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Abstract: Density clustering has been widely used in many research disciplines to determine the
structure of real-world datasets. Existing density clustering algorithms only work well on complete
datasets. In real-world datasets, however, there may be missing feature values due to technical
limitations. Many imputation methods used for density clustering cause the aggregation phenomenon.
To solve this problem, a two-stage novel density peak clustering approach with missing features is
proposed: First, the density peak clustering algorithm is used for the data with complete features,
while the labeled core points that can represent the whole data distribution are used to train the
classifier. Second, we calculate a symmetrical FWPD distance matrix for incomplete data points, then
the incomplete data are imputed by the symmetrical FWPD distance matrix and classified by the
classifier. The experimental results show that the proposed approach performs well on both synthetic
datasets and real datasets.

Keywords: clustering; incomplete data; density peak; imputation

1. Introduction

Clustering analysis is a main technique used to solve the problems that exist in data
mining. It aims to classify data points into several groups called clusters so that similar
elements are clustered into one group, while different elements are separated from each
other [1]. Because clustering can be used to deeply mine internal and possible knowledge,
rules, and patterns, it has been applied to many practical fields, including data mining,
pattern recognition, machine learning, information retrieval, and image analysis [2–4].
Clustering has been widely and intensely studied by the data mining community in recent
years. Many clustering algorithms have been proposed: K-means [5], fuzzy C-means [6],
affinity propagation [7], Gaussian mixtures [8], etc. These algorithms perform well on many
occasions, but they cannot deal with datasets with arbitrary shapes, and the determination
of hyperparameters and clustering centers is also difficult for clustering algorithms.

Density-based clustering methods (such as DBSCAN) [9,10] consider clusters as high-
density regions separated by low-density regions. DBSCAN can process datasets with
arbitrary shapes. However, it is sensitive to the density radius parameter, and small
parameter changes can lead to widely different clustering results. In 2014, Alex and
Rodriguez proposed the density peak clustering (DPC) algorithm [11] in Science, a novel
fast density peak clustering algorithm that can recognize clusters with arbitrary shapes
without setting the number of clusters in advance. Compared to a traditional clustering
algorithm, DPC can quickly identify cluster centers, needs few parameters, has a fast
clustering speed, and can be used with datasets with different shapes. Therefore, several
research studies [12–18] have been performed focusing on this method.

Although the DPC algorithm and its improved version have achieved great success
and proved their high performance in practical applications, they can only be used to
process complete data. However, in many practical applications, we may encounter
missing features for various reasons (such as sensor failure, measurement error, unreliable
features, etc.).
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Researchers have expended considerable effort to study the problem of incomplete
data. Some methods have been proposed for supervised learning and unsupervised
learning [19–23]. A simple way is to discard those missing values by eliminating instances
that contain missing values before clustering. More commonly, the missing data are im-
puted by an imputation algorithm (such as zero imputation, mean imputation, KNN
imputation, or EM imputation [24–26]) and then clustered by the original clustering algo-
rithm. However, the clustering performance on incomplete data is much lower. Recently,
imputation and clustering were considered in the same framework [23,27] to improve
the clustering performance on incomplete data, but most of these methods cannot handle
incomplete data with arbitrary shapes well. In addition, the imputation-based method does
not work well in the DPC algorithm because of the aggregation phenomenon of imputed
points. The cluster centers in DPC have a higher density than their neighbors, and the
different cluster centers are far away from each other. The example in Figure 1 illustrates the
aggregation phenomenon. The five-cluster dataset is a two-dimensional synthetic dataset
that contains five clusters. We can accurately obtain five clusters and their centers (the
cross mark in Figure 1a) by executing the DPC algorithm on the five-cluster dataset; the
results are shown in Figure 1a. For comparison, we can generate missing data by randomly
deleting 25% of all features in the five-cluster dataset. Then, the missing feature data points
are imputed by the mean imputation method and the DPC algorithm is executed on the
missing feature data. The clustering results are shown in Figure 1b. As shown in Figure 1b,
the two straight lines in the middle area are the missing feature points imputed by mean
imputation, and these imputed data points form some high-density areas, which breaks
the assumption of the DPC algorithm. Thus, applying DPC on incomplete data can lead to
the wrong centers being chosen (the cross marks in Figure 1b) and to a very poor clustering
result. Other advanced imputation algorithms (such as KNN imputation) are also likely to
break the assumption of the DPC algorithm and lead to the aggregation phenomenon of
imputed data points.

(a) (b)

Figure 1. Aggregation phenomenon. (a) DPC original results on the five-cluster dataset. (b) DPC
results on the five-cluster dataset with 25% missing ratio.

Classification algorithms are highly accurate and can accurately learn the distribution
of data, but they need labeled training data. Clustering algorithms do not need data with
labels, but the accuracy of the learned model will not be particularly high. In addition,
during the label assignment process of DPC, a point is always assigned the same label as the
nearest neighbor with a higher density, and errors propagated in the subsequent assignment
process. Incomplete points with many missing features are more likely to be assigned a
wrong label and propagate errors. Therefore, to avoid the above problems and improve the
clustering performance when features of data points are missing, in this paper, we propose
the use of a novel two-stage clustering algorithm based on DPC. In stage 1, based on the
idea of training a classification model using clustering results, a batch of labeled data is first
obtained by density peak clustering, then some representative points are selected. In stage
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2, a powerful classifier is trained using these representative points. Then, a symmetrical
FWPD distance matrix for incomplete data points is computed, after that, the missing
feature data are imputed by the FWPD distance matrix and classified by the classifier. Our
algorithm works well with incomplete data while maintaining the advantages of the DPC
algorithm. The main diagram of the proposed method is shown in Figure 2. We conducted
extensive experiments on three synthetic datasets and six UCI benchmark datasets; the
experimental results showed the effectiveness of our proposed algorithm.
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Figure 2. The main diagram of the DPC-INCOM.

The main contributions of this article are summarized as follows:
(1) To the best of our knowledge, this is the first work about clustering on incomplete

data of arbitrary shapes. To solve this problem, we propose combining clustering with
classification. The classifier has a high accuracy but it needs labeled data. In stage 1, we use
the density clustering method to obtain labeled data, then select some high-quality labeled
data to train the classifier in stage 2. Stage 2 relies on the samples from stage 1. Although the
original DPC can deal with irregular data, we introduced some improvements, such as
improving the local density formula, making it automatically select centers, and merg-
ing clusters. Therefore, the clustering performance in stage 1 has obvious advantages.
The classifier in stage 2 retains advantages and improves the clustering performance.

(2) Based on the above ideas, we propose a density peak clustering method for in-
complete data named DPC-INCOM. The traditional DPC method fails when handling
incomplete data due to the aggregation phenomenon. DPC-INCOM can deal with this kind
of situation well.
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(3) We conducted extensive experiments on three synthetic datasets and six UCI
benchmark datasets. Our algorithm achieves superior performance compared to other
imputation-based methods.

The rest of this paper is organized as follows: Section 2 describes DPC and reviews
related work. Then, we propose the DPC-INCOM method in Section 3. Section 4 discusses
the experimental results. We draw conclusions in Section 5.

2. Related Work
2.1. Density Peak Clustering Model and Its Improvements

The DPC algorithm is a powerful clustering method. DPC has two basic assumptions:
the first is that cluster centers are surrounded by neighbors with a lower local density; the
second is that centers are at a relatively large distance from any points with a higher local
density. This method utilizes two major quantities: local density ρi and the distance from
points with a higher density δi, corresponding to the DPC assumption. We now introduce
how to calculate them in detail.

Assume that XN×M = [x1, x2, · · · , xN ]
T is the whole dataset with N samples, where

xi = [x1i, x2i, · · · , xMi] is the ith vector with M features. The dataset’s distance matrix
should be computed first. The local density of data point xi, denoted by ρi, is defined as:

ρi = ∑
j

χ(d(xi, xj)− dc) (1)

χ(x) =

{
1, if x ≤ 0;
0, if x > 0;

(2)

where d(xi, xj) is the Euclidean distance between points xi and xj, and dc is the cutoff
distance. The procedure for determining dc is similar to that used to determine the average
number of neighbors of all points in a dataset. As a general rule, dc should be chosen, such
that the average number of the neighbors is between 1% and 2% of the total number of
points in the dataset. ρi is the number of nodes adjacent to point xi. The computation of δi
is simple. It is measured by calculating the minimum distance between xi and any other
object of higher density, and is defined as:

δi =

{
minj:ρi<ρj(d(xi, xj)), if ∃ j s.t. ρi < ρj;

maxj(d(xi, xj)), otherwise;
(3)

Only the data points with a large local density ρi and large distances δi can become
centers (also known as density peaks). The remaining data points will be assigned the same
label as their nearest neighbors with a higher local density after the centers are selected. As
such, all data points can be assigned a label.

The original DPC algorithm is not sensitive to the local geometric features of the data.
Especially when the density difference between clusters is large, the local density difference
between cluster centers is also large. Therefore, the local density of centers from low-density
clusters is too low. DPC cannot identify the centers from low-density clusters. In addition,
the initial cluster centers must be manually rather than automatically selected. However, it
is difficult to obtain the correct selection in some datasets. Several research studies [12–18]
have been performed wih this method to overcome these defects. A previous study [13]
proposed a new local density calculation method based on K nearest neighbors, effectively
identifying the low-density centers without manually setting the parameters dc.

2.2. Incomplete Data Processing Methods
2.2.1. Some Classical Imputation Methods

The simplest and most commonly used imputation methods are zero imputation,
mean imputation, median imputation, and mode imputation. Another common imputation
method is K nearest neighbor imputation (KNN) [25], where the missing features of a data



Symmetry 2022, 14, 60 5 of 16

point are imputed by the mean value of corresponding features over its K nearest neighbors
on the observed subspace. Unlike the approaches described above, Bayesian frameworks
use the expectation-maximization (EM) algorithm to deal with incomplete features that
imputes missing data values with the most likely estimated values.

2.2.2. Dynamic Imputation Methods

Ref. [28] proposes a dynamic K-means imputation (DK) method. Given a dataset
XN×M = [x1, x2, . . . , xN ]

T and the number of clusters k, if a sample xi is an incomplete
sample, the DK divides it into two parts: the visible part xi(oi) and the missing part
xi(mi). In the iterative process, DK modifies the imputation value of xi(mi) simultaneously
while xi(oi) remains unchanged. DK modifies three variables in each iteration: the data
matrix XN×M, the allocation matrix H, and the cluster center uc. Ref. [27] presents another
dynamic imputation method based on the Gaussian mixture model. The authors of [23]
proposed a novel framework that can cluster mixed numerical and categorical data with
missing values. The framework integrates the imputation and clustering steps into a single
process and obtained fairly accurate results. These methods work well on many occasions
but cannot handle datasets of arbitrary shapes with missing features.

2.2.3. Similarity Measurement of Incomplete Data

Other scholars think that it is not necessary to impute missing features before cluster-
ing. Many clustering algorithms judge whether a sample belongs to a cluster based on the
similarity measurement of the sample (such as Euclidean distance). Therefore, some schol-
ars directly calculated the similarity or distance between incomplete data points. Hathaway
proposed the concept of partial distance (PDS) [29] in 2001. Ref. [30] proposes a different
distance measure (FWPD distance) for incomplete data that considers the distribution of
missing data. A penalty term is added. It is considered that if most samples do not lose
their features but one sample loses them, that one should be given a greater penalty. On the
other hand, if there are a large number of missing values in a column, a smaller penalty
will be imposed. The author applied FWPD distance in the K-means method and then
directly clustered incomplete data points; this achieved excellent results. However, its
penalty weight parameters depend on experience and need to be further improved.

2.3. Classification Methods

Classification aims to find a set of models or functions that can describe a dataset’s
characteristics and identify the categories of unknown data samples. The classification
algorithm mainly includes two steps. The first step involves establishing a model to
describe the categories and the distribution of known datasets. The dataset used to train
the classifier is named the training set. The second step is to use the obtained model for
classification. The most commonly used classification algorithms include the Bayesian
method, neural network, and support vector machine (SVM) [31–33].

3. Density Peak Clustering with Incomplete Data
3.1. The Problem of Incomplete Data Clustering

The problem of clustering with incomplete data has been the subject of several prior
studies [10,29]. Table 1 provides the list of notations used in this paper. Given a set of objects
O = {o1, · · · , oN} represented by a numerical data matrix XN×M = [x1, x2, . . . , xN ]

T , xk
is the kth data vector that describes the object ok by specifying values for M particular
features. The jth component of the data vector xk is denoted by xkj. In practice, some
features of certain data points may be missing in some cases. Such data can be called
incomplete data. For example, x5 = [1.23, 3.14, ?, 4.66, ?]T is incomplete datum, where x53
and x55 are missing. Otherwise, the point is called complete datum. Any dataset containing
such points (missing values) can be regarded as an incomplete dataset. For convenience of
expression, we use Xw = {xk ∈ XN×M|xk is a complete data point} to note that data that no
features are missing in the dataset and Xm = {xk ∈ (XN×M − Xw)} to note the incomplete
part of XN×M.
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Table 1. Table of notations.

Symbol Description [b]

XN×M Matrix of the whole input dataset
Xw Subset that contains all complete data of XN×M
Nw Number of data points in Xw
Xm Incomplete part of XN×M
dc Cutoff distance
ρi Local density of the ith data point
δi Min distance between the ith point and any other points of higher density
dij Distance from the ith data point to the jth point
σK

i Distance between the ith data point and the Kth nearest neighbor
Cu Cluster u
Bv

u Border points between clusters Cu and Cv
ρv

u Border density between cluster Cu and cluster Cv
ρCu Avg. density of Cu

do(xi, xj) Observed distance of the ith data point xi and jth data point xj
S Set of all dimensions, where |S| equals the number of features of a data point

γxi Set of feature dimensions that can be observed in the ith point xi
wl Number of points in XN×M with observed values of the lth feature

δ(xi, xj) FWPD distance between a incomplete data point xi and another point xj

Problem Statement. Given a dataset XN×M = [x1, x2, . . . , xN ]
T with N unlabeled

points, each point xi has M dimensions (features). Based on the features, the clustering
algorithm aims to find a set of clusters {Cl |l = 1, 2, . . . , k}, where each xi can mapped to one
cluster Ci and Ci′ ∩i 6=i′ Ci = ∅. The points in the same cluster should have similar features,
while the points far away should never appear in the same cluster. Accordingly, we denote
λj ∈ {1, 2, . . . , k} as the cluster label of sample xj (i.e., xj ∈ Cλj). After, a cluster label vector
can be used to represent the clustering result H = [λ1, λ2, · · · , λN ] with N elements.

When using the DPC algorithm to process incomplete data, it makes sense to impute
the missing features first and then apply the DPC algorithm for imputed data. However,
the use of a simple imputation-based method (zero imputation, mean imputation, or median
imputation) may lead to the aggregation phenomenon, where some imputed missing
feature data points gather and form a high-density area. Thus, their density exceeds that
of the original clustering centers, leading to a poor clustering result. Complex imputation
methods such as KNN imputation can also suffer from the aggregation phenomenon.

To extend the DPC algorithm to incomplete data, we designed the DPC-INCOM
method, which can work well on incomplete data and automatically identify cluster centers
without manually setting the number of clusters k. The proposed method divides the
clustering problem into two major stages: Stage 1 uses improved DPC to obtain a batch
of labeled data samples. The details of this process can be found in Sections 3.2 and 3.3.
In stage 2, the labeled data points with a high local density are selected as a core set, a
proper classification model is selected, and the labeled training dataset is fed to train
the model. Then, missing feature data samples are imputed with K nearest neighbors.
Finally, the trained classifier is used to classify the imputed missing feature data. Section 3.4
provides a detailed description of Stage 2.

3.2. Improved Density Formula

Ref. [13] proposes an improved DPC, which overcomes the shortcoming of DPC: the
original algorithm cannot effectively identify the center of low-density clusters. The im-
proved local density is calculated by K nearest neighbors. Therefore, not much difference
exists between the local density of the center of a low-density cluster and the local density
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of the center of a high-density cluster, and this improved algorithm no longer needs to set
the parameter dc. The improved local density ρi of the ith data point is defined as:

dc = uK +

√√√√ 1
Nw − 1

Nw

∑
i=1

(σK
i − uK)2 (4)

uK =
1

Nw

Nw

∑
i=1

σK
i (5)

ρi = ∑
j∈KNNi

exp(−
d2

ij

d2
c
) (6)

where Nw is the number of data points in Xw and σK
i is the distance between data point i

and its Kth nearest neighbor, being defined as δK
i = maxj∈KNNi (dij). KNNi is the K nearest

neighbors of data point i. dij is the Euclidean distance between data points i and j. Our
method borrows this improved density formula to improve the performance of Stage 1.
Note that any improvement in DPC can be applied in Stage 1.

3.3. Automatic Selection of Centers and Cluster Merging

A decision graph must be established in the original DPC algorithm and then the
cluster centers must be manually selected. If the cutoff distance dc parameter is incorrect,
the decision graph may be incorrectly built. In addition, the original algorithm assumes
that there is only one density peak in one cluster. If there are multiple density peaks,
DPC cannot cluster correctly. The subsequent assignment procedure will propagate errors,
but no action is taken in the DPC to fix them. It should also be pointed out that the initial
cluster centers are selected manually rather than automatically. However, it is difficult to
obtain the correct selection in some datasets. For the same decision graph, different people
choose different cluster centers, and the clustering results will therefore different. To solve
these problems, we propose a method that involves automatically selecting cluster centers
and automatically merging density reachable clusters.

3.3.1. Candidate Centers

According to the local density ρi and distance δi, we set a threshold and then select the
candidate centers according to this threshold. Candidate centers are defined as:

CC = {xi |ρiδi > ρmδm & δi > β dc} (7)

where ρi and δi are the local density and distance of the ith data point xi, respectively, and xm
is the representative data point. ρmδm is the product of the local density and distance of xm,
and ρmδm should be larger than the other 90% of the data points. β is a constant number
and can usually be set as 1. Using this threshold, we can select points with a relatively high
local density and distance as candidate cluster centers, but there may be more candidate
centers than actual centers. We can fix this problem through cluster merging.

3.3.2. Cluster Merging

Usually, the number of candidate cluster centers is greater than the number of actual
cluster centers, especially when a cluster contains multiple density peaks, so we need to
merge the clustering results. In terms of our requirements, some of the concepts utilized in
DBSCAN are redefined below. These concepts defined for objects are extended to clusters.

Definition 1 (Border points between two clusters). The border points between two clusters Cu
and Cv, denoted by Bv

u, are defined as:

Bv
u = {xk |dkj < dc, xk ∈ Cu, xj ∈ Cv or xj ∈ Cu, xk ∈ Cv} (8)
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where dkj is the Euclidean distance from xk to xj. Obviously, Bv
u = Bu

v .

Definition 2 (Border density of two clusters). The border density between cluster Cu and cluster
Cv, denoted by ρv

u, is defined as:
ρv

u = {avgxk∈Bv
u(ρk)} (9)

where ρk is the local density of xk. Obviously, ρv
u = ρu

v and the amount of computation can be
halved by using the symmetry property.

Definition 3 (Density directly reachable). The density of cluster Cu is directly reachable from
cluster Cv with respect to border density if:

1)Bv
u 6= ∅

2)ρv
u > min(ρCu , ρCv} (10)

where ρCu and ρCu are the average local density of clusters Cu and Cv.

Definition 4 (Density reachable). Cluster Cu is density reachable by Cv if there is a chain of
clusters (Cu, Ci, Ci+1, · · · , Cv), such that Ci+1 is density directly reachable from Ci.

The density reachable is symmetric and transitive. To show its veracity, one can apply
mathematical induction.

Here is an example of density reachable: As shown in Figure 3, there are three clusters,
A, B, and C. In the enlarged subgraph in the lower-left corner, there are four points, e, f,
g, and h, of which e and g are from cluster C, and f and h are from cluster B. It can be
seen that f’s circle contains points e and g from cluster C. Therefore, e, g, and f are the
border points of cluster B and C. If the average density of all border points of clusters B
and C is larger than the average density of cluster B or C, then clusters B and C are density-
directly-reachable. If cluster A and B are density-directly-reachable and cluster B and C are
density-directly-reachable, then we can say that clusters A, B, and C are density reachable.

Based on the concept of density reachable, we can build a graph model for all cluster
centers. The cluster centers are the nodes of the graph. If both two centers are density-
directly-reachable, they have a connected edge. We can calculate all connected components
using the graph model based on the DFS algorithm and merging the connected clusters. As
shown in the example in Figure 3, three candidate centers are selected using (7). Let cA, cB,
and cC represent the centers of cluster A, B, and C, respectively. Then, we can build a graph
model with three nodes, cA, cB, and cC. If clusters B and C are density reachable, then cB
and cC have an edge. If clusters A and B are not density reachable, then cA and cB have no
edge. Then, applying the DFS algorithm on this graph model, we can obtain a connected
component with two nodes, cB and cC. Therefore, clusters B and C can be merged into one.

Based on the above improvements, we can use the improved DPC algorithm to cluster
Xw and obtain the cluster label comH.

3.4. Training the Classifier with Core-Set

The advantage of classification algorithms is their high accuracy, but some data points
identified by category labels need to be used as a training set. Marking labels manually
is a time-consuming task. Clustering algorithms do not need labeled data. However,
without providing labels, the learned model will not be accurate enough. The method
detailed in Sections 3.2 and 3.3 provides a batch of labeled data. We can use these data
to train the classifier, and then the classifier will determine to which cluster each missing
feature data point belongs.
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Figure 3. Example of border points and density reachable.

3.4.1. Distance Measurement of Incomplete Data Points

To calculate the K nearest neighbors of the incomplete data point xi, we should first
know how to calculate the distance between data points with missing features. The partial
distance (PDS) of incomplete data was proposed in [29]. The distance is calculated according
to the visible part of the data point and then multiplied by a factor calculated by the number
of missing dimensions. Datta proposed the use of the FWPD [30] distance to directly
calculate the distance of incomplete data points and directly applied the FWPD distance to
the K-means clustering algorithm to deal with incomplete datasets. However, this method
cannot handle incomplete data with an arbitrary shape. FWPD distance is the weighted
sum of two terms: the first is the observed distance of two data points, and the second is a
penalty term. The penalty term is a weighted sum of the penalty coefficients of all missing
dimensions, and the FWPD distance is a weighted sum of the observed distance and the
penalty term. It is denoted by δ(xi, xj) and calculated as follows:

do(xi, xj) =
√

∑
l∈(γxi∩γxj )

(xil − xjl)2 (11)

p(xi, xj) =
∑l∈S\(γxi∩γxj )

wl

∑l′∈S wl′
(12)

δ(xi, xj) = (1− α)×
do(xi, xj)

dmax
+ α× p(xi, xj) (13)

where do(xi, xj) is the observed distance of data points xi and xj and S is the set of all feature
dimensions. γxi and γxj are the sets of feature dimensions that can be observed by xi and
xj, respectively. wl belongs to (0, n], which is the number of data points in XN×M with
the observed values of the lth feature. Obviously, if a feature observed in most samples is
missing in a specific sample, this weighting scheme will impose a greater penalty. On the
other hand, if the missing feature is not observed in many other samples, a smaller penalty
will be imposed. Utilizing the FWPD distance, we can calculate the K nearest complete
neighbors of the missing data point xi and then use the mean value of the corresponding
dimension of the K neighbors to impute the missing feature.
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3.4.2. Training Classifier

Definition 5 (Core set of a cluster). The core set of a cluster Cu, denoted by Coreu, is defined as:

Coreu = {xi |ρi > ρCu} (14)

The core set of a cluster contains data points that have a relatively higher local density
in the cluster, meaning it can better represent the distribution of the cluster. Using these
points as a training set can lead to obtaining a higher-accuracy classifier. A core set is
selected from the clustering results of Xw, then the core set is fed to a proper classification
model (such as SVM). When the trained classifier is obtained, the classifier can be applied
to classify the imputed missing feature data points. The final clustering result is obtained
by combining the labels of Xw and the labels of the imputed missing data assigned by
the classifier.

3.5. Main Steps of DPC-INCOM

Algorithm 1 provides a summary of the proposed DPC-INCOM.

Algorithm 1 DPC-INCOM.

Input: data matrix XN×M = [x1, x2, . . . , xN ]
T with missing features, constant number K1, K2

Output: cluster label vector H
1: Divide XN×M into Xm and Xw
2: Use AKdensityPeak(Xw, K1) to cluster complete dataset Xw, and obtain the cluster label

vector comH
3: Calculate the FWPD distance matrix of data points in XN×M using (13)
4: Impute the missing features of all the data points in Xm using K2 nearest neighbors by

the FWPD distance; obtain imputed Xm denoted by ip_Xm
5: Select coreSet and corelabel from Xw and comH as training sets using (14)
6: Training a SVM classifier with coreSet and corelabel
7: Obtain the label vector of ip_Xm denoted by incomH using the trained SVM classifier
8: Obtain H by union comH, incomH

3.6. Complexity Analysis

In this section, we measure the computational complexity of the proposed algo-
rithm.The complexity of the entire process is the sum of the complexities of the two
stages: DPC clustering in Xw and imputation and classification in Xm. Suppose the dataset
has N points and is divided into a complete part with Nw points and an incomplete part
with Nm points. In Stage 1, the time complexity of Algorithm 2 depends on the following
aspects: (a) calculating the distance between points (O(N2

w)); (b) sorting the distance vector
of each point (O(NwlogNw)); (c) calculating the cutoff distance dc (O(Nw)); (d) calculating
the local density ρi with the K1 nearest neighbors(O(K1Nw)); (e) calculating the distance
δi for each point (O(N2

w)); (f) selecting initial cluster centers and assigning each remain-
ing point to the nearest point with a higher density (O(N2

w)); (g) calculating the border
points of each cluster (O(Nw)); (h) calculating the border density of each cluster and merge
density-reachable clusters (O(Nw)). Therefore, the complexity of Stage 1 is O(N2), which is
same as that of basic DPC [11]. In Stage 2, the time complexity depends on the following
aspects: (a) calculating the FWPD distance between the incomplete points and the complete
points (O(NmNw)); (b) imputing all the incomplete points using K2 nearest neighbors
(O(Nm)); (c) selecting a core set from the complete points (O(Nw)); (d) training a SVM [33]
classifier with core set (O(N3

w)). When the dataset is large, the complexity can be reduced
by switching to an appropriate classifier. The above analysis demonstrates that the overall
time complexity of the proposed algorithm is O(N2 + N3

w) .
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Algorithm 2 AKdensityPeak.

Input: complete data matrix Xw, constant number K1
Output: comH
1: Calculate the cut-off distance dc using (4)
2: Calculate the local density ρi using K1 nearest neighbors and distance δi for each point

in Xw using (6) and (3), respectively
3: Select candidate cluster centers automatically using (7)
4: Assign cluster labels from candidate centers to low-density points
5: Calculate border points of clusters Bv

u for each cluster using (8)
6: Calculate the border density of clusters ρv

u for each cluster using (9)
7: Find all density reachable clusters using the DFS algorithm and merge these clusters
8: Return cluster label vector comH

4. Experiments and Results
4.1. Dataset

The proposed algorithm was evaluated based on three synthetic datasets and six
widely used UCI (http://archive.ics.uci.edu/ml/datasets.php accessed on 24 December
2021) datasets: Iris, Landsat, PenDigits, Seeds, Vote, and Wine. Table 2 provides the details
of the datasets.

Table 2. Datasets used in our experiments.

Dataset Samples Dimensions Classes Number of Missing Values
[b]

Five cluster (synthetic) 2000 2 5 200–1000
Flame (synthetic) 240 2 2 24–120

Iris 150 4 2 30–150
Landsat 2000 36 6 3600–288,00

PenDigits 10,992 16 10 76–608
Seeds 217 7 3 150–1201

Twomoons (synthetic) 1502 2 2 24–120
Vote 435 16 2 348–2784
Wine 178 13 3 116–926

These nine datasets originally had no missing features. In total, 60% of the samples in
each dataset were randomly selected as a complete dataset with no missing data, and the
others were selected as an incomplete part. We calculated the total missing number using
the missing ratio, then randomly generated enough missing feature positions according
to the missing number, noted the positions of the missing features in the missing matrix,
and then deleted the features at the corresponding positions according to the missing matrix.
The overall missing ratios of the matrices created were 5%, 10%, 15%, 20%, and 25% to affect
the performance of the algorithms to varying degrees. The last column in Table 2 indicates
the range of missing value in the dataset, which is the product of missing ratio, the number
of samples, and dimensions. For example, 200–1000 missing values exist in the five-cluster
(synthetic) dataset, which is (5− 25%)× 2000× 2. Each method was implemented ten
times on these edited datasets, and the average of the results was employed to evaluate
the performance in avoiding the negative effect of the accidental. We also uploaded the
incomplete datasets to GitHub (https://github.com/gaokunnanjing/AK_densitypeak_
imcom.git/accessed on 24 December 2021).

The five-cluster dataset (https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.make_blobs.html accessed on 24 December 2021), Flame [34], and Twomoons
(https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
accessed on 24 December 2021) are synthetic two-dimensional datasets. The rest of the
datasets were downloaded from the UCI Repository. PenDigits contains hand-written
digits with 10,992 samples for 10 classes. The Landsat dataset consists of multi-spectral
values of pixels in 3 × 3 neighborhoods in a satellite image, with 2000 samples in 6 classes.

http://archive.ics.uci.edu/ml/datasets.php
https://github.com/gaokunnanjing/AK_densitypeak_imcom.git/
https://github.com/gaokunnanjing/AK_densitypeak_imcom.git/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
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4.2. Compared Algorithm

We compared the proposed clustering method with several commonly used impu-
tation methods, including mean imputation (DPC + Mean), KNN imputation (DPC +
KNN), and EM imputation (DPC + EM). In addition, we compared these with the recently
proposed dynamic K-means imputation (DK) [28] and the previous three methods.

4.3. Experiment Settings

In our experiment, we assumed that the actual number of clusters was pre-specified.
The clustering performance of each algorithm is evaluated by the widely used clustering
accuracy (ACC), normalized mutual information (NMI) [35] and Fowles mallows index
(FMI) [36]. The algorithms were implemented in Python and run on a Windows laptop
with a 2.8 GHz processor and 16 GB of main memory.

4.4. Experimental Results

Figure 4 compares the ACC of the above algorithms on all the datasets with different
missing data ratios. Figure 5 presents the NMI (left part) and FMI (right part) compared
to the above algorithms with 25% missing ratios for all the datasets. We also report the
aggregated performance metrics (ACC, NMI, and FMI) in Table 3, where the best results
are indicated in bold. From these results, we observed the following:

Table 3. Comparison of the aggregated ACC, NMI, and FMI on nine benchmark datasets.

Dataset DK DPC + KNN DPC + Mean DPC + EM Ours

ACC

Five-cluster 0.805 0.899 0.775 0.852 0.904
Flame 0.793 0.654 0.666 0.910 0.912
Vote 0.860 0.869 0.829 0.862 0.888
Iris 0.789 0.647 0.515 0.763 0.809

Landsat 0.658 0.684 0.619 0.656 0.734
Seeds 0.858 0.897 0.705 0.844 0.908

Twomoon 0.824 0.813 0.693 0.786 0.940
Wine 0.907 0.884 0.589 0.853 0.923

PenDigits 0.678 0.802 0.694 0.716 0.803

NMI

Five-cluster 0.679 0.747 0.700 0.638 0.737
Flame 0.336 0.158 0.196 0.569 0.570
Vote 0.442 0.468 0.404 0.458 0.472
Iris 0.546 0.472 0.301 0.554 0.610

Landsat 0.549 0.591 0.493 0.502 0.601
Seeds 0.622 0.683 0.496 0.567 0.703

Twomoon 0.324 0.391 0.279 0.352 0.664
Wine 0.707 0.682 0.416 0.604 0.732

PenDigits 0.598 0.772 0.632 0.605 0.739

FMI

Five-cluster 0.767 0.873 0.771 0.793 0.870
Flame 0.684 0.627 0.656 0.857 0.857
Vote 0.769 0.779 0.742 0.769 0.793
Iris 0.678 0.603 0.577 0.665 0.716

Landsat 0.565 0.605 0.515 0.545 0.634
Seeds 0.756 0.814 0.636 0.732 0.828

Twomoon 0.735 0.713 0.657 0.683 0.899
Wine 0.824 0.789 0.648 0.741 0.841

PenDigits 0.539 0.702 0.544 0.569 0.679
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. The ACC of the compared algorithms for different missing data ratios for nine bench-
mark datasets. (a) Five-cluster. (b) Flame. (c) Vote. (d) Twomoons. (e) Landsat. (f) Seeds. (g) Iris.
(h) Wine. (i) PenDigits.

(1) Our proposed algorithm significantly outperformed the existing imputation-based
methods. Taking the aggregated results as examples, our algorithm outperformed the best
imputation-based method (DPC + KNN) by 0.5%, 39.3%, 2.1%, 25.1%, 7.2%, 1.1%, 15.7%,
4.2%, and 7.6% in terms of ACC. From Figure 5, setting the missing ratios to 25%, and taking
Flame, Iris, Landsat, and Twomoons as examples, our algorithm outperformed DPC + KNN
by 46.2%, 9.6%, 8.2%, and 21.2% in terms of FMI. Sometimes, imputation-based methods
produced comparatively good performance, but once they were affected by the aggregation
phenomenon, they provided poor clustering results. Conversely, our algorithm always
performed stably. These results validated the effectiveness of the proposed algorithm.

(2) Although the recently proposed DK algorithm achieved a fairly good performance,
the DPC model can handle data with arbitrary shapes. Taking the aggregated results on the
Flame, Landsat, Twomoons, and PenDigits datasets as examples, the proposed algorithm
outperformed DK by 14.9%, 11.6%, 14.0%, and 19.4% in terms of ACC, respectively. We
found that the NMI and FMI trends are similar to those in Figure 5. These results showed
the advantages of the proposed algorithm over DK.

(3) As the missing ratio increases, we observed that the performance of the simple
imputation-based DPC algorithm (DPC + Mean) suddenly declined significantly. Be-
cause the imputed data points gather in some areas and form some high-density areas,
if their density is higher than the original center, wrong centers may be selected, resulting
in poor clustering performance. Complex imputation methods (such as KNN) also experi-
ence certain issues when performing the aggregation of imputed points, resulting in poor
clustering results. Figure 4b–e,g illustrates this type of situation.

(4) Our algorithm uses DPC as the basic clustering model; it can handle data with
arbitrary shapes better than K-means, fuzzy C-Means, and hierarchical clustering. When
dealing with incomplete data, we utilize a classifier to learn what DPC learned from
complete data to solve the aggregation problem caused by the imputation-based DPC
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model. Therefore, the proposed algorithm can work better for situations where there are
incomplete data.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. The NMI and FMI of the compared algorithms with 25% missing data on nine bench-
mark datasets.(a) Five-cluster. (b) Flame. (c) Vote. (d) Iris. (e) Landsat. (f) Seeds. (g) Twomoons.
(h) Wine. (i) PenDigits.

4.5. Discussion of Scenarios with High Missing Data Ratios

Experiments were conducted on the Wine dataset in a scenario with high missing
data ratios. When the total missing ratios were 5–20%, 25–40%, and 45–60%, we selected
60%, 40%, and 20% of the samples as the complete parts, respectively, and randomly
deleted values in the remaining 40%, 60%, and 80% of samples, respectively, to generate
the incomplete part. The experimental results are shown in Figure 6, which shows that
when the missing ratio was less than 40%, the proposed algorithm performed well. When
the missing ratio varied from 40% to 60%, the clustering performance of the proposed
algorithm showed a sudden drop. Theoretically, we assumed that the distribution of the
whole dataset was the same as that of the complete part. Therefore, as long as there are
enough representative points in the complete part, the classifier is able to achieve a good
distribution of the whole dataset from the clustering results obtained in Stage 1. When
the number of samples in the complete part dropped to 20%, the complete part could not
represent the distribution of the whole dataset; thus, the clustering performance of the
proposed algorithm decreased sharply.
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Figure 6. The ACC of the compared algorithms with the variation in the missing data ratios and
complete parts of the Wine dataset.

5. Conclusions

This paper proposed a method that involves combining clustering with classification in
two stages: First, the improved DPC model is used to cluster the data points of the complete
part and obtain samples with labels. Second, some representatives of these labeled samples
are selectd to train a classifier and classify data points with missing features. Our algorithm
effectively extends the DPC algorithm to incomplete data. Extensive experiments were
conducted on synthetic and UCI datasets to prove the effectiveness of our algorithm, which
outperformed the best imputation-based method (DPC + KNN) by up to 39.3% in terms of
the ACC on all nine datasets. However, the proposed algorithm needs a sufficient number
of representative data points, which often cannot be obtained for many datasets in the real
world. In the future, we plan to select more representative data points from the missing
data points with fewer missing dimensions to improve the performance of the algorithm.
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