess what additional
terms may occur. The terms in the µ � 1/L effective action should be gauge invariant,
with respect to 3D gauge transformations, and they should respect the global symmetries of
the 4D theory (as usual, we assume that the theory can be regulated in a way respecting the
symmetries so that the effective action preserves them). Some of the terms that are allowed
to occur in L3d are traces of higher powers of the 4D gauge invariant field strengths Fµν and
Fµ4, with spacetime indices appropriately contracted. These terms should be suppressed by
inverse powers of 1/L, the lightest KK-mode mass scale, and are expected to be irrelevant
at µ� 1/L (in our weak-coupling set up).

Other allowed terms may appear less obvious and have the form of a potential for
the A4 component. Notice that A4 is part of the SU(2) connection and is not invariant
under SU(2) gauge transformations, but transforms as A4 → g(A4 − i∂4)g†, where g is an
SU(2) group element. A simple, but not quite precise, argument in favour of the possible
appearance of a potential term for A4 is that, from the perspective of the µ� 1/L theory,
A4 is an adjoint scalar. This is as the inhomogeneous term in the gauge transformation of
A4 vanishes if g is taken independent on x4.

A better argument, bringing extra insight, is to notice the following. We have com-
pactified the 4D theory on an S1 by integrating out all modes of energy ≥ 1/L. Thus,
the resulting 3D theory is expected to be local in 3D, but not in the S1-coordinate. In par-
ticular, there exists an object that is not local on the S1 but is local in R3, the Wilson loop
winding around the S1. It is also known as the Polyakov loop; we shall interchangeably call
Ω a Polyakov loop or a winding Wilson loop. The fundamental representation Polyakov
loop is defined as

Ω(~x) = Pe
i

L∫
0

dx4 Aa
4(~x,x4)Ta

, detΩ = 1, Ω†Ω = 1 , (54)

where we stress that Ω is an SU(2) group element. Sometimes, Ω is also called the “gauge
holonomy” around S1. Here, P denotes path ordering, already discussed near (43) and Ta

are the fundamental-representation generators of SU(2). Recalling Exercise 7, from Equa-
tion (44) there we know that under gauge transformations on R3 × S1, g(~x, x4) ∈ SU(2),

Ω(~x)→ g(~x, 0)Ω(~x)g(~x, L)† . (55)

This makes it clear that Ω(~x) transforms as a unitary adjoint field under x4-independent
gauge transformations. Further, it is also clear that the trace of the Polyakov loop trΩ(~x) is
invariant under periodic SU(2) gauge transformations obeying g(~x, L) = g(~x, 0).
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There are many properties concerning the Polyakov loop (54) that are relevant to our
future discussion and that we shall unravel as we go on. We first go back to enumerating the
possible gauge invariant terms that can be added to our L3d of (53). The above discussion
implies that we can add the following, local in R3 but not local on S1, gauge invariant terms
to (53):

. . . ⊃ ∑
k,p∈Z

ckp

L3 (tr Ω)k (tr Ω†)p , (56)

where we wrote the L−3 factor based on dimensional analysis and ckp are unknown dimen-
sionless coefficients (clearly, they should obey relations ensuring the reality of the effective
action terms (56)). (Note that the gauge invariants tr(Ωk) are not independent and can be
expressed through (trΩ)k via the characteristic equation of the matrix Ω:

Ω2 −Ω trΩ + detΩ = 0, (57)

which is easily verified in our 2× 2 case). The origin and physical consequences of adding
terms such as (56) to (53) will be discussed later (the sum over integer powers k and p will
be seen to arise due to integration out of KK modes).

Now we reveal one property that distinguishes the terms with k + p-even in (56).
The k + p-even terms are invariant under the following Z2 transformation

Z(1)
2 : tr Ω→ −tr Ω (58)

while terms with odd k + p violate (58). We shall use the notation Z(1)
2 for (58), in some

departure from the literature where it is sometimes called “0-form center symmetry”. This is
as, from the point of view of the 3D long-distance theory valid at scales µ� 1/L, Ω appears
as local operator and the symmetry (58) acts as a “normal” 0-form symmetry. We shall
continue using the notation Z(1)

2 for (58) and hope that this will not cause undue confusion.
We claim that the transformation of (58) is our familiar 1-form center symmetry, Z2

for gauge group SU(2), discussed at the end of the previous section. (Unfortunately, tying
up all the lose ends and explaining the relation of trΩ to confinement/deconfinement
will have to wait for Section 3.4). Here, it is denoted by Z(1)

2 to emphasize the fact that
this is a 1-form symmetry, i.e., it acts only on gauge invariant operators associated with
lines (Ω is associated with a line, the noncontractible loop along the S1). There are many
ways to define this Z(1)

2 symmetry that we can not possibly go into. We shall only note
the “old-fashioned” way of doing so. Comparing (55) and (58) we note that the latter is
equivalent to the transformation of tr Ω(~x) under an “improper gauge transformation”, on
R3 × S1, one obeying

g(~x, x4 + L) = −g(~x, x4) , for example, gA(x4) = e i 2πx4
L

σ3
2 . (59)

Thus, “improper” gauge transformations are ones periodic only up to elements of the
Z2 center of SU(2). The transformations (59) represent global 1-form symmetries of the
theory without fundamental fields.

The coupling of fundamental fields to gauge fields is inconsistent with such improper
gauge transformations on R3 × S1, as the fundamental fields Ψ and their improper gauge
transformations Ψ→ gΨ, with g obeying (59), would obey different boundary conditions
on S1. On the other hand, adjoints transform as Φ→ gΦg†, and are insensitive to the (mod
Z2) g periodicity (59). We refer to [2,15] for different descriptions of this 1-form symmetry.
We also note that when the theory is considered on a four-torus, T4, then there are four
different center symmetries, hence the name “1-form”, each associated with one of the four
types of noncontractible loops on T4. Here, we shall mostly be concerned with the center
symmetry associated with our S1 and shall continue to label it Z(1)

2 .
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Equation (59) is one way (the fact that (59) represent global symmetries was recognized
already in [7,68], called there “central conjugations”) to introduce the all-important Z(1)

2
global center symmetry responsible for the stability of the confining string, as per the
discussion at the end of Section 2.6. It should be clear that local gauge invariant operators,
which can only depend on FMN are automatically invariant under (59) and only line
operators winding around “the world” are sensitive to it.

Now to the point concerning the allowed terms in L3d. We conclude that, as the
theory with only adjoint fields is invariant under (59), so should the effective action (53).
Thus, only terms preserving the Z(1)

2 symmetry (58) are allowed. Hence, in the SU(2)
theory, the effective Lagrangian (53) should include terms of the form (56) with k + p-even.
(Running ahead, see Equation (82) for the one-loop GPY potential, a function of trΩ which
can be massaged (using (57)) into the form (56)).

Next, in a weak coupling set-up, it is convenient to work with the connection A4
instead of trΩ of (54). It is usual in gauge theory to study the temporal A0 = 0 gauge.
Here, it is convenient to choose a similar perspective, working in the “A4 = 0” gauge.
The quotation marks stand to remind us of the only difference between our case and the
usual A0 = 0 gauge: our A4 is the component of the SU(2) connection along a compact
spatial direction. As such, it is characterized by the gauge invariant trΩ (as per discussion
after (56), this is the only independent gauge invariant), which can not be removed by a
choice of gauge. This means that one can choose a gauge eliminating “most”, but not all,
of Aa

4. The question about the possible values trΩ can take, the convenient gauge choice,
as well as some other properties, are the subject of the following important

Exercise 9: Prove as many of the statements below as you feel like.

1. A periodic gauge transformation (55) can be used to bring Ω(~x) to a diagonal
form, i.e.,

Ω′(~x) = e
i

L∫
0

dx4 A3′
4 (~x,x4)T3

. (60)

2. Using further periodic gauge transformations in the Cartan subgroup of
SU(2), the x4 dependence of A3′

4 in Ω′ can be eliminated to find

Ωdiag.(~x) = e iLA3
4(~x)

σ3
2 = diag (e i

LA3
4(~x)
2 , e −i

LA3
4(~x)
2 ) . (61)

The gauge transformations performed in this and the previous part of this
problem amount to what is known as “unitary gauge” for the case where
the “Higgs” field’s role is played by the holonomy. The form of Ωdiag. (61)
will be very useful for us in what follows. First, it shows that the gauge

invariant 1
2 trΩ = cos LA3

4
2 takes values between 1 and −1. It also suggests

that LA3
4 is a compact variable of period 4π (it is subject to further gauge

identifications; see item 4 below).
3. Under the Z(1)

2 global symmetry transformations with gA(x4) from (59),
Ωdiag. transforms as Ωdiag.→ −Ωdiag., consistent with (58). Taken to act on
LA3

4, these center-symmetry transformations correspond to 2π shifts.
4. The periodic gauge transformation g(x4) = (gA(x4))2 leaves Ωdiag. invari-

ant and gives rise to 4π shifts of LA3
4. This, combined with the transforma-

tion of Ωdiag. under the so-called “Weyl reflection”, a gauge transformation
with a constant g = iσ2 ∈ SU(2), implies that LA3

4 → −LA3
4 (mod 4π) is a

gauge identification.

The importance of the results of the above exercise can not be overstated. When
studying the dynamics, we shall be very interested in the possible vevs of LA3

4 (after all, we
already noted that it acts as a kind of a scalar field in our 3D theory). In particular, we want
to know which vevs of LA3

4 are physically distinct, i.e., are not gauge equivalent. From the
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information above, we see that there are gauge transformations that act as 4π shifts of LA3
4.

Combined with the Weyl reflections LA3
4 → −LA3

4, we find that the set of independent
values, or the “moduli space” of LA3

4 is the segment LA3
4 ∈ [0, 2π]. The two end points

are distinct and are related by the global Z(1)
2 symmetry. The action of Z(1)

2 on the Weyl
chamber can be pictured as a reflection of the interval with respect to the middle point.

These findings are depicted and summarized in the caption of Figure 10, describing
again what is also known as the “Weyl chamber”.

Figure 10. The segment 〈LA3
4〉 ∈ [0, 2π] known as the “moduli space” or “Weyl chamber” of the

S1-holonomy of the SU(2) theory. All points inside the Weyl chamber are physically distinct. That
there are no further gauge identifications of points inside the Weyl chamber follows the fact that
they are distinguished by the different values of the gauge invariant operator 〈trΩ/2〉 ∈ [1,−1].

As explained in the text, on the two edges of the Weyl chamber, the Z(1)
2 center symmetry is maximally

broken (see also Exercise 10). Center symmetry acts on the Weyl chamber as a reflection w.r.t. the
middle point. This point corresponds to the center-symmetric value of the holonomy, 〈trΩ〉 = 0,
a major player in our study of the dynamics.

Summary of Section 3.1: Here, we introduced some background relevant for our study
of the circle-compactified theory. We began by introducing the notion of an effective
3D Lagrangian (53), valid at energy scales below the lowest KK mode mass, µ � 1/L.
We also introduced the gauge holonomy, or Polyakov loop (54). We described how the
Z(1)

2 global center symmetry acts (58), showing that the trace of the Polyakov loop is the

gauge invariant order parameter for the Z(1)
2 1-form symmetry. We also noted that the

symmetries of the problem allow holonomy-dependent terms such as (56) in the effective
3D Lagrangian. Finally, we described the Weyl chamber, the space of physically distinct
values of the holonomy, depicted in Figure 10. We noted that there is one special point on
it, the center-symmetric point LA3

4 = π, or tr Ω = 0. This point will play an important role
in our further studies.

3.2. Spectrum Near Center Symmetry. When Does Small-L Imply Weak Coupling?

At the classical level, all values of A3
4 on the Weyl chamber of Figure 10 (except for

its edges, see Exercise 10 below) are possible starting points to studying the perturbative
expansion. The all-important—as the dynamics depends on the value of 〈A3

4〉—question
as to whether the chosen point on the Weyl chamber is stable in the quantum theory is
postponed to Section 3.4.

In this Section, we shall study the perturbative expansion on the Weyl chamber,
focusing on the neighbourhood of the center-symmetric point (i.e., sufficiently far away
from the edge of the Weyl chamber (see the last part of Exercise 10))

〈A3
4〉 = v ∼ π

L
, (62)

where we used v to denote the scale of the near center-symmetric vev, as indicated by the
∼ sign. In what follows, we often drop the expectation values signs 〈...〉 when discussing
the vev, hoping that this does not cause undue confusion and is clear from the context.
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The main point we want to make here is that the vev (62) plays the role of the vev of
the Higgs field: it breaks SU(2) to U(1) at a scale v, leading to an abelianization of our 3D
effective theory (53). Notice that v is of the same order as the lowest KK mass scale already
mentioned when writing L3d. The novelty here, with respect to the Polyakov model, is that
the Higgs field is part of the gauge connection, so you may not be familiar with its use to
break the gauge symmetry (nonzero holonomies around extra spacetime dimensions have
long been used to break the gauge symmetry, e.g., in string theory). Thus, we shall flesh
out some of the details.

To see that the holonomy vev v breaks SU(2) to its Cartan subgroup, it suffices to
consider the kinetic terms in (53). Now, the µ4 components of the nonabelian field strength
are Fµ4 = ∂µ A4− ∂4 Aµ + i

[
Aµ, A4

]
. Next, recall that we are working in the gauge where A3

4
is the only nonzero component of A4, and to boot, it only depends on ~x ∈ R3. We can now
separate out the various isospin components of Fµ4. In the process, we set ∂4 = 0, as we
know that every mode with nonzero x4 dependence has KK mass quantized in units of 1/L
and that such modes are already integrated out of (53). We also expand A3

4 = v + a3
4 into

its vev and R3-dependent fluctuation, to find for the zero-KK modes of the field strength,
F3

µ4 = ∂µ A3
4 for the Cartan component, while the non-Cartan components are

F1
µ4

σ1

2
= iA2

µ(v + a3
4)[

σ2

2
,

σ3

2
] ' −A2

µv
σ1

2
, and F2

µ4
σ2

2
= iA1

µ(v + a3
4)[

σ1

2
,

σ3

2
] ' A1

µv
σ2

2
, (63)

where we neglected the terms linear in the a3
4 fluctuation in the last equality. It is clear now

that the terms proportional to v above give mass of order v to the W-bosons A1
µ and A2

µ.
Those still skeptical, please consider the following

Exercise 10: Convince yourself of the validity of (63). Show that, when plugged
into L3d of (53), at the center-symmetric point they give mass mW = π

L to the non-
Cartan subalgebra fields A1,2

µ , the W-bosons. At the same time, the fluctuation a3
4

and the Cartan component A3
µ remain massless (if no potential for a3

4 is present).
Argue that the µ � 1/L 3D Lagrangian is now the abelian restriction of (53)
(omitting the isospin index as we did in the Polyakov model):

L3d =
L

4g2
4

FµνFµν +
L

2g2
4
(∂µa4)(∂

µa4) + . . . . (64)

The dots denote terms that we shall investigate in the following Sections.

A bonus question is to answer: What happens to the perturbative spectrumif
the vev (62) is taken towards the edges of the Weyl chamber? (Hint: when
〈A3

4〉 = 0, it should be obvious that the theory remains nonabelian (as an aside,
a 3D nonabelian theory also flows to strong coupling and is difficult to analyze).
When 〈A3

4〉 = 2π/L, it might seem that a mass is generated, yet again abelianizing
the theory in the IR. However, as the theories at the two edges are related by the
Z(1)

2 symmetry, the spectra should be the same and one should be able to see this
explicitly).

In the remainder of this Section, we shall discuss the reason for the validity of the above
weak-coupling analysis of the spectrum at the center-symmetric point—as well as near it,
i.e., sufficiently far from the edges of the Weyl chamber. We stress that, to make the story
self-consistent, we have to make sure that the (near) center-symmetric vev (62) is stable,
i.e., it is the value of 〈A3

4〉 preferred by quantum corrections. We shall discuss, in Section 3.4,
under what conditions (62) is, indeed, a minimum of the quantum effective potential.
For now, we shall simply assume that this is so and argue that, for sufficiently small L,
the weak-coupling expansion is valid. (We also note that in the case of SYM, there are no
perturbative quantum corrections, so the Weyl chamber is, indeed, a “moduli space”—a
manifold of exactly degenerate ground states, to all orders of perturbation theory). This
follows from the observations made above: as v plays the role of the SU(2) → U(1)
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breaking scale, it determines the mass of the W-bosons. In a theory with only adjoint fields,
all components which are not in the Cartan subalgebra of SU(2) obtain mass of order
v (notice that non-Cartan components of adjoint-representation fields are the only ones
charged under the unbroken U(1)). Thus the long-distance theory is a free U(1) theory
with no light charged fields.

Let us now recall the logarithmic running of the coupling g2
4(µ) in a 4D nonabelian

asymptotically-free gauge theory, a cartoon of which is shown in Figure 11. At scales
µ� v ∼ π/L, the R3 × S1 theory is essentially 4D and the coupling runs logarithmically
to zero at high energy. If no Higgsing (or compactification) were present, the 4D coupling
would continue to run according to the dashed line, hitting a “Landau pole” at an energy
scale of order Λ, the dynamical strong scale of the theory. However, in our setup, at the
scale v, related to the size of the S1, the gauge group breaks to U(1). Further, as shown
above, all states charged under the U(1) obtain mass of order v, thus there is nothing to
make the (now 3D) U(1) coupling run at lower energy scales. The coupling is frozen to its
value at µ ∼ v and does not evolve as the energy is lowered.

Figure 11. The asymptotically-free running coupling g2
4(µ) of the 4D theory approaches strong

coupling at IR scales of order Λ, as shown by the dashed line. At (or near) the center-symmetric
point on R3 × S1, SU(2) → U(1) Higgsing takes place at a scale v ∼ π

L . The long-distance 3D
U(1) theory is free, with 3D gauge coupling determined by matching to the 4D theory and given by
g2

3 = g2
4(µ ∼ v)/L. The weak-coupling analysis is justified if the scale of the breaking is larger than

Λ, i.e., when ΛL� π.

Thus, in order for our weak-coupling analysis to be consistent, we must ensure that
the coupling g2

4(v), taken at the scale of the SU(2)-breaking v, is weak. From Figure 11, we
see that this means that v ∼ π/L � Λ must hold, as already stated in the Introduction.
Notice that this condition is very similar to the one in the electroweak sector of the standard
model: the scale of the Higgs vev must be much larger than the strong-coupling scale of
the SU(2)L weak interaction theory.

The above argument is a qualitative one, but it can be backed up by a calculation of
the loop corrections and a determination of the scale of the coupling g2

4 that enters in (64).
The procedure of finding the coupling of the EFT (64) is called “matching”, and we shall
not discuss the details. (While the calculation is straightforward in principle, the details
can be somewhat arduous. These have, to date, been applied to theories with massless
adjoints, with [21,34] or without [46] help from supersymmetry. The calculations with
massive adjoints have been completed only recently in yet unpublished work by John
Lai). For our purposes, all that matters is that the answer, as suggested earlier, is that the
coupling in L3d is the 4D running coupling of the SU(2) theory, g2

4(µ), with µ a scale of
order v� Λ.
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Later on, we shall sometimes express the parameters defining our long distance EFT
on R3 × S1 in terms of Λ and L, with small but nonzero ΛL� π. There, we shall give an
equation for Λ. For now, we note that the input parameters Λ and L can be expressed via a
fixed small g2

4(1/L)� 1 and L.
We stress that taking L small and finite, so that g2

4(1/L) is small is a limit distinct
from the dimensional reduction limit, where one takes L→ 0 while the three-dimensional
coupling g2

3 = g2
4(1/L)/L is fixed, which implies taking g2

4(1/L) to zero.
Finally, we can rewrite the µ� 1/L Lagrangian (64) using the photon/dual-photon

(σ) duality from Section 2.4. The only replacement we need to make is g2
3 → g2

4/L. Thus,
we obtain the perturbative dual effective Lagrangian of the R3 × S1 theory near the center-
symmetric point

L3d =
1
2

g2
4

L(4π)2 (∂λσ)2 +
L

2g2
4
(∂µa4)(∂

µa4) + . . . . (65)

As before, σ is a compact scalar of period 2π as argued in Section 2.4.
The next questions we need to address is the nature of the “. . .” terms. Some of these

terms, as already discussed, depend on the Polyakov loop (56) and will be arranged to
ensure stability of the center-symmetric vev. This is studied in Section 3.4. Other terms
contributing to “. . .” are not local in the original electric variables (53) but are local in
the σ-description. These arise from corrections due to various nonperturbative instanton
fluctuations, as in the Polyakov model. The monopole–instantons in the R3 × S1 theory are
studied in Section 3.3.

Summary of Section 3.2: Here, we found the perturbative spectrum of the SU(2) theory
expanded close to the middle of the Weyl chamber. We showed that SU(2) abelianizes,
i.e., breaks to U(1) at the scale v ∼ π/L, due to the center-symmetric expectation value
of the holonomy (62). The long distance theory is the rather boring one of (64): the 3D
abelian free Maxwell theory along with the massless neutral scalar a4. We rewrote it using
the dual-photon description in (65). We also argued that the weak-coupling analysis is
valid provided LΛ� π holds, i.e., the circle size is small compared to the inverse strong-
coupling scale of the theory. (For SU(N) theories, the condition is now ΛLN � 2π, as
SU(N)→ U(1)N−1 at a scale 2π/(LN)).

3.3. M and KK Monopole–Instantons

In this Section, we continue to work at (or near) the center-symmetric point (62). As in
the Polyakov model, we found that the IR theory is the rather boring (64), in complete anal-
ogy with Section 2.1. Additionally similar to what we did in Section 2.2, we proceed to study
the finite action Euclidean solutions in our R3 × S1 theory near the center-symmetric point.

The solutions that we shall discuss and their properties were discovered in the late
1990s in a remarkable set of papers [9,10]. What they found was that the 4D BPST instanton
in an SU(N) theory dissociates into N constituents in the bulk of the Weyl chamber (its
generalization to SU(N)). Here, we shall construct these solutions explicitly for SU(2).
By studying their properties, we shall show that they have the correct “quantum numbers”
(remember, they are not particles!) to be interpreted as instanton constituents. In the
past, people have had reason to suggest the existence of instanton constituents (“instan-
ton quarks”), but the present semiclassical incarnation is a very concrete, well-defined,
and useful way to uncover them.

The paper of K. Lee and P. Yi [9], in particular, studied the maximally supersymmetric
N = 4 Yang–Mills theory on R3 × S1 and its finite action monopole–instantons occurring
in the Weyl chamber in these theories. They used the D-brane realization of N = 4 SYM in
string theory. It turns out that it helps visualize these novel solutions and figure out many
of their properties in a remarkably simple way. The reason these monopole–instantons,
found in a highly supersymmetric setting, also occur in nonsupersymmetric theories is that
the nonzero bosonic backgrounds only involve a subset of the fields ofN = 4 SYM, namely
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those already occurring in the nonsupersymmetric gauge kinetic term (52). We shall not
use the stringy language, as it entails introducing more background than we can possibly
do here (we mention it for historical reasons and as it can be quite useful). Instead, we shall
use the QFT way of looking for these solutions.

Let us begin by recalling the self-dual BPS monopole–instanton solutions (10) of the
Polyakov model. We shall call them M, motivated by (33). Recall that these solve the
equations of motion of the 3D SU(2) gauge theory with an adjoint Higgs field Aa

4. But the
BPS-limit 3D Lagrangian (5) equals precisely our tree-level R3 × S1 Lagrangian without x4-
dependence (53). Thus, the BPS solutions of (5) will also be solutions of the x4-independent
equations of motion following from (52). We only need to replace the vev appearing in (10)
by that appearing in (62). But as we judiciously used the same letter, there is nothing
left to do. The only difference occurs in the overall normalization of the action. The BPS
monopole–instantons had action S0 = 4πv/g2

3. Now we only need replace v→ v ∼ π/L
and g2

3 → g2
4/L, to obtain the action of the BPS monopole–instanton solutions M on R3× S1

at a point v on the Weyl chamber:

SM(v) =
4πvL

g2
4

, at center symmetry: SM(
π

L
) =

1
2

8π2

g2
4

=
1
2

SBPST . (66)

We noted above the remarkable fact that the action of the M monopole–instantons,
evaluated at the center-symmetric point, is equal to one-half the famous BPST instanton
action in 4D (we shall come to this point below). In addition, from the construction
above, these finite-action Euclidean solutions of (52) on R3 × S1 are independent on the x4

coordinate. Viewed from the perspective of R3 × S1, their core has the shape of a “tube”,
localized on R3, of thickness 1/v, and winding around the S1 (i.e., they are extended objects
on R3 × S1, which is how they appear in string theory). The core of the M monopole–
instanton and its asymptotic field on R3 × S1 are sketched in Figure 12.

Figure 12. A cartoon of the spacetime structure of the x4-independent M monopole–instanton
solution on R3 × S1. This is essentially the solution localized in R3 shown in Figure 2, now trivially
embedded in R3× S1, by allowing it to propagate in x4 without change. The KK monopole–instanton,
on the other hand, is twisted in the S1 direction by the improper gauge transform gA(x4) of (59).

The most interesting part of the story is only beginning. As advertised, it turns out
that there is another self-dual solution, whose quantum numbers complement those of
the M solution found above, so that the two together have the properties of a 4D BPST
instanton. We shall now show this using QFT tools. The procedure we are about to describe
between Equations (67) and (70) is illustrated in Figure 13.
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Figure 13. Illustrating the construction of the KK monopole–instanton. The arrow of length v denoted
by M(v) shows the variation of the A4 field of the M(v) solution: from 0 at its center to its asymptotic
value v at R3 infinity. To construct the KK monopole, start with an M(v′) solution (denoted by
M′ in the text), where A4 varies from 0 at the center to v′ asymptotically, as shown by the lower

arrow. Then apply a global Z(1)
2 (represented by the improper gauge transformation gA of (59)) and a

Weyl reflection on the M(v′) solution, a procedure schematically denoted by iσ2 ◦ gA on the Figure.
As symmetries map solutions into solutions, the result is the monopole–instanton KK(v), in the same
vacuum as M(v).

To construct this so-called KK monopole–instanton solution, recall that v (taken to
denote the A3

4 vev) is a compact variable parameterizing the Weyl chamber, recall Figure 10.
Consider now another vev, a reflection of v across the midpoint of the Weyl chamber:

v′ =
2π

L
− v . (67)

Clearly, this is also a point on the Weyl chamber (v′ = v at the center-symmetric point).
Consider now the self-dual M solutions constructed above, but with v replaced by v′, so
we call them M′. The asymptotics of A4 and Br (understood to point in the 3rd isospin
direction, recall (13)) far away from their respective cores, and the actions of the M and M′

self-dual solutions are as follows (we have chosen, for brevity, to not display the 1/r tail of
A4 asymptotics, as in (13)):

M : A4 ' v, Br '
1
r2 , SM =

4πvL
g2

4
, (68)

M′ : A′4 ' v′, B′r '
1
r2 , SM′ =

4πv′L
g2

4
=

8π2

g2
4
− 4πv

g2
4

.

We stress that the two solutions live in different theories (or more precisely, different
superselection sectors, defined around different vacuum states): one with A3

4 vev v, and the
other v′. Of course, if v = v′ these solutions are identical.

But now we notice an interesting fact: we can use M′ to construct a solution in the same
vacuum, i.e., with A4 vev v. We shall achieve this in two steps. First, we apply the already

familiar (recall (59)) improper SU(2) gauge transformation gA(x4) = e i 2πx4
L

σ3
2 . Under such

transformations, SU(2) connections transform as A′M → A′′M = U(A′M − i∂M)U−1. Recall
that gA is not a gauge transformation globally, but is one locally. Thus, it will map solutions
to solutions, but will change the boundary conditions. On the other hand, local gauge
invariants, such as the action, will remain the same. Thus, by transforming M′ via gA, we
construct another solution, which we call M′′. The asymptotic values (away from the core)
of M′′ are now

M′′ : A′′4 ' v′ − 2π

L
= −v, B′′r '

1
r2 , SM′′ = SM′ =

8π2

g2
4
− 4πv

g2
4

=
8π2

g2
4
− SM . (69)

This asymptotic behaviour of M′′ is due to the fact that gA commutes with the asymp-
totic abelian form of A′4, B′r in (68). Only the asymptotic value of A′′4 is shifted due to the
inhomogeneous term in its gauge transform. (Acting with gA on the asymptotic forms of
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A′4, B′r, one has to imagine them multiplied by σ3/2. Notice also that the full nonabelian
core of the solutions is severely affected, acquiring x4 dependence (hence the “tube” stretch-
ing along S1 (shown in Figure 12) is twisted as it winds around the x4). Finally, all of the
construction here is in the string gauge. Luckily, it should be clear by now that we will not
make use of the core structures; needless to say, they can be worked out).

We are not finished yet, as the A′′4 asymptotics in (69) is still −v, rather than v. The sec-
ond step in constructing the so-called KK (for Kaluza–Klein) monopole–instanton solutions
is to use the already familiar Weyl reflection to change the sign of −v (this is the constant
gauge transformation g = iσ2). This has the effect of mapping solutions to solutions as well
as of reversing both A′′4 and B′′r above (as they are both along σ3), without changing the
action. After this step, we finally obtain the asymptotic form of the self-dual KK monopole–
instanton solutions. There are now two sets of distinct solutions at the same point on the
Weyl chamber:

KK : A4 ' v, Br ' −
1
r2 , SKK =

8π2

g2
4
− SM , (70)

M : A4 ' v, Br '
1
r2 , SM =

4πvL
g2

4
.

We now notice a curious fact: the sum of the actions SKK + SM equals the 4D BPST
instanton action. Therefore, it appears that in the bulk of the Weyl chamber, the 4D instanton
has dissociated into solutions of smaller action (1/2 each, at v = π/L), the M and KK
monopole–instantons. This is quite remarkable and this interpretation will be strengthened
below. A further argument for the consistency of this interpretation is to notice that the
self-dual M and KK solutions have opposite magnetic charge (14), as follows from the
opposite sign of the asymptotics of their Br fields. Thus, a collection of an M and KK has
no long-range magnetic field, as appropriate for 4D instantons which lack long-range tails.

Before we conclude this Section, we have to come to grips with yet another property
of the M and KK monopole–instantons: their topological charge. In order to be viewed as
constituents of BPST instantons, their topological charges have to sum to unity. We shall
shortly show this. This is a feature absent in the 3D Polyakov model and is the reason
why these R3 × S1 theories are distinct from it, “remembering” their 4D origin. As already
mentioned, we stress that in the dimensional reduction limit with g2

4(1/L)→ 0 and v an
arbitary scale, the KK monopole action goes to infinity, i.e., the theory loses the information
about its 4D origin. This is not our small-L, fixed-Λ limit.

Recall that the topological charge is defined as

QT =
1

32π2

∫

R3×S1

d4xFa
MN F̃a

MN , F̃MN =
1
2

εMNPQFPQ , (71)

where all repeated indices are summed over. The topological charge comes together with
a new parameter, the θ angle. Depending on the matter content, it may or may not be
observable, but can always be included as a book-keeping device. In the Euclidean path
integral, Euclidean field configurations of nonzero QT contribute with an extra phase factor
eiθQT multiplying their Boltzmann probability.

On R3 × S1, the topological charge can be expressed in terms of the asymptotics of the
B-field at the R3 infinity (i.e., the magnetic charge), the value of the holonomy (the A4 vev
v), and the integer Pontryagin index characterizing π3(G), the third homotopy class of the
gauge group. The topological classification of finite action Euclidean solutions on R3 × S1

was given in the GPY paper [66] (our calculation below, yielding (72), conforms with this
and will suffice here). The calculation of the topological charge for the M and KK solutions
will be performed in

Exercise 11: Use the fact that the topological charge density q is a total diver-
gence, i.e., q = 1

32π2 Fa
MN F̃a

MN = 1
16π2 εMNLK∂M

(
Aa

N∂L Aa
K − 1

3 εabc Aa
M Ab

L Ac
K

)
. In-
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tegrate by parts and, using the asymptotics the M and KK monopole–instantons,
show that

QT(M) =
1

8π2

L∫

0

dx4
∮

S2
∞

d2sµ A3
4 B3

µ =
vL
2π
→ 1

2
at center symmetry

QT(KK) = QT(M′) =
v′L
2π

= 1− vL
2π
→ 1

2
at center symmetry. (72)

Thus, QT(M) + QT(KK) = 1. This result can also be obtained from the fact that
both solutions are self-dual in 4D sense, i.e., their action is proportional to the
topological charge (compare (72) with (70)).

There is an infinite tower over the M and KK solutions, of increasingly larger action
(obtained by “adding BPST instantons” to them—this can be achieved by starting with the
simple BPS solutions with vevs v + 2πk

L and then bringing the vev into the [0, 2π] domain
by applying multiple gA transformations) but we shall not describe it, as we are only
interested in the lowest action solutions. Near center symmetry, these are the M and KK.

To end this Section, we can now combine the information about our Euclidean so-
lutions of finite action into ’t Hooft vertices similar to (33). We can use the insight from
the Polyakov model, as our theory is abelian near the center-symmetric point and the
long-distance physics on R3 × S1 at µ � 1/L is essentially 3D. Thus, we can use a dual
description of the unbroken U(1) in terms of a dual photon σ already given in (65).

Furthermore, as the cores of the M and KK monopole–instantons are of size ∼ v−1 ∼
L, the only property that matters is their action, topological charge, and long-distance
interactions via long-range magnetic fields. (We shall see in the next Section, that, as in
the Polyakov model, the A3

4-field is gapped due to the yet-unknown terms (56), except in
SYM). Thus, we can now simply list the four ’t Hooft vertices (corresponding to the two
solutions we found and their “anti-particles”) in the SU(2) theory on R3 × S1. Here, we
take the actions and topological charges at the center-symmetric point (as promised and
postponed many times, we will justify this assumption in the next Section):

M : L−3 e−S0+i θ
2 e+iσ, where, from now on S0 ≡

4π2

g2
4

=
SBPST

2

M∗ : L−3 e−S0−i θ
2 e−iσ,

KK : L−3 e−S0+i θ
2 e−iσ, (73)

KK∗ : L−3 e−S0−i θ
2 e+iσ, .

The above mnemonic is as the one in the Polyakov model (we took the liberty to omit
the explicit x ∈ R3 dependence). The replacement of v with 1/L in the prefactor is due to
the holonomy vev (62), working with exponential-only accuracy, as before.

The most important new features of (73), compared to (33), are as follows. First, the θ-
angle dependence, taking into account the fractional topological charge of the solutions:
+1/2 for M and KK and −1/2 for their “antiparticles”. The second major difference with
respect to the 3D Polyakov model is the appearance of a new set of monopole–instantons,
the KK solutions described earlier. As the M and KK have opposite magnetic charges, they
come with opposite-sign e±iσ factors.

A further property of the R3× S1 EFT distinct from the Polyakov model is the presence
of the Z(1)

2 center symmetry associated with the S1. Now we recall that KK monopole–
instantons were obtained from M′ using a global center-symmetry transformation and
a gauge transformation (Weyl reflection). Thus, at the center-symmetric vev, the two
are center-symmetry images of each other, as M = M′. Thus, the Z(1)

2 action on the ’t

Hooft vertices should be to exchange the M and KK vertices, Z(1)
2 : M → KK, or Z(1)

2 :
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e−S0+i θ
2 eiσ → e−S0+i θ

2 e−iσ. We conclude that the dual photon transforms under the Z(1)
2

center symmetry as
Z(1)

2 : σ→ 2π − σ , (74)

where the 2π shift keeps the image in the fundamental domain. Earlier arguments for (74)
are in [27,69]. We shall find many uses of (74) in what follows. (To avoid confusion, we
remind the reader (see also Appendix A) that, as we elaborated after (58), in these notes we
use Z(1)

2 to denote the center symmetry along the S1 direction. Hence, it acts on local fields
in the 3D theory valid at distances� L; in many papers it is sometimes called “0-form
center symmetry”).

Our plan is, in the next Section 3.4, to discuss the reasons for the stability of center
symmetry in different classes of theories, closing our last loophole. After this, we shall
finally come to our main topic: studying the calculable dynamics of confinement and chiral
symmetry breaking.

Summary of Section 3.3: The main result obtained here is the classification of instantons
of lowest action near the center-symmetric point on R3 × S1. The appearance of the KK
monopole–instantons, in addition to the M monopole–instantons (which, in our gauge,
resemble those in the 3D Polyakov model) is a new feature related to the 4D nature of the
theory and its topological structure. These solutions carry fractional, compared to the 4D
BPST instanton, actions and topological charges. We introduced ’t Hooft vertices (73) for the
M, M∗, KK, and KK∗ monopole–instantons that we shall use to study the dynamics. Similar
to (33), these encode the action and topological charge of the various instantons as well
as their long-distance magnetic interactions. Further, we argued that the Z(1)

2 symmetry
interchanges the M and KK ’t Hooft vertices.

3.4. Adjoint Fermions, “GPY” Potential, and Center Stability

Before continuing to analyze the dynamics of various models, we have to address the
reason for our choice of center-symmetric vev (62). This is important, as, as we explained
in Section 3.2, it is the (near) center stability which is responsible for abelianization and
calculability of the IR physics on R3 × S1. We shall finally address this question here,
by computing the one-loop effective potential on the Weyl chamber, i.e., the v-dependent
contribution to the vacuum energy. It is often called “the Gross–Pisarski–Yaffe, or GPY,
potential” in the pure-YM case [66]. We shall see that in the pure-YM theory, center
symmetry is maximally broken, while the addition of adjoint fermions naturally stabilizes it.

To this end, we right away modify our theory (52) by adding fermions in the adjoint
representation of the gauge group. We write the fermion action (see Appendix A for an
explanation of our notation, including warnings about possible confusions) in Minkowski
space with (+,−,−,−) metric, as in (20), where now M, N = 0, 1, 2, 3 and the S1 direction
is x3 ≡ x3 + L:

L4d,adj. = −
1

4g2
4

Fa
MN FMN a +

i
g2

4
λ̄a

α̇ σ̄Mα̇α(DMλα)
a +

1
g2

4
(

m
2

λa
αλa

βεβα +
m∗

2
λ̄a

α̇εα̇β̇λ̄a
β̇
) . (75)

We omitted the topological term from (52) as it will play no role until later. The
Weyl fermions are two-component SL(2, C) spinor fields λa

α, anticommuting variables
representing a single flavour of adjoint Weyl fermion. Most importantly, the fermions satisfy
periodic boundary conditions on the S1, similar to the gauge field, λa

α(x3 + L) = λa
α(x3). m

is the complex Majorana mass parameter of the adjoint fermion. For notational simplicity
(essentially to avoid introducing a flavour index), we wrote (75) for a single flavour, but the
generalization to n f flavours λa,I

α , where I = 1, ..., n f is the flavour index, is trivial. The one
assumption we make (for convenience) for n f > 1 Weyl fermions is that the masses of the
different fermion flavours are all equal. We shall study the global symmetries of the adjoint
theory and their realization in the vacuum in detail in Section 5 below.
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3.4.1. The Adjoint Spectrum on the Weyl Chamber

But first, to the matter at hand, the center stability. Consider the theory (75) in the
bulk of the Weyl chamber, i.e., for A3

4 → A3
3 ≡ v 6= {0, 2π

L Z}, recalling (62) and the 4→ 3
replacement due to our index choice above. We showed in Section 3.2 that this abelianizes
the gauge theory. As far as the adjoint fermions are concerned, it is easy to see that λ1

α and
λ2

α obtain a contribution to their mass due to A3
3 = v (as the vev is in the T3 direction),

while λ3
α does not. In particular, for m = 0, the Cartan component of the adjoint fermion

remains massless, while the non-Cartan ones obtain mass of order v.
To see this explicitly, and for important use further below, consider the following

Exercise 12: Expand the periodic fermions in a Fourier integral/series (xµ =
(x0, x1, x2) ∈ R3)

λa
α(xµ, x3) =

1
L ∑

p∈Z

∫ d3k
(2π)3 ei 2πp

L x3+ikµxµ
λa

α(k
µ, p) , (76)

and likewise for the c.c. field λ̄. Here kµ denotes the R3-momentum vector
and p is the KK number. Further, introduce σ± = (σ1 ± iσ2)/2 and define the
corresponding components of the adjoint fermion as

λα = T3λ3
α +

σ+

2
λ+

α +
σ−

2
λ−α . (77)

Next, keep only the A3
3 = v gauge-field background, setting all other components

to zero. Convince yourself that in Fourier space (i.e., acting on above λ), the ki-
netic operator becomes σ̄MDM = (σµkµ, σ3( 2πp

L + v
[
T3, ◦

]
) (the

[
T3, ◦

]
notation

means that it acts as a commutator on the Lie algebra). Then, show that the
fermion kinetic term in (75) becomes

Skin.,λ =
1
g2

4

1
L ∑

p∈Z

∫ d3k
(2π)3

[
λ̄3(~k, p)

(
σµkµ + σ3 2πp

L

)
λ3( ~k, p)

+
1
2

λ̄+( ~k, p)
(

σµkµ + σ3(
2πp

L
− v)

)
λ−(~k, p) (78)

+
1
2

λ̄−( ~k, p)
(

σµkµ + σ3(
2πp

L
+ v)

)
λ+(~k, p)

]
.

The interpretation of the above is clear: the p = 0 KK mode of λ3 remains massless,
while the λ± non-Cartan components, the ones with definite charges under the unbroken
Cartan U(1) all obtain mass due to the expectation value of A3

3 (except when v = 2πZ/L,
revisit Exercise 10). The mass obtained due to the coupling to v is sometimes called “real”
mass, a terminology coming from supersymmetry, to be contrasted with the complex
mass parameter m in (75). It is important to note that this mass does not break the chiral
symmetry (this is only possible in a setting when a direction of R4 is compactified).

We shall see below that there are many uses of the result (78) of this simple Exercise.

3.4.2. The One-Loop GPY Potential via Supersymmetry

First, we note that the single-flavour theory with m = 0 is actually N = 1 SYM.
Our S1 boundary conditions on the gauge field and λ are both periodic, so the R3 × S1

compactification preserves supersymmetry. Furthermore, the constant vev A3
3 = v also

preserves supersymmetry. We shall now use one important property of SYM (that you must
have heard about, so we simply quote it), namely that in supersymmetric backgrounds the
vL-dependent loop-corrections to the vacuum energy cancel. At the one-loop level, this
cancellation implies that the gauge boson loop contribution to the v-dependent vacuum
energy is equal to the negative of the fermion-loop contribution.
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This statement is of great use already in the study of the pure-YM theory, i.e., with the
fermions absent, as it will allow us to simply reproduce the classic GPY result about the
one-loop “GPY” potential in the bosonic YM theory on S1, which, by the above reasoning
is equal to the negative of the m = 0 Weyl fermion contribution. The calculation of the
adjoint Weyl fermion contribution to the vacuum energy is simpler than the original GPY
calculation. (The interested reader can compare with the original calculation of [66]; here,
we will not have to think about ghosts, gauge fixing, etc. Additionally, for a gauge invariant
definition of the potential for trΩ, the constrained effective potential, see, e.g., [70]).

Now recall that computing one-loop effective potentials amounts to computing deter-
minants in the corresponding background. Thus, in order to find the one-loop contribution
to the v-dependent vacuum energy of the m = 0 fermions, we see from (78) that we have to
compute the Gaussian path integral over λ+ and λ− (the λ3 components do not couple to
v and give no contribution to the one-loop effective potential). Computing the Grassmann
path integral over the Fourier modes of λ± produces a determinant. To compute it, we inte-
grate over the Minkowski space~k, p Fourier modes of λ± and then continue to Euclidean
momenta to obtain (79) below. With V denoting the R3 spacetime volume, we have the
usual definition of the effective potential

e−Se f f = e−Ve f f (v)V
∣∣∣∣
λ± contribution

= det(operator of quadratic fluctuations in Equation (78)) .

Noting that we are after the v-dependent piece only, we can discard inessential overall
constants. Computing the determinants, we find, switching to Euclidean 3-momenta,
the following formal expression

det(operator of quadratic fluctuations) = ∏
~k

∏
p∈Z

(
~k2 + (

2πp
L
− v)2

)(
~k2 + (

2πp
L

+ v)2
)

, (79)

and, thus, the final expression for the one-loop effective potential (the factor, or 2, is due to
the fact that the two terms in the determinant give identical contributions after summing
over p):

Vm=0 adj.(vL) = −2 ∑
p∈Z

∫ d3k
(2π)3 ln

(
~k2 + (

2πp
L
− v)2

)
=

= − 1
L3

1
12π2 [vL]2(2π − [vL])2 + const. , where [vL] = vL (mod2π) . (80)

To obtain the second line, one needs to do a calculation (see Appendix B). It should,
however, be clear that the overall scaling with L and the periodicity w.r.t. to vL follow from
the expression in the first line. The calculation can be performed, for example, via ζ function
regularization (introduced in the framework of QFT path integrals by Hawking [71], in a
setting more general than what is needed here), a standard procedure useful for computing
such Casimir-like vacuum energies. The additive regulator-dependent v-independent
constant can be dropped.

Exercise 13: Verify as much of Equations (79) and (80) as you feel like. Feel free
to consult Appendix B (this is recommended especially if you have not tried
ζ-function calculations).

The single massless adjoint contribution (80) to the effective potential on the Weyl
chamber is shown on the bottom curve of Figure 14. Clearly, it alone favours the center-
symmetric value v = π/L (we shall come back to this point later).
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Figure 14. A plot of the one-loop effective potential on the Weyl chamber in pure YM theory,
computed using supersymmetry (Equation (81) is plotted with L = 1). In the pure-YM theory,
the one-loop potential is given by the top curve (81) and the energy is minimized at v = 0 and v = 2π

L ,

i.e., at 1
2 〈trΩ〉 = ±1. The Z(1)

2 symmetry is thus maximally broken. The physical interpretation of
this phase is a deconfined phase of YM theory, see Section 3.4.3.

As discussed above, appealing to the supersymmetry of the n f = 1 massless theory,
we obtained the bosonic one-loop contribution for free, as it simply equals the negative
of (80). The result is known as the GPY potential

Vgauge(vL) =
1
L3

1
12π2 [vL]2(2π − [vL])2 . (81)

As is clear from the top line of Figure 14, this equation implies that the vacuum
energy is minimized at vL = 0 or 2π, i.e., at 〈trΩ〉 = ±1, where the Z(1)

2 symmetry is
maximally broken.

In SYM, the potential is the sum of the two curves and thus vanishes (in fact, it vanishes
to all orders of perturbation theory). Thus, one can study the quantum theory for any v.
As we shall see, nonperturbative corrections are responsible for stabilizing center symmetry
in SYM.

For completeness, we note that the above GPY potential (81) can be expressed in
terms of a Z(1)

2 -invariant function of trΩ of the general form (56). Begin with the identity
1

24π2 [vL]2(2π − [vL])2 = − 1
π2 ∑

m 6=0

eivLm

m4 + π2

45 (which is nothing but a Fourier series) and

recall that Ωk = diag(eikvL/2, e−ikvL/2). Then, dropping v-independent terms, we obtain (81)
in the equivalent form:

Vgauge(vL) = − 1
L3

2
π2 ∑

m>0

eivLm + e−ivLm

m4 = − 1
L3

2
π2 ∑

m>0

|tr(Ωm)|2
m4 . (82)

This can be then further massaged into the form (56) with k + p even, using the
characteristic Equation (57). Most importantly, however, the last form in Equation (82) is
remarkable in that it also holds in the SU(N) theory [13] (for SU(N), it is a function of the
N − 1 independent eigenvalues of Ω rather than just on vL).

3.4.3. Digression: Z(1)
2 -Breaking and Deconfinement in High-T Pure-YM Theory

There is some important physics associated with the breaking of the Z(1)
2 center

symmetry and the thermal deconfinement transition that we shall discuss next. This
constitutes a necessary and important digression from our main line of thought.

In the theory with only bosons, the R3× S1 theory can be given a thermal interpretation
with the S1 size being identified with the inverse temperature L = 1/T. The Euclidean
path integral on R3 × S1 computes the thermal equilibrium partition function. (For future
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use, we also note that a thermal interpretation of the theory with fermions requires them
to be antiperiodic on the thermal S1, i.e., λ(L = 1

T ) = −λ(0). This can be traced back to
the difference between Bose–Einstein and Fermi–Dirac distribution functions). Thus, we
can actually rewrite (81) as VGPY = T3

12π2 (
v
T )

2(2π − v
T )

2. This expression was derived by
GPY using high-temperature perturbation theory, valid at T � Λ, where the one-loop
contribution to the v-dependence of the free energy can be trusted, as, due to asymptotic
freedom g2(T) � 1 for T � Λ. The main conclusion of this calculation is that at T � Λ,
the Z(1)

2 center symmetry is spontaneously broken, as 1
2 〈trΩ〉 = ±1.

Our goal here is to tie some remaining loose ends connecting the Z(1)
2 symmetry to

confinement and deconfinement. Recall that our reference to center symmetry began in
Section 2.6, where we qualitatively argued that, in a theory with no center symmetry,
confining strings cannot be stable and an area law can not hold for arbitrarily large Wilson
loops. We then continued with the more precise definition of Z(1)

2 in Section 3.1, where we
showed that trΩ is an order parameter for the center symmetry. From the GPY calculation,
we then found that at T � Λ, center symmetry is broken.

The main point we want to make here is that the broken-Z(1)
2 phase of high-T YM

theory is interpreted as a deconfined phase. One quick way to argue this is to note that
the normalized expectation value of the fundamental representation Polyakov loop in the
thermal ensemble can be interpreted as the change of the free energy of the system due to

the insertion of a fundamental static charges in the thermal bath, 〈trΩ〉 ∼ e−
Fquark(T)

T (this is
due to the physical interpretation of Ω as inserting a static charge; see [2] for a more formal
derivation). We associate confinement with the notion that fundamental quarks are not free
and expect that Fquark = ∞, implying that 〈trΩ〉 = 0, i.e., confinement is associated with an
unbroken center symmetry. Conversely, a finite free energy, associated with a deconfined
phase, implies a nonzero 〈trΩ〉 and thus broken center symmetry.

To gain more intuition, consider the correlator of two Polyakov loops a distance R ∈ R3

apart. The physical interpretation is that a fundamental quark–antiquark pair separated
by R is inserted in the thermal bath. There are two important properties of this correlator.
The first is that the large-R behaviour of the correlation function

〈trΩ(x)trΩ†(x + R)〉 ∼ e−
V(R,T)

T , (83)

determines the free-energy, or T-dependent interaction potential V(R, T), between a quark
and an antiquark inserted a distance R apart. The second is the general property of cluster
decomposition (see S. Weinberg’s book [72] (vol. 1, Ch. 4) for discussion in QFT language
and Zinn-Justin’s [73] (Ch. 23.3) for statistical mechanics terms) of correlation functions at
large spacelike separations. Clustering implies that for R→ ∞, the correlator factorizes, i.e.

lim
R→∞
〈trΩ(x)trΩ†(x + R)〉 = |〈trΩ(x)〉|2 , (84)

where the expectation values on both sides are taken in the same vacuum.
In a confined phase, where V(R, T) = Σ(T)R, where Σ(T) 6= 0 is a T-dependent string

tension, we conclude by comparing the infinite-R limit of (83) with (84), that 〈trΩ(x)〉 = 0,
i.e., the Z(1)

2 symmetry is unbroken (notice that the confining behaviour of V ∼ ΣR can
also be associated with an area law, as R/T is the area between the two Polyakov loop
insertions, as is clear from Figure 15).



Symmetry 2022, 14, 180 48 of 109

Figure 15. A fundamental quark–antiquark pair inserted in the thermal R3× S1 theory (where S1 size
is 1/T) is represented by two Polyakov loops a distance R ∈ R3 apart. It measures the T-dependent
interaction potential V(R, T) between the two sources. In the low-T confined phase, V ∼ ΣR, giving
an area-like behaviour of the correlation function and implying, by (84), 〈trΩ(x)〉 = 0, an unbroken

Z(1)
2 . In a deconfined phase, instead, the correlator is nonzero at large R implying that 〈trΩ(x)〉 6= 0,

a broken center symmetry.

Conversely in a phase when the quark potential is screened by the thermal plasma,
we expect that V(R, T) ∼ e−R/`(T)

R has a Yukawa form with some screening length `(T). We
conclude that the correlator does not vanish as R → ∞, hence 〈trΩ(x)〉 6= 0, i.e., center
symmetry is broken. This phase is associated with a deconfined plasma of gluons (in pure
YM theory). As gluons carry colour, this charged plasma screens the chromoelectric static
potential over distances larger than `(T).

Thus, we find that in a thermal R3 × S1 theory with center symmetry, the behaviour
of the trace of the Polyakov loop as a function of T = 1/L plays the role of an order
parameter of the confinement-deconfinement transition. At low T (large L) a confining
phase respecting the center symmetry is expected, while at small L (large T) there is a
deconfinement phase transition to a phase with broken center symmetry.

The GPY perturbative calculation is valid at T � Λ, i.e., only deep in the deconfined
phase, where it leads to the conclusion of the breakdown of center symmetry. We stress that
perturbative calculations in hot YM theory can not tell us about the value of T = Tc where
the transition to the phase with unbroken center symmetry takes place. This so-called
confinement–deconfinement transition in thermal YM theory occurs at strong coupling and
is unaccessible to controlled analytical means, as already stated in [66].

A further remark is that even at T = 1/L � Λ, the R3 theory is nonabelian, as per
the discussion in Section 3.2, as 1

2 〈trΩ〉 = ±1. As mentioned many times (already in
Section 2.1), nonabelian theories on R3 also become strongly coupled in the IR, making
the long-distance physics in the center-broken phase inaccessible to analytical studies.
Further note that a phase transition to a center-broken phase upon compactification is
also expected (and is known to occur) when all directions are taken small: as stated in
the Introduction the femto-universe theory on a small spatial T3 is separated from the R3

theory by a deconfinement phase transition associated with breaking the center.
Luckily [11,13], as we discuss next, the addition of massive or massless adjoint

fermions periodic on the S1 allows to avoid the center-breaking deconfinement phase
transition upon decrease in L. These periodic adjoint fermions stabilize center symmetry
and make the analytical study of the IR abelian theory possible.

3.4.4. Stabilizing Center Symmetry via Massless or Massive Adjoints

The calculation of Section 3.4.2 implies that with 1 < n f ≤ 5 massless adjoint fermions
periodic on the S1, i.e., in QCD (adj), center symmetry is stable. (The theory loses asymptotic
freedom at n f = 6). The potential on the Weyl chamber for n f = 2 massless adjoints is
shown on Figure 16, showing the center stabilization effect.
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Figure 16. The one-loop effective potential on the Weyl chamber for n f = 2 massless adjoint fermions,
shown by the thick curve (the same L = 1 scale as in Figure 14 is used). For n f > 1, the massless
fermions dominate over the gauge contribution in the total potential. The potential on the Weyl
chamber is minimized at the center-symmetric point 〈trΩ〉 = 0. Thus the IR theory is abelian and
weakly-coupled at LΛ� π, as discussed in Sections 3.2 and 3.4.1.

Now, what if we give the adjoint fermions mass m, as in (75)? We claim that Equa-
tion (80) is replaced by the following expression:

Vm 6=0 adj.(vL) = −2 ∑
p∈Z

∫ d3k
(2π)3 ln

(
~k2 + (

2πp
L
− v)2 + m2

)
= . . . see Appendix C =

=
2

π2L3

∞

∑
p=1

(mLp)2K2(mLp)
cos pvL

p4 . (85)

Exercise 14: Starting from the massive-adjoint Lagrangian (75), derive the gen-
eralization of (78) by also including the mass term contribution to the action
bilinear in λ±. Use it to obtain the massive generalization of (79), and hence the
equation on the first line in (85). Then, consulting Appendix C, verify the final
result in (85).

Thus, with n f massive adjoints of the same mass m, the total one-loop potential due to
the gauge bosons and fermions, using the first equality of (82) for the gauge contribution, is

V(vL)gauge+m 6=0 adj =
2

π2L3

∞

∑
p=1

[
n f (mLp)2K2(mLp)− 2

]cos pvL
p4 . (86)

The reader can use (86) to do their own study of the center-stability as a function of
n f and mL. An explicit example to keep in mind is to consider n f = 2 and mL = 1. We
plot the potential (86) in Figure 17; notice that the infinite sum of mass-dependent terms
is rapidly converging, so plotting a few terms suffices, while the gauge field contribution
is standard and sums to (81). As the plot makes it clear, massive adjoints stabilize center
symmetry for the chosen m = 1/L.
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Figure 17. The one-loop effective potential (86) on the Weyl chamber for the SU(2) gauge theory
with n f = 2 massive adjoint fermions, periodic on the S1 with m = 1/L. The potential on the Weyl
chamber is minimized at the center-symmetric point trΩ = 0, and the abelianized IR theory is valid.
The same scale, with L = 1, as in Figures 14 and 16 is used.

The most important conclusion is the following qualitative one: that having 2 ≤
n f ≤ 5 fermions of mass mL ≤ O(1) is necessary to achieve center stability. For mL� 1,
the fermions decouple and center symmetry breaks as in the pure-YM theory (the precise
value of m where center symmetry breaks depends on n f ). On the other hand, for mL ∼ 1,
the fermions ensure center stability and hence the abelian description of the IR physics.
At the same time, the fermions of mass m ∼ 1/L decouple from the µ� 1/L dynamics.

We shall make extensive use of this center stability in our study of nonperturbative
dynamics on R3 × S1, our main topic that we finally turn to next.

Summary of Section 3.4: This main goal of this Section was to show that adding n f adjoint
fermions, massive of massless, with mL ≤ O(1) and n f > 1, stabilizes the center-symmetric
point on the Weyl chamber. The (near) center stability is crucial for the ability to perform a
controlled semiclassical study of the IR dynamics on R3 × S1: near the center-symmetric
point, the theory abelianizes and is in a weak-coupling regime. The perturbative physics is
rather boring, but similar to the Polyakov model of Section 2, we shall see that calculable
nonperturbative effects completely change the IR physics on R3× S1 in new and interesting
ways. Center stability at small L also implies the absence of an associated phase transition
(plaguing earlier femto-universe ideas) as the R4 limit is approached.

4. Back to the 2010s: The Properties of dYM

We begin our study of nonperturbative dynamics on R3 × S1 with dYM theory. This
theory is often said to be in the “universality class” of 4D pure YM theory. What one
means by this is that dYM has the same non-spacetime global symmetries as 4D YM (the
spacetime Lorentz symmetry is an exception, as it is broken by the S1-compactification).
These are charge conjugation, for N > 2 (for SU(2), charge conjugation is part of the
gauge group) and the 1-form Z(1)

N center symmetry. The addition of generic massive
adjoint fermions to stabilize the center does not add any new symmetries (apart from Z2
fermion number, irrelevant for the IR). We also caution against thinking that the Higgsed
SU(2) → U(1) phase in dYM is distinct from the unbroken-SU(2) phase. There is no
gauge invariant distinction between the Higgsed phase and the unbroken phase—a gauge
invariant description of the U(1) phase can be given [29,74], but the gauge-fixed U(1)
language is much more appropriate at weak coupling. Furthermore, these symmetries
are realized in the same mode in the two theories and thus the dYM and 4D YM theories
are expected to be continuously connected. This continuous connection (without phase
transition) between dYM and 4D YM is often called “adiabatic continuity”.

In the subsections that follow, we shall study the calculable properties of dYM and
compare with some of the available lattice data for 4D YM. We shall observe qualitative (and
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in some cases even quantitative, notably for quantities concerning the θ-angle dependence
and other topological properties) agreement between the two theories.

dYM was already defined in the Introduction (see Section 1.1) as the YM theory with
n f = 2 (or more) massive adjoint fermions ensuring center stability, as described in some
detail in the previous Section. dYM was introduced in [13] (see also [75,76]), where a
potential for the Polyakov loop more general than our (86) was considered, the so-called
“double-trace deformation” potential. It has the form, given here for SU(N):

Vdouble trace[Ω] =
b N

2 c
∑
n=1

cn

L3 |trΩn|2, (87)

with coefficients cn chosen such that center stability is ensured. Adding the nonlocal double-
trace deformation (87) results in a nonrenormalizable theory. On the lattice, this can be
viewed as a finite-lattice spacing theory. The fixed lattice spacing formulation, apart from
allowing numerical studies (as in e.g., [77,78]), permits one to write loop equations and
prove various exact properties regarding the large-N limit. We note that “large-N volume
independence” considerations played an important role in the introduction of Vdouble trace.
We shall not pursue this direction here, see [13] for references. It is clear, remembering (82)
and the characteristic equation for Ω given after 56, that our center stabilizing potential
due to adjoint fermions, Equation (86), can be cast into the above form.

For the purposes of studying the µ� 1/L physics, the precise choice of cn does not
matter, as long as they are large enough to ensure center stability. We shall, however, stick
with our massive adjoint fermion interpretation as the source of Vdouble trace, as it comes from
a renormalizable asymptotically-free theory with a well-defined continuum limit. Note
that the adjoint fermion mass needed to stabilize center symmetry (recall Figure 17) obeys

Λ� m ≤ O(1)
L

. (88)

To connect to the R4 pure YM theory, the large-L, fixed-Λ limit has to be taken while
keeping m fixed with m� Λ, as in the leftmost inequality in (88).

Thus, the perturbative IR Lagrangian (Euclidean) valid at µ � 1/L is now the sum
of (65) and (86)

L3d,dYM =
1
2

g2
4

L(4π)2 (∂λσ)2 +
L

2g2
4
(∂µa4)(∂

µa4) + V(π + a4L)gauge+m 6=0 adj , (89)

where we replaced vL by π + a4L, recalling that v denotes the constant mode of A3
4 while

a4 is the slowly varying fluctuation around the vev (62), with vL = π the minimum of (86).
The potential on the Weyl chamber gives mass to a4, which can be found by expanding the
potential in (89); parametrically, it is of order g/L. That this is so is clear from the fact that
the second derivative of (86) is of order unity in L = 1 units, see Figure 17. We can thus
integrate out the a4 field to arrive at the IR Lagrangian valid at µ� g/L:

L3d,kin.,dYM =
1
2

g2
4

L(4π)2 (∂λσ)2 , (90)

i.e., the same boring free dual-photon Lagrangian (22) that we encountered in the Polyakov
model. In Section 4.1, we shall study the nonperturbative corrections to (90).

4.1. Mass Gap, String Tension, Their θ-Dependence, and “Adiabatic Continuity”
The fun part begins when we remember Equation (73), which gives the ’t Hooft vertices

associated with the M and KK monopole–instantons and their “anti-particles”. Just as in the
Polyakov model, these proliferate in the vacuum. For S0 = 4π2/g2

4 � 1, the gas is dilute
(only it now has four constituents instead of two), and the insertion of ’t Hooft vertices
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exponentiate into an action incorporating the leading order (in e−S0 ) nonperturbative effects
in dYM:

L3d,dYM =
1
2

g2
4

L(4π)2 (∂λσ)2 − e−S0

L3

(
ei θ

2 e+iσ + e−i θ
2 e−iσ + e+i θ

2 e−iσ + e−i θ
2 e+iσ

)
+ . . . . (91)

The four terms are the contributions, in the order shown, of M, M∗, KK, and KK∗

monopole–instantons. (We remind the reader that we work with exponential-only accuracy
(ignoring a numerical factor and the 1/g4

4 prefactor due to integration over monopole–
instanton zero modes, see [13]). The “. . .” denote terms that are higher order in the ∼ e−S0

semiclassical expansion as well as higher order terms involving powers of insertions of
∂µσ and suppressed by additional factors of the heavy mass scales 1/L, g4/L). We have
retained their θ-angle dependence due to their fractional topological charges (72).

Next, we recall that if one expands the exponentials corresponding to the potential
terms in (91) in the Euclidean path integral (e.g., expanding e e−S0 L−3 ∫ d3xeiσ+iθ/2

in Taylor
series, which is equivalent to going from the second to the first line in (36); likewise for the
other three terms), after integration over σ one obtains the representation of the partition
function in the form of a dilute gas of M, M∗, KK, ans KK∗, exactly as we did in the Polyakov
model in Section 2.5. The most important difference is that there are now two types of
charged particles (M and KK) and their antiparticles (M∗ and KK∗), which contribute with
complex fugacities due to the θ angle. This is how the theory remembers its 4D origin and
is qualitatively different from the 3D Polyakov model.

Back to our EFT (91), we note that, shifting the vacuum energy, we can rewrite it as

L3d,dYM =
1
2

g2
4

L(4π)2 (∂λσ)2 +
2e−S0

L3

(
2− cos(σ +

θ

2
)− cos(σ− θ

2
)

)
+ . . .

=
1
2

g2
4

L(4π)2 (∂λσ)2 +
4e−S0

L3 (1− cos
θ

2
cos σ) + . . . . (92)

All forms of the potential above—the two lines in (92) and the form shown in (91)—
have their use. The top line in (92) is similar to what one finds in the SU(N) theory: the
two cosines are due to the M + M∗ and KK + KK∗ contributions. (For N > 2 one obtains
N terms in the analogue of the first line of (92) instead, due to the N constituents of the
BPST instanton there. For N > 2, one can not write such a simple formula as in the second
line. Studies of θ-dependence in dYM for N > 2 can be found in [74,79–81]). A look at
the bottom line in (92) shows that the order e−S0 contribution to the dual-photon potential
vanishes at θ = π [20]. The potential in the form (90) shows that the M contributions cancel
with the KK∗ ones (and the M∗ with the KK ones). This θ = π cancellation of the leading
semiclassical effect, to which we shall come back later, arises due to the complex fugacities
of the various monopole–instantons. It was called “topological interference” in [20].

For now, let us assume that θ 6= π and study the ground state and spectrum of dYM.
The extrema of the cos σ potential are at σ = 0 and σ = π. A plot of the energies of the
two extrema of the potential, as a function of θ, is shown in Figure 18. Concentrating on
0 ≤ θ < π, the minimum is at σ = 0. We conclude (excluding the region near θ = π
indicated in Figure 18 and working with exponential-only accuracy, i.e., for brevity ignoring
non-exponential g2

4-dependence) that the dual photon mass scales as:

m2
σ ∼

e−S0

L2 cos
θ

2
, 0 ≤ θ ≤ π −O(e−S0) . (93)
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Figure 18. The energies of the two extrema of the leading order semiclassical potential (92), σ = 0
and σ = π, plotted as a function of θ. At θ = 0, the σ = 0 extremum is a minimum, while the one
at σ = π is a maximum. Conversely, at θ = 2π, the minimum is at σ = π, while σ = 0 is now a
maximum of the potential. The level crossing occurs near θ = π. To study the physics in a finite
region |θ − π| = O(e−S0 ), one has to account of the next order in the semiclassical expansion, due
to the fact that the leading-order potential in (92) vanishes at θ = π. As discussed in Section 4.2.1,
the next-order contribution implies that there are two ground states at θ = π with broken parity. This
reflects the generalized ’t Hooft anomaly involving parity and the center symmetry.

The mass gap for the dual photon is thus of nonperturbative origin, as in the Polyakov
model (39). In the dYM EFT of (91), we can repeat verbatim the derivation of the funda-
mental string tension Σ1 of Section 2.6 and replace (50) with

Σ1 ∼ m2
σ ∼

e−S0

L2 cos
θ

2
, 0 ≤ θ ≤ π −O(e−S0) . (94)

The confining string is represented by the same type of semiclassical domain wall
(domain line) configuration as the one shown in Figure 8 for the Polyakov model.

A new effect due to the four-dimensional nature of the theory is the fact that the
fundamental string tension (94) is a decreasing function of θ: it reaches maximum at θ = 0
and decreases upon increasing θ above zero as

Σ1(θ) ' Σ1(0)(1−
θ2

8
+ . . .). (95)

This behaviour of the confining string tension has been observed in lattice simulations
of 4D pure YM theory [82], which studied small variations of θ away from zero (it is a
nontrivial matter to study θ-dependence on the lattice, due to the notorious “sign problem”).
The θ-dependence found there agrees with that motivated by large-N arguments. (The large-
N expansion for YM theory has a long history, starting with [83]. The θ-angle dependence
at large-N was first discussed in [84,85]. Unfortunately, we have no space to introduce large-
N ideas here and simply refer to the literature. However, we stress that our—decidedly
small-N—discussion here shows that the implications of the large-N arguments appear
to extend down to N = 2. This is not the last time we shall see an indication of this).
For our N = 2 case, the coefficient for the leading θ2 dependence in (95) is close to the
lattice result for N = 3, the smallest value of N they study: [82] obtained 0.08(1) for the
coefficient of the θ2 term in Σ1 for N = 3, vs. our 0.125 for N = 2. (In fact, the difference is
probably accounted for by the fact that the coefficient of the θ2 term found in the pure YM
lattice studies is a decreasing function of N, likely ∼ θ2/N2 at large enough N [82]). This
lends credence to the expectation that dYM captures qualitatively—and in some cases also
quantitatively—the features of the 4D pure YM theory.
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The agreement of (95) with the lattice results is quite remarkable (more recent lattice
studies [77,78] of dYM with a fixed deformation term such as (87) also reveal further quan-
titative agreements of observables related to the θ-dependence between dYM and pure
4D YM theories). The arguments that led us to (92) made no reference to the existence of
a large-N limit, but relied solely on calculable semiclassics. Yet, they show good agree-
ment with large-N and, most importantly, with “experiment”—the lattice data for the 4D
YM theory.

Before we continue to study further properties of dYM, let us briefly comment on the
adiabatic matching between the spectra of dYM and 4D YM. Here we shall just mention
the matching of states described by our EFT (92) (for a detailed discussion, which also
studies states of masses ∼ 1/L, g4/L that we integrated out on the way to (92), see [27]
and the recent lattice studies not related to θ-dependence [86]). We shall only stress some
interesting and intriguing features seen in the dYM analysis, referring for more detail to
the original papers.

The lightest perturbative state in dYM is the dual photon, of mass mσ (93). What state
does it evolve into in the adiabatically connected 4D YM theory? As usual, symmetries
offer a guide. Recall our discussion around Equation (74), where we argued that the
dual photon is charged under the Z(1)

2 center symmetry along the S1. As we discussed in

Section 3.1, no local operators in the 4D YM theory are charged under the Z(1)
2 symmetry.

The dual photon state then should evolve into a state created by a fundamental Wilson
loop winding around the (now large) S1, which transforms under Z(1)

2 in the same manner
as (74). Such states are called “electric flux” states, with energies proportional to Σ1L at
large L, where Σ1 is the string tension in the R4 theory. We will not go into more detail here;
see [68,87]. The intuitive picture is that the fundamental Wilson loop winding around a
spatial circle (43), taken as an operator acting on the Hilbert space at fixed time, creates
a thin chromoelectric flux along the loop. In a confining phase, as we saw in Section 2.6,
this flux does not spread in the directions transverse to the loop, hence its energy grows
linearly with the size of the circle. The conclusion is that the dual photon itself does not
evolve into a localized excitation on R4.

Now, one can ask whether there is a stable state in the small-L EFT of dYM that
evolves into a state created by local operators on R4. It turns out that the answer is “yes”;
these are bound states of two dual photons which have zero Z(1)

2 charge and hence can
be created by local operators. The physics of these bound states relies on the fact that “φ4”
scalar interactions in 2 + 1 dimensions create nonrelativistic bound states that are bound
exponentially weakly. Such interactions appear in the expansion of the cosine potential
in (92) and correspond in the nonrelativistic limit to attractive delta-function potentials.
The nonrelativistic bound state of two dual photons in dYM was studied in [27] and its
mass was found to be

mglueball = 2mσ

(
1− c e−b ed/g2

4
)

, with calculable positive c, b, d ∼ O(1). (96)

The bound state is stable as its mass is smaller than that of the two constituents. We
denoted this state “glueball” as it is the lightest state in dYM which is a center-symmetry
singlet and is a Lorentz scalar. Similarly, the lightest state created by localized gauge
invariant operators in YM theory on R4 is the scalar glueball and it is natural to conjecture
that the two are adiabatically connected.

Finally, we stress one remarkable feature of (96): the doubly-exponential nonpertur-
bative dependence on g2

4. So far, we have seen that nonperturbative (with respect to a
small coupling λ) effects have a characteristic e −c/λ nonanalytic dependence on the small
coupling λ. The binding energy found above has, instead, a doubly-exponential e −c ed/λ

nonanalyticity. This double exponent can be thought as a nonperturbative effect in terms
of a nonperturbative, ∼ e−1/λ, coupling (e.g., the coupling ∼ e−S0 in our dYM EFT). One
can imagine, in principle, this tower of exponentiations continuing. The dependence found
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in (96) suggests that the analytic structure in the coupling constant of physical quantities
in QFT is much more complicated that previously thought and that much remains to
be revealed.

Summary of Section 4.1: Here, we studied the µ � g4/L EFT of dYM, Equation (92).
At θ 6= π, the theory has a unique gapped vacuum. As our EFT is equivalent to the EFT
of the 3D Polyakov model (42), we simply borrowed the calculation of the string tension.
The “only” new feature due to the 4D nature of the UV theory is the θ-angle dependence.
We showed that the fundamental string tension, Equation (95), decreases upon increasing θ
away from zero, in remarkable agreement with available lattice data in 4D YM. We also
discussed qualitatively the “adiabatic continuity” between the spectra of the 4D YM and
dYM, argued that the lightest glueball is a bound state of two dual photons, and discovered
an intriguing double-exponential nonperturbative dependence on the coupling (96).

4.2. θ = π

We now go back to our dYM EFT (92) and focus on the region near θ = π, where the
potential is either exactly zero or very small. This is the region indicated by the yellow
circle in Figure 18. At θ = π, to leading order in the semiclassical expansion, there is no
potential for σ and thus it might appear that the dual photon does not obtain mass and the
theory remains gapless. The question that naturally arises, then, is about the nature of the
“. . .” terms in that equation and, in particular, whether these terms contribute a potential
term for σ.

That the “. . .” terms are there follows from the usual EFT philosophy permitting all
terms allowed by symmetries to appear, with relative importance usually controlled by a
power-counting rule. Our EFT is valid at scales µ � g4/L and is derived using a weak
coupling perturbative expansion in g2

4 and a semiclassical expansion in the exponentially
small e−S0 = e−4π2/g2

4 . Note that each term in the semiclassical expansion contains its own
perturbative expansion around the relevant saddle points. This is the expansion in small
fluctuations around monopole–instanton backgrounds that we have been neglecting (even
to leading order, where it is well studied and contributes to the prefactor in the ’t Hooft
vertices such as (33) and (73)). Based on well-understood examples from semiclassical
expansions of differential equations and quantum mechanics, the two expansions (pertur-
bative and semiclassical) are expected to combine in a nontrivial way [22] into a so-called
“resurgent transseries” that, yet again, we have no space or time to go into.

Nonetheless, we will have to address the issue of higher order terms that can appear
in the potential in (92) at θ = π, to which we turn next.

4.2.1. θ = π: Spontaneous Breaking of Parity

Here we focus on the neighbourhood of θ = π indicated with the yellow circle in
Figure 18. The leading-order semiclassical potential (92) vanishes at θ = π due to the exact
cancellation of M and KK∗ amplitudes. The question that we shall address now is whether
there are any other terms in the nonperturbative potential of dYM that do not vanish at
θ = π.

Symmetries offer a handle, as usual. As already mentioned, the only non-spacetime
symmetry of SU(2) dYM is center symmetry, which, by construction, is preserved in dYM.
Center symmetry demands that the dual-photon potential is an even periodic function of
σ, i.e., contains only terms ∼ cos(nσ), n ∈ Z, invariant under Z(1)

2 of (74). The continuous
subgroup of the Lorentz group preserved by the R3 × S1 compactification also imposes
no further constraints. Thus, we have to consider the spacetime discrete symmetries.
Consider spatial parity P, a reflection of x1,2,3, where x3 is the compactified spatial direction,
on which parity acts as x3 → L− x3. (A more complete account of discrete symmetries,
albeit using a slightly different basis, can be found in [27,74,81]). Spatial parity reverses
the sign of the electric field, P : ~E → −~E (Ei = F0i) and preserves the magnetic field,
P : ~B → ~B (Bi =

1
2 εijkFjk), where i, j = 1, 2, 3 are spatial indices. We use E and B to denote
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the electric and magnetic fields, in order to stress that these are the physical electric and
magnetic fields on R1,2 × S1, rather than the Euclidean R3 ones introduced in our study of
monopole–instantons (6) (for brevity, we also do not show the Lie-algebra index). Next, we
recall the duality relation (21). Skipping unimportant overall factors, this relation implies
that ∂0σ ∼ B3

3 , ∂1σ ∼ E3
2 , ∂2σ ∼ E3

1 . Thus, we find that the dual photon is parity-even,
P : σ→ σ.

At first sight, it would then appear that P is a symmetry of our EFT (92) for any value of
θ. However, we recall that θ couples to the topological charge (71) as eiθQT . The topological
charge can be written as QT ∼

∫
R3×S1

~Ba · ~E a showing that QT changes sign upon a parity

transformation. As the topological charge is quantized, invariance of the eiθQT factor in
the path integral implies that P is a symmetry of the SU(2) YM theory only for θ = 0
and θ = π; in the latter case, however, parity has to be supplemented by a 2π shift of the
θ angle.

Exercise 15: A careful reader might object to the above appeal to the 2π-periodicity
of θ, as the topological charge of monopole–instantons on R3 × S1 is fractional,
as per (72). To restore justice, starting from (90) and recalling Exercise 4, show
that only integer QT configurations contribute to the partition function.

Thus, P acts differently at θ = 0 and θ = π, incorporating a 2π shift of θ for θ = π:

Pθ=0 : σ(x0, x1, x2)→ σP(x0, x1, x2) = σ(x0,−x1,−x2)

Pθ=π : σ(x0, x1, x2)→ σP(x0, x1, x2) = σ(x0,−x1,−x2) + π (mod 2π) . (97)

In the second line, the ±π shift of σ in Pθ=π is needed to compensate the 2π shift of θ
in the ’t Hooft vertices eiσ±iθ/2 of the various monopole–instantons.

If this argument seems too quick, the interested reader can use the discussion of parity
at θ = π of [38] and, starting from the UV theory, arrive at an operator derivation of (97).
The logic is as follows: the canonical operator shifting the θ-angle by 2π (which is part of
the parity transform θ = π) is the exponential of the integral of the spatial SU(2) Chern–
Simons 3-form. In the center-preserving holonomy background (62), the Chern–Simons
operator simplifies when acting on low energy states. Correspondingly, the operator

implementing 2π shifts of θ becomes e−iπ( 1
4π

∫
R2 F3

12). When rewritten in dual photon
variables, from Equation (24) with g2

3 → g2
4/L, this is seen to generate the π-shift of the

dual photon.
It is now clear that a cos σ term is not invariant under the Pθ=π transformation (97).

dYM theory, however, is parity invariant at θ = π and our leading-order potential (92)
insures Pθ=π invariance simply by vanishing at θ = π. It is clear from (97) that Pθ=π

restricts the potential by only allowing terms of the form

VdYM
θ=π (σ) =

∞

∑
n=1

an

L3 cos(2nσ). (98)

The semiclassical interpretation of these terms, implied by the σ-dependence, would
be that they arise from a dilute gas of magnetic charge-2n monopole–instanton-like objects,
each such object contributing a factor of e±i2nσ to the path integral, as per Section (Sec-
tion 2.4). The nature of these objects is very interesting and is not understood in complete
detail. For now, we note that ref. [20] gave arguments that an ∼ e−2nS0 and argued that the
leading order coefficient a1 is nonzero (see Section 4.2.3 below).

Accepting this and only keeping the leading n = 1 term, we arrive at the θ = π potential

VdYM
θ=π (σ) =

c
L3 e−2S0 cos(2σ), (99)

and immediately conclude that at θ = π, dYM has two vacua, one at σ = 0 and another at
σ = π (taking c < 0). These vacua transform into each other under the Pθ=π transformation,
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thus parity is spontaneously broken. (Clearly, already the generic form of the potential (98)
implies that the potential has at least two minima related by parity). Notice that the order
parameter is 〈eiσ〉 = ±1, the expectation value of a monopole operator.

Independent arguments in favour of the breaking of parity at θ = π have come from
recent lattice simulations of the 4D SU(2) YM theory [88]. A recent theoretical argument,
based on the operator algebra of the parity and center symmetries, was given in [38]. It
was shown there that at θ = π, this algebra implies an exact double degeneracy of all
states related by Pθ=π in the Hilbert space of the 4D SU(2k) YM theory formulated on a
three torus of arbitrary finite lengths, with appropriately twisted boundary conditions.
In the infinite volume limit (where the boundary conditions are irrelevant and which can
be taken with one direction kept small, as in dYM) this double-degeneracy suggests (a
possible caveat is the emergence of a gapless theory as V → ∞, including the vanishing of
all condensates in this limit) the spontaneous parity breaking.

It is important to point out that the spontaneous parity breaking at θ = π and the
operator-algebra argument mentioned above reflect the mixed ’t Hooft anomaly between
parity and the Z(1)

2 center symmetry (we shall not review this subject here). This is an
example of “generalized” ’t Hooft anomalies, discovered recently in [15–17].

4.2.2. θ = π: “Double-String” Confinement and Deconfinement on Domain Walls

The breaking of parity at θ = π, seen by studying the next-to-leading order poten-
tial (99) has profound implications for the physics of confinement, which, after all, is our
main topic.

For θ 6= π, the confining strings in dYM (of tension (94)) are “domain-wall like”
configurations of the σ field, interpolating between the σ = 0 and σ = 2π (gauge equivalent
due the periodicity of the dual photon) minima of the potential in (92) (recall Figure 8).
The 2π monodromy across the string ensures that these configurations carry the flux of a
fundamental quark source, exactly as in the Polyakov model.

At θ = π, however, the potential (99) has two degenerate minima at σ = 0 and σ = π.
These are physically distinct and are related by the spontaneously broken parity. Thus,
there exist genuine domain walls connecting the σ = 0 to the σ = π vacuum. These domain
walls thus have a monodromy π, i.e., they carry electric flux of one-half a fundamental
quark source (naturally, there are no such sources possible in the SU(2) theory—adding
them as very heavy dynamical fields would allow the domain walls to end, leading to
contradiction). What configuration, then, confines fundamental quarks? As one requires
a 2π monodromy, it seems that the answer would be that the string is composed of two
domain walls, each carrying half the flux of the fundamental quark [89]. That this is so is
shown by using a numerical simulation, with results shown in Figure 19. The σ field varies
(far away from the sources) from the σ = 0 vacuum to the σ = π vacuum inside the string
and then back to the σ = 2π vacuum. By the duality relation, each domain wall carries half
the quark chromoelectric flux. The separation between the two domain walls comprising
the double string grows similar to ln R with the quark–antiquark separation R. (This is due
to the exponential repulsion of the two domain walls at large distances, which wants the
two walls to separate, but is countered by the energy cost of stretching them. For a simple
model relevant for the SU(2) case, see [89], while numerical checks are in [62]).

The “double-string” mechanism of confinement in θ = π dYM also shows another
interesting phenomenon: the deconfinement of quark on domain walls. To see this, simply
cut the upper domain wall in the double string in Figure 19 and take the cut ends to infinity
to obtain the picture shown in Figure 20. The top of the figure is in the σ = π vacuum and
the bottom is in the θ = 0 vacuum. The quark and antiquark suspended on the domain
wall experience no mutual attraction as the wall tensions of the walls on the two sides of
each quark are equal.
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Figure 19. The double-string configuration confining fundamental quarks in the θ = π dYM theory,
embedded in the σ = 0 vacuum. The chromoelectric flux of the fundamental quarks is equally
split between the two domain walls. Inside the double-string, the σ field is in the other vacuum.
The transverse size of the double string grows similar to ln R with the source separation R. (A similar
configuration, but with σ = 2π inside the double-string and σ = 4π at the top, is responsible for the
confinement of W± bosons in the Polyakov model and in dYM at θ 6= π. As discussed in Section 2.6,
pair production of W-boson will lead to a breaking of the adjoint string).

Figure 20. Deconfinement of quarks on the domain wall between the two vacua of θ = π dYM.
The location of the quark sources is indicated by the two dots; the dotted lines are unphysical 2π

discontinuities of σ. The gradient of the σ field and the ~E field are shown by arrows. The quarks
exhibit no force while on the wall (provided their separation is larger than the screening length) as
the tensions of the domain walls to the left and right of each quark are equal.

It is important to note that there are two distinct domain walls in θ = π SU(2) dYM,
related by the Z(1)

2 center symmetry (74). This can be seen by noting that in the middle of
the domain walls connecting the two vacua in Figure 20, the σ field takes values π/2 (the
middle wall on the Figure) or 3π/2 (in the walls on the left and the right). The values of
σ in the centers of these domain walls are thus related by a Z(1)

2 transformation, σ→ −σ

(mod 2π). This means that the domain wall solutions are not invariant under Z(1)
2 and are

mapped into each other under the center symmetry; see Figure 21 for an illustration.
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Figure 21. The action of a Z(1)
2 center-symmetry transformation and a subsequent 2π shift of σ on

the domain wall solution connecting σ = 0 to σ = π (the arrow shows the values σ takes as the wall
is traversed). This solution is thus mapped to the domain wall interpolating from σ = 2π to σ = π.
As the walls are related by a symmetry, they have the same tension, ensuring deconfinement of
quarks due to tension balance, as shown in Figure 20. The existence of two inequivalent domain walls
between the same vacua can be formalized by saying that “a topological QFT lives on the domain
wall worldvolume” (for the case at hand, this is a QFT with only two states in its Hilbert space).

The equality of the middle- and left- (and right-) wall tensions is due to the fact that
the two walls are Z(1)

2 images of each other and is the reason behind the semiclassical
explanation of deconfinement of quarks on the wall (the fact that quarks are deconfined
on the wall implies that the rest of the 1-form center symmetry; the one acting on Wilson
loops winding around the directions of the wall worldvolume is also broken on the wall).
There are formal arguments relating this deconfinement on the wall to a discrete version of
the “anomaly inflow” mechanism familiar from continuous anomalies [90], generalized
to the case of the mixed anomaly between discrete parity and 1-form symmetries. We can
not discuss it any further and refer the reader to the literature (see [17,91], and, in a context
related to our discussion, [35,62]; more references to the rather voluminous recent literature
can be found there).

Let us also mention that there are phenomena related to the θ = π domain walls and
the deconfinement of probe quarks on their worldvolume whose unraveling demands
going beyond the µ� 1/L EFT, for example the braiding of fundamental Wilson loops on
domain walls at θ = π discussed in e.g., [92] (this remark is also relevant for deconfinement
on the QCD (adj) and SYM strings). Accounting for this is an outstanding open problem.

A final historical remark is that the deconfinement on domain walls in related theories
was first observed in realizations of (supersymmetric) Yang–Mills theory as low-energy
limits of stringy M-theory constructions in [93] (and unpublished work by S.-J. Rey cited
there [94]). It was also argued for using large-N arguments, see, e.g., [94]. The semiclassical
explanation of [89] using the R3 × S1 tools described here is the first one purely in a QFT
framework, before any connection to anomalies was understood.

4.2.3. θ = π: A First Encounter with Magnetic Bions

Here, we shall discuss the semiclassical configurations that are thought to be re-
sponsible for the generation of the higher-order terms in the potential (98), put forward
in [20]. The considerations there were strongly motivated by the behaviour of a quantum-
mechanical model and we adapt them to our situation.

We shall only focus on the charge-2 contributions generating the leading term ∼
cos 2σ in (98). Here, we will argue (rather hand-wavingly; a better treatment awaits in
Section 5) that these terms are due to M–M and M–KK∗ composite objects of charge-2,
called “magnetic bions”.

To begin, we have the four “fundamental” monopole–instantons, M ∼ e−S0 eiσ+iθ/2,
KK ∼ e−S0 e−iσ+iθ/2, and their antiparticles. As argued above, these are the lowest action
Euclidean solution of dYM. Clearly, to find higher orders in e−S0 , we need to study higher-
action saddle points of the Euclidean path integral. As we are after σ-dependent terms, we
are only interested in saddle points with nonzero magnetic charge.

One can construct charge-2 monopole–instantons out of the basic “constituents” as
follows. Begin with a configuration that we denote M–M. Let us think of this object as a



Symmetry 2022, 14, 180 60 of 109

composite of an M with another M. Further, let us assume that the composite is localized in
R3 so that it can be represented by a local monopole operator. A dilute gas of such objects
would then contribute a factor such as e−2S0 e2iσ+iθ in the action: the coefficient of σ in the
exponent is the magnetic charge, as we know from Section 2.4, and the coefficient of θ is the
topological charge, with the two correlated as follows from (72). From M–M, we can obtain
a KK–KK following the twisting procedure of Section 3.3, which should thus contribute
a factor e−2S0 e−2iσ+iθ , due to the opposite magnetic charge but equal topological charge.
Naturally, we could also construct M∗–M∗ and KK∗–KK∗, whose ’t Hooft vertices would
be the complex conjugates. If we combine these four contributions, we would obtain the
following potential

VM−M,KK−KK =
f (g2

4)

L3 e−2S0 (cos(2σ + θ) + cos(2σ− θ)) =
2 f (g2

4)

L3 e−2S0 cos θ cos(2σ) . (100)

We notice that there is a g2
4-dependent prefactor f that we have not computed. Further,

the potential VM−M,KK−KK has the same form as the potential in (92), except that both σ
and θ are multiplied by a factor of 2, due to the double charge. Next, a look at the M and
KK ’t Hooft vertices (73) shows that we can also imagine a charge-2 localized configuration
with the quantum numbers of M–KK∗ (as well as M∗–KK). These would contribute a factor
e−2S0 e2iσ and e−2S0 e−2iσ, with no θ-dependence, as these saddle points would carry no
topological charge. The corresponding contribution to the potential of a dilute gas of these
objects would be simply

VM−KK∗ =
h(g2

4)

L3 e−2S0 cos(2σ) , (101)

with yet another unknown prefactor h(g2
4). Thus, combining the two potentials, we find

that a cos 2σ potential for the dual photon at the next order in the semiclassical expansion
is both allowed by the symmetries (recall Section 4.2.1) and can be constructed out of the
available leading-order semiclassical objects.

Taking the “composite nature” of the objects generating the cos 2σ potential seriously,
one may ask in what sense are the M–M or M–KK∗ saddle points of the path integral.
Motivated by quantum mechanical examples, ref. [20] argued that an analytic continuation
of the path integral is required to define these higher-charge saddle points. Certainly,
these M–M or M–KK∗ configurations approach exact saddle points (classical solutions) “at
infinity”, i.e., when their centers are infinitely far away from each other, as their interactions
vanish at infinite separation. However, their magnetic charges are equal, hence these M–M
(or M–KK∗) constituents repel. How can one consider them as objects localized well enough
to be represented by insertions of local terms ei2σ in the path integral? The answer lies in the
analytic continuation of the integral over the separation quasi-zeromode (the name stems
from the fact that this becomes an exact zeromode at infinite separation). The fact that the
solutions repel means that there is a saddle point of this integral at infinity, but analytic
continuation into the complex plane leads to another saddle point at a finite complex
distance. We refer to [20] and the review [22] for more discussion of these fascinating issues.
We shall come back to this in our “neutral bion” example in Section 6.3.

The magnetic bion topological excitations were first found in [11], in QCD (adj), where
M–KK∗ composites arise without the need for analytic continuation of the quasi-zero mode
integral. We shall exhibit them in more detail in Section 5.

Summary of Section 4.2: The main point of this Section was to study the behaviour of
dYM at θ = π, where the leading order semiclassical potential (92) vanishes. We used
symmetries to argue that at θ = π terms of the form cos 2nσ, with n ∈ Z are allowed as
“. . .” terms in (92). These terms lead one to conclude that parity is spontaneously broken
at θ = π. We studied the implications of the broken parity for confinement, explained
the double-string confinement mechanism and the deconfinement on the domain walls
in θ = π dYM. We noted that all of these phenomena reflect certain generalized ’t Hooft
anomalies. Finally, we reviewed the nature of magnetic bions, charge-2 saddle points
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of the path integral, which can be thought of as charge-2 composites of the M and KK
monopole–instantons and should be responsible for the generation of the cos 2σ potential.
A study of these objects will resume in Section 5.

4.3. Qualitative Picture of the Small-L, Finite-T Deconfinement Transition on R2 × S1 × S1
β

In this Section, we shall discuss the finite-T equilibrium physics of the small-L dYM
theory. For simplicity, we concentrate on θ = 0 and will only mention results concerning the
θ-dependence in the end. To study thermodynamics, we replace R3 × S1 with R2 × S1

β × S1.

The last S1 factor is our familiar spatial circle, while the S1
β is the thermal circle whose

circumference is β = 1/T, the inverse temperature (this is familiar from equilibrium
thermodynamics and was already used in Section 3.4.3).

We shall find that, upon increasing T (making S1
β smaller), the confining property of

dYM is lost at some critical Tc, still within the region of validity of the abelian small-L
description. The physics is quite remarkable, and unraveling the details requires more
discussion than we can go into, as it relies on understanding the behaviour of 2D gases
of both electric and magnetic charges, whose relative dominance determines whether the
theory confines or not. Thus, our discussion will be even more qualitative than usual,
relying only on familiarity with the notion of thermal compactification and the monopole–
instanton gas picture of the vacuum.

The literature on this small-L, finite-T transition originates in studies of a similar
transition in the Polyakov model [95,96]. The studies on R3 × S1 → R2 × S1 × S1

β in dYM
were initiated in [97] and continued in [20,69], while QCD (adj) and SYM were the subject
of [98–100]. Much more detail can be found in these references.

We begin by noting that upon increasing T from zero (i.e., taking S1
β finite), the monopole–

instanton picture of the vacuum remains intact in the T � mW = π
L low-temperature limit.

The monopole–instanton core size is of order L, hence M and KK simply fit in the finite S1
β-

direction (as β� L), appearing with the already familiar Boltzmann probability from (73),

∼ e
− 4π2

g2
4 . The heavy W-bosons that were integrated out at zero-T can, due to thermal

fluctuations, appear with Boltzmann-suppressed probability ∼ e−
mW

T = e−
π
LT . Thus, we

have a picture of a typical vacuum configuration such as the one shown on the left panel of
Figure 22. We can already learn some qualitative lessons if we simply compare these two
factors. It is clear that for low enough T, the Boltzmann suppression of the W-bosons is
larger than that of the monopole–instantons, so they should be irrelevant at low T and not
significantly affect confinement. Equating the two exponentials, we can find an estimate for
the “critical” temperature Tc, i.e., the temperature above which the Boltzmann suppression
of the W-bosons is less than that of monopole–instantons, so they dominate the vacuum:

e
− 4π2

g2
4 = e−

π
LTc , at Tc =

g2
4

4πL
. (102)
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as the two kinds of charges have distinct microscopic origin.

validity of semiclassics is assumed. There are further corrections, suppressed by these two

small parameters, to the dimensionally reduced partition function (4.4), see [32] for a detailed

discussion.

Now, without much ado (see [11], also [12] for the derivation), we write the partition

function and explain the ingredients and notation in some detail:

Z =
X

(N i
e±,Nj

m±�0)

X

(i�0, qm
a =±1)

X

(j�0, qe
A=±1)

y
P

i(N
i
m++N i

m�)
m y

P
i(N

i
e++N i

e�)
eQ

i
N i

m+!N i
m�!N i

e+!N i
m�!

Z Y

a,i

d2Ri
a

Z Y

A,i

d2Rj
A

⇥ exp

2
4 g2

4⇡LT

NcX

i�j

NeX

A>B

qe
Aqe

B ↵↵↵i ·↵↵↵j ln |~Ri
A � ~Rj

B| +
4⇡LT

g2

NcX

i�j

NmX

a>b

qm
a qm

b ↵↵↵⇤
i ·↵↵↵⇤

j ln |~Ri
a � ~Rj

b|

+ i

NcX

i,j

Nm,NeX

a,B

qm
a qe

B ↵↵↵j ·↵↵↵⇤
i ⇥(~Ri

a � ~Rj
B)

3
5 . (4.4)

The dynamical objects in this 2D grand partition function are as follows. There are

Nc types of magnetically charged particles and anti-particles (qm = ±1)—the magnetic

– 28 –

x1

x2

x0

x0=0

x0=β

Figure 7. A typical configuration in the gauge theory on R2 ⇥ S1
� , with the much smaller S1

L not

shown. Electric W -bosons propagate along static worldlines extending along S1
� as shown on the

picture. The magnetic monopole-instantons, shown by dots, are localized in R2 and the Euclidean

time direction and are extended along S1
L. Both gases are dilute in the mW = 1

NcL � T regime.

Further, their separations are exponentially larger [this is not clear from the scale of the picture] than

the extent of the compact time direction, the inverse temperature �. The gas of monopole-instantons

and W -bosons thus appears two dimensional and is described by the Coulomb-gas partition function

(4.4). Clearly, the duality (4.5) exchanging electric and magnetic objects emerges only in the 2D limit

as the two kinds of charges have distinct microscopic origin.

validity of semiclassics is assumed. There are further corrections, suppressed by these two

small parameters, to the dimensionally reduced partition function (4.4), see [32] for a detailed

discussion.

Now, without much ado (see [11], also [12] for the derivation), we write the partition

function and explain the ingredients and notation in some detail:

Z =
X

(N i
e±,Nj

m±�0)

X

(i�0, qm
a =±1)

X

(j�0, qe
A=±1)

y
P

i(N
i
m++N i

m�)
m y

P
i(N

i
e++N i

e�)
eQ

i
N i

m+!N i
m�!N i

e+!N i
m�!

Z Y

a,i

d2Ri
a

Z Y

A,i

d2Rj
A

⇥ exp

2
4 g2

4⇡LT

NcX

i�j

NeX

A>B

qe
Aqe

B ↵↵↵i ·↵↵↵j ln |~Ri
A � ~Rj

B| +
4⇡LT

g2

NcX

i�j

NmX

a>b

qm
a qm

b ↵↵↵⇤
i ·↵↵↵⇤

j ln |~Ri
a � ~Rj

b|

+ i

NcX

i,j

Nm,NeX

a,B

qm
a qe

B ↵↵↵j ·↵↵↵⇤
i ⇥(~Ri

a � ~Rj
B)

3
5 . (4.4)

The dynamical objects in this 2D grand partition function are as follows. There are

Nc types of magnetically charged particles and anti-particles (qm = ±1)—the magnetic

– 28 –

x1

x2

x0

x0=0

x0=β

Figure 7. A typical configuration in the gauge theory on R2 ⇥ S1
� , with the much smaller S1

L not

shown. Electric W -bosons propagate along static worldlines extending along S1
� as shown on the

picture. The magnetic monopole-instantons, shown by dots, are localized in R2 and the Euclidean

time direction and are extended along S1
L. Both gases are dilute in the mW = 1

NcL � T regime.

Further, their separations are exponentially larger [this is not clear from the scale of the picture] than

the extent of the compact time direction, the inverse temperature �. The gas of monopole-instantons

and W -bosons thus appears two dimensional and is described by the Coulomb-gas partition function

(4.4). Clearly, the duality (4.5) exchanging electric and magnetic objects emerges only in the 2D limit

as the two kinds of charges have distinct microscopic origin.

validity of semiclassics is assumed. There are further corrections, suppressed by these two

small parameters, to the dimensionally reduced partition function (4.4), see [32] for a detailed

discussion.

Now, without much ado (see [11], also [12] for the derivation), we write the partition

function and explain the ingredients and notation in some detail:

Z =
X

(N i
e±,Nj

m±�0)

X

(i�0, qm
a =±1)

X

(j�0, qe
A=±1)

y
P

i(N
i
m++N i

m�)
m y

P
i(N

i
e++N i

e�)
eQ

i
N i

m+!N i
m�!N i

e+!N i
m�!

Z Y

a,i

d2Ri
a

Z Y

A,i

d2Rj
A

⇥ exp

2
4 g2

4⇡LT

NcX

i�j

NeX

A>B

qe
Aqe

B ↵↵↵i ·↵↵↵j ln |~Ri
A � ~Rj

B| +
4⇡LT

g2

NcX

i�j

NmX

a>b

qm
a qm

b ↵↵↵⇤
i ·↵↵↵⇤

j ln |~Ri
a � ~Rj

b|

+ i

NcX

i,j

Nm,NeX

a,B

qm
a qe

B ↵↵↵j ·↵↵↵⇤
i ⇥(~Ri

a � ~Rj
B)

3
5 . (4.4)

The dynamical objects in this 2D grand partition function are as follows. There are

Nc types of magnetically charged particles and anti-particles (qm = ±1)—the magnetic
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Figure 7. A typical configuration in the gauge theory on R2 ⇥ S1
� , with the much smaller S1

L not

shown. Electric W -bosons propagate along static worldlines extending along S1
� as shown on the

picture. The magnetic monopole-instantons, shown by dots, are localized in R2 and the Euclidean

time direction and are extended along S1
L. Both gases are dilute in the mW = 1

NcL � T regime.

Further, their separations are exponentially larger [this is not clear from the scale of the picture] than

the extent of the compact time direction, the inverse temperature �. The gas of monopole-instantons

and W -bosons thus appears two dimensional and is described by the Coulomb-gas partition function

(4.4). Clearly, the duality (4.5) exchanging electric and magnetic objects emerges only in the 2D limit

as the two kinds of charges have distinct microscopic origin.

second root), ii.) 2D magnetic Coulomb law, with strength 4⇡LT
g2 ↵↵↵⇤

1 ·↵↵↵⇤
2, and iii.) Aharonov-

Bohm phase interactions, with exchange phases ↵↵↵1 · ↵↵↵⇤
2⇥12, where ⇥12 is the angle between

the x-axis and the vector from particle 1 to particle 2.

Having explained the physics behind the emergence of (4.4) as a description of the gauge

theory on R2 ⇥S1
� ⇥S1

L, at � � L, we now note an interesting feature—the self-duality of the

electric magnetic Coulomb gas. An inspection of Eq. (4.4) shows that the e↵ective theory is

invariant under electric-magnetic duality (which we label by Ŝ) acting as

Ŝ : (ym, ye) ! (ye, ym) , (qe↵↵↵i, q
m↵↵↵⇤

i ) ! (qm↵↵↵⇤
i ,�qe↵↵↵i) ,

g2

4⇡LT
! 4⇡LT

g2
, (4.5)

as well as an interchange of the coordinates of electric and magnetic charges.30 Notice that

(4.5) acts as both electric-magnetic and high-T/low-T (Kramers-Wannier) duality. We stress

again that we do not claim that (4.5) is a fundamental (i.e. all-scale) electric-magnetic duality

in pure (d)YM theory. Invariance under Ŝ is only a property of the long-distance e↵ective

theory of dYM on R2 ⇥ S1
� ⇥ S1

L valid in the regime discussed above. Nonetheless, we shall

see that with respect to the global structure of the theory, (4.5) has properties common with

both Kramers-Wannier duality in the Ising model and strong-weak coupling duality in N = 4

SYM. We labeled (4.5) Ŝ to underlie similarities with the latter case.31

30We note that the partition function can be cast into the form of a self-dual sin-Gordon model, whose

critical features have been studied in [46]; for related works see [42, 47, 48].
31One notable distinction is that our Ŝ holds only for gauge theory ✓ angle 0 or 2⇡. For nonzero ✓, phases
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Figure 22. A picture of the R2 × S1
β vacuum. The M and KK monopole–instantons, represented by

dots, are much smaller than the size of the thermal circle at the temperatures of interest. In addition,
static electrically-charged W-bosons, whose worldlines are shown by the blue lines, are excited with
nonzero probability. In the temperature range (103), the typical distance between either kind of
objects is much larger than the size of the thermal circle (this is not depicted to scale on the drawing
and has to be imagined), allowing the gas of to be considered as approximately 2D. The resulting
2D gas of electrically (squares) and magnetically (circles) charged particles is shown on the right.
These interact by their respective (magnetic and electric) Coulomb interactions, and also by a mutual
Aharonov–Bohm interaction. (Briefly, see, e.g., [98–100], the latter is a term in the Boltzmann partition
function that depends on the 2D angular position of the electric and magnetic charges, but not on the
distance). The physics can be studied by various means that we do not have time to discuss, resulting
in a deconfinement phase transition at the critical temperature (102).

Remarkably, this naive estimate can be substantiated in a much more quantitative way
as we now briefly describe. Notice that at weak coupling g2

4 � 1, the above Tc � π
L , so the

validity of the abelianized description is not suspect. Furthermore, temperatures near and
below Tc clearly fall in the following regime:

m−1
σ ∼ `D � ¯̀ � β =

1
T
� L , or

1
¯̀ � T � 1

L
(103)

The first inequality is already familiar, it says that the Debye screening length `D (or
inverse dual photon mass) is much larger than the typical distance between monopole–
instantons ¯̀, as familiar from the Polyakov model, recall Figure 4. The second inequality
states that the extent of the time direction β is much smaller than the typical separation
between monopole–instantons ¯̀. Then, the monopole–instanton gas looks approximately
two-dimensional, as is illustrated in Figure 22. This is as the interaction energy of two
monopole–instantons on R2 × S1

β placed apart at a distance r ∈ R2 is logarithmic for r � β,
rather than ∼ 1/r. The precise relation can be found either using the method of images
or Gauss’ law, showing that 4πL

g2
4

q1q2
r is replaced by − 8πLT

g2
4

q1q2 log r for r � T−1, similar to

how static electric charges interact in R2, recall Exercise 3.2 and Equation (27).
The W-boson gas is also dilute and nonrelativistic: the W boson density is given by

∼ mW Te−
mW

T , as follows from the nonrelativistic statistical mechanics of a 2D gas. Thus,
the typical distance between W bosons is also� β. This means that the entire system is
approximately 2D and can be treated by studying the statistical mechanics of a classical
2D gas of electrically and magnetically charged particles, as the cartoon on the r.h.s. of
Figure 22 shows.

These studies are quite nontrivial, as the models are not exactly solvable and not
weakly coupled near Tc (2D gases of only electric or only magnetic particles are well
understood, but the phase structure of systems that have both is much less under control).
In many cases (see [98] for an exception), finding the order of the transition and determining
various correllators has to be achieved numerically. For the case of SU(2) refs. [95,96] used
fermionization to argue that the transition is in the Ising universality class, in agreement
with universality arguments and lattice data for thermal pure-YM theory [101,102]. Thus,
at least for SU(2) dYM, it appears that the small-L deconfinement transition is smoothly
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connected to the pure-YM one. To the best of our knowledge, the order of the transition in
the 2D electric-magnetic Coulomb gas describing dYM for SU(N) is not known at present.

Here, we shall only briefly discuss the center-symmetry realization. The center sym-
metry in question is the one in the S1

β direction, similar to the discussion in Section 3.4.3 (the
center symmetry in the small-L direction remains unbroken). One studies the correlator
of the traces of two fundamental Polyakov loops winding around S1

β (we denote each

such trace by Ωβ, to distinguish from the loops winding around the spatial S1). These are

charged under the Z(1)
2 -center in the thermal direction, and their correlator obeys:

〈Ωβ(r)Ωβ(0)〉|r→∞ →
{

e−
Σr
T → 0, T < Tc,
1, T > Tc.

(104)

In the high-T deconfined phase, it is the dominance of the electric W-bosons that
leads to screening of the fundamental charges, leading to the non zero correlator and
center symmetry breaking. Conversely, the S1

β-center symmetry is unbroken in the low-T
confined phase, due to the monopole–instanton dominance, leading to the confinement
of the fundamental probes (and an area law, as in the top line of (104)), as per our general
discussion of deconfinement.

There are qualitative features of this small-L thermal transition that are borne out
by thermal transitions in the R4 theory: the order of the SU(2)-theory transition already
mentioned and the θ-dependence of the critical temperature (which decreases as θ increases
away from zero, as follows from the fact that the M and KK fugacities decrease, due to the
“topological interference” effect [20]). In addition, this small-L transition saturates an in-
equality between the deconfinement and chiral restoration transition temperatures in QCD
(adj)/SYM [98–100] required by the matching of generalized ’t Hooft anomalies [91,103].
Finally, there are interesting connections to 2D condensed-matter systems—for example
the system describing a similar transition in SU(3) QCD (adj) (not discussed here, see [98])
is related to the theory of melting of 2D crystals [104].

Summary of Section 4.3: In this Section, we discussed the thermal physics of the small-L
theory, i.e., considered dYM on R2 × S1

β × S1. We argued that there is a thermal de-

confinement transition associated with the breaking of the S1
β center symmetry above

Tc = g2
4/(4πL). The physics near Tc can be described as that of a 2D gas of electrically

and magnetically charged particles, with Coulomb and Aharonov–Bohm interactions.
The electric charges dominate at high T, causing screening of fundamental charges, while
the magnetic ones dominate at low T and are responsible for confinement. This is an
attractive picture and arises naturally in this calculable setup. Some qualitative aspects of
the small-L transition agree with what is known for large-L theories and with constraints
from generalized ’t Hooft anomalies.

5. QCD (adj)

We begin our study of QCD (adj) with gauge group SU(2) and 1 < n f ≤ 5 massless
flavours of Weyl fermions. In the past, these theories have been studied with with varying
motivation in mind. The n f = 1 massless theory is N = 1 SYM, studied for its tractability
and relation to pure YM. The theory with n f = 2 is related to Seiberg–Witten theory (N = 2
SYM) by decoupling the complex adjoint scalar field, while the n f = 4 theory is N = 4
SYM with the scalars decoupled. The theories with various n f have been the subject of
lattice studies, motivated by “walking technicolour” extensions of the electroweak-breaking
sector of the standard model: for early lattice work (see [105–107], while a recent one with
more references is [108]). The n f = 1 theory (SYM) has also been studied on the lattice
(see [109] and references therein).

The QCD (adj) Lagrangian was already given in (75). The theory (for any N) is
asymptotically free for n f < 6. The quantum theory has a dynamical strong scale Λ.
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The running coupling g2
4(µ) can be expressed, at one-loop order, via Λ and the one-loop

coefficient of the beta function, β0 , as

g2
4(µ)

4π
=

4π

β0

[
1

log(µ2/Λ2)
+ . . .

]
, where β0 =

22− 4n f

3
, or

Λβ0 = µβ0 e
− 8π2

g2
4(µ) , (105)

where the dots denote terms depending on higher-loop coefficients of the beta function.
The second line above is often also quite useful.

In this Section, we shall study the n f > 1 case of non-supersymmetric QCD (adj) on
R3 × S1. The perturbative dynamics of QCD (adj) was already considered in Section 3.4.4.
We showed that the center symmetry along the S1, Z(1)

2 , is preserved with n f ≥ 2 massless
adjoints. Further, in Section 3.4.1, we showed that at the center-symmetric point on the
Weyl chamber, the non-Cartan components of the adjoints gain mass of order 1/L (they
are the ones responsible for center stability generating the potential (80)), while the Cartan
components remain massless. The A3

4 field also obtains mass of order g4/L.
Thus, the µ� g4/L spectrum of QCD (adj) consists of the Cartan gauge field of the

unbroken U(1) and the n f Cartan components of the adjoints, λ3 I
α , I = 1, ..., n f . The Cartan

fermions are not charged under the Cartan U(1) photon, so we can use the dual-photon
description to describe the latter. The kinetic term of the long distance theory is then given
by the kinetic term of the dual photon plus the kinetic terms of the Cartan components of
the adjoints:

LQCD(adj)
kin =

1
2

g2
4

L(4π)2 (∂λσ)2 + i
L
g2

4
λ̄3 I

α̇ σ̄µα̇α(∂µλα)
3 I , (106)

giving rise, once again, to a rather boring long-distance EFT (the fields λ3 I of dimension
3/2 are the S1 zero modes of the 4D adjoints).

Our next question is: what nonperturbative terms can be added to (106) and what are
the semiclassical objects generating them?

5.1. Discrete Chiral Symmetry and Its Action in the EFT

We begin with a discussion of the symmetries, in an attempt to narrow down the
possible terms that can be added to (106). The 1-form Z2 center symmetry, which only acts
on the dual photon in (106) as (74), Z(1)

2 : σ→ −σ, is unchanged from dYM. It does not act
on λ3 I .

The new element in massless QCD (adj) on R3 × S1 is the classical U(n f ) “0-form”
global chiral symmetry, acting by a rotation of the n f flavours,

λI → U I
J λJ , where U ∈ U(n f ) =

U(1)× SU(n f )

Zn f

, (107)

where we omit the spinor and Lie-algebra indices and the notation for U(n f ) means
simply that U(1) and SU(n f ) share a common Zn f subgroup of center elements. The U(1)
transformations act on the undotted Weyl spinors as λI → eiαλI . The SU(n f ) symmetry is
anomaly free and thus remains a symmetry in the quantum theory, but the U(1) is broken
by the anomaly to Z4n f . More precisely, the anomaly-free symmetry in the quantum theory
is (Z4n f × SU(n f ))/Zn f , where, as above, this means that transformations in the Zn f center
of SU(n f ) act in the same way as a Zn f subgroup of Z4n f . There are various ways, which
are related to each other, to see this symmetry reduction by anomalies and we discuss
them below, as they are important for our considerations. The discussion that follows
is very similar to the U(1)A symmetry breaking by the anomaly in massless QCD with
fundamental fermions. There, one can also find a discrete subgroup of U(1)A unbroken by
the anomaly. The reason it is never discussed in textbooks is that it is not an independent
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symmetry and can embedded in the other global symmetries of fundamental QCD, which
is easy to show.

That the U(1) factor suffers from an anomaly, similar to the U(1)A symmetry in QCD,
is well known. The classical U(1) ∈ U(n f ) chiral current of the massless theory (75),
jM
f = 1

g2 λ̄a I σ̄Mλa I , with a sum over a and flavour I understood, obeys the (Heisenberg
picture) operator equation, the anomaly equation (to the reader not familiar with anomalies
we recommend [43] (especially the sections on anomalies and on the anomaly-free chiral
symmetry in SYM), whose conventions we follow below. Recall that, as in (75), M and N
are 4D spacetime indices):

∂M jM
f = 4n f ∂MKM , (108)

where KM = 1
16π2 εMNPQ

(
Aa

N∂P Aa
Q − 1

3 εabc Aa
M Ab

P Ac
Q

)
was already mentioned in arriving

at (72). Notice that the r.h.s. of (108) is nothing but 4n f times the topological charge density
q appearing in (52).

The first argument—somewhat quicker and helpful with writing EFT terms—for the
existence of an anomaly-free Z4n f ⊂ U(1) is as follows. In 4D, the effect of the anomaly
can be seen by inspecting the contribution of fluctuations with QT = 1 (i.e., the ones
corresponding to a BPST instanton) and examining the corresponding ’t Hooft vertex.
In the theory with massless fermions and an anomalous U(1), fermion fields must appear
in the corresponding ’t Hooft vertex [56,57]. This can be understood by integrating the
anomaly Equation (108) over spacetime between an initial and a final time slice. The integral
of the r.h.s. is 4n f QT , while the integral of the l.h.s. gives the change of U(1)-charge,
Q5 ≡

∫
d3xj0f (~x, t), between the initial and final times. Thus, integrating (108) shows that

the Q5 charge changes in units of 4n f QT in a nonzero QT background:

∆Q5 =
∫

d3x j0f (~x, t)
∣∣∣∣
t=+∞

t=−∞
= 4n f QT . (109)

Hence, for integer QT , the U(1) charge Q5 is violated in multiples of 4n f , i.e., Q5 is
conserved (mod 4n f ).

From (109) above, we can conclude the following: for SU(2) QCD (adj) with n f

massless λI , the local ’t Hooft vertex due to a BPST instanton fluctuation centered at x ∈ R4

must have the schematic form

e
− 8π2

g2(1/ρ) eiθ λ4n f (x) = (Λρ)β0 eiθ λ4n f (x) (110)

where λ4n f (x) denotes an SU(2) gauge-, SU(n f ) flavour-, and SL(2, C) Lorentz-invariant
contraction of all indices λ(x) is endowed with. (In the electroweak sector of the standard
model where ρ is of order the electroweak breaking scale, the B + L violating ’t Hooft
vertex has above schematic form with λ4n f replaced by qqql, three quark and one lepton
fields (for a single generation) giving ∆B = ∆L = 1 [57]). A local invariant ∼ λ4n f that
does not vanish due to Fermi statistics exists, but its form is not crucial to us here, it can be
taken to be the square of (115) below. There is also a complex conjugate term for anti-BPST
instantons involving λ̄. The fermion-field insertions are the minimal number necessary
to ensure that Q5 is violated by the required amount (109). The fermion insertions in the
BPST-instanton ’t Hooft vertex can also be understood as arising due to an index theorem.
We shall not further discuss this and only note that integrating the anomaly equation is a
physicists’ way to understand this.

The local term (110) represents the contribution of an instanton of size ρ located at
x ∈ R4 and should be understood to be appropriate in an EFT valid at µ� 1/ρ, as it does
not resolve the instanton size. In (110), we did not include any factors having to do with
the integration over the size of the instantons, which should make (110) have dimension 4.
This is as, in our R3 × S1 setup, monopole–instantons have fixed size and no integral over
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ρ will appear. In the electroweak sector of the standard model the instanton size integral
is cut off at the electroweak-breaking scale, while in an unbroken gauge theory such as
SU(3)-colour of the standard model the integral over ρ diverges as ρ→ ∞, related to the
“Landau pole” IR problem and making quantitative predictions difficult [43,51].

Let us now further dwell on the various factors in (110). The exponential factor is the
familiar BPST instanton action. We also used (105) to write the ’t Hooft vertex in terms of
the strong coupling scale Λ. The θ-angle dependent factor eiθ is included for book-keeping
purposes (even though θ is not observable in the massless-fermion theory), indicating
that (110) is due to field configurations with topological charge unity. The main point of
our writing Equation (110) is to argue that the ’t Hooft vertex violates U(1), i.e., leads
to processes obeying (109), ∆Q5 = 4n f , but clearly preserves a Z4n f ⊂ U(1) symmetry.
The form (110), including all prefactors, was first computed in [56] for SU(N) gauge
theories with fundamentals and the interested reader (bound to notice that the anomaly-
equation-based argument just given offers a significant shortcut—but no control over the
pre-factors) is invited to study the rather long-winded calculation.

To connect (110) to our second description of the U(1)→ Z4n f anomalous breaking, we
notice that the ’t Hooft vertex is invariant under the U(1) transformation λ→ eiαλ provided
we also allow the parameter θ to transform as θ → θ − 4n f α. In fact, it is convenient (this
line of reasoning played an important role in the “power of holomorphy” arguments [1];
however, thinking of parameters as vevs of nondynamical fields is also useful (but less
powerful) beyond supersymmetry) to think of the parameter θ as the vacuum expectation
value of a nondynamical “axion” field, whose shift compensates for the anomalous-U(1)
transformation of λ. The fact that θ is a parameter that can not be transformed means that
the ’t Hooft vertex is only invariant for α = 2πk/(4n f ), k ∈ Z, i.e., under Z4n f . Notice that
this corresponds to integer-2π shifts of θ, as seen from the above. This discussion will now
naturally connect to the one following below and leading to Equation (114).

The second argument that we shall give for the existence of a discrete chiral symmetry
Z4n f will be to note that the anomaly Equation (108) allows one to define a conserved

(but gauge variant, see below) current which we label Jµ
5 for historical reasons: JM

5 =
jM
f − 4n f KM , ∂M JM

5 = 0. The corresponding U(1) charge operator,

Q̃5 =
∫

d3xJ0
5 =

∫
d3xj0f − 4n f

∫
d3xK0 , (111)

is conserved (as opposed to the non-conserved Q5 entering (109)) but is not gauge invariant.
The gauge noninvariance of the charge Q̃5 is due to the fact that under large SU(2) gauge
transformations, the ones with a nontrivial winding (here, S3 is the “one-point compactifica-
tion” of R3, due to the boundary condition on gauge transformations approaching unity at
spatial infinity. See the standard construction of θ-vacua in e.g., [43]) number S3 → SU(2),
the integral

∫
d3xK0 shifts by an integer, as you will be reminded in the following exercise,

adapted to our spatial-R2 × S1 setup.

Exercise 16: Show that under a gauge transformation C, AC
k = C(Ak − i∂k)C−1,

where k = 1, 2, 3 is a spatial index (x3 = x3 + L), with gauge fields periodic on
the spatial S1, and C = 1 outside a compact region (say a disc D2) in R2

∫

R2×S1

d3x(K0
(

AC
)
− K0(A)) =

1
24π2

∫

R2×S1

d3x εijk tr(C∂iC−1)(C∂jC−1)(C∂kC−1).(112)

Further, taking C to also approach unity at the “boundary” of S1 (e.g., x3 = 0, L),
the combined R2× S1 boundary conditions above make C into a map from D2× I,
where I is the one-dimensional interval on S1 where C 6= 1. As C is unity on the
boundary of D2 × I, it is effectively a map S3 → SU(2). The r.h.s. above is the
integer winding number of this map, familiar from Skyrmion physics and the
construction of θ vacua in YM theory, e.g., [43,49,50].
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The point of the above exercise was to remind you of the fact that the conserved
charge (111) corresponding to the anomalous U(1) is not gauge invariant. Under a large
gauge transformation C with unit winding number (112), the charge changes as C : Q̃5 →
Q̃5 − 4n f , by 4n f units. (To dispel any doubts that this is the minimum amount of change
of Q̃5 under any gauge transformation on R2 × S1 requires some extra work. One way
to proceed is by studying the case where all three direction of space are taken compact,
i.e., T3. When two of the T3 directions are taken infinite, we obtain our R2 × S1 of interest.
The construction of the θ vacua and large gauge transformations can be generalized to the
T3 case. For an SU(N) gauge theory on a spatial T3 of arbitrary sides (“an SU(N) bundle”),
the result is that the minimum violation of Q5 is controlled by maps of integer winding
(112) [7,110]. A recent discussion (and more references) looking also at the more general
SU(N)/ZN bundles on T3 is in [38]).

As usual in QFT, having a conserved charge, one defines a corresponding unitary
symmetry operator. For the U(1) case of interest to us, this unitary symmetry operator
would be Xα = eiαQ. For a conserved and gauge invariant Q (this would apply, for example
to Q of (24)), this would generate an eiα ∈ U(1) transformation when acting on the field
operators of unit charge. But we just showed that our conserved Q̃5 changes by 4n f under

a large gauge transformation. Thus, it is clear that while eiαQ̃5 is not gauge invariant,
the operator

X4n f = e
i 2π

4n f
Q̃5

= e
i 2π

4n f

∫
d3xj0f e −i2π

∫
d3xK0

(113)

is gauge invariant. This is as the second factor in (113), the e−i2π
∫

d3xK0
operator, is gauge

invariant—it is multiplied by unity after integer-winding gauge transformations. The oper-
ator (113) generates a Z4n f ∈ U(1) discrete chiral symmetry whose action on the fermions
is shown in (114).

The operator e−i2π
∫

d3xK0
generates 2π shifts of the θ angle (in the canonical A0 = 0

gauge quantization of the gauge theory (very quickly, this is as eiθ is the eigenvalue of a
physical state |ψ〉 under unit-winding large gauge transformation C1 : |ψ〉 → eiθ |ψ〉. Thus,
acting with e−i2π

∫
d3xK0(A) on a physical state shifts θ by −2π, owing to (112)) and the

above reasoning shows that such 2π shifts of θ are now part of the anomaly-free discrete
chiral symmetry, just as though they were part of parity at θ = π in the pure gauge theory.
In fact, the reason we gave this somewhat long-winded operator point of view on the
discrete chiral symmetry was precisely to note that X4n f involves a shift of the θ-angle of
the SU(2) theory by 2π. Now we recall our discussion of parity in dYM, near Equation (97),
where we saw that the dual photon shifts by π under such 2π shifts of the θ-angle. We
conclude that in the abelianized phase of QCD (adj) on R3 × S1, such a π shift of the dual
photon will accompany the discrete chiral Z4n f transformation:

Z4n f : λ3 I
α → e

i 2π
4n f λ3 I

α ,

σ → σ + π . (114)

The top line is simply the restriction of (107) to Z4n f .
We shall see in the next Section that invariance under the Z4n f transformations (114)

along with the Z(1)
2 center symmetry Z(1)

2 : σ→ −σ will severely constrain the nonderiva-
tive terms that can be added to (106). In fact, combined with semiclassical power-counting
rules, similar to the ones we discussed in dYM, the effective Lagrangian will be essen-
tially determined.

Summary of Section 5.1: Here, we argued that the Z4n f subgroup of the U(1) chiral sym-
metry remains anomaly free. This follows from the anomaly Equation (108) by constructing
the unitary and gauge invariant symmetry operator (113), or, equivalently, be examining
the ’t Hooft vertex of a BPST instanton (110). Most importantly, the anomaly-free discrete
chiral symmetry acts as (114) on the IR degrees of freedom, shifting the dual photon by π,
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similar to parity in dYM at θ = π. It is important to note that the results of this Section
regarding the Z4n f transforms also hold for n f = 1, i.e., SYM.

5.2. Symmetry Constraints on the QCD (adj) EFT

We shall now use the symmetry transformations under Z4n f and Z(1)
2 to constrain the

form of the non derivative terms that can be added to (106). We recall that σ is a 2π periodic
field, therefore whatever we write should be a periodic function of σ. We shall organize
our study of the possible nonperturbatively-generated terms by their σ-periodicity, i.e., the
magnetic charge QM of the semiclassical objects that generate them.

Begin with the simplest possibility of terms ∼ eiσ, due to monopole–instantons with
unit magnetic charge. Under Z4n f this term changes sign, Z4n f : eiσ → −eiσ. The only other

fields that transform are the fermions λ3 I . Under Z4n f we have that (λ3)2n f transforms

by a factor of e
i 2π

4n f
2n f

= −1, i.e., has the correct transformation property to make an Z4n f

invariant. In fact, we can now write the Z4n f -invariant proportional to eiσ as

M ∼ eiσ detI J λ3 I
α λ3 J

β εβα ≡ eiσ(λ · λ)n f , (115)

where in the first term, we showed explicitly how all SL(2, C) and flavour indices are
contracted (as indicated, the determinant is taken over the flavour indices I J), while in the
second equality we introduced a short-hand notation for the determinant. We called (115)
an M term, alluding to the fact that M vertices in dYM came with a factor of eiσ. In fact, just
as the BPST instanton on R4 has a ’t Hooft vertex that comes with fermions attached (110),
an M monopole–instanton on R3 × S1 has to have fermions attached to its ’t Hooft vertex.

In addition to our Z4n f symmetry-based argument, this can be argued based on
a generalization of the index theorem to R3 × S1 with nontrivial holonomy, discussed
by mathematicians in [111] and in physicist-friendly terms in [112]. We shall not need
to discuss it here, as our symmetry arguments suffice. The R3 × S1 index theorem is a
generalization of the Callias index theorem on R3 [113], see also [48]. For a flavour of the
index theorem, see Appendix D.

In fact the calculation of (115), similar to ’t Hooft [57], but on R3 × S1 was first applied
to n f = 1 in [114] (ref. [21] added some imporant details), and for n f > 1 in [11,26]; as
with (110) the details are not important for a qualitative understanding.

Further, we learned in our study of dYM that “M + KK = BPST”. Thus, the fermions
of the BPST instanton vertex have to somehow split between the M and KK. Furthermore,
as M and KK are related by the Z(1)

2 center symmetry (74), which does not act on fermions,
the number of fermions appearing in each ’t Hooft vertex should be the same, i.e., an M
’t Hooft vertex should have half the fermions appearing in the BPST-instanton ’t Hooft
vertex (110)—which is precisely what we see in (115)—with the other half residing at the
KK vertex.

Thus, what about e−iσ terms? Clearly we can have, in a way consistent with the
Z4n f symmetry,

KK ∼ e−iσ(λ · λ)n f . (116)

We should not forget the Z(1)
2 center symmetry, σ→ −σ. It interchanges M with KK

(and M∗ with KK∗), exactly as in dYM; thus, these terms should appear as a sum in the EFT.
Furthermore, we observe that the product of (115) and (116) is precisely the BPST ’t Hooft
vertex (110): the factors of e±iσ cancel out and fermion charge is violated by the required
4n f units. Thus, the splitting of a BPST instanton into M and KK components familiar from
dYM persists in the QCD (adj) theory.

The c.c. of (116) would be precisely the KK∗ contribution:

KK∗ ∼ eiσ detI J(λ̄
3 I
α̇ λ̄3 J

β̇
εα̇β̇) ≡ eiσ(λ̄ · λ̄)n f , (117)
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while the c.c. of (115) would be the M∗ contribution

M∗ ∼ e−iσ(λ̄ · λ̄)n f . (118)

What we conclude, then, combining the four terms above, is that the terms of lowest
dimension in the EFT, proportional to e±iσ are

L|QM |=1 = e−S0
1
L3

[
(eiσ + e−iσ) L3n f (λ · λ)n f + (eiσ + e−iσ)L3n f (λ̄ · λ̄)n f

]
. (119)

As usual, we work with exponential-only accuracy neglecting overall powerlaw g2
4

dependence (they can be found in the already mentioned [11,21,26,114]). We kept the e±iσ

factors to indicate the origin of the four terms above. The terms in (119) are not particularly
interesting: for n f > 1, they appear to be quite unimportant higher-dimensional operators,
irrelevant in our weakly-coupled 3D IR EFT.

In particular, no potential for the dual photon is possible at the QM = ±1 level. Does
the theory confine, then? As from our discussion of magnetic bions in dYM, we suspect
that we have to study higher magnetic-charge contributions to find out. It is clear that, as in
dYM at θ = π, the only potential terms for the dual photon invariant under the discrete
chiral symmetry σ→ σ + π are those of even magnetic charge, e±i2nσ. We expect that they
appear at order e−2nS0 in the semiclassical expansion. Thus, the simplest possibility [11] is
a charge-2 magnetic-bion term similar to (101):

L|QM |=2 = −e−2S0
1
L3 (e

i2σ + e−i2σ) . (120)

We shall study the dynamical origin and the dynamical implications of this term in
Section 5.3. To summarize, our effective Lagrangian to order e−2S0 is now the sum of (106),
(119) and (120)

LQCD(adj)
kin =

1
2

g2
4

L(4π)2 (∂λσ)2 + i
L
g2

4
λ̄ I

α̇ σ̄µα̇α(∂µλα)
I ,

+
2e−S0 L3n f

L3 cos σ
[
(λ · λ)n f + (λ̄ · λ̄)n f

]
+

2e−2S0

L3 (1− cos 2σ) ,(121)

where we omitted the Cartan isospin index of the fermions. In the next Section, we shall
study the microscopic origin of the e−2S0 term above as well as the symmetry realization
and implications for the IR physics of QCD (adj).

Summary of Section 5.2: Here, we studied the lowest dimensional terms allowed in the
QCD (adj) EFT by the Z4n f chiral and the Z(1)

2 center symmetries. We found that the
symmetries are very restrictive: combined with dimensional analysis, they imply that
to leading order in the semiclassical expansion only multi-fermion-like terms (119) are
allowed (due to unit magnetic charge monopole–instantons). A potential term (120) can
appear only at the next-to-leading order of the semiclassical expansion and is due to charge-
2 magnetic-bion-like configurations. Much of the insight found here applies to n f = 1,
but the absence of the A3

4-field (which remains massless for n f = 1) means that some
our considerations, notably the final result for the IR EFT (121), will require substantial
modification for the case of SYM.

5.3. The Infrared Dynamics of QCD (adj) on the Circle
5.3.1. The Composite Nature of Magnetic Bions and a Picture of the QCD (adj) Vacuum

In this subsection, we shall elucidate the nature of the objects generating the magnetic
bion terms in (121). This can be achieved in more than one way. We shall follow the
original EFT approach of [11], as it suffices for a qualitative understanding. Alternatively,
one can also proceed [26] using the instanton calculus developed in QCD [51], but this is
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unnecessarily technical and long winded (this is useful when one wants to compute further
corrections, including determinants, the effect of the A4-mass, etc)..

To begin, recall that, as we already discussed, the M and KK terms, apart from the
e±iσ factors taking into account the Coulomb-like interactions of the monopole–instantons,
are morally similar to ’t Hooft’s original calculation of the B + L violating vertex in the
standard model. The length scale relevant to the generation of the M and KK terms is of
order L/g4, the size of the M and KK classical solutions (this is the size due to the A4-cloud
around the monopole–instantons’ core of size L). As it turns out, and as we shall see shortly,
the magnetic bions are generated at larger length scales. Thus, we can use the |QM| = 1
terms in (121) to construct the |QM| = 2 magnetic bion terms (generated at the larger length
scales L/g2

4), a posteriori justifying our scale-by-scale approach.
To begin, as we did when we discussed the Polyakov model, we can expand the

contribution of the M terms (as well as M∗, KK, and KK∗) to the Euclidean path integral,

e.g., e−
∫

d3xe−S0 L
3n f −3

eiσ(λλ)
n f , into a Taylor series. This gives rise to a grand-canonical gas

of M, KK, M∗, and KK∗ Euclidean objects, each coming with its own ’t Hooft vertex which
now contains fermionic insertions. The insertions of (λλ)n f and eiσ in the ’t Hooft vertices
stand to indicate that these local objects in R3 interact by exchange of dual photons—as in
the Polyakov model—and by exchanging fermions. The latter interaction is a new feature
in QCD (adj) and is ultimately responsible for the appearance of magnetic bions.

Consider the effect of an M fluctuation at x (with ’t Hooft vertex (115)), and KK∗ one at
y (with ’t Hooft vertex (117)), represented by the following two-point function contribution
(we shall neglect the spinor, flavour, etc., index contractions of the spinors in the ’t Hooft
vertices, hence the schematic notation in (122). It will become clear shortly that these
details (which can be found [26]) only affect the pre-factor of the M–KK∗ amplitude) to the
Euclidean path integral

〈M-KK∗〉 =
∫

d3x
∫

d3ye−2S0 L6n f−6〈eiσ(x) λ(x)2n f eiσ(y) λ̄(y)2n f
〉

. (122)

The correlator is computed using the free dual photon + fermion action (106). Ac-
cording to our interpretation above, this correlator informs us about the long-distance
interaction between M and KK∗. In Equation (31) we already showed that

〈
eiσ(x)eiσ(y)〉 = e

− 4π

g2
4

L
|x−y| , (123)

giving rise to a repulsive “force”—meaning, as the r.h.s. indicates, that the probability for
|x− y| ∼ L is much smaller than the one for |x− y| → ∞.

What remains to be seen is the effect of the λ(x)λ̄(y) correlator. The free fermion
action in (106) implies that

〈
λ(x)λ̄(y)〉 = g2

4
L

f (n̂)
|x− y|2 =

g2
4

L3 f (n̂) e−2 log |x−y|
L . (124)

Notice that this is just the inverse of the operator appearing in the fermion kinetic term.

(The spinor fields have dimension 3/2 and R3-propagator in momentum space ∼ σµkµ

k2 .
The x-space form shown in (124) is just the Fourier transform, with spinor indices hidden
in the dimensionless f (n̂)). We used n̂ to denote the angular components of a unit vector
from x to y and we hid all index dependence in f (n̂).

The r.h.s. above reveals the most important role of the fermions: as the M and KK∗

separation |x− y| approaches L (its lowest limit), the logarithm and the exponent are of
order unity, while as the separation approaches infinity, the exponent tends to zero. Thus,
the most important conclusion from (124) is that the fermions attached to the M and KK∗

generate a long-range attractive “force” between the objects that experience magnetic re-
pulsion. Thus the possibility of “bound states”, or more appropriately, correlated tunneling
events, localized in R3, leading to a change of magnetic charge by 2 units.
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To see this in more detail, let us now use (123) and (124) to rewrite (122). On the way, we
introduce the “center-of-mass” coordinate z = x+y

2 (the integrand is independent thereof)
and the relative separation coordinate, often called “separation quasizero mode”, whose
length we denote r = |x− y|. We do not show the result of integration over the angular
part of the relative separation coordinate of the function f (n̂)2n f , as it only contributes to
the prefactor (the overall sign is positive) and obtain

〈M-KK∗〉 =
∫

d3x
∫

d3y e−2S0 L6n f−6

(
g2

4
L3

)2n f

f (n̂)2n f e
− 4π

g2
4

L
|x−y|−4n f log |x−y|

L

∼ e−2S0

L3

∫
d3z

∞∫

0

dr
L

e
− 4π

g2
4

L
r −(4n f−2) log r

L
=

e−2S0

L3 Im.b.(n f , g2
4)
∫

d3z ,(125)

where we implicitly defined the finite integral Im.b.(n f , g2
4). (This integral is finite, positive,

and can be easily computed (we return to a more interesting version thereof in the “neutral
bion” Section 6.3). We extended the lower limit of integration over r to r = 0, as the
integrand is essentially zero there, see Figure 23). Clearly the Coulomb repulsion and the
fermion-induced attraction balance each other, leading to a stable value,

rbion =
π

g2
4

L
n f − 1/2

� L
g4
� L , (126)

called the “bion size”. Notice that, as promised, at small g2
4, rbion � L/g4, the Compton

wavelength of the A3
4 field. The integral over r can thus be taken, computing I(L, n f , g2

4). It
is saturated near rbion, in the region of validity of the EFT (see Figure 23).

Figure 23. A plot of the separation quasizero mode integrand in (125), plotted for g2
4 = 0.1 and

n f = 2 QCD (adj) in units of L = 1. The bion size, xbion, is ∼ 1/g4 times larger than the size of the
constituent M and KK∗, indicated by 1/g4 on the figure.

We have thus found that a new kind of “topological molecule”, a magnetic bion of
charge-2 exists, owing to the compensation between Coulomb repulsion and fermion-
hopping-induced attraction. Its contribution to the Euclidean partition function is repre-
sented by a ’t Hooft vertex, obtained from (125) by dropping the d3z integral, ignoring the
non-exponential g2

4 factors arising after the integration over r, and attaching an ei2σ(z) factor
to signify that the object has charge-2 (to see this factor, consider the correlations between
two magnetic bions at distances� rbion):

B = M-KK∗ at z :
e−2S0

L3 ei2σ(z) . (127)

A picture of the bion molecule and the associated length scales is shown on Figure 24.
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Figure 24. The correlated tunnelling events known as “magnetic bions” B: the M and KK∗ con-
stituents have equal magnetic charge and thus repel at long distances. However, the hopping of the
2n f fermions associated to each of the constituents induce attraction, leading to a stable “molecule”
of size rbion ∼ L/g2

4. The B (and B∗) have magnetic charge 2 but have no topological charge and
hence no fermion zero modes. Their proliferation in the vacuum is responsible for the generation of
mass gap as shown on Figure 25.

As usual, the magnetic bion ’t Hooft vertex above is given up to a positive g2
4-

dependent constant. Notice that this ’t Hooft vertex has the form of the charge-2 term that
we argued for using symmetries. What we gain is an understanding of its origin as due
to correlated M–KK∗ tunnelling events: a new topological molecule of size rbion, action
∼ 2S0, magnetic charge-2, and topological charge zero—hence without any fermion zero
modes. The absence of zero modes (related to QT = 0) means that bions can generate
a potential for the bosonic dual photon. Clearly, there are also B∗ (= M∗-KK) molecules
with ’t Hooft vertices given by the complex conjugate of (127). We also note that, as in the
discussion of Section 2.5, the fugacity of the magnetic bions is positive (apart from the ei2σ

factor responsible for incorporating interactions), thus these are “real saddles” according to
discussion after Equation (38).

Exponentiating the B and B∗ contributions (127), as in the Polyakov model (recalling
Section 2.5), we obtain the bion contribution to the Euclidean path integral

e−Sbion ≡ e−
∫

d3xVbion = e
−
∫

d3x
(
− e−2S0

L3 2 cos 2σ(x)
)

, (128)

showing that the charge-2 bions generate a − cos 2σ potential. A picture of a typical
configuration in the magnetic bion gas is shown on Figure 25.

Figure 25. A typical configuration contributing to the vacuum to vacuum amplitude in QCD (adj):
a dilute grand-canonical gas of bions B and anti-bions B∗ and the hierarchy of characteristic scales
involved. Compare with Figure 4 for the Polyakov model.
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Let us also address the question of other possible “di-atomic” molecules that one
can contemplate. An M–M object would experience magnetic repulsion between its con-
stituents, and, most importantly, no fermion-induced long-distance interaction at leading
order, as the propagator 〈λλ〉 vanishes (due to the chiral symmetry of the massless theory).
Further, this object would carry twice the topological charge of M and therefore have twice
as many fermion zero modes (from the index theorem, or, equivalently, the anomaly equa-
tion). Thus, it could not be responsible to generate a bosonic potential. The same comment
applies to a KK–KK made object. Another possibility is an M–KK (and c.c.) molecule—but
this is our familiar BPST instanton with 4n f zero modes, no magnetic charge—and no σ
dependence. Finally, we could also consider the possibility of M–M∗ and KK–KK∗ compos-
ites, but for the purposes of generating a potential for σ, these can not be relevant, as they
have no magnetic charge (these so-called “neutral bions” will, however, play important
role in SYM). We conclude that, to the order of our calculation, the M–KK∗ (and c.c.) object,
leading to the magnetic bion B and B∗ molecules, is the only one responsible for a dual
photon potential.

The picture of the vacuum of QCD (adj) is thus similar to the one in the Polyakov model,
albeit the dilute gas is one of charge-2 objects, the magnetic-bion monopole–instantons (the
charge-2 nature of the confining objects is not an “innocent” small change, as it drastically
affects the nature of confining strings, as we already saw in θ = π dYM). A cartoon is
shown in Figure 25, where we also indicate the exponential scale hierarchy between the
bion size and the typical distance between bions.

5.3.2. Symmetry Realization, Domain Walls, and Confinement

Let us now study the physics of QCD (adj) with n f > 1 on R3 × S1. Our summary
of the IR phase will be rather quick, as we already did all the preparatory work, having
explained the origin of all terms in (121). We also studied the confining string in a theory
with a cos 2σ potential, recall Section 4.2 (and the θ = π dYM potential (99)), and we shall
use this insight here. Thus, we shall now simply enumerate the symmetry realization of
QCD (adj) at small L:

1. The bion-induced potential for the dual photon in (121) has two minima, at 〈σ〉 = 0
and 〈σ〉 = π. The Z4n f discrete chiral symmetry (114), σ → σ + π, is thus broken

to Z2n f by the expectation value of the dual photon. The Z(1)
2 center symmetry is

preserved in both vacua (at 〈σ〉 = π, due to the 2π periodicity of σ). Notice that
the order parameter for the broken chiral symmetry is the expectation value of a
monopole operator, 〈eiσ〉 = ±1
There are are domain walls (lines) between the 〈eiσ〉 = 1 and 〈eiσ〉 = −1 vacua. There
are two different domain walls between the eiσ = ±1 vacua, as in θ = π dYM, related
by the action of Z(1)

2 , as in Figure 21. Likewise, each domain wall carries electric flux
appropriate to confining “half” a fundamental quark.

2. The dual photon acquires mass (below, we use (105) to rewrite e−S0 = e
− 4π2

g2
4(1/L) in

terms of Λ)

mσ ∼
e−S0

L
=

1
L
(ΛL)

11−2n f
3 = Λ (ΛL)

8−2n f
3 , (129)

but the Cartan subalgebra fermions λI remain massless (I = 1, ..., n f > 1).
For those familiar with ’t Hooft anomaly matching of traditional or 0-form symmetries,
one can ask how are the various ’t Hooft anomalies involving the unbroken SU(n f )
chiral symmetry matched by our small-L theory. The answer is that they are matched
by a combination of contributions from the massless λI fermions and global-symmetry
background-field-dependent terms, local in R3, induced upon integrating the non-
Cartan and Kaluza–Klein components of all fermions, in a slight generalization of the
discussion in [37]. We shall not discuss this in detail here, nor shall we dwell on the
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matching of the generalized ’t Hooft anomalies involving the center symmetry and
the discrete chiral symmetry.
At this point, notice the interesting fact [24,26] that in the approximation we are using,
mσ is an increasing function of L (at fixed Λ) for n f < 4 and a decreasing function
of L for n f = 5. For more discussion of the large-L, fixed-Λ limit, see the end of
this Section.

3. The continuous SU(n f ) chiral symmetry is unbroken and the massless λI transform
in the fundamental representation.

4. Confinement of fundamental quarks proceeds as in dYM at θ = π, via the formation
of a double string composed of two domain walls. Thus, center symmetry in the R3

directions is also unbroken. Furthermore, as in dYM at θ = π, quarks are deconfined
on the domain walls (and center symmetry is broken there). (Just as in dYM, this
has to do with matching the mixed parity/center generalized ’t Hooft anomaly [16],
here it has to do with the mixed discrete chiral/center anomaly, e.g., [35,38,91]). The
qualitative pictures of confining strings shown in Figures 19 and 20 apply verbatim.

5. Expanding the multifermion terms in (121) around the vev for σ, we find that irrele-
vant (at weak coupling, as in our small-L theory) interactions between the fermions
(and the fluctuations of σ) are induced by the M and KK terms.

Overall, the main difference of the QCD (adj) small-L phase compared to dYM at
θ = π is the presence of the massless λI fermions transforming as a fundamental under
the unbroken SU(n f ) chiral symmetry. These fermions affect the interactions between the
domain walls in the double-string (see [89]).

5.3.3. Possible (New) Large-L Phases

Finally, what about the relation between the small-L calculable regime of QCD (adj)
and the large-L R4 regime? Our discussion of this topic will be qualitative and even more
hand-waving than usual. At the outset, let us state that not much is known with certainty
about the phases of the n f = 2, 3, 4, 5 theories on R4.

We begin with n f = 5 (and perhaps n f = 4). It is thought that these theories flow to an
interacting fixed point in the IR. An indication for this can be seen by studying the two-loop
beta function (not shown in (105), but easily found in the literature, e.g., the appendix
of [24]). All global symmetries, including the discrete chiral Z4n f remain unbroken and
their ’t Hooft anomalies are assumed to be matched by the IR fixed-point theory (a CFT).
This scenario is not necessarily in conflict with our small-L analysis, especially for n f = 5,
as discussed in [24] (see also the fine print disclaimer there). The idea is that the fixed-point
coupling g2

4 for n f = 5 is small (in fact, to two-loop order g2
4/(4π) ' 0.13� 1 at the fixed

point) thus we shall assume that the physics of this theory can be analyzed using weak
coupling means at any scale, as the coupling never becomes large in the IR. Then, beginning
with R4, let us compactify on R3 × S1 with now arbitrary L. As the theory never reaches
strong coupling, our weak coupling analysis does not require small L. Abelianization
occurs with the W-boson mass ∼ 1/L at any L, and the conclusion that there are two
vacua with broken Z4n f → Z2n f holds for any L, as does the fact that mσ ∼ e−S0 /L (S0
is now evaluated at the small fixed-point coupling). Thus, in the limit L → ∞, the mass
gap vanishes, the two vacua merge, and the theory becomes gapless consistent with an IR
CFT scenario.

For lower numbers of flavours, the most conventional “vanilla” possibility for the
n f = 2, 3 theories (and maybe n f = 4) is that they break the continuous chiral symmetry,
SU(n f )→ SO(n f ). This is the QCD (adj) “cousin” of what happens in QCD with funda-
mental massless quarks, QCD(F) (of course the symmetry breaking pattern is different
in QCD(F)). In this scenario, the SU(n f ) chiral symmetry is broken by the formation of a
fermion-bilinear condensate

〈λI
αλJ

βεβα〉 ∼ δI JΛ3. (130)
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This is in marked contrast with our small-L analysis, which showed that, for any n f ,
the continuous chiral symmetry SU(n f ) remains unbroken. The fermion bilinear (130) also
breaks the discrete chiral symmetry to Z2 fermion number, as has been studied in detail
in [115]. If that is the correct R4 phase, then there would have to be a phase transition
associated with the spontaneous breaking of SU(n f ) upon increase in L. As, upon increase
in L, the R3 × S1 theory enters a strongly-coupled regime (as the condition ΛL � π is
violated, recall Figure 11), a possible scenario is that the multi-fermion terms due to M
and KK in (121) become relevant and, as in the Nambu–Jona–Lasinio model (see [116,117]
for the original papers and [118] for a modern review), lead to spontaneous breaking of
SU(n f ). We also note that the calculable small-L limit offers a dynamical reason for the
appearance of the multifermion terms, connecting to the “instanton–liquid” models of the
vacuum in QCD(F) [51].

However, it was recently realized [30,119] that there are possible “unconventional”
phases for the n f = 2, 3 theories on R4. We saw that at small-L the Z4n f discrete chiral
symmetry was broken by the expectation value of the σ field, or equivalently, by 〈eiσ〉 = ±1.
As we increase L, the dual photon field ceases to make sense, as there is no meaningful scale
separation between Cartan and non-Cartan gauge bosons and thus no abelianization. How-
ever, we argued above that eiσ has the same transformation properties as the multifermion
SU(n f )-invariant, but Z4n f -charged, multi-fermion operator detI J(λ

a I
α λa J

β εβα). Thus, while

on R4 an eiσ condensate does not make sense, the multi-fermion object is sensible and it
is possible that there is a phase with a nonzero multifermion condensate but vanishing
bilinear condensate

〈detI J(λ
a I
α λa J

β εβα)〉 ∼ Λ3n f , while 〈λI
αλJ

βεβα〉 = 0 . (131)

Thus, in such a phase, SU(n f ) would be unbroken and the symmetry realizations at
small-L and large-L would be continuously connected, much as it was argued to be the
case in dYM.

It should be stressed that, at the moment, we do not have a rigorous argument
favouring (130) or (131). For recent discussions showing the consistency of this scenario
with various anomalies, see [115,120–123], while [108] has the most recent lattice results,
unfortunately not yet decisive. Our main point is that the suggested phase with condensates
(131) is one example where a new possibility for a R4 phase was suggested and motivated
by an analytically solvable R3 × S1 example.

Summary of Section 5.3: Here, we studied the dynamical aspects of QCD (adj) on R3 × S1.
We began by studying the composite nature of the magnetic bions, the topological excita-
tions composed of M and KK∗ monopole–instantons. These novel topological molecules
have magnetic charge 2 and carry no topological charge and hence no fermion zero modes.
Their proliferation in the vacuum leads to a potential for the dual photon, generates the
mass gap for gauge excitations, and is the cause for confinement in this theory—in marked
contrast with the charge-1 M monopole–instantons of the Polyakov model. The prolifer-
ation of the magnetic bions also leads to a spontaneous breakdown of the discrete chiral
symmetry Z4n f → Z2n f , but leaves SU(n f ) unbroken. Similar to dYM at θ = π (here,
instead, reflecting the mixed Z4n f /1-form center ’t Hooft anomaly), confinement of fun-
damental charges proceeds via the double string mechanism of Figure 19 and quarks are
deconfined on domain walls, as in Figure 20. We also discussed two possible scenarios
for the behaviour of the n f = 2, 3, ... theory in the R4 limit, one with a SU(n f )-breaking
phase transition upon increase in L, with a nonvanishing bilinear condensate (130), and the
other obeying “adiabatic continuity”, with the multifermion condensate of (131) and an
unbroken SU(n f ) on R4.
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6. SYM

We now go on to study the SU(2) QCD (adj) with n f = 1, whose 4D Lagrangian
is (75) with m = 0. This is also known as SYM (super-Yang–Mills). In fact, N = 1
4D supersymmetry is an accidental symmetry of this theory (“accidental” means that
supersymmetry automatically emerges once the action is made chirally symmetric, i.e., once
the Z4 → Z2 chiral-symmetry-breaking Majorana fermion mass m in (75) is set to zero; m is
the only relevant coupling that breaks supersymmetry).

The reason SYM is of great interest is that, owing to the “power of holomorphy”
constraints of supersymmetry, many (but not all!) aspects of its dynamics can be understood
also at strong coupling, as already mentioned in the Introduction. The discussion of the
supersymmetric formalism will take us far afield here, and we shall not use it (see Shifman’s
textbook [43] for a pedagogical introduction). For us, of utmost importance is the fact that,
when compactified on R3 × S1 with periodic boundary conditions for λ, the small-L SYM
also becomes weakly-coupled and semiclassically calculable (provided the S1 holonomy is
near the middle of the Weyl chamber of Figure 10, as per our discussion in Section 3.2).

On one hand, weak coupling at small L will allow us to study properties not accessible
via the holomorphy tools, such as the nature of the confining string. On the other hand, we
can confront the exact results obtained using holomorphy (which remain valid at small-L,
as our S1 boundary conditions do not break supersymmetry) with the non-supersymmetric
semiclassical path integral tools that we have been using throughout. In this process many
interesting and sometimes puzzling observations will be seen to arise. The details will be
discussed below, but the overarching conclusion worth stating at the outset is that they
point to the need of deeper understanding of path integrals and to a related interesting
interplay of perturbative and nonperturbative properties of QFT. In particular, they indicate
that an analytic continuation of the path integral is necessary to properly account for
nonperturbative effects. Needless to say, the journey along this road is not completed yet!

6.1. Fields, Symmetries, ’t Hooft Vertices, and the Allowed Terms in the EFT

On R3 × S1 with periodic boundary conditions for λ, the major difference from n f > 1
is the vanishing of the perturbative GPY potential, as illustrated in Figure 14. This vanishing
holds to all orders of perturbation theory and is due to supersymmetry nonrenormalization
theorems. It implies that the a4-field in (65), the fluctuation of A3

4 around the center-
symmetric vev (62) remains perturbatively massless and should be included in the µ� 1/L
EFT. We shall now define a dimensionless field φ as follows

φ =
4π

g2
4

La4 =
4π

g2
4

L(A3
4 −

π

L
) , such that 〈φ〉 = 0↔ 〈tr Ω〉 = 0, (132)

i.e., φ measures the deviation of the holonomy vev from the center-symmetric point (the
reason for the overall normalization factor will become clear below). The kinetic term of
the µ � 1/L EFT is given by (106), with the kinetic term for the a4 from (89) added and
rewritten via φ:

L3d,SYM =
1
2

g2
4

L(4π)2 (∂λσ)2 +
1
2

g2
4

L(4π)2 (∂λφ)2 + i
L
g2

4
λ̄α̇ σ̄µα̇α(∂µλα) . (133)

As there is only one adjoint Weyl fermion we dropped the flavour index I (as well as
the Cartan subalgebra index). The global Z4 chiral (as per Section 5.1) and Z(1)

2 symmetries
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(recall from Section 3.3 that center symmetry is a reflection of the Weyl chamber w.r.t. the
middle point) act as follows

Z4 : eiσ → −eiσ,

λ→ ei π
2 λ,

φ→ φ, (134)

Z(1)
2 : eiσ → e−iσ,

λ→ λ,

φ→ −φ . (135)

Now, we could refer to supersymmetry and just declare that the EFT should be
described in terms of the complex combinations −φ + iσ (or −φ− iσ), which are the lowest
components of chiral (or antichiral) superfields (for a superfield derivation of the kinetic
term (133), using linear–chiral superfield duality, for a general gauge group, and including
the nontrivial Kähler metric (see [34])) which also contain the fermions. We shall not need
all this technology and shall take a slight shortcut to give an alternative view on the need
to consider the combinations −φ± iσ.

It goes at follows. Recall that the M monopole–instanton contributes to the Euclidean

partition function with a Boltzmann factor e−S0 = e
− 4π2

g2
4 at the center-symmetric point. We

shall reserve the symbol e−S0 to mean precisely the center-symmetric point action. However,
in SYM we can study the semiclassical expansion anywhere on the Weyl chamber, which
is a “vacuum moduli space” to all orders of perturbation theory. Here, anM fluctuation
comes with a Boltzmann factor given in (70). Recalling (62), this factor can be rewritten in
terms of (132) as follows:

M : e
− 4π

g2
4

A3
4L

= e
−(φ+ 4π2

g2
4
)
= e−S0 e−φ . (136)

Likewise, a KK fluctuation has a Boltzmann factor, also taken from (70),

KK : e
− 8π2

g2
4
+ 4π

g2
4

A3
4L

= e−2S0 e
φ+ 4π2

g2
4 = e−S0 e+φ . (137)

Next, we recall that M (KK) comes with a factor of eiσ (e−iσ) due to their magnetic
charge. In addition, invariance under the Z4 discrete chiral symmetry forces us to include
the fermions, as we discussed in Section 5.2. Putting everything together, we conclude that
the ’t Hooft vertices of M (115) and KK (116), invariant under the chiral Z4 should now read

M : e−S0 eiσ−φ λ · λ ,

KK : e−S0 e−iσ+φ λ · λ . (138)

Notice that, as before, Z(1)
2 of (134) exchanges M with KK. In addition, the c.c. ver-

tices are:

M∗ : e−S0 e−iσ−φ λ̄ · λ̄ ,

KK∗ : e−S0 eiσ+φ λ̄ · λ̄ . (139)

The only modification compared to the QCD (adj) ’t Hooft vertices with n f > 1 of
Section 5.2 is that the ones in SYM include extra e±φ factors. These are important as:

1. These factors indicate that away from the center-symmetric point, the M and KK
actions differ from e−S0 . These vertices also show that both the M and KK monopole–
instantons insertions depend on −φ + iσ, but not on the c.c. −φ− iσ. Thus, these
vertices are holomorphic functions of the chiral superfield mentioned earlier, reflecting
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the “power of holomorphy”. In fact, (138) arises from contributions to the superpo-
tential, which is known to be a holomorphic function of the chiral superfields (while
the c.c. vertices contribute to the conjugate superpotential). (The calculation of (138)
in SU(2) SYM on R3 × S1 was first seen in [114], with the noncancelling one-loop
determinants and the correction to the Kähler metric calculated in [21]).

2. In addition to reflecting holomorphy, the e±φ factors signify that both M and KK
carry “scalar charge”, or, more prosaically, that these monopole–instantons interact
via long-range exchange of massless φ quanta, in addition to the σ-mediated magnetic
interaction. We shall make great use of this in what follows, so let us elaborate.
Already in the Polyakov model, and more recently in (123), we used the fact that

〈
eiσ(x)e±iσ(y)〉 = e

∓ 4π

g2
4

L
|x−y| , (140)

where the signs on the two sides are correlated, showing that the like-magnetic charge
monopole–instantons repel, while those of opposite magnetic charge attract. Similarly,
we can now consider the two-point function of e±φ.

Exercise 17: Show that the e±φ two-point correlator, computed using (133), yields

〈
eφ(x)e±φ(y)〉 = e

± 4π

g2
4

L
|x−y| , (141)

where, again, the signs are correlated, showing that like scalar charges
attract and opposite charges repel. Convince yourself that this leads to
cancellation of “forces” due to σ and φ exchanges between M and KK or M
monopole–instantons.

At the technical level, it is the absence of factors of i in the exponents on the l.h.s.
of (141) that makes for the crucial difference with (140). As (141) shows, two objects
of the same scalar charge attract (as the probability to find them close to each other
is larger than being far away) while those of opposite scalar charge repel, in exact
opposite to (140). This leads to the conclusion that there is no force between an M
and an M, a KK and a KK, as well as an M and KK monopole–instantons, as the
magnetic and scalar exchanges exactly cancel each other. The ultimate reason is that
all these objects are all self-dual, or BPS. However, there are forces between self-dual
and anti-self-dual objects, i.e., between M and KK∗ (as well as M and M∗), which
will become important below. (The static force between (BPS or not) monopoles is
discussed in the book by Manton and Sutcliffe [124]. For a discussion within our
setup, see Section 2.3 of [55] and references therein).

Coming back to our ’t Hooft vertices, we conclude that symmetries imply that the
leading e−S0 order EFT of SYM on R3× S1 is given by the kinetic term (133) plus the sum of
the four ’t Hooft vertices in (138) and (139), ensuring that the action is Z(1)

2 invariant. These
interactions have the form of Yukawa interactions—or field-dependent mass terms—as
they are bilinear with respect to the fermions:

LYuk. = e−S0
(
(eiσ−φ + e−iσ+φ) λ · λ + (e−iσ−φ + eiσ+φ) λ̄ · λ̄

)
. (142)

But what about potential terms, i.e., ones that do not involve fermions? Let us follow
our experience with n f > 1 QCD (adj) and construct the possible terms by multiplying
the Boltzmann factors of the various objects in (138) and (139), ensuring that the resulting
action is both Z4 and Z(1)

2 invariant.
We thus begin as in QCD (adj), recall Sections 5.2 and 5.3.1. We can multiply the

prefactors of M to those of KK∗ to obtain e−2S0 e2iσ, while the c.c. M∗ times KK gives the
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term e−2S0 e−2iσ. These bosonic terms are separately Z4 chirally invariant, but need to be
added to each other to respect Z(1)

2 . Thus, we obtain the possible bosonic potential term

Lm.b. = −L−3e−2S0 2 cos 2σ . (143)

This kind of term is already familiar to us; it is due to the magnetic bions we studied
in Section 5.3.1 in the dilute gas approximation, Equation (128). (Its overall sign is negative,
similar to the one found for charge-1 objects in the Polyakov model in Section 2.5. Recall
that, as noted after (38) there, a dilute-gas summation of the contributions of objects of
positive fugacity (“real saddles”) contributes a term with negative sign to the potential).
Moreover, the structure of the magnetic bions in SYM is similar to the one discussed for
QCD (adj): the only difference is that the M and KK∗ have mutual repulsion twice as
strong as the one appearing in (125). This is due to the extra repulsive contribution due
to φ exchange (as per (141) and as M and KK∗ have opposite scalar charge). The fermion-
induced attraction is as in (125) with n f = 1. Otherwise, the calculation of (143) is identical
to the one given in Section 5.3.1 and there is no need to repeat it (the bion size is two times
bigger than rbion of (126) with n f = 1).

In SYM, however, other possible terms, different from (143), exist. To construct them,
we multiply the bosonic prefactors of M and M∗, obtaining a term e−2S0 e−2φ, while KK
times KK∗ yields e−2S0 e+2φ. The sum of two such terms is invariant under Z(1)

2 , giving a
possible bosonic potential term

Ln.b. ∼ L−3e−2S0 2 cosh 2φ. (144)

Here, the subscript n.b. stands for “neutral bion”, showing that whatever object
generates Ln.b. has no σ-dependence and so carries no magnetic charge. We leave the study
of the objects generating (144) for Section 6.3.

The proportionality sign in (144) indicates our ignorance of the overall sign of this
term. Thus, we now ask the question: how should (144) and (143) be added? The first
answer that we shall give is suggested by the unbroken supersymmetry of SYM: as the
vacuum energy in a supersymmetric theory must vanish, the two terms should simply be
added as written, giving

Lpot. = L−3e−2S02(cosh 2φ− cos 2σ) , (145)

so that, at the (φ = 0, σ = 0, π) minimum, the potential vanishes. (Running ahead, the fact
that at φ = 0 (the center-symmetric point minimizing the potential) the first term in (145) is
positive should make one suspect that the cosh 2φ contribution—a positive semiclassical
contribution to the ground state energy—is not due to a dilute gas summation over “real
saddles”. See Section 6.3). In fact the answer for the bosonic potential of the µ� 1/L EFT
of SYM on R3× S1, obtained by using the “power of holomorphy”, is simply the above Lpot..
(Given here with our usual pre-exponential accuracy (we shall discuss the prefactor later).
For those familiar with supersymmetry, Lpot. can be obtained from the exact holomorphic
superpotential W ∼ eX + e−X, where X is the chiral superfield with lowest component
−φ + iσ, see [34] for a discussion more general than we need).

In what follows, we shall slightly reverse the order we proceeded in QCD (adj).
First, in Section 6.2, we shall take the EFT given by the sum of kinetic (133), Yukawa
(142), and potential (145) terms at face value and study the IR physics implied. Only
then, in Section 6.3, we turn to the microscopic explanation of the neutral bion terms and
the deeper issues they raise. In Section 6.4, we shall discuss the role neutral bions play
in a center-symmetry breaking/restoration phase transition believed to be continuously
connected to the thermal deconfinement transition in pure YM theory.

Summary of Section 6.1: Here, we studied the symmetry transformation of the fluctuation
of the holonomy around the center-symmetric value, the scalar field φ (132), and dual
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photon σ under the Z4 chiral and Z(1)
2 center symmetries. We used the symmetries to

constrain the possible terms that can appear in the SYM EFT on R3 × S1. The upshot is
that, up to order e−2S0 , Yukawa-like terms (142) and potential terms (145) are allowed.
The microscopic origin of the Yukawa and magnetic bion terms are as the ones discussed
for QCD (adj), but SYM presents us with a novel ingredient: the neutral bion terms (144),
whose microscopic origin needs to be understood.

6.2. Vacua, Domain Walls, “Double-String” Confinement, and Liberation of Quarks on
Domain Walls

Here, as in QCD (adj) of Section 5.3.2, we shall be equally quick in our discussion,
as we have performed all preparatory work. Begin by summarizing the EFT we obtained
in the previous Section:

LSYM =
1
2

g2
4

L(4π)2 (∂λσ)2 +
1
2

g2
4

L(4π)2 (∂λφ)2 + i
L
g2

4
λ̄α̇ σ̄µα̇α(∂µλα)

+α e−S0
(
(eiσ−φ + e−iσ+φ) λ · λ + (e−iσ−φ + eiσ+φ) λ̄ · λ̄

)
(146)

+
β

L3 e−2S02(cosh 2φ− cos 2σ) .

Here, α and β (β > 0, as per (128)) are coefficients with power-law g4-dependence and
can be found in [21,34]. The expression shown is the leading one in a combined small-g4
and e−S0 expansion. (The functional form the potential in the last term can only be altered
by an overall φ-dependent prefactor due to the nontrivial Kähler metric, but this correction
is small at small L). We can now, as for QCD (adj), summarize the main lessons we learn by
studying the weakly-coupled IR EFT (146):

1. SYM on R3 × S1 has two vacuum states:

vacuum 1 : 〈φ〉 = 0 , 〈σ〉 = 0,

vacuum 2 : 〈φ〉 = 0 , 〈σ〉 = π . (147)

Thus, as the vev of φ vanishes, Z(1)
2 is preserved (〈σ〉 = π preserves Z(1)

2 owing to
the compact nature of the dual photon). The chiral symmetry, on the other hand, is
broken, Z4 → Z2, as in QCD (adj), by the expectation value of the monopole operator
〈eiσ〉 = ±1.
We stress that the stability of center symmetry in SYM is not due to the perturbative
GPY potential, but is due to nonperturbative effects—the mysterious “neutral bions”
generating the cosh 2φ potential on the Weyl chamber.

2. The vacuum energy vanishes, as it should due to unbroken supersymmetry. (For
those familiar with supersymmetry, the Witten index [125] of SU(2) SYM equals 2,
exactly the number of zero energy vacua we found. The index does not change upon
supersymmetry-preserving compactification, guaranteeing that the chiral symmetry
realization is the same at small-L and large-L). The masses of the σ and φ excitations
around the vev are (with exponential-only accuracy) equal to

mσ = Λ (ΛL)2, (148)

which is just (129) with n f = 1.
3. The fermions also obtain mass mσ from the Yukawa terms (reversing the argument

and demanding that all masses be equal can be used to fix the ratio between α and β).
Thus, all excitations in SYM on R3 × S1 are massive, as opposed to QCD (adj), where
the λI remain massless. The four states of mass (148), two bosonic and two fermionic,
fill in a so-called chiral supermultiplet.

4. There are domain walls between the two vacua (147). As in dYM at θ = π, there are
two different domain walls (both BPS), as can be seen by repeating the arguments of
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Section 4.2.2. The simple semiclassical domain-wall counting agrees with elaborate
general BPS-wall counting arguments (for an introduction, see Ch. 18 of [126]).

5. As the dual photon potential is cos 2σ, due to the proliferation of charge-2 magnetic
bions, the argument that quarks are confined by the double-string mechanism is
identical to the one in dYM at θ = π. In addition, quarks become liberated on domain
walls, exactly as shown in Figures 19 and 20. The deconfinement on domain walls
reflects the mixed chiral/center anomaly.
Extensive numerical studies of domain walls, double-strings, and deconfinement
of quarks on domain walls in SYM at small L were performed in [35,62]. (All our
pictures are taken from [35,62]; there are also many references there regarding the
’t Hooft anomalies). These studies show that properties that are quite difficult to
study at strong coupling, such as the BPS domain wall multiplicities, the nature of the
confining string, and the deconfinement of quarks on domain walls, are captured in
a very intuitive manner in the semiclassical small-L regime. This simplicity extends
beyond SU(2) and applies to all SU(N) groups [35].

6. The small-L and large-L regimes of SYM are not separated by a phase transition (the
absence of a phase transition does not imply that all quantities evolve monotonically
upon increasing L towards R4. In particular, ref. [62] found that k-string tension ratios
(only defined for SU(N), N > 4 SYM) have non-monotonic dependence on L) as the
symmetry realization on R4, see [43], is identical to the one found at small L. This is in
contrast to n f > 1 QCD (adj) where an SU(n f )-breaking phase transition is possible
for some n f , as discussed in Section 5.3.2. For a recent lattice study devoted to the
continuity in SYM (see [109]).

7. In addition to the stable dual-photon, holonomy scalar, and fermion states, forming
a chiral supermultiplet of mass mσ ∼ e−S0 /L, there are stable nonrelativistic bound
states of two dual photons (plus their superpartners, one bosonic and two fermionic
bound states). This is similar to dYM, recall (96). Their mass is 2mσ minus their
doubly-nonperturbarive binding energy:

mglueball(−ino) = 2mσ(1− ae−c e
4π2

g2
4 ) . (149)

The calculation of mglueball(−ino) is given in [28], where one can also find a, c > 0.
The four nonrelativistic bound states with mass (149), comprising a chiral supermul-
tiplet whose precise nature is described in the reference, are Z(1)

2 center-symmetry
singlets and are expected to map to the glueball–glueballino supermultiplet in SYM
on R4.

Summary of Section 6.2: The summary of this brief Section is in the itemized list above.
The main conclusion is that in SYM at small-L, the symmetry realization is the same as
on R4. Semiclassical calculability, however, allows us to study questions not addressable
by the powerful supersymmetric tools of [1], such as the nature of the confining string.
We now move on to study the most unusual such finding and elucidate, in Section 6.3,
the microscopic picture behind the “neutral bion”-induced cosh 2φ potential in (146). Then,
we shall discuss their possible role in the pure-YM thermal deconfinement transition,
in Section 6.4.

6.3. Neutral Bions and the Need for Analytic Continuation of Path Integrals

In this Section, we shall discuss the microscopic origin of the 2 cosh 2φ potential in (146).
The φ- and σ-dependent scalar potential was first obtained by purely supersymmetric tools.
Holomorphy and symmetries allow one to determine the form of a holomorphic function
of z = −φ + iσ, the superpotential W(z) ∼ ez + e−z, as first seen in [127]. Supersymmetry
then implies that to find the scalar 2 cosh 2φ− 2 cos 2σ potential, clearly not a holomorphic
function, one should compute |dW/dz|2 (it is easy to see that one indeed obtains the
potential in (146)). The semiclassical calculations on R3 × S1 [114,128] have been focused
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only on calculating W, or equivalently the fermion-bilinear term in (146), whose form has
then been used to infer the potential.

Our goal here is to understand the appearance of the potential (146) directly, not
relying on the power of supersymmetry. After all, for us, SYM is only a particular case
of QCD (adj), a set of theories at weak coupling at small L. It is just that for SYM we
have some other, non-semiclassical, tools at our disposal. The hope is that this compar-
ison will yield some interesting insight about semiclassics in QFT and that this insight
transcends supersymmetry.

As we suggested in the previous Section, the microscopic origin of the neutral-bion
potential (144) are “topological molecules” of the M–M∗ and KK–KK∗ type. The physical
importance of neutral bions is that they ensure center stability, i.e., vanishing expectation
value for φ.

However, as opposed to our treatment of the magnetic bion M–KK∗ (and c.c.) molecules,
where the magnetic Coulomb repulsion was compensated by fermion-hopping induced at-
traction, here we face a problem: as M and M∗ have the same magnetic charge and opposite
scalar charge, there is attraction in both these channels. In addition, the fermion-hopping
also generates attraction. Taking all of this into account and proceeding blindly, we can
write, similar to (125), but taking the doubled attraction into account and taking n f = 1,
the following amplitude for an M–M∗ tunneling event

〈M-M∗〉 =
∫

d3x
∫

d3y e−2S0

(
g2

4
L3

)2

f (n̂)2 e
4π

g2
4

2L
|x−y|−4 log |x−y|

L

∼ e−2S0

L3

∫
d3z

∞∫

0

dr
L

e
4π

g2
4

2L
r −2 log r

L
=

e−2S0

L3 In.b.(g2
4)
∫

d3z . (150)

We defined the integral over the relative separation quasizero mode:

In.b.(g2
4) “ = ”

∞∫

0

dz e
4π

g2
4

2
z−2 log z

. (151)

Notice that, as written, the integrand in In.b only makes sense at large r � L (z� 1),
where the approximation of a long-range “force” between the M and M∗ constituents
makes sense. Nonetheless, we formally extended the lower limit to “z = 0”, where the M
and M∗ are on top of each other and the interactions written are not sensible. It is clear that
the integrand can not be trusted near the origin and the expression In.b.(g2

4) needs to be
carefully defined (this is what the “=” sign above is meant to remind us of). The KK–KK∗

amplitude leads to an expression identical to (150).
Let us now consider the magnetic-bion M–KK∗ tunnelling event in SYM, with am-

plitude given essentially in (125), but with n f = 1 and an extra factor of 2 due to the
scalar repulsion:

〈M-KK∗〉 =
∫

d3x
∫

d3y e−2S0

(
g2

4
L3

)2n f

f (n̂)2 e
− 4π

g2
4

2L
|x−y|−4 log |x−y|

L

∼ e−2S0

L3

∫
d3z

∞∫

0

dr
L

e
− 4π

g2
4

2L
r −2 log r

L
=

e−2S0

L3 Im.b.(g2
4)
∫

d3z . (152)

We defined, similar to Im.b.(n f , g2
4) of (125), the integral Im.b.

Im.b.(g2
4) =

∞∫

0

dz e
− 4π

g2
4

2
z−2 log z

=

∞∫

0

dt e
− 8π

g2
4

t
=

g2
4

8π2 . (153)
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As promised earlier, the above demonstrates that Im.b. is easy to calculate, especially
for n f = 1.

Now, upon comparison of (153) to (151), we notice that the integrands of the two
expressions are simply related by reversing the sign g2

4 → −g2
4. Hence (formally), we

have a relation between the integrals Im.b.(g2
4) = In.b.(−g2

4). Now, we come to an idea of
Bogomolnyi and Zinn-Justin (a.k.a. “the BZJ prescription”) originating in similar instanton—
antiinstanton problems in double-well quantum mechanics [129,130] (see also [51] and Zinn-
Justin’s book [73]). The idea is to define the M–M∗ amplitude using the relation between
the integrands in (151) and (153). BZJ defined In.b(g2

4) as equal to Im.b.(g2
4) analytically

continued to negative, g2
4 → −g2

4. We write this prescription defining the neutral bion
amplitude (151) as In.b.,BZJ(g2

4) = Im.b(−g2
4). From (153), we then immediately find that

In.b.,BZJ(g2
4) = −

g2
4

8π = −Im.b.(g2
4).

Next, we recall that M–M∗ comes with a factor e−2φ due to its overall scalar charge
and M–KK∗ comes with ei2σ due to the magnetic charge (the c.c. amplitudes come with
e2φ and e−2iσ, respectively). Thus, the relative minus sign between the magnetic bion
amplitude Im.b. and neutral bion In.b.,BZJ obtained via the BZJ prescription is precisely the
negative sign that supersymmetry and the vanishing vacuum energy forced upon us (recall
Equation (146)). (In addition to the relative minus sign between the two terms in (146)
obtained by the BZJ prescription, the overall power of g2

4 (which we did not show) in both
terms also comes out right [18,19,21], agreeing with the holomorphy predictions).

As we discuss below, BZJ were not guided by supersymmetry at all, so this “right sign”
answer is even more remarkable and we believe that it is hardly an accident! To elucidate,
briefly, BZJ’s motivation was to understand the relation between perturbation theory in the
double-well quantum mechanics, which is a divergent non-Borel-summable series, and the
exponentially small nonperturbative semiclassical effects. (An introduction to the large or-
der behaviour of perturbation theory and the nature of the perturbative series can be found
in Chapter 41 of [73] (various aspects of the BZJ ideas are also discussed there, see Chapter
43)). In the double-well problem, BZJ found that the analytic continuation (equivalent to
our g2

4 → −g2
4) in the instanton-anti-instanton amplitude leads to an ambiguous imaginary

part depending on the way the analytic continuation is conducted. (This imaginary part is
absent in our SYM example, but would be present in dYM, where neutral bion molecules
contribute to the “gluon condensate”. Explaining this would take us far afield, however;
see the recent discussion and more references in [131]). BZJ showed that this ambiguous
imaginary part is exactly cancelled by an ambiguity associated with the resummation of the
(non-Borel-summable) perturbative series. This cancellation of ambiguities is a welcome
feature, as one expects that the physical quantities, represented by the resummed series,
are free of ambiguities.

The cancellations of ambiguities associated with resumming the perturbative series
(the perturbative expansion in g2

4) and with nonperturbative effects (the semiclassical e−S0

expansion), to all orders in both expansions, are the subject of “resurgence theory”. We can
not discuss this fascinating subject in any more detail (among other reasons, we would have
to write another even longer set of notes!). These resurgent cancellations of ambiguities are
best understood in the theory of certain nonlinear differential equations and in quantum
mechanics of a single real degree of freedom; see [22] for an extensive list of references.

Here, we shall only note that the BZJ prescription above was formulated as an analytic
continuation in the coupling g2

4. This can be rephrased as a deformation of the contour of the
quasizero mode integral (the integral over the relative separation z) in (151) into the complex
plane. The point we wish to make is that this is, indeed, an analytic continuation of the path
integral, as the quasizero mode direction is one of the (infinitely many) directions of field
space. To this end, let us consider the integrand of In.b. of (151) as a function in the complex
z plane. The integrand has the form e f (z), with f (z) = 8π

g2
4z
− 2 log z. The critical points of

f (z) are the solutions of f ′(z) = 0 = 8π
g2

4z2 +
2
z , showing that one critical point is at infinity

and the other at z∗ = − 4π
g2

4
. The critical point at infinity corresponds to noninteracting M
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and M∗ and its contribution is taken into account by including the separate contributions
of M and M∗ which give rise to the fermion bilinear terms in (146). The other critical point
of f (z), the one at “negative radius” at z∗ = −4π/g2

4 corresponds to a complex separation
between the M and M∗. We next recall from complex analysis that the steepest descent
method requires us to deform the contour of integration passing through a critical point
z∗ along the steepest descent path (a baby version of what is more generally known as
“Lefshetz thimbles”). This is the path passing through z∗ along which Im f (z) = Im f (z∗)
and Re f (z) decreases away from z∗ (i.e., the action increases away from the critical point,
ensuring convergence). For our z∗, this is the negative real axis. It is now easy to see that
if we calculate In.b. in Equation (151) by integrating from 0 to −∞ instead, we obtain the
result required by supersymmetry. The integrand is essentially the one shown in Figure 23,
except that the x-axis now runs from zero to minus infinity. A “physical picture” of the
neutral bion molecule is thus one where the M and M∗ constituents are separated by a
complex distance. However, the absolute value of the distance is the same as rbion, still
within the validity of small-L semiclassics.

Before we conclude this Section, we note that, as of the day of this writing, there is no
known systematic way to perform calculations similar to the calculation of the neutral bion
amplitude to further higher orders, in both the perturbative and semiclassical expansions.
Formulating the BZJ prescription in the R3 × S1 theories starting from first principles,
e.g., from the QFT path integral, is also an open problem.

There has, however, been a substantial amount of progress in understanding similar
calculations in quantum mechanics, with or without supersymmetry. It is a remarkable fact
that in quantum mechanics, the analogues of the neutral bions can be found as either exact
solutions of the theory with the fermions integrated out (as the fermion determinant there is
computable in an arbitrary bosonic background) or by using the Lefshetz thimble analytic
continuation procedures we briefly outlined here. See refs. [132–135] for a comparison
between these approaches and for a detailed discussion of the necessity of analytic continu-
ation in different quantum mechanics examples. See also the recent proposals [58,131,136]
relating the quantum mechanical and QFT discussions.

Ref. [19] outlined such procedures for multi-bion amplitudes and proposed a general
scheme, the “resurgence triangle”, of how the cancellation of ambiguities between the
various orders of the semiclassical expansion (including the perturbative expansion around
the various saddles) would proceed to all orders. There has not, however, been any
progress showing how these resurgent cancellations work in practice in the class of R3 × S1

theories we discuss here, in part as such calculations are technically challenging, see [46]
for an example. There has, however, been progress for BPS observables in supersymmetric
theories (where the path integral localizes to a finite dimensional one), in topological, or in
integrable theories; for some recent studies see, e.g., [137,138], while more references and
discussion can be found in the review article [22]. To conclude, despite the difficulties
mentioned above, we nonetheless find the agreement of the result of the BZJ procedure
with SYM (as further stressed in [139]) and with quantum mechanical examples impressive
and offering an important consistency check. We take this as an argument in favour of the
validity of the manipulations outlined here and as an impetus for the further pursuit of the
Lefshetz thimble decomposition ideas.

Summary of Section 6.3: In this Section, we considered in some detail the structure of the
new type of topological molecule, the “center-stabilizing neutral bion”. The neutral-bion
example considered above is important as it shows the need for analytic continuation of
path integrals (infinite-dimensional) and their Lefshetz thimble (think: steepest-descent
contours) decomposition. Again, this goes beyond our topic—and the author’s competence.
Our main point, however, is that the R3 × S1 studies gave fascinating hints of the rele-
vance of Lefshetz thimbles to path integrals and, ultimately, to the calculation of physical
properties. Further studies and insight are definitely welcome.
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6.4. Neutral Bions and the Pure-YM Thermal Deconfinement Transition: The
Continuity Conjecture

In the previous Section, we studied the nature of the nonperturbative objects leading
to center stability in SYM, the neutral bions. These are novel nonperturbative objects that
generate a potential for the holonomy φ, equivalently, tr Ω, ensuring Z(1)

2 stability. The ques-
tion about their possible relevance to the thermal deconfinement transition naturally arises;
here, we shall explore this within a calculable setup.

To motivate the relevance of neutral bions to the deconfinement transition, recall that,
as per Section 3.4.3, the thermal deconfinement transition in pure YM theory is associated
with the Z(1)

2 order parameter, 〈trΩ〉 (the unbroken Z(1)
2 implies a low-T confined phase

while the broken-Z(1)
2 phase is the high-T deconfined one). We also saw that at high-T in

pure YM theory, the perturbative loop contribution, which is dominant at T � Λ, generates
a center-breaking potential for this order parameter, signifying a deconfined high-T phase.
As T is lowered towards Λ, one expects that Z(1)

2 will be restored at some critical Tc ∼ Λ.
However, this transition occurs at strong coupling and is not accessible to weak-coupling
analytic tools, as already remarked by GPY [66].

In this Section, we shall find a weakly-coupled Z(1)
2 -breaking transition in “softly-

broken” SYM on R3 × S1 (softly-broken refers to the addition of mass m for the adjoint
fermion, the “gaugino”). We shall argue that the competition between neutral bions and
monopole–instantons—two kinds of nonperturbative effects, the former center-stabilizing
and the latter center-breaking—determines the Z(1)

2 -symmetry realization, the order of
the phase transition, and its θ-angle dependence. We shall conjecture that this transition,
which is a semiclassically calculable quantum phase transition in the small-m, L regime, is
continuously connected to the strongly-coupled thermal deconfinement transition in pure
YM theory, by decoupling the gaugino. We shall also discuss the available evidence from
lattice simulations. (While our discussion here is restricted to softly-broken SU(2) SYM, we
stress that this conjecture can be made—and agrees with the available lattice evidence—for
all gauge groups in a similar setup [33,34]). The reason this “continuity conjecture” is
natural is that when we take m→ ∞, we obtain pure YM theory on R3 × S1; but this, now
bosonic, theory has a thermal interpretation, where L is the inverse temperature 1/T.

We illustrate the conjecture in Figure 26, but before discussing the evidence for conti-
nuity, let us flesh out the details of the Z(1)

2 -breaking quantum phase transition. We begin
by exploring the behaviour of SYM on R3 × S1 upon adding mass for the adjoint fermion
(the gaugino). Turning on the mass m in the QCD (adj) Lagrangian (75) with n f = 1 has
many effects:

1. The gaugino mass explicitly breaks supersymmetry, i.e., leads to the appearance of a
nonzero GPY potential on the Weyl chamber. This is easy to infer from (86), and results
in the potential given in (154), as we discuss below.

2. The gaugino mass also breaks the anomalous U(1) chiral symmetry (as well its
anomaly-free Z4 subgroup) down to fermion parity and so introduces θ-angle depen-
dence. We shall adopt a convention such that the mass m is real, i.e., take m = m∗ > 0
in (75), absorbing its phase into the θ-angle by a chiral rotation of λ. This means
that we have to include eiθ/2 factors (this θ is what is usually called “effective” or θ̄
in the standard model, as it incorporates the phase of the determinant of the quark
mass matrix) in the M and KK ’t Hooft vertices, and c.c. for M∗ and KK∗, as we do
in (155) below.

3. The gaugino mass, as already alluded above, also induces new nonperturbative terms
in the scalar potential for σ and φ, as the monopole–instanton zero modes contributing
to the fermion bilinear terms in (146) are lifted by mass insertions. These M, KK, etc.,
terms are worked out below and shown in Equation (156).
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Figure 1. The conjectured phase diagram of SYM⇤ in the m-L plane. The calculable center-symmetry

breaking quantum phase transition, occurring at small-m, L—the left-hand corner of the diagram,

shown by a thick red line—is conjectured to be continuously connected, upon decoupling the gaugino,

to the thermal deconfinement transition in pure YM theory, shown by the thick black line on the right.

The dimensionless parameter which is varied, Eq. (3.53), is cm ⇠ m
L2⇤3 , with m

⇤ and L⇤ small. For

all gauge groups, the calculable quantum phase transition occurs for cm of order unity. It should be

possible to study this phase diagram on the lattice, see Section 1.5.

SU(2) gauge theory. A center-symmetry-breaking quantum phase transition was shown to

occur as the dimensionless parameter cm ⇠ m
L2⇤3 is increased.8 In SU(2), the Z2-breaking

transition is second-order. This is also the known order of the deconfinement transition in

nonsupersymmetric thermal SU(2) YM theory, known from the lattice and also argued for

by Z2 universality [6].

Further evidence for the similarity of the small-m, small-L center-breaking transition to

the thermal deconfinement transition in YM theory with gauge group SU(N) was given in

[2]. For all N > 2, a first-order transition was found, as seen on the lattice in thermal pure

YM theory, see the recent review of large-N theories [31].

Since various topological objects play a crucial role in the calculable transition in SYM⇤,
it should not come as a surprise that, in all cases, the phase transition “temperature” (cm) also

acquires topological ✓-angle dependence, due to the “topological interference” e↵ect [32] (we

note that [33, 34] gave earlier discussions of ✓-dependence in the deconfinement transition).

The ✓-dependence of the critical cm (or Lcr at fixed m) was studied in [2, 35] and is in

qualitative agreement with recent lattice studies of ✓-dependence in thermal pure YM theory,

see [36, 37] and references therein. In [35], the ✓-dependence of another quantity was also

studied—the discontinuity of the trace of the Polyakov loop at the transition, and found a

dependence later confirmed by the lattice [37].

A discontinuous transition in the small-m, L regime was also found to occur in SYM⇤

theories without a center. The case of G2 SYM⇤ was studied in [2]. This theory is similar to

real QCD in that fundamental quarks can be screened (in G2, by three gluons). Proceeding

along the lines described above for SU(2), a discontinuous transition of the Polyakov loop

eigenvalues from an almost uniformly distribution on the unit circle to a more clumped one,

8The precise definition of cm is in Eq. (3.53).

– 6 –

Figure 26. The conjectured phase diagram of softly-broken SYM in the m-L plane. The calculable
center-symmetry breaking quantum phase transition, occurring at small-m,L and shown in Figure 28
is in the left-hand corner of the diagram, shown by a thick red line. The center-breaking transition
occurs, in the approximation of (158), at the critical value m̂ = Λ̂3. More appropriately, this is written
as m = Λ3L2, which is the equation of the thick red curve shown on the plot. If one keeps m fixed, it
is clear that the center-broken phase is entered by decreasing L (which, in the thermal theory means
going to higher temperature). This weak-coupling quantum phase transition is conjectured to be
continuously connected, upon decoupling the gaugino, to the thermal deconfinement transition in
pure YM theory, shown by the thick black line on the right.

As we show below, the various effects of soft breaking combine in interesting ways.
They will lead to the conclusion that for a range of m, there is a phase transition to a center-
symmetry restored phase in the small-L theory. This transition occurs in the calculable
small-L, small-m regime. We shall estimate the critical value of mL (at given Λ) and argue
that for SU(2) the transition is second order, i.e., is a continuous transition. We shall then
put forward a conjecture that this small-L calculable transition is continuously connected to
the thermal deconfinement transition in pure YM theory on R4. There are many checks that
appear to validate this conjecture (it holds for SYM with all gauge groups) and we shall
briefly summarize them at the end.

Consider the effects described above one by one. First, the GPY potential of the theory
with a single massive adjoint, Equation (86) with n f = 1, can be expanded for mL � 1
using K2(x) ∼ 2

x2 − 1
2 . The first term cancels the gauge contribution, while the second

gives the leading small-m term in the one-loop potential on the Weyl chamber (recalling

our definition of φ (132), we have vL = π +
g2

4
4π φ, so this is really a potential for φ. We also

used the Fourier transform relation
∞
∑

p=1

cos(2πpx)
p2 = π2(bxc(bxc2 − 1)− 1/6

)
. Additionally,

the reader may notice that in our calculation of (86), the mass m was assumed real. In fact,
the GPY potential, being perturbative, only depends on |m| (as is easy to see following
its derivation))

Vm2

GPY(φ) = −
(mL)2

π2L3

∞

∑
p=1

cos pvL
p2 = − (mL)2

L3

⌊
vL
2π

⌋(⌊
vL
2π

⌋2

− 1

)
+ const. (154)

This potential is minimized at vL = 0 or 2π, i.e., at the center-broken edges of the
Weyl chamber. Notice, however, that Vm2

GPY(φ) is of order (mL)2, hence for small enough m
it can compete with other contributions to the holonomy potential, as we shall now show.
It is not common that perturbative center-destabilizing effects, such as the above VGPY, can
be balanced by nonperturbative effects that tend to stabilize center symmetry, but the small
L and small m setup is unique in allowing for this in a controllable way. At small m, there
are two other contributions to the potential for φ and σ, coming from the nonperturbative
terms in (146).
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The first kind of terms are the neutral- and magnetic-bion induced term. These terms
will not be affected, to leading order in m, provided the gaugino mass m is taken to be
smaller than the inverse size of the bion. This is as it is the gaugino hopping that caused
the binding, and the attractive potential induced by gaugino hopping will not be affected if
m� r−1

bion ∼ g2
4/L.

The second kind of terms arises as, in the presence of a small gaugino mass, the M
and KK terms in (146) have their zero modes lifted. The lifting of fermion zero modes by a
mass or Yukawa term is a rather standard (but long) calculation in instanton calculus. We
shall short-circuit it in several ways. First, we note that, without regard to pre-exponential
g4 dependence, one can argue based on symmetries alone, that we should simply replace
λλ by m∗/L2 and λ̄λ̄ by m/L2. That λλ should be replaced by m∗ is justified by chiral
symmetry, due to their identical transformation property, while the L-dependence follows
on dimensional grounds as it sets all scales in the problem. (This follows, yet again,
by thinking of m as the vev of a field breaking the chiral symmetry. There could be further
corrections such as m∗ f (|m|L), for some unknown function f , but we are only interested in
the leading small-m term).

A further pictorial justification and the relevant scales are shown in Figure 27. We
can estimate the answer by taking the M ’t Hooft vertex (138) and computing the leading
small-m correction due the insertion of a gaugino mass term, the m∗Lλ̄λ̄/g2

4 term in (75).
This results in an M ’t Hooft vertex without fermion zero-mode insertions. Taking m real,
as discussed above, we obtain

M : e−S0 eiσ(x)−φ(x) ei θ
2
〈
λ(x)λ(x)

mL
g2

4

∫
d3yλ̄(y)λ̄(y)

〉
∼ e−S0

mL
g2

4

(
g2

4
L

)2

eiσ(x)−φ(x) ei θ
2

∫
d3y “

1
|x− y|4 ”

∼ e−S0 mL
g2

4
L3 eiσ(x)−φ(x) ei θ

2 ∼ mL
L3 e−S0 eiσ(x)−φ(x) ei θ

2 . (155)

Figure 27. The lifting of monopole–instanton fermion zero modes by a small fermion mass term.
The fermion zero modes are localized over a distance of order L, the M size. As m� 1/L, the propa-
gators shown by the blue arrows (the same ones responsible for the bion binding of Figure 24) are
massless propagators over a distance L, with the divergence cut off by the monopole–instanton core
of size L. The calculation is sketched in Equation (155).

The derivation above is clearly schematic, but the final answer is correct, with our
usual exponential-only accuracy. To obtain it, we used the propagator (124) on the first
line, simply dropping the angular part. Furthermore, the integral as shown on the top
line appears divergent at y approaching x, the center of the monopole. However, as the
M vertex is only local at distances� L from the monopole core, the divergence should
be cut at a scale L, thus replacing the integral over y by 1/L (the real calculation requires
knowledge of the wavefunctions of the fermion zero modes in the M background, see [21]
and references therein. The same calculation could also be performed using recent ideas to
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include supersymmetry-breaking effects in exact results via anomaly mediation, see [140]
(some work is required, however, to adapt this to the dual description on R3 × S1)).

The upshot of the above discussion is that, combining all small-m effects, we arrive at
the leading-order scalar potential in the small gaugino mass theory:

V(φ, σ) =
β

L3 e−2S0 (cosh 2φ− cos 2σ)

+
α(mL)

L3 e−S0
(
(eiσ−φ + e−iσ+φ)ei θ

2 + (e−iσ−φ + eiσ+φ)e−i θ
2

)
(156)

− (mL)2

L3

⌊
vL
2π

⌋(⌊
vL
2π

⌋2

− 1

)
, (with vL→ π +

g2
4

4π
φ in the last term).

The coefficient α here is different from that in (146) due to factors not shown in (155).
We have ordered the terms above in powers of mL: the first, center-stabilizing term is
of order (mL)0, the second term is of order (mL) and the third term is of order (mL)2.
Of course, the third term has no e−S0 suppression, signifying its perturbative nature.
Notice, however, that if mL ∼ e−S0 , all three kinds of terms can compete.

Our next task is, using (156), to find the vacuum state—and its symmetries—as a
function of mL, while dialing mL from the supersymmetric and Z(1)

2 -preserving limit,
mL = 0, towards mL ∼ e−S0 . In the process, we shall ignore the perturbative GPY potential,
the last line in (156), assuring the reader that this is a consistent assumption. (This is one
place where the ignored powerlaw dependence on g2

4 in the α and β terms is relevant.
We advise the reader to either trust us or to consult [21], where it is shown that there are
further 1/g2

4 terms in the nonperturbative potential terms that make them more important
than the GPY potential for mL ≤ O(e−S0), showing that the perturbative term can be
consistently ignored).

Qualitatively, it is clear that if mL = 0, the theory is supersymmetric, with two vacuum
states (147) breaking Z4 → Z2. But what about nonzero values of mL? Qualitatively, we
expect that at small mL, the vacuum degeneracy will be lifted (as m explicitly breaks the
Z4 chiral symmetry) and one of these ground states will be the vacuum. To do the further
analysis as simply as possible, we proceed as follows. We ignore the GPY term and rewrite
the other two terms using (105) to write (ΛL)3 = e−S0 . Then we can have fun and write a
dimensionless potential V̂, introducing dimensionless m̂ = mL and Λ̂ = ΛL. In addition,
for the purposes of illustrating the physics, we set α = β = 1. Thus proceeding, from (156),
we obtain the following dimensionless potential:

V̂
Λ̂6

= cosh 2φ− cos 2σ +
2m̂
Λ̂3

[
e−φ cos(σ +

θ

2
) + eφ cos(σ− θ

2
)

]
, where m̂ = mL, Λ̂ = ΛL. (157)

This form makes it clear that the ratio m̂
Λ̂3 controls the relative importance of neutral

and magnetic bions and the monopole–instanton terms. At small values of this parameter,
the center-symmetric neutral-bion contribution dominates, while, as we will see below,
upon increasing m̂

Λ̂3 , the second, monopole–instanton induced term causes the spontaneous

breakdown of Z(1)
2 .

To see this, for simplicity, let us also set θ = 0, obtaining

V̂
Λ̂6

∣∣
θ=0 = cosh 2φ− cos 2σ +

4m̂
Λ̂3

cos σ cosh φ. (158)

This form is as simple as it gets and is sufficient to getting the main idea across
(see [21] for a more detailed study). It is now immediately clear, from the above potential,
that at small m̂/Λ̂3, the φ = 0 center-symmetric minimum favoured is the one at σ = π,
as it has lower energy than the σ = 0 one. However, upon increasing m̂/Λ̂3 above,
this Z(1)

2 -symmetric minimum is destabilized. This is easiest to see by computing the
second derivative of (158) w.r.t. φ, evaluated at σ = π, φ = 0. This yields m2

φ|φ=0,σ=π ∼
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4− 4m̂/Λ̂3. Thus, the mass squared of φ is positive for small m̂, ensuring stability of the
center-symmetric vacuum. However, m2

φ|φ=0,σ=π vanishes at a critical value m̂c = Λ̂3,

indicative of a second order phase transition to a Z(1)
2 broken phase. This second order

transition occurs upon increasing mL to a critical value (mL)c ∼ e−S0 , as promised. At
fixed Λ, this transition occurs at the line m = ΛL2, shown in the lower l.h. corner of
Figure 26. As we just showed, the quantum Z(1)

2 -breaking transition occurs due to the
competition between center-stabilizing neutral-bion and center-destabilizing monopole–
instanton effects.

The potential (158) as a function of φ is shown in Figure 28, for two values of mL,
one just above and one just below (mL)c. One can also study the behaviour of (mL)c
upon increasing θ away from 0 and find that the critical value (mL)c decreases with θ,
see [33]. We shall not further dwell on the study of this potential here. Instead, let us
qualitatively discuss its conjectured relation to the thermal deconfinement transition and
the available evidence.

Figure 28. A plot of the potential (158) for σ = π as a function of φ for two values of mL: (mL) >
(mL)c = Λ̂3 (lower curve) with broken Z(1)

2 , and (mL) < (mL)c (top curve) with center-symmetric
holonomy vev. The top and bottom curve illustrate the 2nd order of the center-symmetry breaking

phase transition, corresponding to the unbroken- and broken-Z(1)
2 phases, respectively. A study of

the θ-dependence reveals that (mL)c is a decreasing function of θ.

In Figure 26 we plot the phase diagram of SYM with gaugino mass as a function of
m and L, the S1 radius. The calculable regime of small-L and small-m is in the l.h. lower
corner of plot. For 0 < mL < Λ3L3, above the thick red line on the plot, the vacuum is
one of the two SYM vacua with Z(1)

2 center symmetry intact. The phase transition line is
m = Λ3L2. Thus, if one keeps m fixed, one crosses the red line vertically down, from the
center-preserved phase to the center broken one, by decreasing L at fixed m. As smaller
L corresponds to higher-T when a thermal interpretation of the S1 holds, it is natural to
make the following continuity conjecture: it states that the phase diagram looks similar
to the one shown on the figure: the quantum phase transition on the l.h. lower corner is
continuously connected to the thermal deconfinement transition of pure YM theory, shown
on the r.h.s. with a thick black line. For m→ ∞ (m� ΛYM should suffice), the IR physics is
that of pure YM theory, which exhibits deconfinement at a critical S1 radius Lc ∼ Λ−1

YM (as
is known from the lattice). Here, ΛYM is the strong coupling scale of the pure YM theory.

Thus the center-symmetry preserving region of the SYM+m phase diagram is smoothly
connected to the confined phase of pure YM and the center-broken region to the decon-
fined phase.

What evidence do we have for this phase diagram? It should be clear that we have
no analytic proof, as we lose semiclassical calculability once we leave the small-m (and
small-L) regime, entering the strong-coupling regime of pure YM. Our knowledge of the
properties of the deconfinement phase transition in pure YM come from lattice simulations
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and from some theoretical arguments concerning its order [101,102] (in particular, they
argued that the SU(2) Z(1)

2 -breaking transition is second order, using Z2 Ising universality
class arguments). Let us now summarize the evidence in favour of the continuity conjecture,
including evidence for groups other than SU(2) (studied in [33,34]):

1. The order of the transition: for all gauge groups with nontrivial center (SU(N),
Spin(N), Sp(N), E6, and E7), the corresponding small-L quantum phase transition in
SYM with gaugino mass m is a discontinuous 1st order phase transition. The calculable
transition is continuous, 2nd order, only for SU(2). This agrees with the lattice studies
for all groups with center for which they exist [141], see [34] for detailed comparison.

2. A discontinuous jump of tr Ω at a critical value of mL (from a smaller value at small
mL to a larger value) is found for all gauge groups without a center G2, F4, or E8. This
first order transition without order parameter has been seen in lattice studies of G2
pure YM theory (no lattice studies of other center-less groups have been performed).
Further (even more quantitative) comparison with G2 lattice studies [142] can be
found in [33,34].

3. The critical value of m̂
Λ̂3 where the transition occurs (this is unity in our approxima-

tion) is a decreasing function of θ upon increasing θ away from 0. At fixed m, Λ this
corresponds to 1/Lc, i.e., Tc decreasing with increasing θ. On the other hand, the dis-
continuity of trΩ across the first order quantum transition is, in all cases, an increasing
function of θ. Both these features are in agreement with the lattice [143,144] (and with
large-N arguments regarding the θ-dependence given there).

Once again, we see that the small-L studies offer a qualitative description of properties
of the strongly-coupled 4D theory, in this case thermal pure-YM theory. The semiclassical
physics behind the SYM+m small-L transition—the competition between center-stabilizing
bions and center-breaking monopole–instantons—can not be, in a straightforward manner,
argued to hold in the pure YM thermal case. However, there is direction of thermal-YM
studies that uses interacting ensembles of monopole–instantons—akin to the instanton
liquid at zero temperature, reviewed in [51]—in pure YM theory in the Tc ∼ Λ strong
coupling region to model the phase transition. For a description of these models and a
discussion of their agreement with lattice data, see the early work [145] and, for work
including also fundamental matter and more references, the recent [146]. (Shuryak’s notes
on nonperturbative QCD [147,148] contain a discussion, often from a different perspective,
of many of the topics touched upon in these notes).

Finally, the recent work [149] used the present small-L SYM+m framework and the
continuity conjecture to study the realization of CP symmetry and center symmetry in
pure-YM at θ = π, conjecturing the existence of a novel deconfined and CP-broken phase
for SU(2).

Summary of Section 6.4: In this Section, we explored the center-symmetry realization in
SYM at small-L with added gaugino mass m. We found a Z(1)

2 -breaking quantum phase tran-
sition, driven by the competition between center-stabilizing bion and center-destabilizing
monopole–instanton effects. The agreement between the order of the transition and its
θ-dependence with available lattice studies suggest that this quantum phase transition
is continuously connected, upon decoupling the gaugino, to the thermal deconfinement
transition in pure YM theory, for all gauge groups, not just the SU(2) case studied here.

7. QCD(F) and “Colour–Flavour–Center” Symmetry

As discussed in Section 3.1, the addition of fundamental quarks explicitly breaks the
Z(1)

2 center symmetry; we explained this after Equation 59, using our way of introducing the
center symmetry via the improper gauge transformation (59). Thus, if we consider QCD(F)
with fundamentals on R3 × S1, we shall find that for either periodic and antiperiodic S1-
boundary conditions on the fundamental fermions, center symmetry is broken due to both
the fermion and gauge contributions and the dynamics of the theory is nonabelian also at
small L. In addition, one expects a chiral restoration phase transition upon decreasing L,
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at least for the thermal case. The center-symmetry breaking effect of periodic or antiperiodic
fundamental fermions is demonstrated in Figure 29 in Section 7.1 below.

In this Section, we shall study an example of an interesting development in QCD
with fundamental, rather than adjoint quarks, QCD(F), originated in [39,150,151]. We shall
find a set of S1-boundary conditions, for theories where the number of Dirac flavours of
fundamental quarks, NF, equals the number of colours N (or is an integer times N). These
boundary conditions preserve a “colour–flavour–center” symmetry even in the presence
of fundamentals, as explained in Section 7.1. We take N = 2, as in the rest of these notes.
(We could not find a discussion of the small-L/large-L continuity for SU(2) worked out
in the literature, so to stick with the SU(2) spirit of these notes, we did it our ourselves.
This Section, therefore, contains the only original result of these notes. Compared to the
N > 2 discussion [39], the new elements here are the chiral symmetry enhancement for
SU(2)-fundamentals and the use of the loop-induced Chern–Simons couplings on R3 × S1

computed recently [37] in the argument). We shall see that this suffices to illustrate many
important features of the construction:

1. The most remarkable fact is that this construction offers a continuous connection
between the low-lying (massless) states—the pions—on R3 × S1 at small L and at
large L. In particular, one can show that the chiral symmetry realization is the same in
both cases, offering evidence that there is no phase transition on the way from small
to large L.

2. The Goldstone boson(s) is (are) the dual photon(s), i.e., a sort of “dual gluon(s)”.
The dual gluon acquires charge under the continuous chiral symmetry, in contrast
to usual descriptions of chiral symmetry breaking on R4. This has been known from
earlier studies on R3 [152] as well as in other theories on R3× S1 [25], but a connection
to a theory so close to QCD(F) is new. The order parameter for continuous chiral
symmetry breaking, as for the discrete symmetry cases of Sections 4.2.1 and 6.2, is the
expectation value of a monopole operator 〈eiσ〉.

3. At the moment, it is not known how to generalize this to NF 6= ZN or to unequal
quark masses. The construction that we shall describe is part of a general framework
called “distillation of Hilbert spaces” by the authors of [153–155]. This is inspired,
on one hand, by the supersymmetric Witten index [125], and on the other—by large-N
volume independence ideas, see the discussion in [156]. We will not have the time
and space to describe this development. It is important to stress, however, that it
highlights the importance of the global-symmetry-twisted S1-boundary conditions
(the “CFC” ones, defined below) for the continuity between the small-L and large-L
chiral-symmetry realization.
Below, we explicitly argue for this continuity for our (decidedly small-N!) SU(2)
QCD(F) theory.

After summarizing the main points, we now explain the details.

7.1. Colour–Flavour–Center Symmetry

To describe the construction, consider the 4D fermion kinetic Lagrangian of the I =
1, ..., NF flavours of SU(2)-fundamental Dirac fermions (we suppress the explicit colour
indices in L f und, but show the gauge transformation of the fermions on the second line):

L f und = i
2NF

∑
I=1

ψ̄I
α̇ σ̄Mα̇α(∂M + iAa

MTa)ψI α, (159)

ψI ≡
(

ψ1
I

ψ2
I

)
, ψI → g ψI , g ∈ SU(2).

We use the same SL(2, C)-spinor notation as we used for the adjoint in (75). As shown,
all fermions ψI transform in the fundamental doublet representation of SU(2) (recall that
for SU(2) the fundamental and antifundamental representations are equivalent). We
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have shown the SU(2) gauge transforms of ψI above, while Aa
MTa transforms as in Ap-

pendix A. The number of Weyl fundamentals is 2NF; it has to be even to avoid the Witten
anomaly [157]. A single fundamental Dirac fermion is composed of two of the undotted
Weyl fermions ψI , say ψ1 and ψ2, with a Dirac mass term ψT

1αiσ2ψ2 βεβα (the colour indices,
on which σ2 and the transposition act, are not shown). The form (159) shows that the mass-
less theory has a classical U(2NF) nonabelian flavour symmetry under which (ψ1, ...ψ2NF )
transforms as a fundamental.

We gave the detailed form (159) in order to facilitate comparison with the Weyl adjoint
kinetic term (75) and to aid the calculation of the fundamental fermions’ contribution to
the GPY potential (similar to the one in Section 3.4.2 for adjoints). Now, we consider the
following important Exercise, where we introduce the notion of “colour–flavour–center”
(or CFC) symmetry and make other important remarks:

Exercise 18: Here, we study the contribution of massless fundamental Dirac
fermions to the potential for the holonomy and use the result to introduce the
CFC symmetry. As in Section 3.4.2, consider only the Polyakov line background
of A3

3 = v.

1. Proceed as in the calculation of the adjoint fermion determinant. Notice that
now both colour–space components (shown on the second line in (159)) of
the fundamental fermions contribute, as they both couple to the holonomy
v (it is instructive to compare Equation (160) below with the periodic adjoint
contribution (80)).
Show that for a single massless fundamental Dirac fermion, say with Weyl
components that we shall denote ψ1 and ψ2, with periodic boundary condi-
tions on S1, the GPY potential is

VP, F(vL) = −2 ∑
p∈Z

∫ d3k
(2π)3 ln

[(
~k2 + (

2πp
L

+
v
2
)2
)(

~k2 + (
2πp

L
− v

2
)2
)]

. (160)

The two contributions inside the logarithm come from the two colour
components of the e.g., ψ1 doublet. The other Weyl component of the Dirac
fermion, ψ2, leads to an identical contribution and the overall factor of 2.

2. Likewise, show that for fundamental Dirac fermion, with Weyl components
that we denote ψ3 and ψ4, but now with antiperiodic boundary conditions,
we instead obtain

VA, F(vL) = −2 ∑
p∈Z

∫ d3k
(2π)3 ln

[(
~k2 + (

2πp
L

+
π

L
+

v
2
)2
)(

~k2 + (
2πp

L
+

π

L
− v

2
)2
)]

. (161)

Notice that in both periodic and antiperiodic expressions above, no massless
modes of any KK number appear near the center-symmetric point v = π/L.
Further note when comparing (160) to (161) that the different boundary
conditions manifest themselves in the π/L Wilson line which appears in
the A (antiperiodic) fermion contribution to the GPY potential, but does not
appear in the P (periodic) fermion contribution.s

3. Treating the expressions above as if they converge (imagine them defined
via zeta-function) show that

VP, F(v) = VA, F(
2π

L
− v). (162)

This relation implies that the GPY potential for a system with two funda-
mental Dirac fermions (massless, or more generally, of the same mass), one
periodic (ψ1 and ψ2) and the other antiperiodic (ψ3 and ψ4) on the S1, is
invariant under the Z(1)

2 center symmetry (which reflects the Weyl chamber
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of Figure 10 around the middle). From now on, we shall call this theory the
“P+A” theory.
In fact, the relation (162) is due to the “colour–flavour–center” global sym-
metry, observed first in [158]. To elucidate, recall that, as explained after
Equation (59), introducing fundamental fermions breaks Z(1)

2 , as a center
transformation (59) applied to a periodic fermion makes it antiperiodic and
is thus not consistent with the boundary conditions. However, if there is
both a periodic and an antiperiodic fundamental Dirac fermion, of the same
mass, combining the center transformation with an exchange of the two
leaves the action invariant and preserves the boundary conditions. The ex-
change of the two flavours is simply a discrete flavour transformation, hence
the name “colour–flavour–center” symmetry. (The generalization to SU(N),
N > 2, is discussed in [39]. The analysis of CFC stabilization for arbitrary
N is more complicated than for SU(2); see the recent fun two-loop analysis
of [155]).

4. The different boundary conditions in the P+A Dirac theory can be in-
terpreted as due to the turning on of an S1-Wilson line Ω for a (vector-
like) subgroup of the global U(4) chiral–flavour symmetry. For example,
with I, J = 1, ..., 4, the P+A theory fields obey the S1 boundary conditions
ψI(x3 = L) = Ω J

I ψJ(x3 = 0), where Ω = diag(1, 1, eiπ , e−iπ). An x3-

dependent field redefinition ψ1 = ψ′1, ψ2 = ψ′2, ψ3 = eiπ x3
L ψ′3, ψ4 = e−iπ x3

L ψ′4,
where all ψ′ are now periodic, removes Ω from the boundary condition,
but brings in the π/L factors (as in (161)) into the A Dirac fermion kinetic
term. Convince yourself that these factors can be interpreted as background
S1-Wilson lines, in the Cartan subalgebra of an SU(2) embedded in the
lower right corner of U(4). This point will be important below.

5. Show that (160) and (161), using Appendix B and the identities leading to
(82), imply that, for the SU(2) P+A theory,

VA, F(vL) + VP, F(vL) =
8

L3π2

∞

∑
m=1

1
m4 (1 + (−1)m) cos

mLv
2

. (163)

As this expression is manifestly invariant under v → 2π
L − v, the center-

symmetric point v = π
L is bound to be an extremum.

To find if it is a minimum, it is easiest to plot the result and examine if
v = π/L is a minimum. See Figure 29 below, showing that CFC sym-
metry is preserved by the one-loop potential due to fundamental A + P
fermion flavours.

We need, of course, still worry about the gauge contribution (81) which destabilizes
the center symmetry. Comparing the absolute values of the potentials in Figures 16 and 29,
drawn to the same scale, clearly shows that the gauge contribution is dominant. Here, we
shall use our old trick and add massive adjoints, with m ∼ 1/L as in Figure 17, to counter
the gauge contribution, ensuring that the global minimum preserves CFC.

Let us now concentrate on the SU(2) P+A theory with NF = 2 Dirac fundamentals,
with massive adjoints added to “remove” the center-breaking gauge contribution to the
GPY potential. The upshot of our analysis so far is this R3 × S1 theory preserves center
symmetry in its CFC disguise. The holonomy vev is v = π/L and hence the theory
abelianizes. What, then, are the light degrees of freedom? There is, of course, the dual (to
A3

3) photon σ. The adjoints have mass ∼ 1/L and decouple. The A and P fundamentals
also have mass of at least π

2L , as follows by inspecting the integrands in (160) and (161).
Notice that this mass does not break the chiral symmetry, as it arises due to the coupling to
the holonomy, i.e., from the 4D kinetic term. It would then appear tempting to drop the A
and P fundamentals from our IR considerations. Indeed, as we now discuss, this offers a
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sensible way to proceed at first (then we can revisit and ask if there is any other effect on
the A and P fermions).

Figure 29. A plot of the one-loop holonomy potential (163), the thick line, in an SU(2) gauge theory
with a periodic and an antiperiodic massless fundamental flavours. The same scale L = 1 is used,
to facilitate comparison with Figures 16 and 17. The P and A contributions, favouring the broken

Z(1)
2 , are also shown separately.

Summary of Section 7.1: Here, we explored a particular way to add fundamental quarks
while still preserving a notion of center symmetry, abelianization, and semiclassical calcula-
bility on R3 × S1. We introduced the notion of “colour–flavour–center” (CFC) symmetry
and showed that center stability holds even in the theory with fundamentals, once the CFC
boundary conditions are imposed. Thus, the theory abelianizes, and we showed that the
dual photon is the only perturbatively massless degree of freedom. The nonperturbative
physics is analyzed next.

7.2. Chiral Symmetry Breaking on R4 and R3 × S1

As usual, our goal is to find the symmetry realization in the vacuum on R3 × S1 and
the relation to the R4 theory.

To this end, let us go back to the chiral symmetries of our P+A theory. On R4, where
boundary conditions are irrelevant, the SU(2) NF = 2 Dirac theory has a U(2NF = 4)
classical symmetry, with ψI transforming as a fundamental. The overall U(1) factor is
anomalous and we shall not discuss it further. (There is a host of ’t Hooft anomalies whose
matching in the IR theory one can study. This is an interesting exercise that we shall
not attempt here; instead, we concentrate on the massless spectrum and the continuous
symmetry realization). The SU(4) chiral symmetry is anomaly free and thus remains a
symmetry of the quantum theory. On R4, the expected behaviour of the theory is the
spontaneous symmetry breaking SU(4) → SP(2) by the expectation value of the gauge-
invariant fermion bilinear condensate. The fermion bilinear whose vev spontaneously
breaks the chiral symmetry has the form of a general mass term (again we do not show the
colour–space indices on which the transposition and σ2 act):

〈ψT
Iαiσ2ψJβεβα〉 ∼ JI JΛ3 : SU(4)→ SP(2) (or USp(4)), where J ≡ 12×2 ⊗ iσ2 =

(
iσ2 0
0 iσ2

)
. (164)

As indicated above, the fermion bilinear is antisymmetric in the SU(4) indices (owing
to the anticommuting nature of the fermions and the antisymmetry of εβα and iσ2). We
used JI J to denote the elements of the 4× 4 antisymmetric matrix J, invariant under SP(2)
(this group is sometimes also called USp(4), the set of SU(4) matrices U preserving J,
i.e., obeying UT JU = J, and has dimension 10).

Thus, the long-distance physics on R4, assuming the symmetry breaking pattern (164),
is described in terms the chiral Lagrangian of 15− 10 = 5 massless Goldstone bosons that
parameterize the SU(4)/USp(4) coset, including Wess–Zumino terms to match the various
’t Hooft anomalies. This coset space can also be written as SO(6)/SO(5), owing to the Lie-
algebra equivalences of SU(4) ∼ SO(6) and USp(4) ∼ SO(5). It is used as one of the “little
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Higgs” models of particle physics. For recent work and references, see [159], which studies
this theory on the lattice, and [160], which works out the topological Wess–Zumino terms.

Now we go back to our CFC-preserving R3 × S1 compactification. The different
S1 boundary conditions on the P and A fermions explicitly break the chiral SU(4) to
SU(2)A× SU(2)P×U(1)X . The P fermions (ψ1, ψ2) ∼ (2, 1) under SU(2)P×U(1)X , while
the A (ψ3, ψ4) ∼ (2,−1) under SU(2)A ×U(1)X. From the explicit form of J (164), it is
clear that the SU(2)P and SU(2)A parts of the global symmetries preserved by the CFC
boundary conditions are in the unbroken USp(4) (recall that for any SU(2) matrix V,
VTiσ2V = iσ2). U(1)X, on the other hand, is the only global symmetry respected by the
boundary conditions which is broken in the vacuum with the condensate (164). (Notice
that Dirac masses for P (ψT

1 iσ2ψ2) and A (ψT
3 iσ2ψ4), not showing the SL(2, C) contraction,

are invariant under the respective SU(2)A,P and have charge ±2 under U(1)X, thus the
U(1)X is part of the “usual” chiral symmetries as defined in QCD(F) with N > 2). This
remark will be important for showing small-L/large-L continuity further below.

Next, we shall show that the spontaneous breakdown of the U(1)X symmetry pre-
served by the compactification can be demonstrated in the small-L CFC symmetric theory.
Furthermore, the dual photon σ—the only massless field left after the A,P-compactification
of our theory—is the Goldstone boson of the broken U(1)X . There are several ways to show
this, and we shall allude to them all.

First, we proceed following the recent work [37], as it offers the shortest way to our
goal. As described above, in the CFC vacuum all fermions are massive, so they can be
integrated out. We shall do so and ask for the terms in the Wilsonian effective action
generated upon integrating out the massive fields. These terms can depend on the light
Cartan subalgebra gauge field A3

µ. In addition, to study the global-symmetry properties
of the theory, we introduce a background field for the U(1)X symmetry, XM, coupling to
the A and P fermions charged under it. Under U(1)X, we have XM → XM + ∂Mω and
ψ1 → eiωψ1, etc.

Then, we ask for the terms that depend on both the dynamical A3
µ and the background

Xµ in the effective long-distance theory. We have two P Weyl fermions (a single Dirac)
(ψ1 and ψ2) with charge +1 under U(1)X, and two A Weyl fermions (ψ3 and ψ4) with
charge −1, all of which are SU(2)-gauge fundamentals. The XM couplings are precisely
the couplings of a U(1)-chiral-symmetry background field to Dirac fermions on R3 × S1

studied in [37]. Integrating these fermions out produces, via the one-loop diagrams shown
in Figure 30, Chern–Simons-like couplings between the U(1)X field and A3

µ .

Figure 30. The one-loop graph generating mixed Chern–Simons (CS) coupling of the dynamical
Cartan gauge field Aν and Xµ, the U(1)X chiral-symmetry background field. To make the result (165)
plausible, using 4D γ-matrix notation, we have schematically indicated the relevant factors leading
to the 3D CS coupling. The Xµ coupling to the A and P Dirac fermions is chiral, while an insertion of
the holonomy vev in the numerator of one of the fermion propagators gives a γ3 factor. Altogether,
this leads to trγ5γ3γµγνγλ ∼ εµνλ. To obtain Equation (165), one has to carefully sum the loop
contributions of the heavy A and P Dirac fermions, including their KK mode tower. The result for
each Dirac fermion is given in Equation (B.4) in [37] (one has to substitute q = ±1 for the U(1)X

charges, use the SU(2) fundamental-representation weights, and account for the different A-fermion
boundary condition by inserting the µ = π

L U(1)V-Wilson line, similar to (161)).
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To compute these couplings, one has to add the A and P Dirac fermion contributions
to the X–A Chern–Simons coupling; see the caption of Figure 30 for a brief guide to the
relevant parts of [37]. This results in the following U(1)X-Cartan subalgebra A3

µ (omitting
the isospin index on Aµ, Fµν below) mixed CS term:

LCS = − 1
4π

εµνλXµFνλ . (165)

Now we perform the duality as in (20), but with the above CS term included

LMink.[Fµν, σ, Xµ] = −
L

4g2
4

FµνFµν − 1
8π

∂µσFνλεµνλ − 1
4π

εµνλXµFνλ , (166)

finding Fµν = − g2
4

4πL εµνλ(∂λσ + 2Xλ), and ending up with the dual-photon Lagrangian
coupled to Xλ:

LMink.[σ, Xµ] =
1
2

g2
4

(4π)2L
(∂λσ + 2Xλ)(∂

λσ + 2Xλ) . (167)

As the UV Lagrangian with XM coupled to the P and A fermions is U(1)X invariant,
so must be the IR effective Lagrangian obtained after integrating them out, as their mass is
chirally invariant. Thus, U(1)X invariance of (167) requires that the dual photon field shift
under the U(1)X symmetry, namely:

U(1)X : σ→ σ− 2ω . (168)

As U(1)X is an anomaly-free symmetry of the quantum theory, Equation (168) implies
that no potential for σ can be generated. The masslessness of the dual photon is due
to its being a Goldstone boson of the U(1)X. The fact that the dual photon can be a
Goldstone boson has been known since [152] in an R3 framework and in some related
R3 × S1 theories [25], but the new realization here is its connection to R4 via the CFC-
symmetric compactification in QCD-like theories. (For a discussion in the “generalized
global symmetry” framework, see Section 5 of [16] and the earlier work [161–163]). As
in the breaking of parity in dYM at θ = π or of the discrete chiral symmetry in QCD
(adj)/SYM, the order parameter for the breaking of the continuous chiral symmetry here is
the expectation value of a monopole operator 〈eiσ〉.

Second, a different point of view on the same phenomenon arises if one asks the
question of the possible contributions of M and KK monopole–instantons. The shift (168) of
the dual photon can be seen to arise from a consideration similar to our study of the QCD
(adj) M and KK ’t Hooft vertices (only there, the relevant symmetry was a discrete Z4n f ,
recall (114)). This is as the massive fermions A and P have zero modes in the M and KK
background, as follows from the index theorem on R3 × S1 already referred to, see [112].
As we shun to discuss details of the index theorem in these notes, we can argue slightly
differently: accepting the shift symmetry (168), we can ask what ’t Hooft vertices of M and
KK are allowed? Clearly, an e±iσ ’t Hooft vertex is not allowed by the shift symmetry. Now
we recall that CFC takes σ → −σ, as it acts as Z(1)

2 , and also interchanges A ↔ P. Thus,
the following M and KK contributions

e−S0
(

eiσψT
1 iσ2ψ2 + e−iσψT

3 iσ2ψ4 + c.c.
)

. (169)

are consistent with both U(1)X and with CFC. (As well as with the index theorem in
monopole–instanton backgrounds, which implies that the P and A fermions reside on dif-
ferent monopole–instantons [112]; see also Appendix D). Notice that there is one substantial
difference from the corresponding bilinear fermion terms in SYM (142): here, the fermions
are heavy, of chirally-symmetric mass π/(2L) from the CFC compactification. The mass
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terms (169) are nonperturbative chiral-symmetry breaking contributions to the fermion
mass. The chiral-breaking mass terms (169) represent, in our µ � 1/L EFT framework,
a backreaction of the long-distance nonperturbative dynamics on the heavy states of mass
∼ 1/L.

In real-world QCD, the L−1e−S0 chirality-breaking fermion mass from (169) would
represent the so-called “constituent” quark mass generation due to spontaneous chiral
symmetry breaking. Furthermore, as in QCD, adding explicit chiral-symmetry-breaking
small “current” quark masses lifts the zero modes (as in Figure 27) producing an M and
KK potential for σ (V ∼ cos σ) and thus a nonzero “pion” mass. There is then, exactly as
in Section 2.6, a string confining fundamental quarks with tension calculable in the EFT.
However, as also discussed in Section 2.6, a sufficiently long string is unstable to quark–
antiquark pair creation. Of course, this is expected, as QCD(F) has no center symmetry in
the R3-directions.

Summary of Section 7.2: Here, we first outlined the QCD-like IR physics on R4 and the
nonabelian chiral-symmetry breaking pattern (164). Then, we studied the small-L IR
physics with “CFC” twisted boundary conditions. We showed that the dual photon shifts
under the U(1)X chiral symmetry and is the Goldstone boson. The order parameter for the
chiral-symmetry breaking is the expectation value of the monopole operator. The chiral-
symmetry breaking leads to constituent mass of the A+P fundamental fermions, through
the M and KK ’t Hooft vertices.

7.3. Continuity between the Large-L and Small-L Symmetry Realization

Finally, we explain the remarkable feature of the CFC-symmetric compactification
noted in the beginning of this Section: the small-L/large-L continuity. Consider the low-
energy limit of the R4 theory, described by the SU(4)/USp(4) chiral Lagrangian of the
Goldstone bosons. Compactifying on an S1 of size L� Λ−1, we have to remember that the
different boundary conditions for the A and P fermions can be rephrased as the turning
on background Wilson lines for the vector global symmetry, or equivalently, imposing S1-
boundary conditions twisted by Ω. In the low-energy chiral Lagrangian, valid at L� Λ−1,
these same Ω-twisted boundary conditions on the S1 have to be imposed on the fields in
the chiral Lagrangian of the Goldstone bosons.

Now, we recall our earlier symmetry considerations, showing that the CFC boundary
conditions leave the SU(2)P × SU(2)A ×U(1)X ∈ SU(4) part of the broken global symme-
try intact, but that only the U(1)X is part of the broken symmetry, i.e., one under which the
goldstones transform nonlinearly. In other words, our CFC boundary conditions explicitly
break all the spontaneously broken (by (164)) symmetries but U(1)X. This implies that
of the 5 SU(4)/USp(4) Goldstone bosons, only the U(1)X-Goldstone will remain exactly
massless at finite L, while the others should obtain mass of order 1/L from the CFC bound-
ary conditions. (This can be worked out explicitly if needed, but it requires introducing the
chiral Lagrangian for SU(4)/USp(4). For a more familiar example in an SU(3) QCD(F),
using the familiar QCD (SU(3)L× SU(3)R)/SU(3)V pion Lagrangian, see [39]). This single
massless Goldstone boson becomes, in the small-L limit, the dual photon. The upshot is
that the massless spectrum of our P+A theory is the same at L� Λ−1 and L� Λ−1. This
provides evidence for the continuous connection between the small-L and large-L limit,
i.e., for “adiabatic continuity” in QCD(F) with CFC boundary conditions. Notice, however,
that the L ∼ Λ−1 regime is one where neither the R4 nor the small-L descriptions used
above applies, so we do not have proof of the continuity.

The reader may feel a certain amount of unhappiness after understanding the main
points of this Section. This may arise from the realization that only the breaking of the
U(1)X subgroup of the nonabelian SU(4) chiral symmetry can be seen in the calculable
small-L regime. Indeed, weak coupling on small R3 × S1 is designed so that the physics
abelianizes. The massless dual photons (which are Goldstone bosons also for the N > 2
generalizations [39] of our CFC story) comprise only a subset of the R4-pions which
transform, linearly or nonlinearly, under nonabelian global symmetries. The dual photon(s),
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on the other hand, only transform under abelian global symmetries. This may, indeed, be
the best that is possible in a calculable semiclassical regime.

At this point, we leave the judgment and possible applications of this construction for
the future, but should not fail to notice many interesting and thought-provoking features,
notably the role monopole–instantons play in the constituent mass generation. We thus
rest our case and refer the interested reader to recent work on this continuity for N > 2,
discussing many aspects not touched upon here [155].

Summary of Section 7.3: Here, we showed that considering “CFC” twisted boundary
conditions allows one to exhibit a continuous connection between the IR spectra of QCD(F)
at small and large L: the continuous chiral symmetry realization is the same at large
L� Λ−1 and at small L� Λ−1.

8. A Quick Guide to the Literature on Other Theories
8.1. dYM, QCD (adj)/SYM, and QCD(F) with Gauge Group SU(N) and N > 2

Having familiarized ourselves with the detailed working of the various R3 × S1-
compactified SU(2) theories, it is now natural to ask about larger numbers of colours.
The only reason we stayed away from discussing SU(N) was to not have to introduce more
group theory notation. This would require venturing into Lie-algebraic territory: using
roots, weights, etc., which are all required for the study of the circle compactified theories
for general N and for other gauge groups. A pedagogical approach would have required
us to introduce these notions, which are not standard fare in QFT classes. This would have
made the lectures even longer.

We believe, however, that the SU(2) case illustrated much of the small-L physics quite
nicely. Briefly, the general feature, abelianization on R3 × S1, also holds in dYM, QCD (adj),
and SYM for N > 2 and appears as spontaneous breaking SU(N) → U(1)N−1 at a scale
mW = 2π/(NL). Thus, calculability requires ΛNL� 2π. There are N − 1 dual photons as
well as N different “M and KK” monopole–instantons; these are now most appropriately
labeled by the N − 1 simple roots and the lowest, or affine, root of SU(N). Their ’t Hooft
vertices (and molecules made thereof) generate the appropriate potentials for the dual
photons. Magnetic bions and neutral bions appear, as in SU(2), but have a more diverse
nature. Overall, the small-L physics of dYM, QCD (adj) and SYM is quite similar to the
SU(2) case. As alluded to in the last Section, QCD(F) differs due to the fact that it is only
SU(2) where the fundamental and antifundamental quarks are equivalent (for QCD(F)
with N > 2, see [155]).

Our SU(2) considerations do not allow us to discuss the small-L, so-called “abelian
large-N” limit. This consists in taking N → ∞ and L → 0 but keeping NLΛ � 2π fixed,
in order to have weak coupling calculability [18]. For SU(N) one can study the properties
of confining strings of various N-alities [55,62,164]. The most unusual feature of SU(N)
theories in this limit is the appearance of an emergent dimension: even though one takes
L→ 0, thus expecting the long-distance theory to be 3D, a latticized dimension of N sites
and lattice spacing m−1

W eS0 (for SYM) emerges from the Cartan space of the gauge group.
For more discussion of this phenomenon, somewhat similar to T-duality in string theory,
see [29].

For the reader who wishes to understand the details of the generalizations to SU(N)
(for other gauge groups, see further below) we offer a brief guide through the literature.
The original papers on dYM [13] and QCD (adj) [11] all considered SU(N) for arbitrary
N, assuming familiarity with the Lie-algebraic notation. This can be learned by studying
one of the many group-theory books, for example Ramond’s [165]. There are also several
papers that introduce aspects of this technology adapted to the R3 × S1 compactification.
We especially recommend the voluminous appendix of [19], where the generalization of
the Weyl chamber, shown in Figure 10 for SU(2), for all gauge groups is explicitly worked
out; another paper whose appendix introduces some of the relevant technology is [34].

An aspect we did not discuss, even for SU(2), was the matching of various ’t Hooft
anomalies in the small-L theory. These include both the traditional 0-form symmetry
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anomalies, which are standard material, reviewed in [43], as well as the more recent so-
called generalized ’t Hooft anomalies involving higher-form global symmetries [15–17].
This is a big subject that we can not possibly do justice to here; unfortunately, an in-
troductory set of notes does not appear to have been written yet. We already men-
tioned that the liberation of quarks on domain walls (exhibited explicitly in our semi-
classical domain, see Sections 4.2.2, 5.3.2 and 6.2) is a manifestation of the generalized ’t
Hooft anomaly [35,91,166,167]. The matching on R3 × S1 is discussed, in various ways,
in [37,81,168], as well as in the recent [38]. The appendix of the latter reference has a
physicist-friendly discussion of the gauging of the 1-form center symmetry for all gauge
groups on the four-torus, relevant for the ’t Hooft anomaly between center symmetry and
parity or discrete chiral symmetry. Further related recent work is in [131,136].

8.2. Other Matter Representations with SU(N) Gauge Group

The study of SU(N) gauge theories with fermions in other representations began
soon after the work [11,13] appeared, in the framework which was called “deformation
theory”. This consists of adding the center stabilizing potential (87) by hand, to ensure
abelianization, and then studying the “M and KK” vertices, taking into account the zero-
modes of the various fermions via the index theorem [112]. The presence or absence of dual
photon potentials can be then deduced from the relevant symmetries [14,24,25,169]. In this
manner, the small-L phases of theories with fermions in varying numbers of vectorlike
fundamental, symmetric, antisymmetric, etc., representations were studied, as well as some
chiral theories [23] (see [170] for interesting remarks on the supersymmetric version of
the latter).

An uncomfortable aspect of this approach is the fact that the nonlocal term (87) is
added by hand, leading to a nonrenormalizable UV-incomplete theory. It is desirable
if the theory abelianizes as a result of the dynamics, as we saw happens naturally in
QCD (adj). This was seen to occur in some cases with mixed-representation fermions [24].
A general study was performed by Anber et al. in [171]. They studied general SU(N)
asymptotically-free and anomaly-free theories with fermions in general representations.
When taken on R3 × S1, all fermions were taken periodic and their “GPY” potentials were
studied. The conclusion was that theories with only a single-type of representation do not
abelianize on S1 and are thus generally strongly-coupled in the IR. However in a large
class of mixed-representation theories, abelianization occurs. A complete list of mixed-
representation theories was given, see Table 8 of [171]. Some of these theories were studied
further in [31,32] and were also used to suggest novel possible phases on R4.

8.3. Other Gauge Groups

A natural question that arises is whether the abelianization—and the resulting calcula-
bility of the IR dynamics on R3 × S1—in SU(N) with n f adjoint fermions also occurs for
other gauge groups with adjoints. Many of the simple Lie groups (Sp(N), Spin(N), E6, E7)
have nontrivial centers. In all cases, theories with only adjoint fermions respect the 1-form
center symmetry.

A big difference compared to SU(N), however, is that the order of the center of the
gauge group is usually much smaller than the rank of the group. Let us compare SU(N),
where the order of ZN is N and the rank is N − 1 with, for example, Sp(N), also known
as USp(2N), whose center is Z2 while the rank is N. In each case, the dimension of the
Weyl chamber is equal to the rank, as was the case for SU(2). The center symmetry maps
the Weyl chamber to itself and the center-symmetric vevs are the fixed points of this
map. If the theory is center-symmetric, this fixed-point set is bound to be an extremum.
For SU(N), as for N = 2, there is a unique center-symmetric point on the Weyl chamber,
where complete abelianization occurs. As we showed, this point is the minimum of the
GPY potential for n f > 1.

In contrast, for Sp(N) (the situation for all other groups with centers (the maximal
order of center is 4) is similar [19]) there is an bN/2c dimensional fixed-point set which
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also passes through the edges of the Weyl chamber, where there is unbroken nonabelian
gauge symmetry. A priori, it is not obvious which point on this fixed-point set is the actual
minimum of the perturbative “GPY” potential in the theory with n f > 1 adjoints. The
question about the behaviour of the one-loop “GPY” potentials in such theories was studied
in the already-mentioned ref. [19]. It turns out that only QCD (adj) with n f > 1 and gauge
groups SU(N) and Sp(N) abelianizes at small S1 (the small-L IR physics of Sp(N) QCD
(adj) was studied in [19,172]). For all other gauge groups, there is an unbroken nonabelian
gauge group, leading to a strongly-coupled IR physics even at small S1.

The most remarkable feature, however, arises for the n f = 1 case of SYM with general
gauge group G [128]. There, as for our SU(2) case, due to supersymmetry, the “GPY” poten-
tial vanishes to all orders of perturbation theory. The nonperturbative physics determines
where the holonomy vev lies. It turns out that, for SYM theories, abelianization occurs for
arbitrary gauge group: G → U(1)r, due to the “M + KK” nonperturbative potentials on the
Weyl chamber (here r is the rank of G). The minimum occurs away from the boundaries
of the Weyl chamber at a particular point described in [128]. In each case, the small-L IR
theory is the magnetic dual of an U(1)r 3D gauge theory.

In the case where G has a center this point on the Weyl chamber preserves center sym-
metry and the abelianization allows one, upon adding a gaugino mass, to investigate the
continuity conjecture to the thermal-YM theory, as in Section 6.4 (see also [33,34,149]). This
also allows a study of other nonperturbative properties, not accessible to the usual holo-
morphy tools, such as the nature of the various domain walls and of the confining strings.

Summary of Section 8: The small-L dynamics of all dYM, QCD (adj)/SYM, QCD(F) the-
ories studied here proceeds along lines similar to SU(2), for all SU(N) gauge groups.
However, in the nonsupersymmetric case of QCD (adj) only Sp(N) abelianizes at small L,
while the other groups retain some unbroken nonabelian subgroup. In the case of SYM,
abelianization occurs for all gauge groups, with or without a center. Regarding other mat-
ter representations, abelianization holds in many cases of mixed-representation periodic
fermions, as per the classification of [171].
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Appendix A. Notations and Conventions

Here, we summarize our conventions and warn about possible confusions caused by
our notation.

We use µ = 1, 2, 3 to label the R3 Euclidean spacetime coordinates. In R4 we use instead
M = 1, 2, 3, 4 to label the Euclidean coordinates. We use the same labeling on R3 × S1 with
x4 ≡ x4 + L being the compact S1. In each case, the Euclidean metric is positive definite
(+,+, ...). On several occasions in the text, we fail to explicitly show lower/raised repeated
indices that are summed over. The 4D Levi-Cevita tensor is ε1234 = +1.

We use a = 1, 2, 3 to label SU(2) Lie-algebra indices. The generators of the gauge
group are Ta, obeying Tr(TaTb) = 1

2 δab and can be taken to be one-half the Pauli matrices,
Ta = σa/2. The gauge fields and adjoint scalar transform as usual under SU(2) gauge
transformations g: AM = Aa

MTa → g(AM − i∂M)g−1. An adjoint field transforms as
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Φ = ΦaTa → gΦg−1. The field strength tensor is FMN = ∂M AN − ∂N AM + i[AM, AN ]
and the adjoint covariant derivative is DMΦ = ∂MΦ + i[AM, Φ]. A fundamental field Ψ
transforms as Ψ→ gΨ and has covariant derivative DMΨ = ∂MΨ + iAMΨ.

On several occasions, we use R1,3 or R1,2 × S1 Minkowski space. We use the same
labels M, N (and µ, ν) for the coordinates, but with (+,−,−, ...) metric. In addition, their
ranges are now M, N = 0, 1, 2, 3 (and µ, ν = 0, 1, 2), where x0 is the time direction while the
S1 direction is x3 ≡ x3 + L.

For fermions, we use the “God given” two-component SL(2, C) spinor notation used
in [43]; for the most detailed introduction, see [173]. Lagrangians involving fermions are
written in Minkowski metric. The minimal amount of information on the two component
SL(2, C) spinor notation we need is as follows. The Weyl spinor is an anticommuting
complex object λα (α = 1, 2), with λ̄α̇ = (λα)∗, ε12 = −ε21 = ε1̇2̇ = −ε2̇1̇ = +1. Instead
of the usual gamma matrices, one uses the two-by-two matrices σ̄0 = σ0 = 12, σ̄i = −σi,
i = 1, 2, 3, where σi are the Pauli matrices (when using matrix notation there is no reason
to explicitly show the indices σ̄α̇α, as we do in e.g., (78)). For a massless Weyl fermion,
the kinetic term is iλ̄α̇ σ̄Mα̇α(∂Mλα) while a Majorana mass term is m

2 λαλβεβα + m∗
2 λ̄α̇εα̇β̇λ̄β̇.

A Dirac mass term requires two Weyl fermions ψ1,2 with the same kinetic terms and mass
term mψ1 αψ2 βεβα + c.c.. The Dirac mass term is symmetric w.r.t. interchanging 1 ↔ 2
due to anticommutativity of the spinors and the antisymmetry of ε. In each case, gauge
invariance is imposed as required by the fermions’ representation.

Possible notational confusion:

• The reader should be aware of the relabeling of the S1 coordinate x4 → x3 upon
transition from Euclidean to Minkowski space.

• Throughout, we use Z(1)
2 to denote the 1-form Z2 (center) symmetry along the S1

coordinate. Explicitly, this symmetry appears first in Equation (58) as acting on the
fundamental Wilson line wrapping the S1. This symmetry is often called “0-form
center symmetry”, a name justified from the point of view of the compactified theory.
We avoid this terminology and, in the few occasions where we need to mention the
1-form symmetry in the noncompact directions, this is explicitly stated.

Appendix B. The Massless Adjoint Fermion Contribution to “GPY” Potential

Here we compute the fermion determinant needed to obtain the finite vL-dependent
part of (80). Introducing dimensionless variables (~q and x = vL), we define the quantity
Fλ[x], proportional to our formal expression for the determinant over the non-Cartan
fermions λ±:

Fλ[x] ≡ ∑
p∈Z

∫ d3q
(2π)3 ln

(
~q 2 + (2πp− x)2

)
. (A1)

We next define the ζ-function of the operator (in addition to [71], zeta-function regular-
ization is also discussed in the textbooks by Birrell and Davies [174] and Schwartz [175] (in
the latter, in the related context of flat-space Casimir-energy-like problems). The interested
reader can also look up the original GPY calculation which did not use zeta-function [66])
whose eigenvalues appear inside the logarithm above:

ζλ[s, x] ≡ ∑
p∈Z

∫ d3q
(2π)3

1
(~q 2 + (2πp− x)2)

s , (A2)

and note that the r.h.s. converges for Re[s] large enough. For other values of s, the function
ζλ[s, x] is defined by analytic continuation. In terms of ζλ[s] thus defined, we have

Fλ[x] = − lim
s→0

d
ds

ζλ[s, x] . (A3)
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We compute ζλ[s, x] by first integrating over d3q to obtain (below, bac denotes the
largest integer smaller than a)

ζλ[s, x] =
Γ[s− 3

2 ]

8π3/2 Γ[s] (2π)2s−3 ∑
p∈Z

1
|p + x̂|2s−3 , where x̂ ≡ x

2π
−
⌊

x
2π

⌋
∈ (0, 1) . (A4)

Then, we separate the sums over p ≥ 0 and p < 0, shifting variables in the latter sum,
to obtain an expression for ζλ[s, x] in terms of the incomplete ζ function:

ζλ[s, x] =
Γ[s− 3

2 ]

8π3/2 Γ[s] (2π)2s−3

(
∑
p≥0

1
(p + x̂)2s−3 + ∑

p≥0

1
(p + 1− x̂)2s−3 ,

)

=
Γ[s− 3

2 ]

8π3/2 Γ[s] (2π)2s−3 (ζ(2s− 3, x̂) + ζ(2s− 3, 1− x̂)) (A5)

Next, we realize that to obtain a nonzero Fλ[x], the derivative in (A3) should act
on 1/Γ[s] (otherwise the contribution vanishes due to the pole of Γ(s) at s = 0). Then,
using lim

s→0
d
ds

1
Γ[s] = 1 gives the only nonvanishing contribution to Fλ[x], recalling that

[vL] ≡ vL (mod2π),

Fλ[x] = −4π2

3
(ζ(−3, x̂) + ζ(−3, 1− x̂)) = −π2

45
+

1
24π2 [vL]2(2π − [vL])2 , (A6)

where to obtain the last equality we recalled that x = vL, the definition of x̂ in (A4),
and used the relation between the incomplete zeta-function and the Bernoulli polynomials,
ζ(−3, a) = −( d

da B5(a))/20, where B5(a) = a5 − 5a4/2 + 5a3/3− a/6.

Appendix C. The Massive Adjoint Fermion Contribution to “GPY” Potential

Here, in order to compute (85), we consider the massive generalization of (A1). We
define, in terms of the dimensionless x = vL and µ = mL,

Fλ[x, µ] = ∑
p∈Z

∫ d3q
(2π)3 ln

(
~q 2 + (2πp− x)2 + µ2

)
= − lim

s→0

d
ds

ζλ[s, x, µ] , (A7)

where we proceeded in complete analogy with (A2) to define a zeta-function

ζλ[s, x, µ] ≡ ∑
p∈Z

∫ d3q
(2π)3

1
(~q 2 + (2πp− x)2 + µ2)

s

=
Γ(s− 3

2 )

8π3/2Γ(s)(2π)2s−3 ∑
p∈Z

1
((p− x̂)2 + ( µ

2π )
2)s−3/2

. (A8)

The sum over p is now more complicated and is performed using the identity (the
derivation can be found in [176] (for easier access, note that it is also reproduced in the
Appendix of [177]))

f [t; a, c] = ∑
n∈Z

1
[(n + a)2 + c2]t

=

√
π|c|1−2t

Γ(t)

[
Γ(t− 1

2
) + 4

∞

∑
p=1

(πp|c|)t− 1
2 cos(2πpa)Kt− 1

2
(2πp|c|)

]
.

The result is then substituted in (A7) to obtain, after careful manipulations similar to
those in Appendix B, the desired form (85).

Appendix D. A Flavour of the R3 × S1 Index Theorem: SU(2) Spin-j Representations

Here, we provide the reader with a flavour of the index theorem, without considering
the details of its derivation (see [112] and the Appendix of [34], where Lie-algebraic notation
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valid for general gauge groups is used). In the text, we avoided making explicit use of
the index theorem and instead relied on symmetry arguments to write terms involving
fermions in the µ� 1/L EFT. Our main point here is simply to illustrate the fact that these
arguments are backed up by the index theorem—unfortunately too technical a subject to
present in detail.

The R3 × S1 index theorem for monopole–instantons in a vacuum with a nonzero
holonomy at infinity in R3 (i.e., one which completely abelianizies the gauge group, as ev-
erywhere in these notes) is a generalization of the R3 Callias index theorem [113] and has
been derived in the mathematical literature [111]. Using terms accessible to physicists,
the Callias index theorem was derived by E. Weinberg [48,178]. Ref. [112] generalized his
derivation to R3 × S1 to obtain the result of [111] in a physicist-friendly manner. Below, we
only outline the main ideas. Begin by considering the quantity

Ij = lim
µ2→0

tr
µ2

D†D + µ2 − tr
µ2

DD† + µ2 , (A9)

where D is the Weyl operator on R3 × S1 in the appropriate “spin-j” representation of
SU(2). We explicitly showed this operator for the j = 1/2 fundamental in (159) and j = 1
adjoint representations in (75). The trace is taken over the space of two-component spinor
functions the operators D†D and DD† act on. Naturally, the Weyl operator is taken in the
monopole–instanton gauge background of interest.

The most relevant observation regarding (A9) is that nonzero discrete eigenvalues do
not contribute to Ij. To see this, note that if Ψ is a normalizable eigenfunction of D†D with
nonzero eigenvalue, D†DΨ = λΨ, then DΨ, also normalizable, obeys DD†(DΨ) = λ(DΨ),
i.e., is an eigenfunction with the same eigenvalue. Thus, the Ψ and DΨ contributions to the
first and second term in (A9) cancel out already for finite µ2. The detailed analysis of [178],
which also holds on R3× S1, showed that the continuous spectrum also does not contribute
to (A9), provided the vev of the holonomy is not at the edges of the Weyl chamber—hence
the need for abelianization of the gauge group. Accepting this, the conclusion is that only
zero eigenvalues contribute to (A9). Thus, Ij counts the number of zero modes of D†D
minus the number of zero modes of DD†. For the M and KK backgrounds, Ij counts the
number of zero modes of the Weyl equation, the normalizable solutions of DΨ = 0.

The quantity Ij can be seen to depend only on the topological properties of the gauge
field background: on the topological charge, the magnetic charge, and the value of the holon-
omy at infinity (this follows from the explicit calculation, requiring some regularization—for
which we refer the reader to the references). For the particular M and KK monopole–
instanton backgrounds of interest to us, the index (A9) is found to be, for fermions taken
periodic on the S1:

IM
j =

j

∑
m=−j

2m
⌊
− mvL

2π

⌋
, IKK

j =
2j(j + 1)(2j + 1)

3
− IM

j . (A10)

To unpack this formula, notice that for the fundamental and the adjoint, the two cases
studied in this paper, we find IM

1/2 = −b− vL
4π c+ b vL

4π c and IM
1 =−2b− vL

2π c+ 2b vL
2π c. As an

example of using (A10), let us take vL = π, the center-symmetric point. We immediately
obtain from the above formulae IM

1/2 = 1 (hence IKK
1/2 = 0) and IM

1 = 2 (hence IKK
1 = 2),

exactly as found in the text by other means. Recall that we used center symmetry of the
EFT as well as the shift of the dual photon under the chiral symmetry.

One can also find expressions for fermions antiperiodic on the S1, by turning on an
appropriate U(1)V Wilson line. For the case of the fundamental representation relevant for
Section 7, one finds IM

1/2 = 0 (hence IKK
1/2 = 1), i.e., upon changing the U(1)V background

to dial the boundary condition from periodic to an antiperiodic, the fundamental fermion
zero mode jumps from the M to the KK monopole–instanton, as we already found in our
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discussion of QCD(F). A discussion of this jump and other jumps (seen to occur upon
changing vL in (A10)) is given in [112].
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