Exact Solutions for Solitary Waves in a Bose-Einstein Condensate under the Action of a Four-Color Optical Lattice
Abstract
:1. Introduction
2. Exact Analytical Model for Obtaining the Solitary Excitations under the Novel FOL Trap
3. The Parameter Domain and Shape of the Tunable FOL
4. Density Patterns Supported by the Engineered FOL
5. Dynamical Stability and Structural Stability of the Condensate
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008, 80, 885. [Google Scholar] [CrossRef] [Green Version]
- Greiner, M.; Mandel, O.; Esslinger, T.; Hänsch, T.W.; Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 2002, 415, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Denschlag, J.H.; Simsarian, J.E.; Häffner, H.; Mckenzie, C.; Browaeys, A.; Cho, D.; Helmerson, K.; Rolston, S.L.; Phillips, W.D. A Bose-Einstein condensate in an optical lattice. J. Phys. B At. Mol. Opt. Phys. 2002, 35, 3095. [Google Scholar] [CrossRef] [Green Version]
- Jaksch, D.; Bruder, C.; Cirac, J.I.; Gardiner, C.W.; Zoller, P. Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 1998, 81, 3108. [Google Scholar] [CrossRef]
- Brazhnyi, V.A.; Konotop, V.V. Theory of nonlinear matter waves in optical lattices. Mod. Phys. Lett. B 2004, 18, 627–651. [Google Scholar] [CrossRef] [Green Version]
- Morsch, O.; Oberthaler, M. Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 2006, 78, 179–212. [Google Scholar] [CrossRef]
- Lewenstein, M.; Sanpera, A.; Ahufinger, V. Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Dutta, O.; Gajda, M.; Hauke, P.; Lewenstein, N.; Luhmann, D.S.; Malomed, B.; Sowinski, T.; Zakrzewski, J. Non-standard Hubbard models in optical lattices: A review. Rep. Prog. Phys. 2015, 78, 066001. [Google Scholar] [CrossRef] [PubMed]
- Hauke, P.; Cucchietti, F.M.; Tagliacozzo, L.; Deutsch, I.; Lewenstein, M. Can one trust quantum simulators? Rep. Prog. Phys. 2012, 75, 082401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, C.; Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 2017, 357, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, F.; Fukuhara, T.; Sugawa, S.; Takasu, Y.; Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2020, 2, 411–425. [Google Scholar] [CrossRef]
- Brennen, G.K.; Pupillo, G.; Rey, A.M.; Clark, C.W.; Williams, C.J. Scalable register initialization for quantum computing in an optical lattice. J. Phys. B At. Mol. Opt. Phys. 2005, 38, 1687. [Google Scholar] [CrossRef]
- Katori, H. Optical lattice clocks and quantum metrology. Nat. Photonics 2011, 5, 203–210. [Google Scholar] [CrossRef]
- Wang, Z.M.; Wu, L.A.; Modugno, M.; Byrd, M.S.; Yu, T.; You, J.Q. Fault-tolerant breathing pattern in optical lattices as a dynamical quantum memory. Phys. Rev. A 2014, 89, 042326. [Google Scholar] [CrossRef] [Green Version]
- Schulte, T.; Drenkelforth, S.; Kruse, J.; Ertmer, W.; Arlt, J.; Sacha, K.; Zakrzewski, J.; Lewenstein, M. Routes towards Anderson-Like Localization of Bose-Einstein Condensates in Disordered Optical Lattices. Phys. Rev. Lett. 2005, 95, 170411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, S.K.; Salasnich, L. Localization of a Bose-Einstein condensate in a bichromatic optical lattice. Phys. Rev. A 2009, 80, 023606. [Google Scholar] [CrossRef] [Green Version]
- Nath, A.; Roy, U. Bose–Einstein condensate in a bichromatic optical lattice: An exact analytical model. Laser Phys. Lett. 2014, 11, 115501. [Google Scholar] [CrossRef]
- Yamamoto, D.; Fukuhara, T.; Danshita, I. Frustrated quantum magnetism with Bose gases in triangular optical lattices at negative absolute temperatures. Nat. Phys. 2020, 3, 56. [Google Scholar] [CrossRef] [Green Version]
- Billy, J.; Josse, V.; Zuo, Z.; Bernard, A.; Hambrecht, B.; Lugan, P.; Clement, D.; Sanchez-Palencia, L.; Bouyer, P.; Aspect, A. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 2008, 453, 891–894. [Google Scholar] [CrossRef]
- Braun, S.; Ronzheimer, J.P.; Schreiber, M.; Hodgman, S.S.; Rom, T.; Bloch, I.; Schneider, U. Negative Absolute Temperature for Motional Degrees of Freedom. Science 2013, 339, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Nath, A.; Bera, J.; Ghosh, S.; Roy, U. Exact Analytical Model for Bose-Einstein Condensate at Negative Temperature. Sci. Rep. 2020, 10, 9016. [Google Scholar] [CrossRef]
- Cheng, Y.; Gong, R.; Li, H. Dynamics of two coupled Bose-Einstein Condensate solitons in an optical lattice. Opt. Exp. 2006, 14, 3594–3601. [Google Scholar] [CrossRef]
- Das, P.; Raju, T.S.; Roy, U.; Panigrahi, P.K. Sinusoidal excitations in two-component Bose-Einstein condensates in a trap. Phys. Rev. A 2009, 79, 015601. [Google Scholar] [CrossRef] [Green Version]
- Nath, A.; Bera, J.; Ghosh, S.; Panigrahi, P.K.; Roy, U. Soliton dynamics for an ingenious trap combination in a Bose-Einstein condensate. Eur. Phys. J. D 2020, 74, 27. [Google Scholar] [CrossRef]
- Sun, Q.; Hu, J.; Wien, L.; Liu, W.M.; Juzeliunas, G.; Ji, A.C. Ground states of a Bose-Einstein Condensate in a one-dimensional laser-assisted optical lattice. Sci. Rep. 2016, 6, 37679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zeng, J. Dark matter-wave gap solitons in dense ultracold atoms trapped by a one-dimensional optical lattice. Phys. Rev. A 2021, 103, 013320. [Google Scholar] [CrossRef]
- Malomed, B.A. Soliton Management in Periodic Systems; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Qiu, X.; Zou, J.; Qi, X.; Li, X. Precise programmable quantum simulations with optical lattices. NPJ Quantum Inf. 2020, 6, 87. [Google Scholar] [CrossRef]
- Windpassinger, P.; Sengstock, K. Engineering novel optical lattices. Rep. Prog. Phys. 2013, 76, 086401. [Google Scholar] [CrossRef]
- Ghosh, S.; Bera, J.; Panigrahi, P.K.; Roy, U. Sub-fourier quantum metrology through bright solitary trains in Bose–Einstein condensate. Int. J. Quant. Inf. 2019, 17, 1950019. [Google Scholar] [CrossRef]
- Yang, B.; Sun, H.; Huang, C.J.; Wang, H.Y.; Deng, Y.; Dai, H.N.; Yuan, Z.S.; Pan, J.W. Cooling and entangling ultracold atoms in optical lattices. Science 2020, 369, 550–553. [Google Scholar] [CrossRef]
- Bera, J.; Ghosh, S.; Salasnich, L.; Roy, U. Matter-wave fractional revivals in a ring waveguide. Phys. Rev. A 2020, 102, 063323. [Google Scholar] [CrossRef]
- Khaykovich, L.; Schreck, F.; Ferrari, G.; Bourdel, T.; Cubizolles, J.; Carr, L.D.; Castin, Y.; Salomon, C. Formation of a Matter-Wave Bright Soliton. Science 2002, 296, 1290–1293. [Google Scholar] [CrossRef] [Green Version]
- Inouye, S.; Andrews, M.R.; Stenger, J.; Miesner, H.J.; Stamper-Kurn, D.M.; Ketterle, W. Observation of Feshbach resonances in a Bose–Einstein condensate. Nat. Phys. 1998, 392, 151–154. [Google Scholar] [CrossRef]
- Roberts, J.L.; Claussen, N.R.; Cornish, S.L.; Wieman, C.E. Magnetic Field Dependence of Ultracold Inelastic Collisions near a Feshbach Resonance. Phys. Rev. Lett. 2000, 85, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kengne, E.; Liu, W.-M.; Malomed, B.A. Spatiotemporal engineering of matter-wave solitons in Bose-Einstein condensates. Phys. Rep. 2021, 899, 1–62. [Google Scholar] [CrossRef]
- Nath, A.; Roy, U. A unified model for an external trap in a cigar-shaped Bose–Einstein condensate. J. Phys. A Math. Theor. 2014, 47, 415301. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions, 1st ed.; Dover: New York, NY, USA, 1964. [Google Scholar]
- Howards, L.A.; Weinhold, T.J.; Shahandeh, F.; Combes, J.; Vanner, M.R.; White, A.G.; Ringbauer, M. Quantum Hypercube States. Phys. Rev. Lett. 2019, 123, 020402. [Google Scholar] [CrossRef] [Green Version]
- Shukla, N.; Akhtar, N.; Sanders, B.C. Quantum tetrachotomous states: Superposition of four coherent states on a line in phase space. Phys. Rev. A 2019, 99, 063813. [Google Scholar] [CrossRef] [Green Version]
- Shukla, N.; Nimmrichter, S.; Sanders, B.C. Squeezed comb states. Phys. Rev. A 2021, 103, 012408. [Google Scholar] [CrossRef]
- Cirac, J.I.; Lewenstein, M.; Molmer, K.; Zoller, P. Quantum superposition states of Bose-Einstein condensates. Phys. Rev. A 1998, 57, 1208. [Google Scholar] [CrossRef] [Green Version]
- Zeng, B.; Zhou, D.L.; Xu, Z.; Sun, C.P.; You, L. Encoding a logical qubit into physical qubits. Phys. Rev. A 2005, 71, 022309. [Google Scholar] [CrossRef] [Green Version]
- Foot, C.J.; Shooter, M.D. Double well potentials and quantum gates. Am. J. Phys. 2011, 79, 762. [Google Scholar] [CrossRef] [Green Version]
- Vo, C.; Riedl, S.; Baur, S.; Rempe, G.; Durr, S. Remote Entanglement between a Single Atom and a Bose-Einstein Condensate. Phys. Rev. Lett. 2012, 109, 263602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajdacz, M.; Opatrny, T.; Das, K.K. An atomtronics transistor for quantum gates. Phys. Lett. A 2014, 378, 1919. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halder, B.; Ghosh, S.; Basu, P.; Bera, J.; Malomed, B.; Roy, U. Exact Solutions for Solitary Waves in a Bose-Einstein Condensate under the Action of a Four-Color Optical Lattice. Symmetry 2022, 14, 49. https://doi.org/10.3390/sym14010049
Halder B, Ghosh S, Basu P, Bera J, Malomed B, Roy U. Exact Solutions for Solitary Waves in a Bose-Einstein Condensate under the Action of a Four-Color Optical Lattice. Symmetry. 2022; 14(1):49. https://doi.org/10.3390/sym14010049
Chicago/Turabian StyleHalder, Barun, Suranjana Ghosh, Pradosh Basu, Jayanta Bera, Boris Malomed, and Utpal Roy. 2022. "Exact Solutions for Solitary Waves in a Bose-Einstein Condensate under the Action of a Four-Color Optical Lattice" Symmetry 14, no. 1: 49. https://doi.org/10.3390/sym14010049
APA StyleHalder, B., Ghosh, S., Basu, P., Bera, J., Malomed, B., & Roy, U. (2022). Exact Solutions for Solitary Waves in a Bose-Einstein Condensate under the Action of a Four-Color Optical Lattice. Symmetry, 14(1), 49. https://doi.org/10.3390/sym14010049