
����������
�������

Citation: Ma, J.; Xie, H.; Song, K.; Liu,

H. Self-Optimizing Path Tracking

Controller for Intelligent Vehicles

Based on Reinforcement Learning.

Symmetry 2022, 14, 31. https://

doi.org/10.3390/sym14010031

Academic Editors: Rudolf Kawalla

and Beloglazov Ilya

Received: 17 November 2021

Accepted: 17 December 2021

Published: 27 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Self-Optimizing Path Tracking Controller for Intelligent
Vehicles Based on Reinforcement Learning
Jichang Ma , Hui Xie *, Kang Song and Hao Liu

State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China; majichang@tju.edu.cn (J.M.);
songkangtju@tju.edu.cn (K.S.); hao.liu@uisee.com (H.L.)
* Correspondence: xiehui@tju.edu.cn

Abstract: The path tracking control system is a crucial component for autonomous vehicles; it is
challenging to realize accurate tracking control when approaching a wide range of uncertain situations
and dynamic environments, particularly when such control must perform as well as, or better than,
human drivers. While many methods provide state-of-the-art tracking performance, they tend to
emphasize constant PID control parameters, calibrated by human experience, to improve tracking
accuracy. A detailed analysis shows that PID controllers inefficiently reduce the lateral error under
various conditions, such as complex trajectories and variable speed. In addition, intelligent driving
vehicles are highly non-linear objects, and high-fidelity models are unavailable in most autonomous
systems. As for the model-based controller (MPC or LQR), the complex modeling process may
increase the computational burden. With that in mind, a self-optimizing, path tracking controller
structure, based on reinforcement learning, is proposed. For the lateral control of the vehicle, a
steering method based on the fusion of the reinforcement learning and traditional PID controllers is
designed to adapt to various tracking scenarios. According to the pre-defined path geometry and the
real-time status of the vehicle, the interactive learning mechanism, based on an RL framework (actor–
critic—a symmetric network structure), can realize the online optimization of PID control parameters
in order to better deal with the tracking error under complex trajectories and dynamic changes
of vehicle model parameters. The adaptive performance of velocity changes was also considered
in the tracking process. The proposed controlling approach was tested in different path tracking
scenarios, both the driving simulator platforms and on-site vehicle experiments have verified the
effects of our proposed self-optimizing controller. The results show that the approach can adaptively
change the weights of PID to maintain a tracking error (simulation: within ±0.071 m; realistic vehicle:
within ±0.272 m) and steering wheel vibration standard deviations (simulation: within ±0.04◦;
realistic vehicle: within ±80.69◦); additionally, it can adapt to high-speed simulation scenarios (the
maximum speed is above 100 km/h and the average speed through curves is 63–76 km/h).

Keywords: autonomous vehicle; path tracking; reinforcement learning; adaptive PID; self-optimizing
controller; vehicle control

1. Introduction

Autonomous driving is an active research topic that has attracted considerable atten-
tion from both academic institutions and manufacturing companies, owing to its broad
application prospects in intelligent transportation systems. Automated vehicle software
mainly involve environmental perception, decision planning, and motion control. In-
telligent vehicles are non-linear motion systems, and their dynamic parameters change
significantly with different speeds and road conditions, especially at high speeds of motion
and during complex trajectories. This makes the path tracking control problem one of the
most challenging aspects of this field. A closed-loop control system, which is composed of
people, vehicles, and roads, as shown in Figure 1, is influenced by inevitable disturbances

Symmetry 2022, 14, 31. https://doi.org/10.3390/sym14010031 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14010031
https://doi.org/10.3390/sym14010031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6565-6770
https://orcid.org/0000-0002-7548-2214
https://doi.org/10.3390/sym14010031
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14010031?type=check_update&version=2

Symmetry 2022, 14, 31 2 of 37

both inside and outside the vehicle, such as road adhesion coefficients, driving air resis-
tance, and power output device, etc. As a result, the vehicle’s model parameters change in
real time, and there is a dynamic deviation between the vehicle’s operating state and the
desired state. Therefore, the human driver needs to constantly adjust the vehicle’s state of
motion to keep it on the desired path. The development process of the intelligent controller
should learn the control mechanism of the human driver. With that in mind, the question
of whether the path tracking controller can realize online self-optimization, according to
the changes of the environment, is a key point for research.

Symmetry 2021, 13, x FOR PEER REVIEW 2 of 38

which is composed of people, vehicles, and roads, as shown in Figure 1, is influenced by

inevitable disturbances both inside and outside the vehicle, such as road adhesion coef-

ficients, driving air resistance, and power output device, etc. As a result, the vehicle’s

model parameters change in real time, and there is a dynamic deviation between the ve-

hicle’s operating state and the desired state. Therefore, the human driver needs to con-

stantly adjust the vehicle’s state of motion to keep it on the desired path. The develop-

ment process of the intelligent controller should learn the control mechanism of the hu-

man driver. With that in mind, the question of whether the path tracking controller can

realize online self-optimization, according to the changes of the environment, is a key

point for research.

Figure 1. Closed-loop control system for vehicles.

There are many methods of providing state-of-the-art tracking performance, which

can be divided into three typical categories, as follows: traditional classical control,

model-based control, and intelligent adaptive control.

With regard to classic approaches, proportional–integral–derivative (PID) control is

one of the most widely used methods in actual systems, with the advantages of a simple

structure and easy implementation [1]. Previous studies [2,3] have presented an algo-

rithm for using a PID controller to solve the path tracking problem for autonomous

ground robots. Their results showed that the PID controller was capable of tracking a

path. Regarding the traditional proportional–integral–derivative control strategy, due to

the fixed constant PID control parameters, its application scenarios have limitations. A

detailed analysis shows that a PID controller inefficiently reduces the lateral error under

complex trajectories and variable speed conditions; when the road curvature is large, or

when the vehicle is driving at high speeds, it is easy to deviate from the expected trajec-

tory—as shown by the red arrows in Figure 2.

Figure 1. Closed-loop control system for vehicles.

There are many methods of providing state-of-the-art tracking performance, which
can be divided into three typical categories, as follows: traditional classical control, model-
based control, and intelligent adaptive control.

With regard to classic approaches, proportional–integral–derivative (PID) control is
one of the most widely used methods in actual systems, with the advantages of a simple
structure and easy implementation [1]. Previous studies [2,3] have presented an algorithm
for using a PID controller to solve the path tracking problem for autonomous ground robots.
Their results showed that the PID controller was capable of tracking a path. Regarding the
traditional proportional–integral–derivative control strategy, due to the fixed constant PID
control parameters, its application scenarios have limitations. A detailed analysis shows
that a PID controller inefficiently reduces the lateral error under complex trajectories and
variable speed conditions; when the road curvature is large, or when the vehicle is driving
at high speeds, it is easy to deviate from the expected trajectory—as shown by the red
arrows in Figure 2.

Symmetry 2021, 13, x FOR PEER REVIEW 2 of 38

which is composed of people, vehicles, and roads, as shown in Figure 1, is influenced by

inevitable disturbances both inside and outside the vehicle, such as road adhesion coef-

ficients, driving air resistance, and power output device, etc. As a result, the vehicle’s

model parameters change in real time, and there is a dynamic deviation between the ve-

hicle’s operating state and the desired state. Therefore, the human driver needs to con-

stantly adjust the vehicle’s state of motion to keep it on the desired path. The develop-

ment process of the intelligent controller should learn the control mechanism of the hu-

man driver. With that in mind, the question of whether the path tracking controller can

realize online self-optimization, according to the changes of the environment, is a key

point for research.

Figure 1. Closed-loop control system for vehicles.

There are many methods of providing state-of-the-art tracking performance, which

can be divided into three typical categories, as follows: traditional classical control,

model-based control, and intelligent adaptive control.

With regard to classic approaches, proportional–integral–derivative (PID) control is

one of the most widely used methods in actual systems, with the advantages of a simple

structure and easy implementation [1]. Previous studies [2,3] have presented an algo-

rithm for using a PID controller to solve the path tracking problem for autonomous

ground robots. Their results showed that the PID controller was capable of tracking a

path. Regarding the traditional proportional–integral–derivative control strategy, due to

the fixed constant PID control parameters, its application scenarios have limitations. A

detailed analysis shows that a PID controller inefficiently reduces the lateral error under

complex trajectories and variable speed conditions; when the road curvature is large, or

when the vehicle is driving at high speeds, it is easy to deviate from the expected trajec-

tory—as shown by the red arrows in Figure 2.

Figure 2. The performance of traditional PID control in different speed conditions.

As for the model-based categories, most of the proposed methods for path tracking
control are based on modeling the vehicle dynamics [4–6], including the tire forces and

Symmetry 2022, 14, 31 3 of 37

the moments generated by the wheels. Some previous studies [7–9] have used model
predictive control (MPC), in which an autonomous vehicle was directed to follow a pre-
planned trajectory and a dynamic model of the system was used to predict an optimal
sequence. However, MPC requires a heavy computational load, owing to its complex
design. Therefore, this algorithm is unsuitable for high-speed autonomous driving and
complex road trajectories. In [10], the authors modified the lateral dynamics of a vehicle
and used a linear quadratic regulator (LQR) controller. A bicycle model was used to
obtain the feedforward and feedback parts of the steering input. The optimal control
parameters were obtained, based on a cost function. The authors of [11] compared and
analyzed various control strategies for path tracking applications by running a vehicle
model in a prescribed environment. In general, as described in the literature, the results
may vary when additional control inputs, such as brake control and accelerator control,
are brought into the system. We can conclude that complex trajectories and high-speed
driving have important impacts on a vehicle motion model; thus, model-based controllers
have limitations and can only be applied to simple roads in low-speed driving scenarios. In
addition, intelligent driving vehicles are highly non-linear objects and a high-fidelity model
is unavailable in most autonomous systems. As for the model-based controller (MPC or
LQR), the complex modeling process may increase the computational burden; moreover,
changes in model parameters may lead to a decrease in control performance. Therefore,
for the vehicle motion control system, it is urgent to develop a tracking method with an
adaptive and effective control framework for real-time implementation.

More recently, approaches in the third category—i.e., intelligent adaptive approaches—
have been proposed to mitigate the aforementioned problems. These types of methods
provide the ability to adapt; for example, they can undertake corrective control actions
based on changes in the environment. Several studies have been conducted based on
these methods, aiming to solve the problems noted above. A fuzzy controller with a
parameter PID self-tuning module was introduced in [12,13] to provide a mobile robot with
complete path tracking control; this showed advantages in providing a rapid response,
high stability, and high tracking accuracy. However, the design of fuzzy adaptive PID
control requires a significant amount of prior knowledge, and, in reality, it is difficult to
obtain such comprehensive prior knowledge when a vehicle travels in unknown situations.
An adaptive PID control method, based on neural networks, was presented in [14,15].
Nevertheless, a neural network generally uses supervised learning to optimize parameters,
so it is also limited by some application conditions; for instance, it is difficult to obtain the
exact teacher signal for supervised learning. Moreover, it does not work in real-time in the
context of line optimization.

In order for automated vehicles to improve their adaptability, it is essential for them to
interact with their environments and promote the natural evolution of a control policy. The
essence of reinforcement learning is to learn an optimal control policy through interaction
with the environment, which provides an effective way to solve the online optimization
control problem of path tracking. In recent years, many exciting RL applications have been
proposed in the context of self-driving vehicle control; for example, previous studies [16–18]
proposed a framework for autonomous driving using deep RL. They adopted the deep
deterministic policy gradient (DDPG) algorithm to manage complex road curvatures, states,
and action spaces in a continuous domain and tested the approach in an open-source
3D car racing simulator called “TORCS” [19]. The Robotics and Perception Group at the
University of Zurich created an autonomous agent for a GT Sport car racing simulator [20]
that matched or outperformed human experts in time trials; this worked by defining
a reward function for formulating the racing problem and a neural network policy for
mapping input states to actions, then, the policy parameters were optimized by maximizing
the reward function using the soft actor–critic algorithm [21]. Reference [22] introduced a
robust drift controller based on an RL framework with a soft actor–critic algorithm and
used a “CARLA” simulator [23] for training and validation. The controller was capable of
making the vehicle drift through various sharp corners quickly and stably in an unseen map

Symmetry 2022, 14, 31 4 of 37

and was further shown to have excellent generalization ability. It could directly manage
unseen vehicle types with different physical properties, such as mass and tire friction.
Reinforcement learning, as a method for solving the optimization problem of continuous
action space under uncertain environments, has also been extensively researched in the
path tracking control process of UAVs and robots [24–30]. It is a data-driven control strategy
that does not depend on the precise model of the controlled object [31]; therefore, the path-
following control problem of autonomous vehicles can be quantitatively described as a
sequential data optimization control problem [32–36].

The success of the deep RL algorithms proves that control problems can be naturally
solved by optimizing policy-guided agents in a continuous state and action space. However,
so far, RL research on automated vehicle control is mainly limited to simulation environ-
ments, such as TORCS, GT Sport, and CARLA, and only a few, comparably simple examples
have been deployed in real systems, such as in references [37,38], which demonstrated the
first applications of deep RL to realistic autonomous driving. In those studies, the RL agent
evaluated and improved its control policy in a trial-and-error manner; thus, it would be
dangerous and costly to train such an agent on a real vehicle; moreover, particularly with
dynamically balancing systems, such a process is complicated and expensive.

Nevertheless, the generality of RL makes it a useful framework for autonomous
driving. Most importantly, it provides a corrective mechanism for improving an online
control policy, based on interacting with the environment. Thus, in this paper, a novel
RL-based method is proposed for use in path tracking control. We demonstrate a self-
optimizing controller structure incorporating a simple physics-based model and adaptive
PID control based on RL; additionally, we present a newly developed approach for training
an actor–critic network policy on a simulator and transferring it to a state-of-the-art realistic
vehicle. This system can be used to track a path under complex trajectories and different
speed conditions, and its performance is comparable to that of professional drivers. The
main contributions of this paper are as follows:

• In this paper, we propose a self-optimized PID controller with a new adaptive updating
rule, based on a reinforcement learning framework for autonomous vehicle path
tracking control systems, in order to track a predefined path with high accuracy and,
simultaneously, provide a comfortable riding experience.

• According to the pre-defined path geometry and the real-time status of the vehicle,
the environment interactive learning mechanism, based on RL framework, can realize
the online self-tuning of PID control parameters.

• In order to verify the stability and generalizability of the controller under complex
paths and variable speed conditions, the proposed self-optimizing controller was
tested in different path tracking scenarios. Finally, a realistic vehicle platform test was
carried out to validate the practicability.

The remainder of this paper is organized as follows. In Section 2, we introduce the ve-
hicle dynamics and kinetics models and define the state–action spaces and reward function.
In Section 3, we provide an overview of the proposed self-optimizing controller structure
and then introduce the actor–critic framework and algorithm. In Section 4, we introduce the
simulation system and realistic autonomous platform, describe the experimental settings,
and analyze the test results. Finally, we draw conclusions in Section 5 and propose future
work in Section 6.

2. Vehicle Dynamic Constraints and Reference Trajectory Generation

An intelligent vehicle is a multi-input and multi-output electrical system with non-
linear characteristics, and it is difficult to construct an accurate dynamic model for it. In
addition, the dynamic characteristics of the system are also affected by the operating speed
and environment, especially for unmanned vehicles running at high speeds, and the dy-
namic parameters will change significantly with the vehicle speed. When accounting for the
non-linearity and time-varying characteristics of an intelligent vehicle system, traditional
control methods, based on PID, LQR, and MPC, experience difficulties in meeting the

Symmetry 2022, 14, 31 5 of 37

current control requirements. Moreover, the design of a path tracking controller should
provide online learning and self-optimization abilities. Therefore, the development of
intelligent control algorithms combining mechanism models and data-driven methods has
become a popular research topic in the field of control engineering applications. Here,
we discuss a self-optimizing controller, based on online RL, and show that a simple path
tracking architecture can enable an automated vehicle to track a path accurately, while using
a complex trajectory. The essence of this approach is to reduce the error between the vehicle
and reference path by controlling the lateral and longitudinal movement of the vehicle.
Therefore, the key is to calculate control variables that satisfy the constraints of the dynamic
model and the geometric constraints of the actuator. The proposed self-optimizing control
structure, based on RL, begins with the vehicle dynamic constraints, which are based on a
simplified bicycle model. Schematics of the vehicle dynamic model and kinematic state
model are shown in Figure 3a,b, respectively. As shown in Figure 3, XOY is the inertial
coordinate system fixed on the ground and xoy is the vehicle coordinate system fixed on
the vehicle body.

Symmetry 2021, 13, x FOR PEER REVIEW 5 of 38

2. Vehicle Dynamic Constraints and Reference Trajectory Generation

An intelligent vehicle is a multi-input and multi-output electrical system with non-

linear characteristics, and it is difficult to construct an accurate dynamic model for it. In

addition, the dynamic characteristics of the system are also affected by the operating

speed and environment, especially for unmanned vehicles running at high speeds, and

the dynamic parameters will change significantly with the vehicle speed. When ac-

counting for the non-linearity and time-varying characteristics of an intelligent vehicle

system, traditional control methods, based on PID, LQR, and MPC, experience difficul-

ties in meeting the current control requirements. Moreover, the design of a path tracking

controller should provide online learning and self-optimization abilities. Therefore, the

development of intelligent control algorithms combining mechanism models and da-

ta-driven methods has become a popular research topic in the field of control engineer-

ing applications. Here, we discuss a self-optimizing controller, based on online RL, and

show that a simple path tracking architecture can enable an automated vehicle to track a

path accurately, while using a complex trajectory. The essence of this approach is to re-

duce the error between the vehicle and reference path by controlling the lateral and lon-

gitudinal movement of the vehicle. Therefore, the key is to calculate control variables that

satisfy the constraints of the dynamic model and the geometric constraints of the actua-

tor. The proposed self-optimizing control structure, based on RL, begins with the vehicle

dynamic constraints, which are based on a simplified bicycle model. Schematics of the

vehicle dynamic model and kinematic state model are shown in Figure 3a,b, respectively.

As shown in Figure 3, XOY is the inertial coordinate system fixed on the ground and xoy

is the vehicle coordinate system fixed on the vehicle body.

(a)

(b)

Figure 3. Schematic diagram of the vehicle model and description of the path tracking states. (a)

Vehicle dynamics model; (b) vehicle kinematics model.

We can construct a 2 degrees of freedom (2-DOF) vehicle dynamic model for de-

scribing the motion of the vehicle, based on the following key assumptions [39,40]:

1. By ignoring the movement in the Z-axis direction, only the movement in the XY

horizontal plane is considered; this is referred to as the planar bicycle model.

2. By assuming that the rotation angles of the tires on the left and right sides of the

vehicle body are identical, the tires on both sides can be combined into one tire.

3. The rear wheels are not considered as steering wheels; only the front wheels are.

4. The aerodynamic forces are ignored.

The actuation of the steering angle, 𝛿𝑓, at the front wheel results in the generation of

lateral tire forces. According to Figure 3a, 𝐹𝑐𝑓 and 𝐹𝑐𝑟 are the two lateral forces acting on

the front and rear tires, respectively, while 𝑎𝑓 is the slip angle of the front wheel. The

two lateral forces cause the vehicle to produce the yaw rate 𝜔, which describes the an-

gular rotation of the vehicle. In addition to the vehicle dynamics model constraints, two

additional state variables are required, to account for the vehicle kinematics model,

Figure 3. Schematic diagram of the vehicle model and description of the path tracking states.
(a) Vehicle dynamics model; (b) vehicle kinematics model.

We can construct a 2 degrees of freedom (2-DOF) vehicle dynamic model for describing
the motion of the vehicle, based on the following key assumptions [39,40]:

1. By ignoring the movement in the Z-axis direction, only the movement in the XY
horizontal plane is considered; this is referred to as the planar bicycle model.

2. By assuming that the rotation angles of the tires on the left and right sides of the
vehicle body are identical, the tires on both sides can be combined into one tire.

3. The rear wheels are not considered as steering wheels; only the front wheels are.
4. The aerodynamic forces are ignored.

The actuation of the steering angle, δ f , at the front wheel results in the generation of
lateral tire forces. According to Figure 3a, Fc f and Fcr are the two lateral forces acting on the
front and rear tires, respectively, while a f is the slip angle of the front wheel. The two lateral
forces cause the vehicle to produce the yaw rate ω, which describes the angular rotation
of the vehicle. In addition to the vehicle dynamics model constraints, two additional
state variables are required, to account for the vehicle kinematics model, which shows the
vehicle’s position relative to the desired driven path. As shown in Figure 3b, the lateral
path deviation, also referred to as the lateral error, e, is the distance from the vehicle’s center
of gravity to the closest point on the desired driven path. The vehicle heading deviation,
also referred to as the heading error, ∆ϕ, is defined as the angle between the vehicle’s center
line and a tangent line drawn on the desired driven path at the closest point. The specific
descriptions and meanings of the remaining parameters are listed in Table 1.

Symmetry 2022, 14, 31 6 of 37

Table 1. Specific definitions and meanings of the vehicle model parameters.

Symbol Parameter Units

Fl f , Flr Front and rear tires longitudinal force N
Fc f , Fcr Front and rear tires lateral force N
Fx f , Fxr Front and rear tires force in the x direction N
Fy f , Fyr Front and rear tires force in the y direction N

a Front axle to center of gravity (CG) m
b Rear axle to CG m
δ f Steer angle input Rad
a f Front tire slip rad
ω Yaw rate rad/s
e Lateral path deviation m

∆ϕ Vehicle heading deviation rad
Vx Longitudinal velocity m/s

Figure 1 depicts a diagram of the two-wheel vehicle model, which considers the
longitudinal, lateral, and yaw motions. By analyzing the forces on the x-axis, y-axis, and
z-axis, respectively, the equations of motion for the 2-DOF states are given as follows:

X− axis direction max = 2
(

Fx f + Fxr

)
Y− axis direction may = 2

(
Fy f + Fyr

)
Z− axis direction Iz

.
ω = 2aFy f − 2bFyr (1)

The acceleration in the Y-axis direction consists of two aspects: the displacement
acceleration,

..
y, and centripetal acceleration, Vx·ω. Then, Formula (1) can be rewritten

as follows:
m
(..
y + Vx·ω

)
= 2

(
Fy f + Fyr

)
(2)

According to the lateral force of the tire, the slip angle of the front wheel is α f = δ− δ f ,
where δ is front wheel angle, and δ f is the angle between the front wheel speed direction
and the vehicle speed direction. Then, the lateral force experienced by the front wheels can
be expressed as follows:

Fy f = Ca f

(
δ− δ f

)
(3)

Similarly, the lateral force of the rear wheel can be expressed as Fyr = Car(−δr), where
Ca f and Car are the cornering stiffness values of the front and rear wheels, respectively.

δ f and δr can be approximated by the following formula:

δ f =
(
Vy + aω

)
/Vxδr =

(
Vy − bω

)
/Vx (4)

As shown in Figure 3b, e is the lateral path deviation, ∆ϕ is the vehicle heading
deviation, ϕ is vehicle heading angle, and ϕdes is the road desired heading angle. According
to the kinematic formula, the desired angular velocity required by the vehicle at the turning
radius R can be denoted as the following formula:

∆ϕ = ϕ− ϕdes
.

ϕdes = Vx/R (5)

The desired lateral acceleration required by the vehicle at the turning radius R can be
written as the following formula:

aydes = V2
x /R (6)

The lateral acceleration error is recorded as
..
e, ω =

.
ϕ.

..
e = ay − aydes =

(..
y + Vx∆ω

)
−V2

x /R =
..
y + Vx

(.
ϕ− .

ϕdes
)

(7)

That is:
..
e =

..
y + Vx

.
∆ϕ (8)

ϕdes is the desired heading angle of the reference driven path and is calculated using
the path planning formula, as follows:

.
ϕdes = Vx/R = Vx ∗ K (9)

Symmetry 2022, 14, 31 7 of 37

where K is the desired road curvature, which can be obtained from the collected high-
precision map data. Substituting Formulas (5) and (9) into Formula (1) can obtain the
following expression of

..
∆ϕ:

..
∆ϕ =

2aFy f − 2bFyr

Iz
− K

.
Vx −

.
KVx (10)

e = dx ∗ cosϕdes + dy ∗ sinϕdes.
e = Vx ∗ sin∆ϕ
∆ϕ = ϕ− ϕdes.
∆ϕ =

.
ϕ− .

ϕdes

(11)

Here, e is the lateral error,
.
e is the rate of the lateral error, ∆ϕ is the heading error, and

.
∆ϕ is the rate of the heading error. ϕ is the heading angle of the vehicle body, which can be
obtained using a vehicle-mounted inertial measurement unit (IMU) sensor.{ .

X = AX + Bu
Y = CX + Du

(12)

According to the state space Equation (12), the dynamic model of the steering wheel
control can be obtained as follows:

d
dt

e
.
e

∆ϕ
.

∆ϕ

 =

0 1 0 0
0 A1/Vx −A1 A2/Vx
0 0 0 1
0 A3/Vx −A3 A4/Vx

e
.
e

∆ϕ
.

∆ϕ

+

0
B1
0
B2

δ +

0

A2
Vx
−Vx

0
A4/Vx

 .
ϕdes (13)

For the above calculations, a, b, and c are, respectively, determined as follows:

A1 = −2
(

Ca f + Car

)
/m

A2 = −2
(

Ca f l f − Carlr
)

/m

A3 = −2
(

Ca f l f − Carlr
)

/Iz

A4 = −2
(

Ca f l2
f + Carl2

r

)
/Iz

(14)

{
B1 = 2Ca f /m

B2 = 2Ca f l f /Iz
(15)

The time series data, e,
.
e, ∆ϕ,

.
∆ϕ, are taken as the state variables, while δ is the

control variable. Aiming at the path tracking control problem of automatic driving, the
conventional PID control law is expressed as follows:

u(t) = Kp1e(t) + Kd1
.
e(t)− Kp2∆ϕ(t)− Kd2

.
∆ϕ(t) (16)

Here, Kp and Kd are the proportional and differential gain coefficients, respectively.
The above traditional PID control is just a preliminary approach under ideal dynamics

models; however, the dynamic characteristics of the system will, in fact, be affected by the
operating speed and environment. Especially for unmanned vehicles running at a high
speed, the dynamic parameters can change significantly with the vehicle speed, making it
difficult for automatic path tracking control to guarantee performance and stability over
a wide range of parameter changes. A key point of this paper is to set the path tracking
process of an autonomous vehicle as a Markov decision process (MDP) of sequence data.
Therefore, we need to accurately define the state space (S) and action space (A) and design
a reward function (R) in combination with the vehicle dynamics model.

(a) State space variable description

The parameters of the state space are the environmental observation data St received
by the controller at each time step. Many sensors are carried by driverless cars, including
cameras, light detection units, ranging units, IMU, and GPS units. However, this paper

Symmetry 2022, 14, 31 8 of 37

focuses on path tracking control, where the control of vehicle position and pose is the
key issue; therefore, the IMU and GPS output data are selected, together with the vehicle
dynamic constraints, and we can obtain the state space variable St. Figure 3b demonstrates
a desired driven path and the related error variables, which are the lateral track error, e,
its time derivative,

.
e, the heading angle error, ∆ϕ, and its time derivative,

.
∆ϕ. We use the

parameters mentioned above to describe the state of the vehicle in a specific traffic scene,
as given by St =

{
e,

.
e, ∆ϕ,

.
∆ϕ
}

(b) Action space variable description

As mentioned above, the dynamic characteristics of the system will be affected by
the operating speed and environment, especially for unmanned vehicles running at high
speeds. To allow the system to automatically adapt to changes in the environment and
parameters, we designed a self-optimizing PID controller based on an RL framework,
in which control parameters could be adjusted automatically online, based on real-time
performance requirements. The calculation can be expressed as follows:

K(t) = K0 + ∆K (17)

In the above, K0 is a constant vector, determined by expert experience, and ∆K is the
self-learning gain vector. Thus, the traditional PID control (Equation (16)) can be rewritten,
as follows:

u(t) = (Kp1 + ∆Kp1)e(t) + (Kd1 + ∆Kd1)
.
e(t)− (Kp2 + ∆Kp2)∆ϕ(t)− (Kd2 + ∆Kd2)

.
∆ϕ(t) (18)

The control parameters are adjusted to realize the dynamic compensation of the system.
We use the parameters mentioned above to describe the action space, which is given by
At =

{
∆Kp1, ∆Kd1, ∆Kp2, ∆Kp2

}
.

(c) Reward function description

As a key element of the RL framework, the reward signal drives the agent to reach the
goal by rewarding good actions and penalizing poor actions. In a path tracking control task,
the goal of the reward function design is to find the optimal control strategy for making the
vehicle follow the reference trajectory as closely as possible while reducing the tracking
error. To optimize the path tracking performance, in this paper we adopt a piecewise linear
error reward function. Its design criteria are as follows:

Rt1 =

k|y− yD|,
−c
0

|y− yD| > e1
e2 ≤ |y− yD| ≤ e1
|y− yD| ≤ e2

(19)

Here, k, c, e1, and e2 are preset constants; e2 ≤ e1, k ≤ 0 is a proportional coefficient;
and the lateral deviation is e = |y− yD|, as shown in Figure 3b. The design goal of the
above reward function is to make the vehicle’s lateral deviation as close as possible to
the given reference trajectory, which exhibits exponential convergence. In addition, by
combining the constraints of the vehicle dynamics model to design the reward function,
Rt2, such that the vehicle’s heading deviation is parallel to the road curvature as much as
possible (as shown in the figure), the reward function expression of Rt2 can be expressed
as follows:

Rt2 = Vxcos(∆ϕ)−Vysin(∆ϕ)−Vx|y− yD| (20)

As shown in Figure 4, the vehicle needs to drive along the centerline of the lane. In an
ideal state, the lateral deviation, e, and the heading angle deviation, ∆ϕ, between the center
axis of the vehicle and the centerline of the lane, are close to zero in value. The objective
of the controller is to minimize its lateral deviation, e, and heading angle deviation, ∆ϕ,
from the lane centerline. In the above, ∆ϕ is the heading angle deviation. The design
principle of the reward function is based on maximizing the axial speed of the vehicle
(Vx) and minimizing the lateral speed of the vehicle (Vy). We add a penalty term if the
control object continues to deviate significantly from the center of the road (the third term);

Symmetry 2022, 14, 31 9 of 37

this will greatly improve the stability of the control system. The final reward function is
Rt = Rt1 + Rt2. The optimization goal of the RL controller is to maximize the total reward,
as follows:

J =
T

∑
t=0

γ ∗ Rt (21)

Symmetry 2021, 13, x FOR PEER REVIEW 9 of 38

the tracking error. To optimize the path tracking performance, in this paper we adopt a

piecewise linear error reward function. Its design criteria are as follows:

𝑅𝑡1 = {
𝑘|𝑦 − 𝑦𝐷|,

−𝑐
0

|𝑦 − 𝑦𝐷| > 𝑒1
𝑒2 ≤ |𝑦 − 𝑦𝐷| ≤ 𝑒1
|𝑦 − 𝑦𝐷| ≤ 𝑒2

 (19)

Here, 𝑘, 𝑐, 𝑒1, and 𝑒2 are preset constants; 𝑒2 ≤ 𝑒1, 𝑘 ≤ 0 is a proportional coeffi-

cient; and the lateral deviation is 𝑒 = |𝑦 − 𝑦𝐷|, as shown in Figure 3b. The design goal of

the above reward function is to make the vehicle’s lateral deviation as close as possible to

the given reference trajectory, which exhibits exponential convergence. In addition, by

combining the constraints of the vehicle dynamics model to design the reward function,

𝑅𝑡2, such that the vehicle’s heading deviation is parallel to the road curvature as much as

possible (as shown in the figure), the reward function expression of 𝑅𝑡2 can be expressed

as follows:

𝑅𝑡2 = 𝑉𝑥 𝑐𝑜𝑠(∆𝜑) − 𝑉𝑦 𝑠𝑖𝑛(∆𝜑) − 𝑉𝑥|𝑦 − 𝑦𝐷| (20)

As shown in Figure 4, the vehicle needs to drive along the centerline of the lane. In

an ideal state, the lateral deviation, e, and the heading angle deviation, ∆φ, between the

center axis of the vehicle and the centerline of the lane, are close to zero in value. The

objective of the controller is to minimize its lateral deviation, e, and heading angle devia-

tion, ∆φ, from the lane centerline. In the above, ∆𝜑 is the heading angle deviation. The

design principle of the reward function is based on maximizing the axial speed of the

vehicle (𝑉𝑥) and minimizing the lateral speed of the vehicle (𝑉𝑦). We add a penalty term if

the control object continues to deviate significantly from the center of the road (the third

term); this will greatly improve the stability of the control system. The final reward

function is 𝑅𝑡 = 𝑅𝑡1 + 𝑅𝑡2. The optimization goal of the RL controller is to maximize the

total reward, as follows:

𝐽 =∑𝛾 ∗ 𝑅𝑡

𝑇

𝑡=0

 (21)

Here, 𝛾 is a discount factor and is usually a constant close to 1; in this paper, 𝛾 =

0.95. The objective of the controller is to maximize the total reward, 𝐽, and to minimize

its lateral deviation (𝑒) and heading angle deviation (∆𝜑) from the original lane. By op-

timizing the performance indicators, the state of the controlled system can be made to

follow the reference state.

Figure 4. Schematic diagram of the vehicle lateral error deviation and heading angle deviation.

Here, γ is a discount factor and is usually a constant close to 1; in this paper, γ = 0.95.
The objective of the controller is to maximize the total reward, J, and to minimize its lateral
deviation (e) and heading angle deviation (∆ϕ) from the original lane. By optimizing
the performance indicators, the state of the controlled system can be made to follow the
reference state.

3. Self-Optimizing Path Tracking Controller Based on a Reinforcement Learning (RL)
Framework

We aimed to find a control policy that minimizes the distance to the center line of the
track for a given physical model and road trajectory, as well as for different vehicle speeds.
In contrast to previous approaches relying on classical trajectory control, our approach
leverages RL to train an actor–critic network that directly maps from observations and then
provides an input to the adaptive PID controller, to calculate the vehicle control commands.
To achieve this goal, we first introduced a physical model and defined a reward function
for formulating the path tracking problem; these were used to perform the online adaptive
tuning of the PID parameters so as to improve the path tracking effects of autonomous
vehicles under complex road trajectories. In this paper, we show that, in a self-optimizing
path tracking controller structure, based on reinforcement learning, the design of the
controller has three advantages. Firstly, it introduces an online self-learning mechanism
into the traditional controller, with the environment interactive learning mechanism, based
on reinforcement learning, which can realize the optimization of PID control parameters.
Secondly, it reduces the exploration space of the RL to find the optimal control parameters,
which will greatly improve the learning efficiency. Thirdly, it breaks through the limitations
of RL, in regard to only being used in simulation and game scenarios. To the best of our
knowledge, this is the first demonstration of a deep RL agent driving on real autobus
vehicle. In this section, we first present an overview of our proposed framework for the
self-optimization controller and then describe each module. Our architecture consists of
four modules, as follows: the operating environment, the data bridge, the RL framework,
and the vehicle control module. Figure 5 shows the structure of the self-optimizing PID
controller based on the RL framework.

Symmetry 2022, 14, 31 10 of 37

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 38

Figure 4. Schematic diagram of the vehicle lateral error deviation and heading angle deviation.

3. Self-Optimizing Path Tracking Controller Based on a Reinforcement Learning (RL)

Framework

We aimed to find a control policy that minimizes the distance to the center line of

the track for a given physical model and road trajectory, as well as for different vehicle

speeds. In contrast to previous approaches relying on classical trajectory control, our

approach leverages RL to train an actor–critic network that directly maps from observa-

tions and then provides an input to the adaptive PID controller, to calculate the vehicle

control commands. To achieve this goal, we first introduced a physical model and de-

fined a reward function for formulating the path tracking problem; these were used to

perform the online adaptive tuning of the PID parameters so as to improve the path

tracking effects of autonomous vehicles under complex road trajectories. In this paper,

we show that, in a self-optimizing path tracking controller structure, based on rein-

forcement learning, the design of the controller has three advantages. Firstly, it intro-

duces an online self-learning mechanism into the traditional controller, with the envi-

ronment interactive learning mechanism, based on reinforcement learning, which can

realize the optimization of PID control parameters. Secondly, it reduces the exploration

space of the RL to find the optimal control parameters, which will greatly improve the

learning efficiency. Thirdly, it breaks through the limitations of RL, in regard to only

being used in simulation and game scenarios. To the best of our knowledge, this is the

first demonstration of a deep RL agent driving on real autobus vehicle. In this section,

we first present an overview of our proposed framework for the self-optimization con-

troller and then describe each module. Our architecture consists of four modules, as fol-

lows: the operating environment, the data bridge, the RL framework, and the vehicle

control module. Figure 5 shows the structure of the self-optimizing PID controller based

on the RL framework.

Figure 5. Structure of a self-optimizing proportional–integral–derivative (PID) controller based on

a reinforcement learning (RL) framework.

The operating environment receives a series of actions from the vehicle control

module, evaluates the quality of these actions, and converts them into a scalar reward, 𝐽,

to be fed back to the RL framework using a data bridge.

The data bridge (or data buffer) allows for the interactions between the operating

environment and the RL framework. Based on the physical model and reference trajec-

tory, the current state values 𝑆𝑡 = {𝑒, �̇�, ∆𝜑, ∆�̇�} are extracted from the operating envi-

Figure 5. Structure of a self-optimizing proportional–integral–derivative (PID) controller based on a
reinforcement learning (RL) framework.

The operating environment receives a series of actions from the vehicle control module,
evaluates the quality of these actions, and converts them into a scalar reward, J, to be fed
back to the RL framework using a data bridge.

The data bridge (or data buffer) allows for the interactions between the operating
environment and the RL framework. Based on the physical model and reference trajectory,
the current state values St =

{
e,

.
e, ∆ϕ,

.
∆ϕ
}

are extracted from the operating environment.
The data bridge forwards the vehicle command (steering angle) to the environment object
(driving simulator platform and vehicle test platform) for execution. After execution, the
research object returns the corresponding reward value and the next state: St+1.

The RL framework consists of two parts: an actor network and a critic network.
The actor network comprises a policy function, responsible for generating the actions,
At =

{
∆Kp1, ∆Kd1, ∆Kp2, ∆Kp2

}
. The critic network comprises a value function used

to calculate the Q-value, which is responsible for evaluating the performance of the ac-
tor network, based on the DDPG algorithm, and for guiding the actor network to gen-
erate the appropriate actions, At+1, for the next state to maximize the future expected
cumulative reward.

The vehicle control module receives the output, u(t), from the self-optimizing PID
controller and then forwards it to the environment object for execution, using the data
bridge. To obtain the equations of motion for the self-optimizing controller, the expression
of u is defined as Formula (18).

In the above, Kp, Kd are fixed gain constants, determined based on the developer’s
experience, while ∆Kp and ∆Kd are the output values of the actuator network and are used
to adjust the fixed gain constant. The self-optimizing controller generates a time series
control quantity u(t) and acts on the steering wheel control command, for the vehicle to
realize the adaptive ability in the path tracking control. Compared with traditional PID
controllers (Equation (9)), our self-optimizing RL-based controller increases the system’s
ability to compensate for dynamic errors.

Summarizing the process in Figure 3, the self-optimizing PID controller, based on
RL, is mainly composed of two parts, as follows: an actor network and a critic network.
The actor network is a strategy function responsible for generating actions and interacting
with the environment. The critic network is a value function responsible for evaluating
the performance of the actor and guiding the output of the actor network in the next stage.
Based on the content discussed in Section 2, the design of the reward function needs to

Symmetry 2022, 14, 31 11 of 37

consider the tracking performance of the system with regard to the reference trajectory and
the constraints of the dynamic model. The calculation process and workflow architecture
of the self-optimizing PID controller, based on RL, are as follows:

(1) Initialize the state of the controlled object, including the initial position and heading
angle of the vehicle.

(2) Pre-set the parameters for the optimizing controller, including the weight of the actor–
critic network, the learning rate, the discount factor, and the selection of the activation
function.

(3) Adopt the DDPG algorithm to train the model, where the actor network outputs the
PID gain, and the critic network maximizes the total reward value.

(4) According to the calculation formula for the self-optimizing PID controller, calculate
the control commands.

(5) Use the time series control commands to act on the controlled object, while simultane-
ously observing the state of the environment at the next moment and calculating the
reward function value.

(6) The actor network uses the DDPG algorithm to update its own weights. The critic
network updates its weight, based on the mean squared error (MSE) loss function.

(7) If the system performance indicators meet the given requirements, or the maximum
number of run episodes is reached, the training is terminated, the execution process is
exited, and the experiment state is reset.

An overview of the workflow and architecture for the efficient training of the algorithm
is shown in Figure 6.

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 38

1: While True do

2: Reference trajectory and physical model;

3: Waiting for environment state initialization or reset;

4: Set task flag and pre-set hyper parameters.

5: if task flag = train then

6: Run episode with DDPG algorithm;

7: Maximize total reward;

8: Output gain variable;

9: Calculate self-optimizing control command.

10: if episode is over set value then

11: Save model and reset environment state.

12: end if

13: else if task flag = test then

14: Run episode with trained model;

15: Verify model control performance.

16: else if task flag = undo then

17: Exit execution process and reset experiment state.

18: end if

19: End while

(a) (b)

Figure 6. Outline of the workflow and the architecture used for efficiently training the algorithm.

(a) Workflow for self-optimizing PID controller based on reinforcement learning. (b) Software ex-

ecution architecture run episodes during model training or testing.

a. Actor–critic network architecture design

The objective of this research was to consider the path-following control problem as

an optimal control problem for minimizing the lateral position deviation and lateral an-

gle deviation of the controlled object from the reference trajectory. Summarizing the

process in Figure 1, the self-optimizing PID controller in this study, based on the RL

framework, mainly comprises two parts: an actor network and a critic network. The focus

of the DDPG algorithm is on the design and optimization of the actor–critic network

structure, with the aim of finding the optimal control strategy. Through the method of

RL, the control policy of the agent is updated to maximize the value of the reward func-

tion. The actor network is a strategy function that is responsible for generating actions

and interacting with the environment. The critic network is a value function that is re-

sponsible for evaluating the performance of the actor and guiding the output of the actor

network in the next stage. Theoretically, a neural network with only one hidden layer is

sufficient to achieve a global approximation and a description of the arbitrary nonlinear

functions. In the process of training the model, a fully connected actor neural network

and critic neural network are initiated to approximate the optimal control policy and true

value function. Figure 7 presents the architectures of the actor and critic networks [41].

Both consist of three layers: an input layer, an output layer, and a hidden layer, with 600

neurons.

Figure 6. Outline of the workflow and the architecture used for efficiently training the algorithm.
(a) Workflow for self-optimizing PID controller based on reinforcement learning. (b) Software
execution architecture run episodes during model training or testing.

a. Actor–critic network architecture design

The objective of this research was to consider the path-following control problem as
an optimal control problem for minimizing the lateral position deviation and lateral angle
deviation of the controlled object from the reference trajectory. Summarizing the process
in Figure 1, the self-optimizing PID controller in this study, based on the RL framework,
mainly comprises two parts: an actor network and a critic network. The focus of the DDPG
algorithm is on the design and optimization of the actor–critic network structure, with

Symmetry 2022, 14, 31 12 of 37

the aim of finding the optimal control strategy. Through the method of RL, the control
policy of the agent is updated to maximize the value of the reward function. The actor
network is a strategy function that is responsible for generating actions and interacting with
the environment. The critic network is a value function that is responsible for evaluating
the performance of the actor and guiding the output of the actor network in the next
stage. Theoretically, a neural network with only one hidden layer is sufficient to achieve a
global approximation and a description of the arbitrary nonlinear functions. In the process
of training the model, a fully connected actor neural network and critic neural network
are initiated to approximate the optimal control policy and true value function. Figure 7
presents the architectures of the actor and critic networks [41]. Both consist of three layers:
an input layer, an output layer, and a hidden layer, with 600 neurons.

Symmetry 2021, 13, x FOR PEER REVIEW 13 of 38

Figure 7. Architectures of the actor and critic networks.

The real-time environment state space data, 𝑆𝑡 = {𝑒, �̇�, ∆𝜑, ∆�̇�}, from a virtual simu-

lator and real-world autobus, are used as the original inputs to the deep RL, to solve the

path tracking problem for autonomous vehicles. The actor network takes the prepro-

cessed data as the input and connects with the fully connected layer; the sigmoid activa-

tion function is used to map the action directly to the range of [−1, 1]. The final output of

the actor network represents the action space 𝐴𝑡 = {∆𝐾𝑝1, ∆𝐾𝑑1, ∆𝐾𝑝2, ∆𝐾𝑝2}. The critic

network combines the reward value with the environment state as the input, connects

through the fully connected layer, and finally outputs the Q-value. In this paper, the pa-

rameters of the networks were updated, based on the Adam [42] optimization algorithm.

The DDPG algorithm [43] was employed to iteratively update the actor network weights,

𝜃𝑢; the critic network weights, 𝜃𝑄, were updated to minimize the MSE loss function.

The input to the actor network is the number of features in the state space, whereas

the input to the critic network is the sum of the state features and rewards. Both networks

have only one fully connected layer between the input and output layers, with 600 neural

units. The adopted hyper-parameters (parameters set prior to the training process) are

presented in Table 2.

Table 2. Actor–critic network structure hyper-parameters.

Hyper-Parameter Pre-Set Value

Actor network learning rate 0.001

Critic network learning rate 0.01

State space dimension 4

Action space dimension 4

Discount factor 0.95

Run max episode 200,000

The real-time environment state space data is 𝑆𝑡 = {𝑒, �̇�, ∆𝜑, ∆�̇�}, so that state space

dimension’s pre-set value is 4; the final output of the actor network represents the action
space, 𝐴𝑡 = {∆𝐾𝑝1, ∆𝐾𝑑1, ∆𝐾𝑝2, ∆𝐾𝑝2}, so that action space dimension’s pre-set value is 4.

Here, 𝛾 is a discount factor, and is usually a constant close to 1; in this paper, the dis-

count factor’s pre-set value is 0.95. In fact, with a larger γ, the agent considers more steps

Figure 7. Architectures of the actor and critic networks.

The real-time environment state space data, St =
{

e,
.
e, ∆ϕ,

.
∆ϕ
}

, from a virtual simula-
tor and real-world autobus, are used as the original inputs to the deep RL, to solve the path
tracking problem for autonomous vehicles. The actor network takes the preprocessed data
as the input and connects with the fully connected layer; the sigmoid activation function
is used to map the action directly to the range of [−1, 1]. The final output of the actor
network represents the action space At =

{
∆Kp1, ∆Kd1, ∆Kp2, ∆Kp2

}
. The critic network

combines the reward value with the environment state as the input, connects through the
fully connected layer, and finally outputs the Q-value. In this paper, the parameters of
the networks were updated, based on the Adam [42] optimization algorithm. The DDPG
algorithm [43] was employed to iteratively update the actor network weights, θu; the critic
network weights, θQ, were updated to minimize the MSE loss function.

The input to the actor network is the number of features in the state space, whereas
the input to the critic network is the sum of the state features and rewards. Both networks
have only one fully connected layer between the input and output layers, with 600 neural
units. The adopted hyper-parameters (parameters set prior to the training process) are
presented in Table 2.

Symmetry 2022, 14, 31 13 of 37

Table 2. Actor–critic network structure hyper-parameters.

Hyper-Parameter Pre-Set Value

Actor network learning rate 0.001
Critic network learning rate 0.01

State space dimension 4
Action space dimension 4

Discount factor 0.95
Run max episode 200,000

The real-time environment state space data is St =
{

e,
.
e, ∆ϕ,

.
∆ϕ
}

, so that state space
dimension’s pre-set value is 4; the final output of the actor network represents the action
space, At =

{
∆Kp1, ∆Kd1, ∆Kp2, ∆Kp2

}
, so that action space dimension’s pre-set value

is 4. Here, γ is a discount factor, and is usually a constant close to 1; in this paper, the
discount factor’s pre-set value is 0.95. In fact, with a larger γ, the agent considers more
steps forward, but the difficulty of training is higher; whereas, with a smaller γ, the agent
pays more attention to the immediate benefits, and the training is less difficult. In short,
the principle of the value of the discount factor is to be as large as possible on the premise
that the algorithm can converge. The learning rate of the actor–critic network in this article
adopts the same default value as in Reference [43], where the pre-set values are 0.001 and
0.01, respectively.

b. RL deep deterministic policy gradient (DDPG) algorithm

The main research objective of this paper was to design an actor–critic network with
a DDPG algorithm to control the path tracking behaviors of autonomous vehicles and
characterize the adaptive ability, through considering different reference road paths and
designing the reward function. The process of automatic driving path tracking control
requires an autonomous agent system to address the current environmental situation
and vehicle status and then implement comprehensive lateral and longitudinal control;
the adaptive ability of the controller is especially important under variable speeds and
complex reference trajectories. Therefore, in order to address more complex scenarios, a
self-optimizing PID path tracking method for intelligent vehicles, based on RL, is presented.
This is a typical data-driven and self-learning method that enables an agent to find an
optimal control strategy to complete tasks through continuous “trial and error”, while
interacting with the environment and changes the action(s), based on a feedback reward
system, based on the environment. The RL framework is used to solve practical engineering
problems and can be described as an MDP [44–46].

In this paper, the environment state space and action space are continuous variables,
so we define the tracking control problem as an MDP of the sequence data, which comprises
a 5-tuple (S, A, R(st,at), P(st+1 |s t, at), γ). As shown in Figure 8, St is the state space set
and At is the action space set. At time step, t, the agent selects the action at ∈ At by
following policy π. After executing at, the agent is transferred to the next state, st+1, with
the probability P(st+1 |s t, at). Additionally, a reward signal, R(st,at), is received to describe
whether the underlying action, at, is beneficial for reaching the goal. By repeating this
process, the agent interacts with the environment and obtains a sequence of trajectories,
τ = s1, a1, r1, . . . , sT, aT, rT, at the terminal time step, T. The discounted cumulative reward

from each time step, t, can be formulated as Rt =
T
∑

t=1
γt−1rt, where γ ∈ (0, 1) is a discount

rate for determining the importance of future rewards. The goal is to learn an optimal
policy, π∗, that maximizes the expected overall discounted reward under this strategy,
which is defined as follows:

J = Es,a∼π,r

[
T

∑
t=1

γt−1rt

]
(22)

Symmetry 2022, 14, 31 14 of 37

π∗ =
arg maxEs,a∼π,r[Rt]

π
(23)

Symmetry 2021, 13, x FOR PEER REVIEW 14 of 38

forward, but the difficulty of training is higher; whereas, with a smaller γ, the agent pays

more attention to the immediate benefits, and the training is less difficult. In short, the

principle of the value of the discount factor is to be as large as possible on the premise

that the algorithm can converge. The learning rate of the actor–critic network in this arti-

cle adopts the same default value as in Reference [43], where the pre-set values are 0.001

and 0.01, respectively.

b. RL deep deterministic policy gradient (DDPG) algorithm

The main research objective of this paper was to design an actor–critic network with

a DDPG algorithm to control the path tracking behaviors of autonomous vehicles and

characterize the adaptive ability, through considering different reference road paths and

designing the reward function. The process of automatic driving path tracking control

requires an autonomous agent system to address the current environmental situation and

vehicle status and then implement comprehensive lateral and longitudinal control; the

adaptive ability of the controller is especially important under variable speeds and com-

plex reference trajectories. Therefore, in order to address more complex scenarios, a

self-optimizing PID path tracking method for intelligent vehicles, based on RL, is pre-

sented. This is a typical data-driven and self-learning method that enables an agent to

find an optimal control strategy to complete tasks through continuous “trial and error”,

while interacting with the environment and changes the action(s), based on a feedback

reward system, based on the environment. The RL framework is used to solve practical

engineering problems and can be described as an MDP [44–46].

In this paper, the environment state space and action space are continuous variables,

so we define the tracking control problem as an MDP of the sequence data, which com-
prises a 5-tuple (S, A, R(st,at), P(st+1|st, at), γ). As shown in Figure 8, 𝑆𝑡 is the state space

set and 𝐴𝑡 is the action space set. At time step, t, the agent selects the action at ∈ 𝐴𝑡 by

following policy π. After executing at, the agent is transferred to the next state, st+1,
with the probability P(st+1|st, at). Additionally, a reward signal, R(st,at), is received to

describe whether the underlying action, at, is beneficial for reaching the goal. By re-

peating this process, the agent interacts with the environment and obtains a sequence of

trajectories, τ = s1, a1, r1, … , sT, aT, rT, at the terminal time step, T. The discounted cumu-

lative reward from each time step, t, can be formulated as Rt = ∑ γt−1rt
T
t=1 , where γ ∈

(0,1) is a discount rate for determining the importance of future rewards. The goal is to

learn an optimal policy, π∗, that maximizes the expected overall discounted reward un-

der this strategy, which is defined as follows:

𝐽 = 𝐸𝑠,𝑎~𝜋,𝑟[∑𝛾𝑡−1𝑟𝑡

𝑇

𝑡=1

] (22)

𝜋∗ =
𝑎𝑟𝑔𝑚𝑎𝑥𝐸𝑠,𝑎~𝜋,𝑟[𝑅𝑡]

𝜋
 (23)

Figure 8. RL framework workflow diagram. Figure 8. RL framework workflow diagram.

The framework of the actor–critic algorithm is based on the concept of the DDPG
algorithm, which is widely used [47,48] and integrates the policy search and value function
approximation theories. As illustrated in Figure 3b, the actor is used to adjust the network
parameter, θu, and output determination action, A, based on the optimal control strategy,
π(s, a|θu) . The critic approximates the value function, Q(s, a), and updates the network
parameter, θQ. To iteratively update these neural network parameters until convergence in
a near-optimal control policy, we employed the DDPG algorithm to iteratively update the
actor network weights, θu. Additionally, the critic network weightings, θQ, were updated
so as to minimize the MSE loss function. The updated calculations are as follows:

∇θu J ≈ 1
N ∑∇aQ

(
s, a
∣∣∣θQ
)∣∣∣∣s=si ,a=π(si)

∇θu π(s
∣∣∣∣θu)

∣∣∣∣
s=si

(24)

L
(

θQ
)
=

1
N ∑

i
(yi −Q(si, ai

∣∣∣θQ))
2

(25)

yi = ri + γQ′(si+1, π′(si+1

∣∣∣θu′)
∣∣∣θQ′) (26)

For the sake of achieving a more stable training process, a target actor neural net-
work weighting parameter, θu′ , and target critic neural network parameter, θQ′ , were also
initialized, and these were updated as follows:

θu′ ← τθu + (1− τ)θu′ (27)

θQ′ ← τθQ + (1− τ)θQ′ (28)

Here, τ is a hyperparameter that is pre-set to prevent the overfitting of these neural
networks and to maintain the training stability. The pseudo-code programming process for
the DDPG algorithm is presented in Algorithm 1.

The entire procedure is repeated until the optimal control policy is learned, and we use
the same framework for both simulation and real-world experiments; the controller system
learns basic path tracking skills to adapt to different reference trajectories and dynamic
model parameters.

Symmetry 2022, 14, 31 15 of 37

Algorithm 1. Pseudo-code programming process of the deterministic policy gradient
(DDPG) algorithm

Actor uses a gradient algorithm to update the network parameters;
Critic uses the mean squared error (MSE) loss function to update the network parameters.
Algorithm input: Episode number, T; state dimension, n; action set, A; learning rate, α,β;
discount, γ; exploration rate, τ; actor–critic network structure; randomly initialize the
weighting parameter.
Algorithm output: Actor network parameters, θu, critic network parameters, θQ.
1: for Episode from 1 to (Max Episode -1) do
2: Receive initial observation state, obtain environment state vector st.
3: Initialize buffer replay data-buff.
3: for t from 1 to T do
4: Select action at = π(st|θu) +Nt.
5: Execute action at and observe new state st+1. Calculate instant reward feedback. rt
6: Store transition 〈st, at, st+1, rt〉 in data-buff.
7: Random mini-batch of N transitions 〈si, ai, si+1, ri〉 from data-buff.

8: Set yi = ri + γθQ′ (si+1, π′(si+1

∣∣∣θu′)
∣∣∣θQ′) .

9: Update critic by minimizing MSE loss function:

10: L
(
θQ) = 1

N ∑
i
(yi −Q(si, ai

∣∣θQ))
2.

11: Update the actor policy using the policy gradient function:

12: ∇θu J ≈ 1
N ∑∇aQ

(
s, a
∣∣θQ)∣∣∣s=si ,a=π(si)∇θu π(s

∣∣∣θu)
∣∣∣
s=si

.

13: Update the target networks:
14: θu′ ← τθu + (1− τ)θu′ ,
15: θQ′ ← τθQ + (1− τ)θQ′ .
16: End for time step
17: End for Episode

4. Experiment and Analysis of Results

Thisection describes the simulation environment, the path tracking controller training
process, and the employment of the physical autonomous system, with a controller perfor-
mance evaluation and a generalization ability verification. In the following, we describe
each step in detail.

4.1. Experimental Setting

a. Simulation experiment platform

We conducted a hardware-in-the-loop test on a driving simulator to analyze the
effectiveness of the proposed self-optimizing controller, based on RL. A schematic of the
simulation experiment platform is shown in Figure 9.

Symmetry 2021, 13, x FOR PEER REVIEW 16 of 38

12: 𝛻𝜃𝑢𝐽 ≈
1

𝑁
∑𝛻𝑎𝑄(𝑠, 𝑎|𝜃

𝑄) |𝑠=𝑠𝑖,𝑎=𝜋(𝑠𝑖)𝛻𝜃𝑢𝜋(𝑠|𝜃
𝑢)|𝑠=𝑠𝑖.

13: Update the target networks:

14: 𝜃𝑢
′
← 𝜏𝜃𝑢 + (1 − τ)𝜃𝑢

′
,

15: 𝜃𝑄
′
← 𝜏𝜃𝑄 + (1 − τ)𝜃𝑄

′
.

16: End for time step

17: End for Episode

The entire procedure is repeated until the optimal control policy is learned, and we

use the same framework for both simulation and real-world experiments; the controller

system learns basic path tracking skills to adapt to different reference trajectories and

dynamic model parameters.

4. Experiment and Analysis of Results

This section describes the simulation environment, the path tracking controller

training process, and the employment of the physical autonomous system, with a con-

troller performance evaluation and a generalization ability verification. In the following,

we describe each step in detail.

4.1. Experimental Setting

a. Simulation experiment platform

We conducted a hardware-in-the-loop test on a driving simulator to analyze the ef-

fectiveness of the proposed self-optimizing controller, based on RL. A schematic of the

simulation experiment platform is shown in Figure 9.

Figure 9. Hardware-in-the-loop simulation platform based on driving simulator.

To follow the desired driven path, we projected a set of trajectories onto our envi-

ronment map to examine the performance of the presented controller. We selected the

candidate that best minimized the lateral position deviation and lateral angle deviation

of the controlled object from the reference trajectory. Thus, five urban road maps (Figure

10) with various levels of difficulty were designed for the self-optimizing path tracking

controller, with reference to the tracks of the car racing games TORCS [19] and GT Sport

[20]. These road maps were generated using the SCANeR™ studio engine (OKTAL,

France, see: www.oktal.fr, 13 December 2019), a road and environment creation software

for automotive simulation. This software was responsible for delivering the raw sensor

data to the control interface and for transferring the control commands (steer, brake, ac-

celeration) to the simulator engine for execution through a dedicated application pro-

gram interface function. The driving performance data were recorded at a frequency of

20 Hz.

Figure 9. Hardware-in-the-loop simulation platform based on driving simulator.

Symmetry 2022, 14, 31 16 of 37

To follow the desired driven path, we projected a set of trajectories onto our envi-
ronment map to examine the performance of the presented controller. We selected the
candidate that best minimized the lateral position deviation and lateral angle deviation of
the controlled object from the reference trajectory. Thus, five urban road maps (Figure 10)
with various levels of difficulty were designed for the self-optimizing path tracking con-
troller, with reference to the tracks of the car racing games TORCS [19] and GT Sport [20].
These road maps were generated using the SCANeR™ studio engine (OKTAL, France,
see: www.oktal.fr, 13 December 2019), a road and environment creation software for au-
tomotive simulation. This software was responsible for delivering the raw sensor data to
the control interface and for transferring the control commands (steer, brake, acceleration)
to the simulator engine for execution through a dedicated application program interface
function. The driving performance data were recorded at a frequency of 20 Hz.

Symmetry 2021, 13, x FOR PEER REVIEW 17 of 38

Figure 10. Trajectory virtual scene road maps.

For a specific traffic environment, we aimed to provide the path tracking controller

with a reference trajectory to follow. We invited an experienced driver to operate a car

with a steering wheel and pedals on the different urban road maps to generate the cor-

responding reference trajectories. The collected data included the vehicle world location,

heading angles, and velocities in the x-direction, thereby providing environmental states

for training and test evaluations, based on the vehicle sensor IMU information and GPS

data. At every time step, the path tracking controller calculated the reference error based

on the simplified vehicle models. The vehicle’s location, relative to the specific reference

coordinate system, was denoted as (𝑥, 𝑦, 𝜑), where x and y were the coordinates of the

midpoint of the vehicle’s center of gravity and 𝜑 was the orientation angle of the vehi-

cle’s body.

b. Realistic autobus experiment platform

The realistic autobus experiment platform provided radar, GPS, and IMU data, and

we could parse out obstacle distance and vehicle attitude information as well as genuine

road indicator values. The autobus platform could also execute control commands (steer,

brake, and acceleration) received from the path tracking controller through the vehicle’s

controller area network bus. The self-optimizing controller, based on the RL framework,

ran on NVIDIA’s computing unit Xavier and comprised two submodules. First, the ac-

tor–critic network architecture mode obtained the proportional and derivative gain val-

ues by training the network using the DDPG algorithm. Second, the self-optimizing PID

controller module received the gain values and calculated the real-time control com-

mands for acting on the vehicle steering wheel. A schematic diagram of the realistic au-

tobus experiment platform is shown in Figure 11, and the function description and pre-

cision of each sensor are shown in Table 3.

Figure 10. Trajectory virtual scene road maps.

For a specific traffic environment, we aimed to provide the path tracking controller
with a reference trajectory to follow. We invited an experienced driver to operate a car with a
steering wheel and pedals on the different urban road maps to generate the corresponding
reference trajectories. The collected data included the vehicle world location, heading
angles, and velocities in the x-direction, thereby providing environmental states for training
and test evaluations, based on the vehicle sensor IMU information and GPS data. At every
time step, the path tracking controller calculated the reference error based on the simplified
vehicle models. The vehicle’s location, relative to the specific reference coordinate system,
was denoted as (x, y, ϕ), where x and y were the coordinates of the midpoint of the vehicle’s
center of gravity and ϕ was the orientation angle of the vehicle’s body.

b. Realistic autobus experiment platform

The realistic autobus experiment platform provided radar, GPS, and IMU data, and
we could parse out obstacle distance and vehicle attitude information as well as genuine
road indicator values. The autobus platform could also execute control commands (steer,
brake, and acceleration) received from the path tracking controller through the vehicle’s
controller area network bus. The self-optimizing controller, based on the RL framework,
ran on NVIDIA’s computing unit Xavier and comprised two submodules. First, the actor–
critic network architecture mode obtained the proportional and derivative gain values by
training the network using the DDPG algorithm. Second, the self-optimizing PID controller
module received the gain values and calculated the real-time control commands for acting
on the vehicle steering wheel. A schematic diagram of the realistic autobus experiment
platform is shown in Figure 11, and the function description and precision of each sensor
are shown in Table 3.

www.oktal.fr

Symmetry 2022, 14, 31 17 of 37
Symmetry 2021, 13, x FOR PEER REVIEW 18 of 38

Figure 11. Schematic diagram of the realistic autobus experiment platform.

Table 3. Vehicle sensor configuration scheme. (* indicates the number of sensors).

Sensors Position Function Description Precision

GPS+IMU

*1
Top Precise location of the vehicle. Positioning accuracy: 5 cm

IBEO Lidar

*6
Front, Rear

1. Vehicle, pedestrian detection.

2. Relative distance, speed, angle

Detection accuracy: 90%

Effective distance: 80 m

ESR Radar

*6
Front, Rear

1. Long-distance obstacle detection.

2. Road edge detection.

Detection accuracy: 90%

Effective distance: 120 m

Vision Camera

*12

Front, Rear

Top sides

1. Traffic light status detection.

2. Lane line detection.

Detection accuracy: 95%

Effective angle: 178°

Ultrasonic radar

*8

Front, Rear,

Both sides

1. Short-distance obstacle detection.

2. Blind field detection.

Detection accuracy: 90%

360° coverage

Our real-world driving experiment mimicked those conducted in simulations in

many ways. However, executing this experiment in the real world was significantly

more challenging, as the system could not automatically reset the starting state. In addi-

tion, the RL agent evaluates and improves its control policy in a trial-and-error manner;

thus, it would have been dangerous and costly to train an agent on a real vehicle; more-

over, particularly with dynamic balancing systems, such an approach would be compli-

cated and expensive. We were motivated by the steady ability of the traditional PID

controller and learning mechanisms that interacted with the environment. As noted

above, in this paper, a self-optimizing PID path tracking controller, based on an RL

framework, was proposed for use with a realistic autonomous platform. The design of

the controller had three advantages, as mentioned above (reducing the exploration space

of the RL, introducing an online self-learning mechanism into the traditional controller

design, and using RL for practical engineering control). To the best of our knowledge,

this was the first demonstration of a deep RL agent driving a real autobus. We conducted

Figure 11. Schematic diagram of the realistic autobus experiment platform.

Table 3. Vehicle sensor configuration scheme. (* indicates the number of sensors).

Sensors Position Function Description Precision

GPS+IMU
*1 Top Precise location of the vehicle. Positioning accuracy: 5 cm

IBEO Lidar
*6 Front, Rear 1. Vehicle, pedestrian detection.

2. Relative distance, speed, angle
Detection accuracy: 90%
Effective distance: 80 m

ESR Radar
*6 Front, Rear 1. Long-distance obstacle detection.

2. Road edge detection.
Detection accuracy: 90%
Effective distance: 120 m

Vision Camera
*12

Front, Rear
Top sides

1. Traffic light status detection.
2. Lane line detection.

Detection accuracy: 95%
Effective angle: 178◦

Ultrasonic radar
*8

Front, Rear,
Both sides

1. Short-distance obstacle detection.
2. Blind field detection.

Detection accuracy: 90%
360◦ coverage

Our real-world driving experiment mimicked those conducted in simulations in
many ways. However, executing this experiment in the real world was significantly more
challenging, as the system could not automatically reset the starting state. In addition,
the RL agent evaluates and improves its control policy in a trial-and-error manner; thus,
it would have been dangerous and costly to train an agent on a real vehicle; moreover,
particularly with dynamic balancing systems, such an approach would be complicated
and expensive. We were motivated by the steady ability of the traditional PID controller
and learning mechanisms that interacted with the environment. As noted above, in this
paper, a self-optimizing PID path tracking controller, based on an RL framework, was
proposed for use with a realistic autonomous platform. The design of the controller
had three advantages, as mentioned above (reducing the exploration space of the RL,
introducing an online self-learning mechanism into the traditional controller design, and
using RL for practical engineering control). To the best of our knowledge, this was the first
demonstration of a deep RL agent driving a real autobus. We conducted our experiment
using a wire-controlled autobus (“New Energy Electric Bus”) (see Table 4 for the specific
vehicle parameters).

Symmetry 2022, 14, 31 18 of 37

Table 4. Specific parameter information of the wire-controlled autobus.

Vehicle Information Parameters

Length (mm) 8010 Maximum Total Mass (kg) 13000
Width (mm) 2390 Front Suspension/Rear Suspension (mm) 1820/1690
Height (mm) 3090 Approach Angle/Departure Angle (◦) 8/12

Wheelbase (mm) 4500 Maximum Speed (km/h) 69
Turning Radius (mm) 9000 Tire Size × Number 245/70R19.5 × 4

c. Software version and hardware computing platform

In this project, we used NVIDIA’s Jetson AGX Xavier computing module to run soft-
ware algorithms on virtual and realistic autonomous platforms. Thus, it was possible to
implement an autonomous machine domain controller using artificial intelligence (AI)
technology, which was sufficient for completing the following tasks: sensor fusion, high-
precision positioning, path planning, and executing tracking algorithms. The kit benefited
from NVIDIA’s rich set of AI tools and workflows, which can be used to quickly train and
deploy neural networks. Table 5 presents the path tracking controller software and comput-
ing hardware environments that the agents relied on in the training and testing processes.

Table 5. Software and hardware technical parameters.

Software and Hardware Technical Parameters of the On-Board Computing Unit

Symmetry 2021, 13, x FOR PEER REVIEW 19 of 38

our experiment using a wire-controlled autobus (“New Energy Electric Bus”) (see Table 4

for the specific vehicle parameters).

Table 4. Specific parameter information of the wire-controlled autobus.

Vehicle Information Parameters

Length (mm) 8010 Maximum Total Mass (kg） 13000

Width (mm) 2390 Front Suspension/Rear Suspension (mm) 1820/1690

Height (mm) 3090 Approach Angle/Departure Angle (°) 8/12

Wheelbase (mm) 4500 Maximum Speed (km/h) 69

Turning Radius (mm) 9000 Tire Size × Number 245/70R19.5 × 4

c. Software version and hardware computing platform

In this project, we used NVIDIA’s Jetson AGX Xavier computing module to run

software algorithms on virtual and realistic autonomous platforms. Thus, it was possible

to implement an autonomous machine domain controller using artificial intelligence (AI)

technology, which was sufficient for completing the following tasks: sensor fusion,

high-precision positioning, path planning, and executing tracking algorithms. The kit

benefited from NVIDIA’s rich set of AI tools and workflows, which can be used to

quickly train and deploy neural networks. Table 5 presents the path tracking controller

software and computing hardware environments that the agents relied on in the training

and testing processes.

Table 5. Software and hardware technical parameters.

Software and Hardware Technical Parameters

of the On-Board Computing Unit

GPU 512-core Volta GPU with Tensor Core

CPU 8-core ARM 64-bit CPU

RAM 32 GB

Compute DL-TOPs 30 TOPs

Operating system Ubuntu 18.04

RL framework Tensorflow-1.14

4.2. Performance Verification and Results Analysis

a. Simulation experiment setup and performance during training process

We trained our path tracking controller on four maps (Figure 10 Map-A~Map-D).

Map-A was relatively simple and was used for the first stage of training, in which the

vehicle learned a basic reference trajectory-tracking task, such as on long straight roads

and/or some simple corners. Map-B, Map-C, and Map-D had different levels of difficul-

ty, with diverse corner shapes. Map-E had the most complicated trajectory and was used

for testing based on the pre-trained weights from Map-A to Map-D to evaluate the con-

trol performance and generalization ability of the controller. The training rewards of the

different tracks, based on the RL controller, are illustrated in Figure 12.

GPU 512-core Volta GPU with Tensor Core
CPU 8-core ARM 64-bit CPU
RAM 32 GB

Compute DL-TOPs 30 TOPs
Operating system Ubuntu 18.04

RL framework Tensorflow-1.14

4.2. Performance Verification and Results Analysis

a. Simulation experiment setup and performance during training process

We trained our path tracking controller on four maps (Figure 10 Map-A~Map-D).
Map-A was relatively simple and was used for the first stage of training, in which the
vehicle learned a basic reference trajectory-tracking task, such as on long straight roads
and/or some simple corners. Map-B, Map-C, and Map-D had different levels of difficulty,
with diverse corner shapes. Map-E had the most complicated trajectory and was used for
testing based on the pre-trained weights from Map-A to Map-D to evaluate the control
performance and generalization ability of the controller. The training rewards of the
different tracks, based on the RL controller, are illustrated in Figure 12.

In the path tracking control experiments, we trained an optimal policy to achieve
continuous action control in the simulation platform. During the entire training process,
the ego vehicle (also referred to as host vehicle) was driven at a fixed speed of 30 km/h
and the experimental frequency was 20 Hz. If the vehicle was driven out of the lane or
collided and/or the vehicle speed dropped to 0, we penalized the model, and the current
episode was terminated. In Figure 12, which illustrates the total rewards against the number
of episodes, we can see that, as the training continues, the total reward in one episode
increases, because the model gradually finds the optimal control policy. In addition, the
complexity of the reference trajectory also directly affects the training time and number
of episodes. With the goal of completing a lap driving task, we recorded the number of
episodes, iteration steps, driving distances, and training times, and the results are shown in
Table 6.

Symmetry 2022, 14, 31 19 of 37Symmetry 2021, 13, x FOR PEER REVIEW 20 of 38

Figure 12. Average total reward value with the RL training episode.

In the path tracking control experiments, we trained an optimal policy to achieve

continuous action control in the simulation platform. During the entire training process,

the ego vehicle (also referred to as host vehicle) was driven at a fixed speed of 30 km/h

and the experimental frequency was 20 Hz. If the vehicle was driven out of the lane or

collided and/or the vehicle speed dropped to 0, we penalized the model, and the current

episode was terminated. In Figure 12, which illustrates the total rewards against the

number of episodes, we can see that, as the training continues, the total reward in one

episode increases, because the model gradually finds the optimal control policy. In addi-

tion, the complexity of the reference trajectory also directly affects the training time and

number of episodes. With the goal of completing a lap driving task, we recorded the

number of episodes, iteration steps, driving distances, and training times, and the results

are shown in Table 6.

Table 6. Reinforcement learning (RL) training result statistics.

 Number Episode Iteration Step Drive Distance Training Time

Map-A 180 8858 2387.64 0.75 h

Map-B 210 16,139 3242.83 1.2 h

Map-C 410 38,926 2935.72 2.3 h

Map-D 600 61,538 6470.38 3.6 h

During this study, although the RL agent learned the optimal control strategy, the

training process took a very long time; the training time reached 3.6 h during the training

process of Map-D, and the numbers of episodes and iteration steps reached 600 and

61,538, respectively. The actor–critic neural network sometimes did not converge (over-

fitting), causing the reward to drop sharply; the pink band represents the standard devi-

ation of the total reward, which fluctuated greatly during the training process on the

roads of Map-C and Map-D. For the training result of MSE, the loss value on the road of

Map-D illustrates that, at the 140th iteration step, the value converged to 4500, as shown

in Figure 13.

Figure 12. Average total reward value with the RL training episode.

Table 6. Reinforcement learning (RL) training result statistics.

Number Episode Iteration Step Drive Distance Training Time

Map-A 180 8858 2387.64 0.75 h
Map-B 210 16,139 3242.83 1.2 h
Map-C 410 38,926 2935.72 2.3 h
Map-D 600 61,538 6470.38 3.6 h

During this study, although the RL agent learned the optimal control strategy, the
training process took a very long time; the training time reached 3.6 h during the training
process of Map-D, and the numbers of episodes and iteration steps reached 600 and 61,538,
respectively. The actor–critic neural network sometimes did not converge (overfitting),
causing the reward to drop sharply; the pink band represents the standard deviation of the
total reward, which fluctuated greatly during the training process on the roads of Map-C
and Map-D. For the training result of MSE, the loss value on the road of Map-D illustrates
that, at the 140th iteration step, the value converged to 4500, as shown in Figure 13.

The possible reasons for these results include the fact that the essence of the DDPG
algorithm is a trial-and-error method, which is based on random sampling during the
training process; thus, it can easily encounter excessive training time and overfitting
problems. The key is to properly balance exploration and utilization. In this paper, the
design of the controller reduces the exploration space of the RL to find the optimal control
parameters, which will greatly improve the learning efficiency. The training rewards for
the self-optimizing path tracking controller, based on the RL framework, are illustrated in
Figure 14.

Symmetry 2022, 14, 31 20 of 37Symmetry 2021, 13, x FOR PEER REVIEW 21 of 38

Figure 13. Mean squared error (MSE) loss value with the RL training step number.

The possible reasons for these results include the fact that the essence of the DDPG

algorithm is a trial-and-error method, which is based on random sampling during the

training process; thus, it can easily encounter excessive training time and overfitting

problems. The key is to properly balance exploration and utilization. In this paper, the

design of the controller reduces the exploration space of the RL to find the optimal con-

trol parameters, which will greatly improve the learning efficiency. The training rewards

for the self-optimizing path tracking controller, based on the RL framework, are illus-

trated in Figure 14.

Figure 14. Average total reward value with the PID–RL training episode.

Figure 13. Mean squared error (MSE) loss value with the RL training step number.

Symmetry 2021, 13, x FOR PEER REVIEW 21 of 38

Figure 13. Mean squared error (MSE) loss value with the RL training step number.

The possible reasons for these results include the fact that the essence of the DDPG

algorithm is a trial-and-error method, which is based on random sampling during the

training process; thus, it can easily encounter excessive training time and overfitting

problems. The key is to properly balance exploration and utilization. In this paper, the

design of the controller reduces the exploration space of the RL to find the optimal con-

trol parameters, which will greatly improve the learning efficiency. The training rewards

for the self-optimizing path tracking controller, based on the RL framework, are illus-

trated in Figure 14.

Figure 14. Average total reward value with the PID–RL training episode. Figure 14. Average total reward value with the PID–RL training episode.

As training continues, the total reward in one episode increases linearly. Owing to
the introduction of the traditional PID control parameters (as constrained by experience
knowledge), the exploration space for the RL is greatly reduced, meaning that the optimal
control policy can be learned quickly. Based on the goal of completing a lap driving task,
the results for the number of episodes, iteration steps, driving distances, and training times
are shown in Table 7.

Symmetry 2022, 14, 31 21 of 37

Table 7. RL proportional–integral–derivative (PID–RL) training result statistics.

Number Episode Iteration Step Drive Distance Training Time

Map-A 2 3858 2987.4 9.8 min
Map-B 2 5139 3642.3 11.2 min
Map-C 3 6926 4732.8 13.1 min
Map-D 3 8738 6870.2 18.3 min

We can see that the self-optimizing PID path controller, based on RL (online frame-
work), enables us to obtain an acceptable control policy quickly. The ego vehicle can pass
Map-A and Map-B at the 2nd episode and Map-C and Map-D at the 3rd episode, respec-
tively. Simultaneously, it effectively solves the problem of network overfitting, allowing
for stable convergence (as shown in Figure 15). With regard to the training result for the
loss value in Map-D, the result illustrates that, at the 130th iteration step, the network
converges to 200. After 130 iterations, a highly effective path tracking control policy will
have been learned.

Symmetry 2021, 13, x FOR PEER REVIEW 22 of 38

As training continues, the total reward in one episode increases linearly. Owing to

the introduction of the traditional PID control parameters (as constrained by experience

knowledge), the exploration space for the RL is greatly reduced, meaning that the opti-

mal control policy can be learned quickly. Based on the goal of completing a lap driving

task, the results for the number of episodes, iteration steps, driving distances, and train-

ing times are shown in Table 7.

Table 7. RL proportional–integral–derivative (PID–RL) training result statistics.

 Number Episode Iteration Step Drive Distance Training Time

Map-A 2 3858 2987.4 9.8 min

Map-B 2 5139 3642.3 11.2 min

Map-C 3 6926 4732.8 13.1 min

Map-D 3 8738 6870.2 18.3 min

We can see that the self-optimizing PID path controller, based on RL (online

framework), enables us to obtain an acceptable control policy quickly. The ego vehicle

can pass Map-A and Map-B at the 2nd episode and Map-C and Map-D at the 3rd episode,

respectively. Simultaneously, it effectively solves the problem of network overfitting,

allowing for stable convergence (as shown in Figure 15). With regard to the training re-

sult for the loss value in Map-D, the result illustrates that, at the 130th iteration step, the

network converges to 200. After 130 iterations, a highly effective path tracking control

policy will have been learned.

Figure 15. MSE loss value with the PID–RL training step number.

Based on a comparative analysis of the above results (Figure 12 vs. Figure 14, Figure

13 vs. Figure 15, Table 6 vs. Table 7), we can verify that the control policy, as constrained

by prior experience, can help the RL agent learn relatively quickly.

b. Evaluating the performance of self-optimizing proportional–integral–derivative

(PID) controller, based on RL framework

The purpose of the evaluation is to verify the adaptive ability of the proposed con-

troller algorithm under complex reference trajectories and various driving speeds, as

well as different dynamic models. Additionally, for the further analysis of the proposed

controller, reference results from an experienced driver are presented for comparison in

Figure 15. MSE loss value with the PID–RL training step number.

Based on a comparative analysis of the above results (Figure 12 vs. Figure 14,
Figure 13 vs. Figure 15, Table 6 vs. Table 7), we can verify that the control policy, as con-
strained by prior experience, can help the RL agent learn relatively quickly.

b. Evaluating the performance of self-optimizing proportional–integral–derivative
(PID) controller, based on RL framework

The purpose of the evaluation is to verify the adaptive ability of the proposed con-
troller algorithm under complex reference trajectories and various driving speeds, as well
as different dynamic models. Additionally, for the further analysis of the proposed con-
troller, reference results from an experienced driver are presented for comparison in order
to verify whether the self-optimizing controller can learn a better control policy. This
paper adopted five indicators for measuring the performance of the self-optimizing path
tracking controller:

• The smoothness indicator represents the comfort resulting from the path-following
control. In this paper, the vibration amplitude of the steering wheel was used to
represent the smoothness indicator.

• The lateral track error, e, and heading angle error, ∆ϕ, evaluate the effects of the path
tracking.

Symmetry 2022, 14, 31 22 of 37

• The maximum speed and average speed indicators characterize the driving efficiency.

A traditional PID controller uses a more intuitive steering control law, where RL is a
more advanced self-optimal learning controller. Hence, in this study, the self-optimizing
path tracking controller proposed is based on the RL framework and combines traditional
PID control algorithms and RL mechanisms. The figure below shows a performance
comparison between a fixed-parameter PID controller, an RL controller, and the proposed
PID–RL self-optimizing controller, in a path-following control process at 30 km/h. It can be
observed that the self-optimizing controller learns a better control policy.

From Figure 16 and Table 8, it can be seen that the amplitude (min–max), mean, and
standard deviation are all reduced with the self-optimizing path controller, which can
quickly realize stable control and overcome the overshoots caused by PID control and the
unstable characteristics of the RL controller. In particular, the standard deviation value
is significantly reduced, indicating the smoothness of the steering wheel rotation and the
driving comfort.

Symmetry 2021, 13, x FOR PEER REVIEW 23 of 38

order to verify whether the self-optimizing controller can learn a better control policy.

This paper adopted five indicators for measuring the performance of the self-optimizing

path tracking controller:

 The smoothness indicator represents the comfort resulting from the path-following

control. In this paper, the vibration amplitude of the steering wheel was used to

represent the smoothness indicator.

 The lateral track error, 𝑒, and heading angle error, ∆φ, evaluate the effects of the

path tracking.

 The maximum speed and average speed indicators characterize the driving effi-

ciency.

A traditional PID controller uses a more intuitive steering control law, where RL is a

more advanced self-optimal learning controller. Hence, in this study, the self-optimizing

path tracking controller proposed is based on the RL framework and combines tradi-

tional PID control algorithms and RL mechanisms. The figure below shows a perfor-

mance comparison between a fixed-parameter PID controller, an RL controller, and the

proposed PID–RL self-optimizing controller, in a path-following control process at 30

km/h. It can be observed that the self-optimizing controller learns a better control policy.

From Figure 16 and Table 8, it can be seen that the amplitude (min–max), mean, and

standard deviation are all reduced with the self-optimizing path controller, which can

quickly realize stable control and overcome the overshoots caused by PID control and the

unstable characteristics of the RL controller. In particular, the standard deviation value is

significantly reduced, indicating the smoothness of the steering wheel rotation and the

driving comfort.

0 40 80 120 160 200 240
-0.6

-0.4

-0.2

0.0

0.2

0.4

S
te

e
r－

A
n

g
le

 (
°)

Iteration－Step × 10

 PID－Steer

 RL－Steer

 PID－RL－Steer

Figure 16. Steer angle of the path tracking controller with the iteration step.

Table 8. Mathematical statistics of steering wheel angles.

 Standard Deviation Minimum Maximum

PID−Steer 0.11785 −0.5 0.17068

RL−Steer 0.13907 −0.96124 0.18131

PID−RL−Steer 0.04705 ↓ −0.49881 ↓ 0.07665 ↓

From Figure 17 and Table 9, it can be seen that the standard deviations of the lateral

error for the two controllers are almost identical, whereas the amplitude of the

self-optimizing path controller is the lowest, indicating that its control performance is

more stable than that of the other two controllers.

Figure 16. Steer angle of the path tracking controller with the iteration step.

Table 8. Mathematical statistics of steering wheel angles.

Standard Deviation Minimum Maximum

PID−Steer 0.11785 −0.5 0.17068
RL−Steer 0.13907 −0.96124 0.18131

PID−RL−Steer 0.04705 ↓ −0.49881 ↓ 0.07665 ↓

From Figure 17 and Table 9, it can be seen that the standard deviations of the lateral er-
ror for the two controllers are almost identical, whereas the amplitude of the self-optimizing
path controller is the lowest, indicating that its control performance is more stable than that
of the other two controllers.

Table 9. Mathematical statistics of lateral errors.

Standard Deviation Minimum Maximum

PID−cross−track error (CTE) 0.1616 −0.12305 0.33338
RL−CTE 0.1220 −0.17023 0.34481

PID−RL−CTE 0.0915 ↓ −0.0092 ↓ 0.29207 ↓

Symmetry 2022, 14, 31 23 of 37Symmetry 2021, 13, x FOR PEER REVIEW 24 of 38

0 40 80 120 160 200 240
-0.50

-0.25

0.00

0.25

0.50

L
a

te
ra

l
e

rr
o

r
(m

)

Iteration－Step × 10

 PID－CTE

 RL－CTE

 PID－RL－CTE

Figure 17. Lateral error of path tracking controller with the iteration step.

Table 9. Mathematical statistics of lateral errors.

 Standard Deviation Minimum Maximum

PID−cross−track error (CTE) 0.1616 −0.12305 0.33338

RL−CTE 0.1220 −0.17023 0.34481

PID−RL−CTE 0.0915 ↓ −0.0092 ↓ 0.29207 ↓

Another important evaluation indicator for path tracking is the heading angle error;

from Figure 18 and Table 10, it can be seen that the standard deviation value is signifi-

cantly reduced with the self-optimizing path controller. Considering the smoothness in-

dicator, the lateral track error, e, and the heading angle error, ∆φ, the controller perfor-

mance can be expressed as follows.

0 40 80 120 160 200 240
-0.10

-0.05

0.00

0.05

0.10

H
e

a
d

 E
rr

o
r

(°
)

Iteration－Step × 10

 PID－Head

 RL－Head

 PID－RL－Head

Figure 18. Heading error of path tracking controller with the iteration step.

Figure 17. Lateral error of path tracking controller with the iteration step.

Another important evaluation indicator for path tracking is the heading angle error;
from Figure 18 and Table 10, it can be seen that the standard deviation value is significantly
reduced with the self-optimizing path controller. Considering the smoothness indicator,
the lateral track error, e, and the heading angle error, ∆ϕ, the controller performance can be
expressed as follows.

Symmetry 2021, 13, x FOR PEER REVIEW 24 of 38

0 40 80 120 160 200 240
-0.50

-0.25

0.00

0.25

0.50

L
a

te
ra

l
e

rr
o

r
(m

)

Iteration－Step × 10

 PID－CTE

 RL－CTE

 PID－RL－CTE

Figure 17. Lateral error of path tracking controller with the iteration step.

Table 9. Mathematical statistics of lateral errors.

 Standard Deviation Minimum Maximum

PID−cross−track error (CTE) 0.1616 −0.12305 0.33338

RL−CTE 0.1220 −0.17023 0.34481

PID−RL−CTE 0.0915 ↓ −0.0092 ↓ 0.29207 ↓

Another important evaluation indicator for path tracking is the heading angle error;

from Figure 18 and Table 10, it can be seen that the standard deviation value is signifi-

cantly reduced with the self-optimizing path controller. Considering the smoothness in-

dicator, the lateral track error, e, and the heading angle error, ∆φ, the controller perfor-

mance can be expressed as follows.

0 40 80 120 160 200 240
-0.10

-0.05

0.00

0.05

0.10

H
e

a
d

 E
rr

o
r

(°
)

Iteration－Step × 10

 PID－Head

 RL－Head

 PID－RL－Head

Figure 18. Heading error of path tracking controller with the iteration step.

Figure 18. Heading error of path tracking controller with the iteration step.

Table 10. Mathematical statistics of heading errors.

Standard Deviation Minimum Maximum

PID-Head 0.0343 −0.0247 0.0625
RL-Head 0.0349 −0.0353 0.0534

PID–RL-Head 0.0073 ↓ −0.0061 ↓ 0.0208 ↓

Another important evaluation indicator for path tracking is the heading angle error;
from Figure 18 and Table 10, it can be seen that the standard deviation value is significantly
reduced with the self-optimizing path controller. Considering the smoothness indicator,
the lateral track error, e, and the heading angle error, ∆ϕ, the controller performance can be
expressed as follows:

self-optimizing controller > PID controller > RL controller

Symmetry 2022, 14, 31 24 of 37

The self-optimizing PID controller based on the RL framework can automatically
adjust the control parameters to realize the dynamic compensation of the control system
online and ultimately obtain a better path tracking control performance. The box chart dis-
tribution and mathematical statistics of the four control parameters are shown in Figure 19
and Table 11, respectively.

Symmetry 2021, 13, x FOR PEER REVIEW 25 of 38

Table 10. Mathematical statistics of heading errors.

 Standard Deviation Minimum Maximum

PID-Head 0.0343 −0.0247 0.0625

RL-Head 0.0349 −0.0353 0.0534

PID–RL-Head 0.0073 ↓ −0.0061 ↓ 0.0208 ↓

Another important evaluation indicator for path tracking is the heading angle error;

from Figure 18 and Table 10, it can be seen that the standard deviation value is signifi-

cantly reduced with the self-optimizing path controller. Considering the smoothness in-

dicator, the lateral track error, e, and the heading angle error, ∆φ, the controller perfor-

mance can be expressed as follows:

self-optimizing controller > PID controller > RL controller

The self-optimizing PID controller based on the RL framework can automatically

adjust the control parameters to realize the dynamic compensation of the control system

online and ultimately obtain a better path tracking control performance. The box chart

distribution and mathematical statistics of the four control parameters are shown in Fig-

ure 19 and Table 11, respectively.

Figure 19. Data distribution of path tracking control parameters.

Table 11. Mathematical statistics of path tracking control parameters.

 Mean Standard Deviation Sum Minimum Median Maximum

∆𝑃1 0.84623 0.21836 206.48024 0.15364 0.86328 1.49518

∆𝐷1 0.59826 0.10214 145.97583 0.33797 0.59185 0.87246

∆𝑃2 0.90078 0.05179 219.78983 0.75222 0.90156 1.0384

∆𝐷2 0.30479 0.05151 74.36867 0.16412 0.30233 0.42815

According to the fluctuation results for the standard deviation, the lateral deviation

and its rate of change reached 0.2183 and 0.10214, respectively. It can be seen that when

the actual trajectory is far away from the reference trajectory, the proportional adjust-

ment of the lateral control parameters is the main factor. When approaching the reference

trajectory, the heading angle deviation and its rate of change have a greater impact, with

average values of 0.90078 and 0.30479, respectively. The controller can realize the

self-optimization tuning of the PID control parameters based on the RL algorithm, which

P1 D1 P2 D2

0.0

0.4

0.8

1.2

1.6

R
a

n
g

e

1.50

0.15

0.87

0.34

1.04

0.75

0.43

0.16

∆𝑃1

Figure 19. Data distribution of path tracking control parameters.

Table 11. Mathematical statistics of path tracking control parameters.

Mean Standard Deviation Sum Minimum Median Maximum

∆P1 0.84623 0.21836 206.48024 0.15364 0.86328 1.49518
∆D1 0.59826 0.10214 145.97583 0.33797 0.59185 0.87246
∆P2 0.90078 0.05179 219.78983 0.75222 0.90156 1.0384
∆D2 0.30479 0.05151 74.36867 0.16412 0.30233 0.42815

According to the fluctuation results for the standard deviation, the lateral deviation
and its rate of change reached 0.2183 and 0.10214, respectively. It can be seen that when the
actual trajectory is far away from the reference trajectory, the proportional adjustment of
the lateral control parameters is the main factor. When approaching the reference trajectory,
the heading angle deviation and its rate of change have a greater impact, with average
values of 0.90078 and 0.30479, respectively. The controller can realize the self-optimization
tuning of the PID control parameters based on the RL algorithm, which can then be used
for online learning and the optimization of complex path tracking control.

It can be seen from the experimental results that RL can automatically optimize the
PID control parameters according to the objective reward function and offer real-time
online learning capabilities, providing a new solution to controller optimization problems
of complex and uncertain systems.

To further verify the dynamic compensation performance of the self-optimizing con-
troller, based on the RL framework, its performance is compared with that of an active
disturbance rejection controller (ADRC). As described in References [49–51], the ADRC
controller effectively alleviates the problem of vehicle jitter caused by road curvature
changes under the conditions of a complex trajectory by observing internal and external
disturbances of the system. This paper compared the lateral track error, e, of the two
controllers on Map-E, and the speed conditions were set to 50 km/h and 60 km/h, respec-
tively. The comparison results for the two controllers on the four corner types are shown in
Figures 20 and 21, and the statistical analysis results are shown in Table 12.

Symmetry 2022, 14, 31 25 of 37

Symmetry 2021, 13, x FOR PEER REVIEW 26 of 38

can then be used for online learning and the optimization of complex path tracking con-

trol.

It can be seen from the experimental results that RL can automatically optimize the

PID control parameters according to the objective reward function and offer real-time

online learning capabilities, providing a new solution to controller optimization prob-

lems of complex and uncertain systems.

To further verify the dynamic compensation performance of the self-optimizing

controller, based on the RL framework, its performance is compared with that of an ac-

tive disturbance rejection controller (ADRC). As described in References [49–51], the

ADRC controller effectively alleviates the problem of vehicle jitter caused by road cur-

vature changes under the conditions of a complex trajectory by observing internal and

external disturbances of the system. This paper compared the lateral track error, e, of the

two controllers on Map-E, and the speed conditions were set to 50 km/h and 60 km/h,

respectively. The comparison results for the two controllers on the four corner types are

shown in Figures 20 and 21, and the statistical analysis results are shown in Table 12.

Figure 20. Self-optimizing controller and ADRC testing on road of Map-E under 50 km/h driving

conditions.
Figure 20. Self-optimizing controller and ADRC testing on road of Map-E under 50 km/h
driving conditions.

Symmetry 2021, 13, x FOR PEER REVIEW 27 of 38

Figure 21. Self-optimizing controller and ADRC testing on road of Map-E under 60 km/h driving

conditions.

Table 12. Mathematical statistics of lateral error for self-optimizing controller and ADRC controller

on the road of Map-E.

50 km/h Driving Condition on the Road of Map-E

 Mean Standard Deviation Minimum Maximum

PID–RL Controller −0.01017 ↓ 0.09325 −0.32759 0.39932 ↑

ADRC-Controller −0.06622 0.10941 −0.37658 0.18714

60 km/h Driving Condition on Road of Map-E

 Mean Standard Deviation Minimum Maximum

PID–RL Controller −0.00823 ↓ 0.10994 −0.35013 0.6918 ↑

ADRC-Controller −0.04492 0.10508 −0.37490 0.27655

From the results, we can conclude that the path tracking performances of the

self-optimizing controller and ADRC controller are almost unanimous. As shown in Ta-

ble 12, both controllers can achieve a stable control performance under 50 km/h and 60

km/h driving conditions in terms of the standard deviation value of the lateral error. The

ADRC controller observes the disturbances during the operation of the vehicle (see Fig-

ure 22), whereas the controller proposed in this study uses real-time online adjustment of

controller parameters to achieve dynamic compensation during the path tracking control

process (see Figure 23).

Figure 21. Self-optimizing controller and ADRC testing on road of Map-E under 60 km/h
driving conditions.

Symmetry 2022, 14, 31 26 of 37

Table 12. Mathematical statistics of lateral error for self-optimizing controller and ADRC controller
on the road of Map-E.

50 km/h Driving Condition on the Road of Map-E

Mean Standard
Deviation Minimum Maximum

PID–RL Controller −0.01017 ↓ 0.09325 −0.32759 0.39932 ↑
ADRC-Controller −0.06622 0.10941 −0.37658 0.18714

60 km/h Driving Condition on Road of Map-E

Mean Standard
Deviation Minimum Maximum

PID–RL Controller −0.00823 ↓ 0.10994 −0.35013 0.6918 ↑
ADRC-Controller −0.04492 0.10508 −0.37490 0.27655

From the results, we can conclude that the path tracking performances of the self-
optimizing controller and ADRC controller are almost unanimous. As shown in Table 12,
both controllers can achieve a stable control performance under 50 km/h and 60 km/h
driving conditions in terms of the standard deviation value of the lateral error. The ADRC
controller observes the disturbances during the operation of the vehicle (see Figure 22),
whereas the controller proposed in this study uses real-time online adjustment of controller
parameters to achieve dynamic compensation during the path tracking control process
(see Figure 23).

Symmetry 2021, 13, x FOR PEER REVIEW 28 of 38

0 100 200 300 400 500 600 700
-0.30

-0.15

0.00

0.15

0.30

T
o

ta
l
d

is
tu

rb
a

n
c
e

Iteration－Step

 Total disturbance － 50Km/h

 Total disturbance － 60km/h

Figure 22. Total disturbance observed by ADRC.

Figure 23. Distribution of control parameter.

c. Generalization of self-optimizing PID controller based on the RL framework

To test the generalization ability of the proposed self-optimizing PID controller,

based on the RL framework, we evaluated it with complex trajectories and variable speed

conditions on the road in Map-E. The different corner track types are shown in Figure 24

and include an arc curve track, a right-angle curve track, an S-curve track, and a U-turn

track.

Figure 24. Complex corner track types of the road of Map-E.

Figure 22. Total disturbance observed by ADRC.

Symmetry 2021, 13, x FOR PEER REVIEW 28 of 38

0 100 200 300 400 500 600 700
-0.30

-0.15

0.00

0.15

0.30

T
o

ta
l
d

is
tu

rb
a

n
c
e

Iteration－Step

 Total disturbance － 50Km/h

 Total disturbance － 60km/h

Figure 22. Total disturbance observed by ADRC.

Figure 23. Distribution of control parameter.

c. Generalization of self-optimizing PID controller based on the RL framework

To test the generalization ability of the proposed self-optimizing PID controller,

based on the RL framework, we evaluated it with complex trajectories and variable speed

conditions on the road in Map-E. The different corner track types are shown in Figure 24

and include an arc curve track, a right-angle curve track, an S-curve track, and a U-turn

track.

Figure 24. Complex corner track types of the road of Map-E.

Figure 23. Distribution of control parameter.

Symmetry 2022, 14, 31 27 of 37

c. Generalization of self-optimizing PID controller based on the RL framework

To test the generalization ability of the proposed self-optimizing PID controller, based
on the RL framework, we evaluated it with complex trajectories and variable speed condi-
tions on the road in Map-E. The different corner track types are shown in Figure 24 and
include an arc curve track, a right-angle curve track, an S-curve track, and a U-turn track.

Symmetry 2021, 13, x FOR PEER REVIEW 28 of 38

0 100 200 300 400 500 600 700
-0.30

-0.15

0.00

0.15

0.30

T
o

ta
l
d

is
tu

rb
a

n
c
e

Iteration－Step

 Total disturbance － 50Km/h

 Total disturbance － 60km/h

Figure 22. Total disturbance observed by ADRC.

Figure 23. Distribution of control parameter.

c. Generalization of self-optimizing PID controller based on the RL framework

To test the generalization ability of the proposed self-optimizing PID controller,

based on the RL framework, we evaluated it with complex trajectories and variable speed

conditions on the road in Map-E. The different corner track types are shown in Figure 24

and include an arc curve track, a right-angle curve track, an S-curve track, and a U-turn

track.

Figure 24. Complex corner track types of the road of Map-E. Figure 24. Complex corner track types of the road of Map-E.

The self-optimizing path tracking controller is further tested under variable speed
conditions on the road of Map-E to evaluate whether the proposed controller can be
implemented in a complex corner scenario at a high speed, based on using the behavioral
data of professional drivers as a baseline for comparative analysis.

From Figures 25–27, and the analysis of the statistical results in Table 13, it can be seen
that the max absolute value of the PID controller’s lateral error reached 1.11 m, the max
driving speed was 54 km/h, and the average cornering speed was concentrated in the range
of 36–42 km/h (as shown in Figure 25). The analysis results show that the controller with
constant control parameters found it difficult to adapt to speed changes and large curvature
road trajectories. As for the self-optimizing controller, the above problems can be overcome;
the max absolute value of the PID–RL Controller‘s lateral error was 0.66m, the max driving
speed was more than 100 km/h, and the average cornering speed was concentrated in the
range of 63–76 km/h (as shown in Figure 26). Furthermore, we conducted a comparative
analysis with the human driver’s behavior data, the max absolute value of the human
driver’s lateral error was 0.61 m, the lateral path track error of the method proposed in this
paper is almost consistent with it. The maximum driving speed was 71 km/h; to avoid
leaving the curve track, the drivers were forced to brake early before entering the corner,
and the average cornering speed was concentrated in the range of 44–53 km/h (as shown
in Figure 27), while the average cornering speed of the self-optimizing controller was better
than that of the human driver.

Table 13. Statistical results of the generalization ability test of the self-optimizing controller.

Indicators Mean Standard Deviation Minimum Maximum

PID Controller
Speed 41.0455 8.4158 0 55

Lateral error −0.1030 0.3573 −1.1125 0.9966

PID–RL Controller
Speed 84.6887 16.9462 0 101

Lateral error −0.0137 0.1089 −0.3844 0.6640

Human Driver
Speed 51.5378 11.8857 0 71

Lateral error −0.0014 0.1135 −0.6068 0.5521

Symmetry 2022, 14, 31 28 of 37

Symmetry 2021, 13, x FOR PEER REVIEW 29 of 38

The self-optimizing path tracking controller is further tested under variable speed

conditions on the road of Map-E to evaluate whether the proposed controller can be im-

plemented in a complex corner scenario at a high speed, based on using the behavioral

data of professional drivers as a baseline for comparative analysis.

From Figures 25–27, and the analysis of the statistical results in Table 13, it can be

seen that the max absolute value of the PID controller’s lateral error reached 1.11 m, the

max driving speed was 54 km/h, and the average cornering speed was concentrated in

the range of 36–42 km/h (as shown in Figure 25). The analysis results show that the con-

troller with constant control parameters found it difficult to adapt to speed changes and

large curvature road trajectories. As for the self-optimizing controller, the above prob-

lems can be overcome; the max absolute value of the PID–RL Controller‘s lateral error

was 0.66m, the max driving speed was more than 100 km/h, and the average cornering

speed was concentrated in the range of 63–76 km/h (as shown in Figure 26). Furthermore,

we conducted a comparative analysis with the human driver’s behavior data, the max

absolute value of the human driver’s lateral error was 0.61 m, the lateral path track error

of the method proposed in this paper is almost consistent with it. The maximum driving

speed was 71 km/h; to avoid leaving the curve track, the drivers were forced to brake

early before entering the corner, and the average cornering speed was concentrated in the

range of 44–53 km/h (as shown in Figure 27), while the average cornering speed of the

self-optimizing controller was better than that of the human driver.

In summary, we can draw the conclusion that our proposed path tracking approach

has the adaptability to cope with complex trajectory conditions and variation of speed by

optimizing the PID controller parameters in real time.

Figure 25. Lateral error of the traditional PID controller on the road of Map-E. Figure 25. Lateral error of the traditional PID controller on the road of Map-E.

Symmetry 2021, 13, x FOR PEER REVIEW 30 of 38

0 100 200 300 400 500 600

-0.4

0.0

0.4

0.8

Speed (km/h)

L
a

te
ra

l
e

rr
o

r
(m

)

Iteration－Step

0 13 25 38 51 63 76 88 101

Figure 26. Lateral error of PID–RL Controller on the road of Map-E.

0 100 200 300 400 500 600
-0.6

-0.3

0.0

0.3

0.6

Speed (km/h)

L
a

te
ra

l
e

rr
o

r
(m

)

Iteration－Step

0 9 18 27 36 44 53 62 71

Figure 27. Lateral error of human-driver control on the road of Map-E.

Table 13. Statistical results of the generalization ability test of the self-optimizing controller.

 Indicators Mean Standard Deviation Minimum Maximum

PID Controller
Speed 41.0455 8.4158 0 55

Lateral error −0.1030 0.3573 −1.1125 0.9966

PID–RL Con-

troller

Speed 84.6887 16.9462 0 101

Lateral error −0.0137 0.1089 −0.3844 0.6640

Human Driver
Speed 51.5378 11.8857 0 71

Lateral error −0.0014 0.1135 −0.6068 0.5521

d. Steering of a realistic autobus platform, based on the self-optimizing PID con-

troller

Figure 26. Lateral error of PID–RL Controller on the road of Map-E.

In summary, we can draw the conclusion that our proposed path tracking approach
has the adaptability to cope with complex trajectory conditions and variation of speed by
optimizing the PID controller parameters in real time.

Symmetry 2022, 14, 31 29 of 37

Symmetry 2021, 13, x FOR PEER REVIEW 30 of 38

0 100 200 300 400 500 600

-0.4

0.0

0.4

0.8

Speed (km/h)

L
a

te
ra

l
e

rr
o

r
(m

)

Iteration－Step

0 13 25 38 51 63 76 88 101

Figure 26. Lateral error of PID–RL Controller on the road of Map-E.

0 100 200 300 400 500 600
-0.6

-0.3

0.0

0.3

0.6

Speed (km/h)

L
a

te
ra

l
e

rr
o

r
(m

)

Iteration－Step

0 9 18 27 36 44 53 62 71

Figure 27. Lateral error of human-driver control on the road of Map-E.

Table 13. Statistical results of the generalization ability test of the self-optimizing controller.

 Indicators Mean Standard Deviation Minimum Maximum

PID Controller
Speed 41.0455 8.4158 0 55

Lateral error −0.1030 0.3573 −1.1125 0.9966

PID–RL Con-

troller

Speed 84.6887 16.9462 0 101

Lateral error −0.0137 0.1089 −0.3844 0.6640

Human Driver
Speed 51.5378 11.8857 0 71

Lateral error −0.0014 0.1135 −0.6068 0.5521

d. Steering of a realistic autobus platform, based on the self-optimizing PID con-

troller

Figure 27. Lateral error of human-driver control on the road of Map-E.

d. Steering of a realistic autobus platform, based on the self-optimizing PID controller

Considering the achievements of self-optimizing controllers, based on the RL frame-
work in the simulation environment, a natural question is whether these learned control
policies can be deployed in real physical systems. The essence of the RL algorithm is a trial-
and-error method, based on random sampling during the training process; thus, it would
be dangerous to train an agent on a real vehicle. Furthermore, unlike the training process of
a control policy in a simulated environment, the initial state of the controlled object cannot
reset the state automatically between episodes in a real environment. The authors of [25]
required a human driver to reset the vehicle to a valid starting position and initial state
when the training episode terminated; however, this requires significant human labor costs.
In summary, the simulation-to-reality transfer is hindered by the reality gap, in terms of
how to effectively reset the initial state to ensure the stability of the control system, and
how to reduce the time spent during the training process. To solve the above-mentioned
problems, our real-world driving experiments imitated (in many aspects) those conducted
in simulations and in steering realistic autobuses, based on a self-optimizing PID controller.
This section describes in detail the deployment of the physically realistic autobus system
and training process. An overview of our training method is presented in Figure 28.

For both the simulations and the real-world experiments, we realized the symmetric
migration from a virtual simulation scene to a real vehicle platform, which resolved the
limitation that reinforcement learning can only be used in simulation scene. We used
the same actor–critic architecture and the same hyper-parameters that were found to be
effective in the simulation. The common training procedures required adjustments in
order to be deployed for a RL algorithm on a physical vehicle, running in a real-world
environment. To account for both effectively resetting the initial state to ensure the stability
of the control system and reducing the time spent during the training process, we created an
architecture for the training procedures, comprising a simple state machine, as presented in
Figure 28. It included five sub-modules: state initialization, model training, state automatic
reset, driver takeover, and training task termination.

Symmetry 2022, 14, 31 30 of 37

Symmetry 2021, 13, x FOR PEER REVIEW 31 of 38

Considering the achievements of self-optimizing controllers, based on the RL

framework in the simulation environment, a natural question is whether these learned

control policies can be deployed in real physical systems. The essence of the RL algorithm

is a trial-and-error method, based on random sampling during the training process; thus,

it would be dangerous to train an agent on a real vehicle. Furthermore, unlike the train-

ing process of a control policy in a simulated environment, the initial state of the con-

trolled object cannot reset the state automatically between episodes in a real environ-

ment. The authors of [25] required a human driver to reset the vehicle to a valid starting

position and initial state when the training episode terminated; however, this requires

significant human labor costs. In summary, the simulation-to-reality transfer is hindered

by the reality gap, in terms of how to effectively reset the initial state to ensure the sta-

bility of the control system, and how to reduce the time spent during the training process.

To solve the above-mentioned problems, our real-world driving experiments imitated (in

many aspects) those conducted in simulations and in steering realistic autobuses, based

on a self-optimizing PID controller. This section describes in detail the deployment of the

physically realistic autobus system and training process. An overview of our training

method is presented in Figure 28.

Figure 28. Architecture diagram of self-optimizing path tracking controller on a realistic autobus

platform.

For both the simulations and the real-world experiments, we realized the symmetric

migration from a virtual simulation scene to a real vehicle platform, which resolved the

limitation that reinforcement learning can only be used in simulation scene. We used the

same actor–critic architecture and the same hyper-parameters that were found to be ef-

fective in the simulation. The common training procedures required adjustments in order

to be deployed for a RL algorithm on a physical vehicle, running in a real-world envi-

ronment. To account for both effectively resetting the initial state to ensure the stability of

the control system and reducing the time spent during the training process, we created

an architecture for the training procedures, comprising a simple state machine, as pre-

sented in Figure 28. It included five sub-modules: state initialization, model training,

state automatic reset, driver takeover, and training task termination.

In fact, many environmental factors affect the training process; therefore, real-time

safety and state machine monitoring mechanisms must be implemented in a physical

Figure 28. Architecture diagram of self-optimizing path tracking controller on a realistic autobus platform.

In fact, many environmental factors affect the training process; therefore, real-time
safety and state machine monitoring mechanisms must be implemented in a physical
vehicle control system. For these experiments, the vehicle was initialized at the starting
position of the road during preparation for training. However, when the distance of the
car from the center of the lane reached 0.5 m, the training episode was terminated and the
process entered the state automatic reset module; simultaneously, the common traditional
controller was used to control the vehicle, to revert to a valid state. At this point, the
training process was executed. When the autobus deviated from the center line of the lane
over a pre-set value (e > 0.7 m) and entered an unrecoverable state, a safety driver took over
and steered the vehicle to return to the center of the lane—that is, to the valid state. Then,
the next episode of training was begun. The introduction of the state machine effectively
reset the initial state to ensure the stability of the control system.

In addition, we built a cache buffer of driver’s behavior data. During the driver’s
driving process, the controller symmetrically learned the controllability of the human
driver, in order to obtain the optimal control parameters. The memory data buffer was used
to record the historical state and the action information of the vehicle. During the training
process, random batches of N historical data were sampled for the online training of the
network, and the actor–critic network mapped the vehicle state history to the intermediate
state variable, which was used to calculate the increment of the steering wheel control
sequence. Notably, if the data buffer stored positive sample data—that is, experience data
from excellent human drivers—then it would contribute to the actor–critic network by
quickly learning effective control policies, thus reducing the time spent on network training.

In general, the proposed self-optimizing controller learns the control policy by directly
interacting with a realistic vehicle operating environment. The observation state space used
by our method should be directly observable on a real vehicle equipped with sensors. The
GPS allows for the determination of its relative coordinates, based on the current track of
the road, and calculates the current lateral deviation error of the autobus from the given
track. The heading angle deviation is obtained using the IMU sensor, which measures the
difference in the change in the yaw angle with respect to the road track curvature. The
generated intermediate quantity is the gain parameter of the self-optimizing controller, and
its final output is the steering wheel angle control sequence data expanded over time, which
directly acts on the autonomous platform. It should be emphasized that the final output

Symmetry 2022, 14, 31 31 of 37

calculation result depends on the working mode selected by the state machine, as discussed
in the second section of this paper. The calculation method used for the self-optimizing
controller, based on the RL framework, is shown in Equation (18); whereas, the calculation
method for the common traditional controller, based on the PID paradigm, is shown in
Equation (16).

The path tracking task description follows a given reference trajectory by controlling
the steering angle of the steering wheel. The sensory inputs are the pose information of
the autobus (provided by the GPS and IMU systems) and the vehicle’s speed. The path
tracking controller output is the desired angle of the steering wheel in the range of ±620◦.
The controller acts at 20 Hz, corresponding to a control interval of 50 ms. The autobus’
drive-by-wire system will automatically disengage if the safety driver takes over, either by
lightly stepping on the accelerator or brake pedal or by turning the steering wheel.

The path tracking controller of the vehicle system was tested on an autobus with
different types of trajectories. Figure 29 is a screenshot from Google Maps, showing the
curve case, the straight case, the round island case, the corner angle case, and the lane
change case, etc. These were driven at speeds of 8 km/h and 10 km/h, with step speeds
of 0–20 km/h. The desired trajectory was reconstructed from the data points with a 0.5 m
spacing, as recorded from the GPS+IMU sensor. The 2-DOF bicycle model in vehicle
dynamics was used to describe the basic motion law of the intelligent autonomous system,
and the desired steering angle was determined by calculating the lateral error and the
heading angle error, according to Equations (16) and (18).

Symmetry 2021, 13, x FOR PEER REVIEW 33 of 38

Figure 29. Schematic diagram of the test road map in the real world.

The evaluation indicators were the same as those tested on the simulation platform,

to verify the path tracking control performance of the self-optimizing controller on a re-

alistic physical vehicle platform. The resulting self-optimizing controller, based on the RL

framework, showed much better behavior than the traditional controller—e.g., with re-

spect to smoother steering wheel control sequence data, as illustrated in Figure 30.

From the experimental results in Figure 30 and Table 14, it can clearly be concluded

that the human driver can complete the lateral motion control of the vehicle with a lower

vibration amplitude (69.0577) in terms of the performance of the smoothness of the

steering wheel control. Compared with the PID controller, the self-optimized RL con-

troller can obtain better control stability: the vibration amplitudes of the steering wheels

were 88.8032 and 80.6986, respectively. The above results verify the effectiveness of the

self-optimizing controller, based on reinforcement learning, in real vehicles.

0 500 1000 1500 2000 2500 3000 3500
-800

-600

-400

-200

0

200

400

600

800

S
te

e
r

a
n

g
le

 (
°)

Iteration－Step × 10

 Human－Steer

 PID－Steer

 PID－RL－Steer

Figure 30. Steer angle of the path tracking controller with the iteration step.

Table 14. Mathematical statistics of steering wheel angles.

 Mean Standard Deviation Minimum Maximum

Human−steer −22.15445 69.05777 −386 325

PID−Steer −42.81777 88.80323 −447 536

PID−RL−Steer −22.06958 ↓ 80.69866 ↓ −390.8 ↓ 403.2 ↓

With respect to both the path tracking accuracy and efficiency, the self-optimizing

controller can control the steering wheel angle with small lateral distance and heading

Figure 29. Schematic diagram of the test road map in the real world.

The evaluation indicators were the same as those tested on the simulation platform,
to verify the path tracking control performance of the self-optimizing controller on a
realistic physical vehicle platform. The resulting self-optimizing controller, based on the
RL framework, showed much better behavior than the traditional controller—e.g., with
respect to smoother steering wheel control sequence data, as illustrated in Figure 30.

From the experimental results in Figure 30 and Table 14, it can clearly be concluded
that the human driver can complete the lateral motion control of the vehicle with a lower
vibration amplitude (69.0577) in terms of the performance of the smoothness of the steering
wheel control. Compared with the PID controller, the self-optimized RL controller can
obtain better control stability: the vibration amplitudes of the steering wheels were 88.8032
and 80.6986, respectively. The above results verify the effectiveness of the self-optimizing
controller, based on reinforcement learning, in real vehicles.

Symmetry 2022, 14, 31 32 of 37

Symmetry 2021, 13, x FOR PEER REVIEW 33 of 38

Figure 29. Schematic diagram of the test road map in the real world.

The evaluation indicators were the same as those tested on the simulation platform,

to verify the path tracking control performance of the self-optimizing controller on a re-

alistic physical vehicle platform. The resulting self-optimizing controller, based on the RL

framework, showed much better behavior than the traditional controller—e.g., with re-

spect to smoother steering wheel control sequence data, as illustrated in Figure 30.

From the experimental results in Figure 30 and Table 14, it can clearly be concluded

that the human driver can complete the lateral motion control of the vehicle with a lower

vibration amplitude (69.0577) in terms of the performance of the smoothness of the

steering wheel control. Compared with the PID controller, the self-optimized RL con-

troller can obtain better control stability: the vibration amplitudes of the steering wheels

were 88.8032 and 80.6986, respectively. The above results verify the effectiveness of the

self-optimizing controller, based on reinforcement learning, in real vehicles.

0 500 1000 1500 2000 2500 3000 3500
-800

-600

-400

-200

0

200

400

600

800

S
te

e
r

a
n

g
le

 (
°)

Iteration－Step × 10

 Human－Steer

 PID－Steer

 PID－RL－Steer

Figure 30. Steer angle of the path tracking controller with the iteration step.

Table 14. Mathematical statistics of steering wheel angles.

 Mean Standard Deviation Minimum Maximum

Human−steer −22.15445 69.05777 −386 325

PID−Steer −42.81777 88.80323 −447 536

PID−RL−Steer −22.06958 ↓ 80.69866 ↓ −390.8 ↓ 403.2 ↓

With respect to both the path tracking accuracy and efficiency, the self-optimizing

controller can control the steering wheel angle with small lateral distance and heading

Figure 30. Steer angle of the path tracking controller with the iteration step.

Table 14. Mathematical statistics of steering wheel angles.

Mean Standard Deviation Minimum Maximum

Human−steer −22.15445 69.05777 −386 325
PID−Steer −42.81777 88.80323 −447 536

PID−RL−Steer −22.06958 ↓ 80.69866 ↓ −390.8 ↓ 403.2 ↓

With respect to both the path tracking accuracy and efficiency, the self-optimizing
controller can control the steering wheel angle with small lateral distance and heading
angle deviations, to keep the vehicle driving in the center of the lane. As shown in
Figures 31 and 32, the vehicle follows the reference trajectory quite satisfactorily with the
self-optimizing controller on the curved track, the straight track, and the roundabout track,
and its control performance was better than that of the traditional control method.

The memory data buffer stores the driver’s experience behavior data, including the
vehicle status information and operating sequences. Therefore, during the training process,
the amount of positive sample data required for network training increases, meaning that
the reward value of the controller shows an increasing trend (see Figure 33). The test results
prove that after 35,000 iteration steps, the actor–critic network has learned an excellent
control policy.

Symmetry 2021, 13, x FOR PEER REVIEW 34 of 38

angle deviations, to keep the vehicle driving in the center of the lane. As shown in Fig-

ures 31 and 32, the vehicle follows the reference trajectory quite satisfactorily with the

self-optimizing controller on the curved track, the straight track, and the roundabout

track, and its control performance was better than that of the traditional control method.

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

la
te

ra
l
e

rr
o

r
(m

)

Iteration－Step × 10

 Human－driver

 PID－Controller

 PID－RL－Controller

 500 1000 1500 2000 2500 3000 3500

Figure 31. Lateral error of path tracking controller on a test road map.

-15

-10

-5

0

5

10

15

H
e

a
d

 e
rr

o
r

(r
a

d
)

 HUman－driver

 PID－Controller

 PID－RL－Controller

 500 1000 1500 2000 2500 3000 3500

Iteration－Step × 10

Figure 32. Heading error of path tracking controller on a test road map.

The memory data buffer stores the driver’s experience behavior data, including the

vehicle status information and operating sequences. Therefore, during the training pro-

cess, the amount of positive sample data required for network training increases, mean-

ing that the reward value of the controller shows an increasing trend (see Figure 33). The

test results prove that after 35,000 iteration steps, the actor–critic network has learned an

excellent control policy.

Figure 31. Lateral error of path tracking controller on a test road map.

Symmetry 2022, 14, 31 33 of 37

Symmetry 2021, 13, x FOR PEER REVIEW 34 of 38

angle deviations, to keep the vehicle driving in the center of the lane. As shown in Fig-

ures 31 and 32, the vehicle follows the reference trajectory quite satisfactorily with the

self-optimizing controller on the curved track, the straight track, and the roundabout

track, and its control performance was better than that of the traditional control method.

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

la
te

ra
l
e

rr
o

r
(m

)

Iteration－Step × 10

 Human－driver

 PID－Controller

 PID－RL－Controller

 500 1000 1500 2000 2500 3000 3500

Figure 31. Lateral error of path tracking controller on a test road map.

-15

-10

-5

0

5

10

15

H
e

a
d

 e
rr

o
r

(r
a

d
)

 HUman－driver

 PID－Controller

 PID－RL－Controller

 500 1000 1500 2000 2500 3000 3500

Iteration－Step × 10

Figure 32. Heading error of path tracking controller on a test road map.

The memory data buffer stores the driver’s experience behavior data, including the

vehicle status information and operating sequences. Therefore, during the training pro-

cess, the amount of positive sample data required for network training increases, mean-

ing that the reward value of the controller shows an increasing trend (see Figure 33). The

test results prove that after 35,000 iteration steps, the actor–critic network has learned an

excellent control policy.

Figure 32. Heading error of path tracking controller on a test road map.

Symmetry 2021, 13, x FOR PEER REVIEW 35 of 38

0 500 1000 1500 2000 2500 3000 3500

0

2

4

6

8

10

R
e

w
a

rd
 V

a
lu

e

Iteration－Step × 10

 Human－Reward

 PID－Reward

 PID－RL－Reward

Figure 33. Single-step reward value of path tracking controller on the test road map.

The intermediate state variables generated during the training process are the gain

parameters of the controller, which are used to compensate for the dynamic error of the

system to keep the vehicle always driving along the center of the lane, under different

types of road trajectories. The data distribution and statistical results are shown in Figure

34 and Table 15, respectively.

Figure 34. Data distribution of path tracking control parameters.

Table 15. Mathematical statistics of path tracking control parameters.

 Mean Standard Deviation Minimum Median Maximum

∆𝑃1 53.84405 10.34426 16.2258 56.0301 79.3932

∆𝐷1 92.10457 2.05332 85.6766 92.0764 98.2066

∆𝑃2 39.07703 0.49852 37.5222 39.0849 40.747

∆𝐷2 6.46417 0.24382 5.6081 6.46435 7.1453

It can be seen that, when the actual trajectory is far away from the reference trajec-

tory—such as on the curve and the roundabout tracks—the percentage gain, ∆𝑃1, in-

creases with the curvature of the reference track. The maximum value can reach 79; when

the vehicle is travelling in a straight line, the minimum value reaches 16. Therefore, the

P1 D1 P2 D2

0

20

40

60

80

100

120

5

7

37

40

86

98

79

R
a

n
g

e

16

Figure 33. Single-step reward value of path tracking controller on the test road map.

The intermediate state variables generated during the training process are the gain
parameters of the controller, which are used to compensate for the dynamic error of the
system to keep the vehicle always driving along the center of the lane, under different types
of road trajectories. The data distribution and statistical results are shown in Figure 34 and
Table 15, respectively.

Table 15. Mathematical statistics of path tracking control parameters.

Mean Standard Deviation Minimum Median Maximum

∆P1 53.84405 10.34426 16.2258 56.0301 79.3932
∆D1 92.10457 2.05332 85.6766 92.0764 98.2066
∆P2 39.07703 0.49852 37.5222 39.0849 40.747
∆D2 6.46417 0.24382 5.6081 6.46435 7.1453

Symmetry 2022, 14, 31 34 of 37

Symmetry 2021, 13, x FOR PEER REVIEW 35 of 38

0 500 1000 1500 2000 2500 3000 3500

0

2

4

6

8

10

R
e

w
a

rd
 V

a
lu

e

Iteration－Step × 10

 Human－Reward

 PID－Reward

 PID－RL－Reward

Figure 33. Single-step reward value of path tracking controller on the test road map.

The intermediate state variables generated during the training process are the gain

parameters of the controller, which are used to compensate for the dynamic error of the

system to keep the vehicle always driving along the center of the lane, under different

types of road trajectories. The data distribution and statistical results are shown in Figure

34 and Table 15, respectively.

Figure 34. Data distribution of path tracking control parameters.

Table 15. Mathematical statistics of path tracking control parameters.

 Mean Standard Deviation Minimum Median Maximum

∆𝑃1 53.84405 10.34426 16.2258 56.0301 79.3932

∆𝐷1 92.10457 2.05332 85.6766 92.0764 98.2066

∆𝑃2 39.07703 0.49852 37.5222 39.0849 40.747

∆𝐷2 6.46417 0.24382 5.6081 6.46435 7.1453

It can be seen that, when the actual trajectory is far away from the reference trajec-

tory—such as on the curve and the roundabout tracks—the percentage gain, ∆𝑃1, in-

creases with the curvature of the reference track. The maximum value can reach 79; when

the vehicle is travelling in a straight line, the minimum value reaches 16. Therefore, the

P1 D1 P2 D2

0

20

40

60

80

100

120

5

7

37

40

86

98

79

R
a

n
g

e

16

Figure 34. Data distribution of path tracking control parameters.

It can be seen that, when the actual trajectory is far away from the reference trajectory—
such as on the curve and the roundabout tracks—the percentage gain, ∆P1, increases with
the curvature of the reference track. The maximum value can reach 79; when the vehicle
is travelling in a straight line, the minimum value reaches 16. Therefore, the standard
deviation reaches a value of 10.34426. Thus, the controller responds faster to a decrease
in the lateral deviation. When approaching the reference trajectory, the heading angle
deviation and its rate of change have a greater impact, with average values reaching
39.07703 and 6.46417, respectively.

We can conclude that, in the absence of prior knowledge of the dynamic characteristics
of the vehicle’s physical model, the optimization problem of the path tracking controller
can be solved based on real-time interactive learning with the operating environment of
a real vehicle; moreover, the controller can realize the self-optimized tuning of the PID
control parameters, based on the RL algorithm, which can be used for online learning and
the optimization of complex path tracking control.

5. Conclusions

In this paper, we propose a self-optimized path tracking controller to simultaneously
track a predefined path with high accuracy and a well ride comfort experience. For the
lateral control of the vehicle, a steering method, based on the fusion of the reinforcement
learning with traditional PID controller, is designed to adapt to various tracking scenarios.
According to the pre-defined path geometry and the real-time status of the vehicle, com-
bined with the environment interactive learning mechanism, based on the RL framework,
the optimization of the PID control parameters can be realized. The adaptive perfor-
mance of velocity changes was also considered in the tracking process. Both the driving
simulator and the on-site vehicle experiments have verified the effects of our proposed
self-optimization controller. Nevertheless, there remains a gap between simulation and
real scenes; a transfer learning (sim-to-real) strategy can better adapt to controllers to real
vehicles, which should be emphasized in our further research.

6. Discussion of Limitations and Future Work

One challenge for the self-optimizing path tracking controller, based on RL, is the
question of how to design an accurate reward function and effectively balance exploration
and utilization, in order to avoid the network training falling into local optimality. In
addition, although the simulations can provide large amounts of cheap data for the training
and testing of the RL agent, the gap between simulation and reality is also the main
reason that these approaches are difficult to popularize and apply in real-word engineering

Symmetry 2022, 14, 31 35 of 37

problems. In future research, we will focus on the application of transfer learning in the
sim-to-real domain. The full name of sim-to-real is simulation to reality, which is a branch
of reinforcement learning and a kind of transfer learning [52]. In the field of robotics or
autonomous driving, the main problem that transfer learning solves is that of how to
directly allow the autonomous systems or agents to interact with the virtual environment
and the real environment [53,54]. Reinforcement learning is considered as a promising
direction for driving policy learning. However, training autonomous driving vehicle with
reinforcement learning in real environment involves non-affordable trial-and-error research
methods [55]. It is more desirable to first train in a virtual environment and then transfer to
the real environment.

Author Contributions: Data curation, J.M.; formal analysis, J.M.; funding acquisition, H.X.; investiga-
tion, J.M.; project administration, H.X.; funding acquisition, H.X. and K.S.; software, J.M.; supervision,
H.X.; validatiown, H.L.; visualization, H.L.; writing—original draft, J.M.; Writing—review and
editing, K.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Tianjin Science and Technology Planning Project (2019): Re-
search and Application of Deep Reinforcement Learning Control Algorithm for Intelligent Unmanned
System (award number: 19ZXZNGX00050).

Conflicts of Interest: There are no conflict of interest to declare.

References
1. Visioli, A. Practical PID Control; Springer: Berlin/Heidelberg, Germany, 2006.
2. Jeffrey, S.; Wit, J.; Crane, C.D., III; Armstrong, D. Autonomous Ground Vehicle Path Tracking; University of Florida: Gainesville, FL,

USA, 2000.
3. Johary, N.M. Path Tracking Algorithm for An Autonomous Ground Robot. Ph.D. Thesis, Universiti Tun Hussein Onn Malaysia,

Batu Pahat, Malaysia, 2014.
4. Goh, J.Y.; Goel, T.; Gerdes, J.C. A controller for automated drifting along complex trajectories. In Proceedings of the 14th

International Symposium on Advanced Vehicle Control (AVEC 2018), Beijing, China, 16–20 July 2018.
5. Goh, J.Y.; Gerdes, J.C. Simultaneous stabilization and tracking of basic automobile drifting trajectories. In Proceedings of the 2016

IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 597–602.
6. Hindiyeh, R.Y.; Gerdes, J.C. A controller framework for autonomous drifting: Design, stability, and experimental validation. J.

Dyn. Syst. Meas. Control. 2014, 136, 051015. [CrossRef]
7. Kim, D.; Yi, K. Design of a Path for Collision Avoidance and Path Tracking Scheme for Autonomous Vehicles. IFAC Proc. Vol.

2009, 42, 391–398. [CrossRef]
8. Chen, S.-P.; Xiong, G.-M.; Chen, H.-Y.; Negrut, D. MPC-based path tracking with PID speed control for high-speed autonomous

vehicles considering time-optimal travel. J. Central South Univ. 2020, 27, 3702–3720. [CrossRef]
9. Wang, H.; Liu, B.; Ping, X.; An, Q. Path Tracking Control for Autonomous Vehicles Based on an Improved MPC. IEEE Access 2019,

7, 161064–161073. [CrossRef]
10. Kim, D.; Kang, J.; Yi, K. Control strategy for high-speed autonomous driving in structured road. In Proceedings of the 2011 14th

International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011.
11. Vivek, K.; Sheta, M.A.; Gumtapure, V. A Comparative Study of Stanley, LQR and MPC Controllers for Path Tracking Application

(ADAS/AD). In Proceedings of the 2019 IEEE International Conference on Intelligent Systems and Green Technology (ICISGT),
Visakhapatnam, India, 29–30 June 2019.

12. Tiep, D.K.; Lee, K.; Im, D.-Y.; Kwak, B.; Ryoo, Y.-J. Design of Fuzzy-PID Controller for Path Tracking of Mobile Robot with
Differential Drive. Int. J. Fuzzy Log. Intell. Syst. 2018, 18, 220–228. [CrossRef]

13. El Hamidi, K.; Mjahed, M.; El Kari, A.; Ayad, H. Neural Network and Fuzzy-logic-based Self-tuning PID Control for Quadcopter
Path Tracking. Stud. Inform. Control 2019, 28, 401–412. [CrossRef]

14. Liang, X.; Zhang, W.; Wu, Y. Automatic Collimation of Optical Path Based on BP-PID Control. In Proceedings of the 2017 10th
International Conference on Intelligent Computation Technology and Automation (ICICTA), Changsha, China, 9–10 October 2017.

15. Ma, L.; Yao, Y.; Wang, M. The Optimizing Design of Wheeled Robot Tracking System by PID Control Algorithm Based on BP
Neural Network. In Proceedings of the 2016 International Conference on Industrial Informatics-Computing Technology, Wuhan,
China, 3–4 December 2016.

16. El Sallab, A.; Abdou, M.; Perot, E.; Yogamani, S. Deep Reinforcement Learning framework for Autonomous Driving. Electron.
Imaging 2017, 2017, 70–76. [CrossRef]

17. Wang, S.; Jia, D.; Weng, X. Deep Reinforcement Learning for Autonomous Driving. arXiv 2018, arXiv:1811.11329.
18. Dong, L.; Zhao, D.; Zhang, Q.; Chen, Y. Reinforcement Learning and Deep Learning based Lateral Control for Autonomous

Driving. arXiv 2018, arXiv:1810.12778.

http://doi.org/10.1115/1.4027471
http://doi.org/10.3182/20090902-3-US-2007.0077
http://doi.org/10.1007/s11771-020-4561-1
http://doi.org/10.1109/ACCESS.2019.2944894
http://doi.org/10.5391/IJFIS.2018.18.3.220
http://doi.org/10.24846/v28i4y201904
http://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023

Symmetry 2022, 14, 31 36 of 37

19. Wymann, B.; Espié, E.; Guionneau, C.; Dimitrakakis, C.; Coulom, R.; Sumner, A. TORCS, The Open Racing Car Simulator, v1.3.5.
2013. Available online: http://torcs.sourceforge.net/ (accessed on 10 December 2019).

20. Ingram, A. Gran Turismo Sport—Exploring Its Impact on Real-World Racing with Kazunori. 2019. Available online: Yamauchi.
evo.co.uk (accessed on 1 June 2020).

21. Fuchs, F.; Song, Y.; Kaufmann, E.; Scaramuzza, D.; Dürr, P. Super-Human Performance in Gran Turismo Sport Using Deep
Reinforcement Learning. arXiv 2020, arXiv:2008.07971. [CrossRef]

22. Cai, P.; Mei, X.; Tai, L.; Sun, Y.; Liu, M. High-Speed Autonomous Drifting With Deep Reinforcement Learning. IEEE Robot. Autom.
Lett. 2020, 5, 1247–1254. [CrossRef]

23. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. Carla: An open urban driving simulator. arXiv 2017, arXiv:1711.03938.
24. Gao, X.; Gao, R.; Liang, P.; Zhang, Q.; Deng, R.; Zhu, W. A Hybrid Tracking Control Strategy for Nonholonomic Wheeled Mobile

Robot Incorporating Deep Reinforcement Learning Approach. IEEE Access 2021, 9, 15592–15602. [CrossRef]
25. Zhang, Y.; Zhang, Y.; Yu, Z. Path Following Control for UAV Using Deep Reinforcement Learning Approach. Guid. Navig. Control

2021, 1, 2150005. [CrossRef]
26. Duan, K.; Fong, S.; Chen, C.P. Reinforcement Learning Based Model-free Optimized Trajectory Tracking Strategy Design for an

AUV. Neurocomputing 2022, 469, 289–297. [CrossRef]
27. Li, B.; Wu, Y. Path Planning for UAV Ground Target Tracking via Deep Reinforcement Learning. IEEE Access 2020, 8,

29064–29074. [CrossRef]
28. Wang, S.; Yin, X.; Li, P.; Zhang, M.; Wang, X. Trajectory Tracking Control for Mobile Robots Using Reinforcement Learning and

PID. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 1059–1068. [CrossRef]
29. Xiao, J.; Li, L.; Zou, Y.; Zhang, T. Reinforcement Learning for Robotic Time-optimal Path Tracking Using Prior Knowledge. arXiv

2019, arXiv:1907.00388.
30. Zhang, S.; Wang, W. Tracking Control for Mobile Robot Based on Deep Reinforcement Learning. In Proceedings of the 2019 2nd

International Conference on Intelligent Autonomous Systems (ICoIAS), Singapore, 28 February–2 March 2019.
31. Arroyo, M.A.; Giraldo, L.F. Data-driven Outer-Loop Control Using Deep Reinforcement Learning for Trajectory Tracking. arXiv

2020, arXiv:2008.13732.
32. Shan, Y.; Zheng, B.; Chen, L.; Chen, L.; Chen, D. A Reinforcement Learning-Based Adaptive Path Tracking Approach for

Autonomous Driving. IEEE Trans. Veh. Technol. 2020, 69, 10581–10595. [CrossRef]
33. Puccetti, L.; Köpf, F.; Rathgeber, C.; Hohmann, S. Speed Tracking Control using Online Reinforcement Learning in a Real Car. In

Proceedings of the 6th IEEE International Conference on Control, Automation and Robotics (ICCAR), Singapore, 20–23 April 2020.
34. Wang, N.; Gao, Y.; Yang, C.; Zhang, X. Reinforcement Learning-based Finite-time Tracking Control of an Unknown Unmanned

Surface Vehicle with Input Constraints. Neurocomputing 2021. Available online: https://www.sciencedirect.com/science/article/
abs/pii/S0925231221015733 (accessed on 10 June 2021). [CrossRef]

35. Jiang, L.; Wang, Y.; Wang, L.; Wu, J. Path tracking control based on Deep reinforcement learning in Autonomous driving. In
Proceedings of the 2019 3rd Conference on Vehicle Control and Intelligence (CVCI), Hefei, China, 21–22 September 2019.

36. Kamran, D.; Zhu, J.; Lauer, M. Learning Path Tracking for Real Car-like Mobile Robots From Simulation. In Proceedings of the
2019 European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 4–6 September 2019.

37. Riedmiller, M.; Montemerlo, M.; Dahlkamp, H. Learning to Drive a Real Car in 20 Minutes. In Proceedings of the Frontiers in the
Convergence of Bioscience & Information Technologies IEEE Computer Society, Jeju City, Korea, 11–13 October 2007.

38. Kendall, A.; Hawke, J.; Janz, D.; Mazur, P.; Reda, D.; Allen, J.-M.; Lam, V.-D.; Bewley, A.; Shah, A. Learning to Drive in a Day.
arXiv 2018, arXiv:1807.00412.

39. Rajamani, R. Vehicle Dynamics and Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.
40. Kong, J.; Pfeiffer, M.; Schildbach, G.; Borrelli, F. Kinematic and dynamic vehicle models for autonomous driving control design.

In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 29 June–1 July 2015.
41. Zhu, M.; Wang, X.; Wang, Y. Human-like autonomous car-following model with deep reinforcement learning. Transp. Res. Part C

Emerg. Technol. 2018, 97, 348–368. [CrossRef]
42. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
43. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.
44. Yu, A.; Palefsky-Smith, R.; Bedi, R. Course Project Reports: Deep Reinforcement Learning for Simulated Autonomous Vehicle

Control. Course Proj. Rep. Winter 2016. Available online: http://cs231n.stanford.edu/reports/2016/pdfs/112_Report.pdf
(accessed on 10 June 2021).

45. Yu, R.; Shi, Z.; Huang, C.; Li, T.; Ma, Q. Deep reinforcement learning based optimal trajectory tracking control of autonomous
underwater vehicle. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017.

46. Monahan, G.E. A Survey of Partially Observable Markov Decision Processes: Theory, Models, and Algorithms. Manag. Sci. 1982,
28, 1–16. [CrossRef]

47. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
48. Konda, V.R.; Tsitsiklis, J.N. Actor-critic algorithms. SIAM J. Control Optim. 2002, 42, 1143–1166. [CrossRef]

http://torcs.sourceforge.net/
Yamauchi.evo.co.uk
Yamauchi.evo.co.uk
http://doi.org/10.1109/LRA.2021.3064284
http://doi.org/10.1109/LRA.2020.2967299
http://doi.org/10.1109/ACCESS.2021.3053396
http://doi.org/10.1142/S2737480721500059
http://doi.org/10.1016/j.neucom.2021.10.056
http://doi.org/10.1109/ACCESS.2020.2971780
http://doi.org/10.1007/s40998-019-00286-4
http://doi.org/10.1109/TVT.2020.3014628
https://www.sciencedirect.com/science/article/abs/pii/S0925231221015733
https://www.sciencedirect.com/science/article/abs/pii/S0925231221015733
http://doi.org/10.1016/j.neucom.2021.04.133
http://doi.org/10.1016/j.trc.2018.10.024
http://cs231n.stanford.edu/reports/2016/pdfs/112_Report.pdf
http://doi.org/10.1287/mnsc.28.1.1
http://doi.org/10.1137/S0363012901385691

Symmetry 2022, 14, 31 37 of 37

49. Yan, Z.; Zhuang, J. Active Disturbance Rejection Algorithm Applied to Path Tracking in Autonomous Vehicles. J. Chongqing Univ.
Technol. Nat. Sci. 2020, 1–10. (In Chinese). Available online: http://kns.cnki.net/kcms/detail/50.1205.T.20200522.1459.004.html
(accessed on 10 June 2021).

50. Chao, C.; Gao, H.; Ding, L.; Li, W.; Yu, H.; Deng, Z. Trajectory tracking control of wmrs with lateral and longitudinal slippage
based on active disturbance rejection control. Robot. Auton. Syst. 2018, 107, 236–245.

51. Gao, Y.; Xia, Y. Lateral path tracking control of autonomous land vehicle based on active disturbance rejection control. In
Proceedings of the 32nd Chinese Control Conference, Xian, China, 26–28 July 2013.

52. Pan, X.; You, Y.; Wang, Z.; Lu, C. Virtual to Real Reinforcement Learning for Autonomous Driving. In Proceedings of the 2017
British Machine Vision Conference, London, UK, 4–7 September 2017.

53. Hu, H.; Zhang, K.; Tan, A.H.; Ruan, M.; Agia, C.; Nejat, G. A Sim-to-Real Pipeline for Deep Reinforcement Learning for
Autonomous Robot Navigation in Cluttered Rough Terrain. IEEE Robot. Autom. Lett. 2021, 6, 6569–6576. [CrossRef]

54. Chaffre, T.; Moras, J.; Chan-Hon-Tong, A.; Marzat, J. Sim-to-Real Transfer with Incremental Environment Complexity for
Reinforcement Learning of Depth-based Robot Navigation. In Proceedings of the 17th International Conference on Informatics in
Control, Automation and Robotics, Paris, France, 7–9 July 2020.

55. Suenaga, R.; Morioka, K. Development of a Web-Based Education System for Deep Reinforcement Learning-Based Autonomous
Mobile Robot Navigation in Real World. In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration
(SII), Honolulu, HA, USA, 12–15 January 2020.

http://kns.cnki.net/kcms/detail/50.1205.T.20200522.1459.004.html
http://doi.org/10.1109/LRA.2021.3093551

	Introduction
	Vehicle Dynamic Constraints and Reference Trajectory Generation
	Self-Optimizing Path Tracking Controller Based on a Reinforcement Learning (RL) Framework
	Experiment and Analysis of Results
	Experimental Setting
	Performance Verification and Results Analysis

	Conclusions
	Discussion of Limitations and Future Work
	References

