
����������
�������

Citation: Corcino, C.B.; Corcino, R.B.;

Damgo, B.A.A.; Cañete, J.A.A.

Integral Representation and Explicit

Formula at Rational Arguments for

Apostol–Tangent Polynomials.

Symmetry 2022, 14, 35. https://

doi.org/10.3390/sym14010035

Academic Editor: Serkan Araci

Received: 26 November 2021

Accepted: 21 December 2021

Published: 28 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Integral Representation and Explicit Formula at Rational
Arguments for Apostol–Tangent Polynomials
Cristina B. Corcino 1,2, Roberto B. Corcino 1,2,*, Baby Ann A. Damgo 1 and Joy Ann A. Cañete 3

1 Research Institute for Computational Mathematics and Physics, Cebu Normal University, Osmeña Boulevard,
Cebu City 6000, Philippines; corcinoc@cnu.edu.ph (C.B.C.); main.13001890@cnu.edu.ph (B.A.A.D.)

2 Mathematics Department, Cebu Normal University, Osmeña Boulevard, Cebu City 6000, Philippines
3 Department of Mathematics and Physics, Visayas State University, Baybay City 6521, Philippines;

joyann.canete@vsu.edu.ph
* Correspondence: corcinor@cnu.edu.ph

Abstract: The Fourier series expansion of Apostol–tangent polynomials is derived using the Cauchy
residue theorem and a complex integral over a contour. This Fourier series and the Hurwitz–Lerch
zeta function are utilized to obtain the explicit formula at rational arguments of these polynomials.
Using the Lipschitz summation formula, an integral representation of Apostol–tangent polynomials
is also obtained.
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1. Introduction

Generating function is one of the important properties for special functions and other
mathematical objects such as that in [1]. Some studies construct generating functions aiming
to connect some combinatorial numbers and polynomials to some well-known special
polynomials and distributions (see [2]). Other studies use generating functions to derive
Fourier series, integral representation and explicit formula of some special numbers and
functions, which is also the main object of this study. It is important to note that the integral
representation is necessary in finding explicit formula and asymptotic approximation of a
function (see [3,4]).

Tangent polynomials together with Bernoulli, Euler and Genocchi polynomials have
been the object of recent extensive investigation in the field of computational mathematics
and physics (see [5–7]). Analogues, explicit identities and symmetric properties of tangent
polynomials are derived in [8–10].

Some interesting analogues of the classical Bernoulli, Euler and Genocchi polynomials
were investigated by Apostol [11], Luo and Srivastava (see [12–16]) These analogues are
called the Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials of higher
order defined by the following relations, respectively (see [17]). For λ ∈ C\{0}, log λ and
log(−λ) are taken to be their principal value,

∞

∑
n=0
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n (x, λ)
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=
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exz,
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∞

∑
n=0

Tn (x; λ)
zn

n!
=

(
2

λe2z + 1

)
exz , (|2z + log λ| < π) (4)

when m = 1, the above equations give the generating functions for the Apostol–Genocchi,
Apostol–Bernoulli, and Apostol–Euler polynomials, respectively (see [18]). Parallel to these,
we can also extend the tangent polynomials as follows:

For λ ∈ C\{0} and log λ is taken to be the principal value, the Apostol–tangent
polynomials Tn(x, λ) are defined by means of the generating function:

which is valid within the circle C : z = Reiθ ,−π < θ ≤ π with the radius

R < min
{

1
2
|πi + log λ|, 1

2
|πi− log λ|

}
This validity can be obtained as follows: set the denominator of the generating function

equal to 0 and solve for z.

λe2z + 1 = 0
2z = log(−1)− log λ

z = 1
2 (ln|−1| − πi + 2kπi− log λ), k ∈ Z
z = 1

2 ((2k− 1)πi− log λ), k ∈ Z

These values of z, which we denote by zk, are the singularities of the generating
Function (4). We impose that R should be less than the modulus of the nearest singu-
larity, which is z0 = 1

2 [πi− log λ] or z−1 = 1
2 [πi + log λ]. Thus, R < min{|z0|, |z1|} as

prescribed above.
Note that when λ = 1, the Apostol–tangent polynomial Tn(x, λ) reduces to the tangent

polynomial Tn (x; 1) = Tn (x).
Fourier series is an expansion of a periodic function as an infinite sum of sines and

cosines which can be easily differentiated and integrated. It is a useful tool in modeling and
analyzing functions such as saw waves, which are common signals in experimentation [19].
Its applications are used in electronics, quantum mechanics, acoustics, and communications.
For instance, Fourier series are utilized in audio compression [20].

In the study of Luo [21], the Lipschitz summation formula was used to obtain the
Fourier series expansion of Genocchi polynomials. Araci and Acikgoz [22] used the Cauchy
residue theorem and a complex integral over a contour to establish the Fourier expansion
of Apostol–Euler polynomials. Motivated by the studies in [13,21,22], Corcino et al. [23]
derived the integral representation and explicit formula at rational arguments for Genocchi
polynomials of higher order. However, there was no available literature or related study
that mentions about the Fourier series of Apostol–tangent polynomials [24].

In this paper, the Fourier series expansion of Apostol–tangent polynomials will be
derived using the method of [22,24]. Moreover, using the method of Luo (see [13,21]), the
integral representation and explicit formula at rational arguments of these polynomials
will be established.

2. Fourier Expansion for Apostol–Tangent Polynomials

The first step of the method in [22] and [24] in deriving the Fourier series expansion of
Apostol–tangent polynomials is to show the convergence of certain integral to 0. The fol-
lowing lemma contains such convergence. In proving the lemma, we used analytic method
as performed in [18].

Lemma 1. Let CN be a circle about the origin of radius
(

1
2 (2N − 1 + ε)π

)
, N ∈ Z+ with ε

being a fixed real number such that επi± log λ 6= 0 (mod πi). Then, as N → ∞, n > 0 and
0 ≤ x ≤ 1, ∫

CN

2exz

(λe2z + 1)zn+1 dz→ 0
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Proof. Using the basic property of integration,∣∣∣∣∫CN

2exz dz
(λe2z + 1)zn+1

∣∣∣∣ ≤ ∫CN

|2exz||dz|
|λe2z + 1||zn+1|

For 0≤ x ≤ 1,
∣∣λe2z + 1

∣∣ > ∣∣λe2z
∣∣. Let z = a + bi,

|exz|
|λe2z + 1| =

∣∣∣ex(a+bi)
∣∣∣

|λe2z + 1| =
eax

|λe2z + 1| ≤
ex<(z)

|λe2z| ≤
1
|λ|

Thus, ∣∣∣∣∫CN

2exzdz
(λe2z + 1)zn+1

∣∣∣∣ ≤ 2
|λ|

∫
CN

|dz|
|zn+1|

=
2n+1

|λ|(2N − 1 + ε)π))n

As N → ∞, the last expression goes to 0. Hence, as N → ∞, n ≥ 1,∫
CN

2exz

(λe2z + 1)zn+1 dz→ 0

�

The Fourier series expansion of Apostol–tangent polynomials is stated in the follow-
ing theorem.

Theorem 1. For n > 0, 0 ≤ x ≤ 1 and λ ∈ C\{0},

Tn(x; λ) = 2n+1n!
λx/2 ∑

k∈z

e
1
2 (2k−1)πix

[(2k−1)πi−log(λ)]n+1

= 2n+1n!in+1

λx/2

[
∞
∑

k=0

e
1
2 [−(n+1)+(2k+1)x]πi

[(2k+1)πi−log(λ)] n+1

(5)

+
∞

∑
k=0

e
1
2 [(n+1)−(2k+1)x]πi

[(2k + 1)πi + log(λ)]n+1

]
(6)

Proof. Consider the integral
∫

CN
fn(z)dz where

fn(z) =
2exz

(λe2z + 1)zn+1

and the circle CN is as described in the Lemma 1.
The function fn (z) has poles at z = 0 of order n + 1 and at zk = 1

2 [(2k− 1)πi− log λ],
k ∈ Z. The poles zk are simple poles. Using the Cauchy Residue Theorem,∫

CN

fn(z) dz = 2πi Res ( fn(z), z = 0) + 2πi ∑
kεZ, k<N

Res ( fn (z), z = zk)

Taking N → ∞, by Lemma 1,

0 = Res ( fn(z), z = 0) + ∑
kεZ,

Res ( fn (z), z = zk).
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Now, the first residue Res ( fn(z), z = 0) is given as

es( fn(z), z = 0) = lim
z→0

1
n!

dn

dzn (z− 0)n+1 1
zn+1

(
2exz

λe2z+1

)
= lim

z→0
1
n!

dn

dzn

(
2exz

λe2z+1

)
= lim

z→0
1
n!

dn

dzn

(
∞
∑

l=0
Tl(x; λ) zl

l!

)
= lim

z→0
1
n!

∞
∑

l=n
Tl(x; λ) zl−n

(l−n)!

Note that the limit of each term of the expansion is 0 as z→ 0 except the term when l = n.
This gives

Res ( fn(z), z = 0) =
Tn(x; λ)

n!
On the other hand, the residue Res ( fn(z), z = zk) is given by

Res ( fn(z), z = zk) = lim
z→zk

(z− zk)
1

zn+1

(
2exz

λe2z+1

)
= 2exzk

zn+1
k

lim
z→zk

(
z−zk

λe2z+1

)
= e(x−2)zk

λzn+1
k

Since zk =
1
2 [(2k− 1)πi− log λ],

Res ( fn(z), z = zk) = e(x−2){ 1
2 [(2k−1)πi−log λ]}

λ{ 1
2 [(2k−1)πi−log λ]} n+1

= 2 n+1 e
1
2(x−2)(2k−1)πi e log λ

λ [(2k−1)πi−log λ] n+1 e
x
2 (log λ)

= 2n+1 e
1
2(2k−1)xπi e

(−2k+1)πi

λ
x
2 [(2k−1)πi−log λ] n+1

= −2n+1 e
1
2(2k−1)xπi

λ
x
2 [(2k−1)πi−log λ] n+1

Combining these residues gives,

0 =
Tn(x ; λ)

n!
+ ∑

k∈Z

−2n+1 e
1
2(2k−1)xπi

λ
x
2 [(2k− 1)πi− log λ] n+1

Hence,

Tn(x; λ) =
2n+1 n!

λ
x
2

∑
k∈Z

e
1
2(2k−1)xπi

[(2k− 1)πi− log λ] n+1 (7)
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Note that i–(n+1) = e
−(n+1)πi

2 and (−1) n+1 = e(n+1)πi. Thus, replacing k with k + 1 in (7)
yields

Tn(x; λ) = 2n+1 n!
λ

x
2

∑
k∈Z

e
1
2(2k+2−1)πix

[(2k+2−1)πi−log λ] n+1

= 2n+1n! i n+1

λ
x
2

∑
k∈Z

i−(n+1) e
1
2(2k+1)πix

[(2k+1)πi−log λ] n+1

= 2n+1n! i n+1

λ
x
2

[
∞
∑

k=0

e−
(n+1)πi

2 e
1
2(2k+1)πix

[(2k+1)πi−log λ] n+1

+
−1
∑

k=−∞

e−
(n+1)πi

2 e
1
2(2k+1)πix

[(2k+1)πi−log λ] n+1

]
= 2n+1n! i n+1

λ
x
2

[
∞
∑

k=0

e
1
2(−(n+1)πi+(2k+1)πix)

[(2k+1)πi−log λ] n+1

+
∞
∑

k=0

e
1
2(−(n+1)πi−(2k+1)πix)

(−1) n+1 [(2k+1)πi+log λ] n+1

]
= 2n+1n! i n+1

λ
x
2

[
∞
∑

k=0

e
1
2(−(n+1)+(2k+1)x)πi

[(2k+1)πi−log λ] n+1

+
∞
∑

k=0

e (n+1) πi e
1
2(−(n+1)−(2k+1)x)πi

[(2k+1)πi+log λ] n+1

]
= 2n+1n! i n+1

λ
x
2

[
∞
∑

k=0

e
1
2(−(n+1)+(2k+1)x)πi

[(2k+1)πi−log λ] n+1

+
∞
∑

k=0

e
1
2((n+1)−(2k+1)x)πi

[(2k+1)πi+log λ] n+1

]
.

�

Remark 1. Whenλ = 1, the Fourier series expansion in Theorem 1 gives

Tn(x) = Tn(x; 1) = 2n+1n! ∑
k∈z

e
1
2 (2k−1)πix

[(2k−1)πi]n+1

= 2n+1n!in+1
[

∞
∑

k=0

e
1
2 (−(n+1))+(2k+1)x)πi

[(2k+1)πi] n+1 +
∞
∑

k=0

e
1
2 ((n+1)−(2k+1)x)πi

[(2k+1)πi]n+1 ,
]

which is the Fourier series expansion of tangent polynomials.

3. Integral Representation for the Apostol–Tangent Polynomials

In this section, an integral representation for the Apostol–tangent polynomials will be
obtained. For convenience, we take λ = e2πiξ

(
ξ ∈ R, |ξ| < 1

2

)
.

Theorem 2. Forn ≥ 0, 0 ≤ x ≤ 1, ξ ∈ R, we have

Tn

(
x; e2πiξ

)
= 2n+1e−πiξx

∫ ∞

0

M(n; x, t) cosh(2ξπt) + iN(n; x, t)sinh(2ξπt)
cosh(2πt)− cos(πx)

tn dt (8)

where
M(n; x, t) = sin

(πx
2

+
nπ

2

)
e−πt + sin

(πx
2
− nπ

2

)
eπt

and
N(n; x, t) = cos

(πx
2

+
nπ

2

)
e−πt − cos

(πx
2
− nπ

2

)
eπt



Symmetry 2022, 14, 35 6 of 10

Proof. Setting λ = e2πiξ, the Fourier series (6) yields

Tn
(
x; e2πiξ) = 2n+1 n!in+1

(e2πiξ)
x
2

[
∞
∑

k=0

e
1
2 (−(n+1)+(2k+1)x)πi

[(2k+1)πi−log(e2πiξ)]
n+1

+
∞
∑

k=0

e
1
2 ((n+1)−(2k+1)x)πi

[(2k+1)πi+log(e2πiξ)]
n+1

]
= 2n+1 n!in+1

eπiξx

[
∞
∑

k=0

e
1
2 (−(n+1)+(2k+1)x)πi

[(2k−2ξ+1)πi]n+1 +
∞
∑

k=0

e
1
2 ((n+1)−(2k+1)x)πi

[(2k+2ξ+1)πi]n+1

]
= 2n+1

eπiξx πn+1

[
∞
∑

k=0

(
e

1
2 (−(n+1)+(2k+1)x)πi

)(
n!

(2k−2ξ+1)n+1

)
+

∞
∑

k=0

(
e

1
2 ((n+1)−(2k+1)x)πi

)(
n!

(2k+2ξ+1)n+1

)]
.

(9)

Applying the integral formula∫ ∞

0
tn e−at dt =

n!
an+1 , f or a > 0

(9) becomes

Tn
(

x; e2πiξ) = 2n+1

eπiξx πn+1

[
∞
∑

k=0
e

1
2 (−(n+1)+(2k+1)x)πi ∫ ∞

0 tn e−(2k−2ξ+1)t dt

+
∞
∑

k=0
e

1
2 ((n+1)−(2k+1)x)πi ∫ ∞

0 tn e−(2k+2ξ+1)t dt
]

= 2n+1

eπiξx πn+1

[∫ ∞
0 tn e−t e2ξt e−

(n+1)πi
2 e

xπi
2

∞
∑

k=0
e(πix−2t)k dt

+
∫ ∞

0 tn e−t e−2ξt e
(n+1)πi

2 e−
xπi

2
∞
∑

k=0
e(−πix−2t)k dt

]
(10)

Note that

∞

∑
k=0

e(πix−2t)k =
1

1− eπix−2t =
1

1− eπix

e2t

=
1

e2t−eπix

e2t

=
e2t

e2t − eπix (11)

and
∞

∑
k=0

e(−πix−2t)k =
1

1− e−πix−2t =
1

1− e−πix

e2t

=
1

e2t−e−πix

e2t

=
e2t

e2t − e−πix (12)

Applying (11) and (12) to (10) yields

Tn
(

x; e2πiξ) = 2n+1

eπiξx πn+1

[∫ ∞
0 tn e−t e2ξt e−

(n+1)πi
2 e

xπi
2

(
e2t

e2t−eπix

)
dt

+
∫ ∞

0 tn e−t e−2ξt e
(n+1)πi

2 e−
xπi

2

(
e2t

e2t−e−πix

)
dt
]

= 2n+1

eπiξx πn+1

[∫ ∞
0

e−
(n+1)πi

2 e
xπi

2

e2t−eπix e(2ξ+1)ttn dt

+
∫ ∞

0
e
(n+1)πi

2 e−
xπi

2

e2t−e−πix e(1−2ξ)t tn dt

] (13)

Now,
e

πix
2

e2t − eπix =
1
2 e

−πix
2
(
eπix − e−2t)

cosh(2t)− cos(πx)
(14)

Similarly,

e
−πix

2

e2t − e−πix =
1
2 e

πix
2
(
e−πix − e−2t)

cosh(2t)− cos(πx)
(15)
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Applying (14) and (15) to (13) yields

Tn
(

x; e2πiξ) = 2n

eπiξxπn+1

[∫ ∞
0

e
−(n+1)πi

2 e
−πix

2 (eπix−e−2t)e(2ξ+1)t

cosh(2t)−cos(πx) tndt

+
∫ ∞

0
e
(n+1)πi

2 e
πix

2 (e−πix−e−2t)e(1−2ξ)t

cosh(2t)−cos(πx) tndt

] (16)

Using the transformation t = πt, (16) becomes

Tn
(

x; e2πiξ) = 2n

eπiξx

[∫ ∞
0

e
−(n+1)πi

2 e
−πix

2 (eπix−e−2πt)e(2ξ+1)πt

cosh(2πt)−cos(πx) tndt

+
∫ ∞

0
e
(n+1)πi

2 e
πix

2 (e−πix−e−2πt)e(1−2ξ)πt

cosh(2πt)−cos(πx) tndt

] (17)

Now,
e
−(n+1)πi

2 e
−πix

2
(
−e−2πt)e(2ξ+1)πt

= −i
[
cos
( xπ

2 −
nπ
2
)
+ i sin

( xπ
2 −

nπ
2
)]

e2ξπteπt

+i
[
cos
( xπ

2 + nπ
2
)
− i sin

( xπ
2 −

nπ
2
)]

e2ξπte−πt
(18)

Similarly,

e
(n+1)πi

2 e
πix

2
(
e−πix − e−2πt) e(1−2ξ)πt

= i
[
cos
( xπ

2 −
nπ
2
)
− i sin

( xπ
2 −

nπ
2
)]

e−2ξπteπt

−i
[
cos
( xπ

2 + nπ
2
)
+ i sin

( xπ
2 + nπ

2
)]

e−2ξπte−πt
(19)

Combining (18) and (19) yields

e
−(n+1)πi

2 e
−πix

2
(
eπix − e−2πt)e(2ξ+1)πt + e

(n+1)πi
2 e

πix
2
(
e−πix − e−2πt) e(1−2ξ)πt

= 2 sinh(2ξπt)
[
cos
( xπ

2 + nπ
2
)
e−πt − cos

( xπ
2 −

nπ
2
)
eπt]i

+2 cosh(2ξπt)
[
sin
( xπ

2 + nπ
2
)
e−πt + sin

( xπ
2 −

nπ
2
)
eπt] (20)

Applying (20) to (17) gives

Tn
(

x; e2πiξ) = 2n

eπiξx

[∫ ∞
0

2 sinh(2ξπt)[cos( xπ
2 + nπ

2 )e−πt−cos( xπ
2 −

nπ
2 )eπt]i

cosh(2πt)−cos(πx)

+
2 cosh(2ξπt)[sin( xπ

2 + nπ
2 )e−πt+sin( xπ

2 −
nπ
2 )eπt]

cosh(2πt)−cos(πx) tndt
]

which is exactly the integral representation in (8). �

4. Explicit Formula for the Apostol–Tangent Polynomials at Rational Arguments

To obtain the explicit formula for the Apostol–tangent polynomials at rational argu-
ments, the Fourier expansion derived above will be used.

Recall the Hurwitz–Lerch zeta function [25], which is defined by

Φ(z, s, a) =
∞

∑
k=0

zk

(k + a)s , (21)

for
(
a ∈ C\Z−0 ; s ∈ C

)
when |z| 1 <; <(s) > 1 when |z| = 1, which contains as its spe-

cial case:

ζ(s, a);= Φ(1, s, a) =
∞

∑
k=0

1
(k + a)s
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Theorem 3. For n, q, p ∈ N; 0 < 2p
q ≤ 1; ξ∈ R, the following formula of Apostol–tangent

polynomials at rational arguments holds,

Tn

(
2p
q ; e2πiξ

)
= n!

(πq)n+1

[
q
∑

j=1
ζ
(

n + 1, 2j−2ξ−1
2q

)
e[−

(n+1)
2 +

(2j−2ξ−1)p
q ]πi

+
q
∑

j=1
ζ
(

n + 1, 2j+2ξ−1
2q

)
e[

(n+1)
2 − (2j+2ξ−1)p

q ]πi
]

Proof. By replacing k with k− 1 in (6), we have

Tn(x; λ) =
2n+1 n! in+1

λ
x
2

[
∞

∑
k=1

e
1
2 (−(n+1)+(2k−1)x)πi

[(2k− 1)πi− log λ]n+1 +
∞

∑
k=1

e
1
2 ((n+1)−(2k−1)x)πi

[(2k− 1)πi + log λ]n+1

]
.

By applying the elementary series identity

∞

∑
k=1

f (k) =
q

∑
j=1

∞

∑
k=0

f (qk + j), q ∈ N,

used by Luo in his papers ([13,21]), where f : N → C is a sequence of complex numbers,
we obtain

Tn(x; λ) = (2i)n+1 n!

λ
x
2

[
q
∑

j=1

∞
∑

k=0

e
1
2 (−(n+1)+(2qk+2j−1)x)πi

[(2qk+2j−1)πi−log λ]n+1

+
q
∑

j=1

∞
∑

K=0

e
1
2 ((n+1)−(2qk+2j−1)x)πi

[(2qk+2j−1)πi+log λ]n+1

]

= (2i)n+1n!

λ
x
2

[
q
∑

j=1

∞
∑

k=0

eqkπixe
1
2 (−(n+1)+(2j−1)x)πi

[(2qk+2j−1)πi−log λ]n+1

+
q
∑

j=1

∞
∑

k=0

e−qkπixe
1
2 ((n+1)−(2j−1)x)πi

[(2qk+2j−1)πi+log λ]n+1

]
·

1
(2qπi)n+1

1
(2qπi)n+1

= n!
λ

x
2 (πq)n+1

{
q
∑

j=1

∞
∑

k=0
eqkπix e

1
2 (−(n+1)+(2j−1)x)πi[

k+ (2j−1)πi−log λ
2qπi

]n+1

+
q
∑

j=1

∞
∑

k=0
e−qkπix e

1
2 ((n+1)−(2j−1)x)πi[

k+ (2j−1)πi+log λ
2qπi

]n+1

}

(22)

Using the Hurwitz–Lerch zeta function (21) becomes

Tn(x, λ) = n!
λ

x
2 (πq)n+1

[
q
∑

j=1
Φ
(

eqπix, n + 1, (2j−1)πi−log λ
2qπi

)
× e

1
2 (−(n+1)+(2j−1)x)πi

+
q
∑

j=1
Φ
(

e−qπix, n + 1, (2j−1)πi+log λ
2qπi

)
× e

1
2 ((n+1)−(2j−1)x)πi

] (23)

Setting λ = e2πiξ and = 2p
q , (23) becomes

Tn

(
2p
q ; e2πiξ

)
= n!

e
2πiξ p

q (πq)n+1

[
q
∑

j=1
Φ
(

e2πpi, n + 1, 2j−2ξ−1
2q

)
× e[−

(n+1)
2 +

(2j−1)p
q ]

πi

+
q
∑

j=1
Φ
(

e−2πpi, n + 1, 2j+2ξ−1
2q

)
× e[

(n+1)
2 − (2j−1)p

q ]
πi

] (24)
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Since e−2πpi = e2πpi = 1, then by Hurwitz zeta function when z = 1, (24) becomes,

Tn

(
2p
q , e2πiξ

)
= n!

(πq)n+1

[
q
∑

j=1
ζ
(

n + 1, 2j−2ξ−1
2q

)
× e

1
2 (−(n+1)+(2j−1)( 2p

q ))πie−
2πiξ p

q

+
q
∑

j=1
ζ
(

n + 1 , 2j+2ξ−1
2q

)
× e

1
2 ((n+1)−(2j−1) 2p

q )πie−
2πiξ p

q

]
= n!

(πq)n+1

[
∑

q
j=1 ζ

(
n + 1, 2j−2ξ−1

2q

)
× e−

(n+1)
2 πi+(2j−2ξ−1) p

q πi
+ ∑

q
j=1 ζ

(
n + 1 , 2j+2ξ−1

2q

)
×

e(
n+1

2 )πi−(2j+2ξ−1) p
q π
]

.

�

5. Conclusions

The researchers obtained three formulas for the Apostol–tangent polynomials: the
Fourier series, an integral representation, and an explicit formula at rational arguments.
Taking into account all the residues of the generating function combined with the use of the
Cauchy Residue Theorem proved to be a good technique to obtain the Fourier series while
the method by Luo proved to be applicable with no major difficulty to obtain the latter two
formulas. For future study, it will be interesting to obtain corresponding formulas for the
generalized Apostol type Frobenius–Euler polynomials.
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