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Abstract: Geometrical structures and the internal local region relationship, such as symmetry, regular
array, junction, etc., are essential for understanding a 3D shape. This paper proposes a point cloud
feature extraction network named PointSCNet, to capture the geometrical structure information
and local region correlation information of a point cloud. The PointSCNet consists of three main
modules: the space-filling curve-guided sampling module, the information fusion module, and
the channel-spatial attention module. The space-filling curve-guided sampling module uses Z-
order curve coding to sample points that contain geometrical correlation. The information fusion
module uses a correlation tensor and a set of skip connections to fuse the structure and correlation
information. The channel-spatial attention module enhances the representation of key points and
crucial feature channels to refine the network. The proposed PointSCNet is evaluated on shape
classification and part segmentation tasks. The experimental results demonstrate that the PointSCNet
outperforms or is on par with state-of-the-art methods by learning the structure and correlation of
point clouds effectively.

Keywords: point cloud; space-filling curve; structure correlation; feature extraction; deep learning

1. Introduction

Point cloud is an ubiquitous form of 3D shapes and is suitable for countless applica-
tions in computer graphics due to its accessibility and expressiveness for 3D representation.
The points are captured from the surface of objects by equipment such as 3D scanner,
Light Detection and Ranging (LiDAR) or RGB-D cameras, or sampling from other 3D
representations [1]. While containing rich information about the surface, structure, and
shape of 3D objects, they are unlikely to have as ordered and structured data as images that
are arranged on regular pixel grids. Hence, although many classical deep neural networks
have shown tremendous success in image processing, there are still a lot of challenges
when it comes to deep learning methods for point cloud [2].

To coordinate these incompatibilities, an intuitive idea is transforming the point cloud
into a structured representation. Earlier multi-view methods tried to project the 3D object
onto multiple view-wise images to fit 2D image processing approaches [3–7]. On the other
hand, volumetric methods voxelized the point cloud to a regular 3D grid representation and
adopted extensions of the 2D networks, such as 3D Convolutional Neural Network (CNN),
for feature extraction [8]. Moreover, some following voxel-based research introduced
certain data structures (such as octree) to reorganize the input shape [9–11]. While achieving
impressive performances, these methods are often considered to have some inevitable
shortcomings, such as losing 3D geometric information during 2D projection or having
high computational and memory costs when processing voxels.
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Against this backdrop, nowadays, research on directly consuming raw point clouds
via end-to-end networks is becoming increasingly popular. The well-known PointNet [12]
and subsequent PointNet++ [13] are the pioneer works of direct point cloud processing
based on deep learning methods. The introduction of a symmetric function reflected by
networks adapts to the inherent characteristics of a 3D points set. Inspired by PointNet
and Pointnet++, many following research adopted the idea for point feature extraction or
encoding to achieve the permutation invariance of point clouds [14–17].

The basic methodology of these point-based network is exacting point-wise high
dimensional information and then aggregating a local or global representation of the point
cloud for downstream tasks. Follow-up research based on this idea have demonstrated
that the hierarchical structure with the subset abstraction procedure is effective for point
cloud reasoning. It has been found that sampling central subsets of input points is essential
for hierarchical structures [18,19]. However, the most popular sampling and grouping
methods, Farthest Point Sampling (FPS) and K-Nearest Neighbor (KNN), are based on
low-dimension Euclidean distance exclusively, without sufficient consideration of the
semantically high-level correlations of the points and their surrounding neighbors.

In the real world, there are inherent correlations between local regions of 3D objects,
especially for Computer Aided Design (CAD) models or industrially manufactured prod-
ucts [20], such as the symmetric wing design of an airplane; the regular arrays of wheels
for a car; or the distinct structure between the collar, sleeves and body part of a shirt. These
geometric correlations of local regions play a crucial role in 3D object understanding and
are significant for typical point cloud processing tasks such as shape classification and
part segmentation.

Moreover, in the procedure of high dimensional information extraction, a basic and
effective approach is using shared Multi-Layer Perceptron (MLP) or 1D CNN to project the
input feature to a high dimensional space. Inspired by applications of attention mechanism
for image processing, it can be inferred that, similar to image processing, information of
critical local areas and feature channel of the point cloud has more impact on specific tasks.

Based on these issues above, this paper proposes a point cloud feature extraction
network, namely PointSCNet, which captures global structure and local region correlations
of the point cloud for shape classification and part segmentation tasks. As shown in
Figure 1, a space-filling curve-guided sampling module is proposed to choose key points
that represent geometrically significant local regions from the point cloud. Then, an
information fusion module is designed to learn the structure and correlation information
between those local regions. Moreover, a channel and spatial attention module is adopted
for the final point cloud feature refinement.

The main contributions of this paper are summarized as follows:

• An end-to-end point cloud processing network, namely PointSCNet, is proposed to
learn structure and correlation information between local regions of a point cloud for
shape classification and part segmentation tasks.

• The idea of a space-filling curve is adopted for points sampling and local sub-cloud
generation. Specifically, points are encoded and sorted by Z-order curve coding,
which makes the points contain meaningful geometric ordering.

• An information fusion module is designed to represent the local region correla-
tion and shape structure information. The information fusion is achieved by cor-
relating the local and structure feature via a correlation tensor and by skipping
connection operations.

• A channel-spatial attention module is adopted to learn the significant points and
crucial feature channels. The channel-spatial attention weights are learned for the
refinement of the point cloud feature.
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Figure 1. Learning structure and correlation on point cloud based on space-filling curve-guided
sampling. Columns shown from left to right are the original input point cloud, points sampled by
the Z-order space-filling curve, and the point cloud heat map based on the responses of points to the
proposed network, respectively.

2. Related Work

This paper uses a deep learning method to extract point cloud features with construc-
tion and correlation information. In this section, recent research in highly related areas
of our work, including traditional point cloud processing, point-wise embedding, point
cloud structure reasoning, and attention in point cloud processing, are briefly summarized
and analyzed.

2.1. Traditional Point Cloud Processing Methods

One of the biggest challenges in processing point clouds is dealing with unstruc-
tured point cloud data. The early methods of processing point clouds are mostly indirect
representation conversion. Some methods try to convert the point cloud to structured
data, such as octree and kd-tree [21] to reduce the difficulty of analysis. Another classical
method converts the point cloud to voxel models. The voxel-based methods [3,22–24] use
3D convolution, which is a direct extension of image processing applications for point
cloud. The advantages of the methods are that they can preserve the spatial relationship
well at high voxel resolutions, but these methods are computationally very expensive. If
the resolution of voxelization is reduced, the geometric information that the voxels can
represent is significantly lost. FPNN [25] and Vote3 [26] proposed special methods to deal
with the sparse problem, but their methods still cannot handle large-scale point cloud data
well. Therefore, it is quite difficult to achieve real-time performance while considering
the balance between accuracy and computational cost. Traditional methods inevitably
lead to the loss of geometric information. This paper uses a point-by-point feature extrac-
tion method to overcome the high cost of voxel-based methods and is not conducive to
processing low-resolution point clouds.

2.2. Point-Wise Embedding

The research of PointNet [12] is the breakthrough work for a deep learning-based
direct point cloud processing method. Its groundbreaking proposal of a max-pooling
symmetric function solves the problem of disordered point clouds. The MLP layer extracts
the features and uses the maximum pooling aggregation to obtain the global features of the
point clouds. Then, the PointNet++ [13] proposed a multi-layer sampling and grouping
method to improve the PointNet. Much research on point cloud processing [27–31] later fol-
lowed the idea of point-wise and hierarchical point feature extraction. However, the feature
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extraction in PointNet ignores geometrical structure information and the potential relation-
ship between the local regions. Therefore, in this paper, the points are embedded based
on the idea of PointNet++ first, and a space-filling curve-guided downsampling method
and an information fusion method are proposed to learn the structure and correlation
information of the point cloud.

2.3. Point Cloud Structure Reasoning

As an extension of point-wise feature learning, various methods have been proposed
to reason the structure of points. The DGCNN [32] captures the features between point
neighborhoods through graph convolution. The network extracts point cloud structure
information by capturing the topological relationship between points. MortonNet [19]
proposed an unsupervised way to learn the local structure of point clouds. In PCT [33], the
KNN method is adopted to extract the features between the point fields. The SRN [14]
uses a concatenation for structural features and position coding between local sub-clouds,
and the multi-scale features extracted by the method are used for point cloud processing,
which improves the PointNet++ [13]. However, these methods mainly pay attention to the
relationship between local regions and ignore the relationship between the local region and
the global shape. In this paper, a more effectively structure reasoning method is designed
to capture the correlation between local regions and the shape structure.

2.4. Attention in Point Cloud Processing

Due to the advancement of an attention mechanism-based method in many deep
learning applications [18,34–36], the attention mechanism meets the demand of dealing
with unstructured data and is well applied in point cloud processing [33,37,38]. The
Point Transformer [38] and Point Cloud Transformer [33] have made precedents for the
application of the Transformer [36] in point cloud processing and achieved the state-of-
the-art performance. The adoption of an attention mechanism for point cloud is mainly
for exploring the relation between points and for enhancing the feature representation of
attended points. Therefore, inspired by this idea, a channel-spacial attention module [39]
is designed for feature refinement by enhancing key points and crucial feature channels.

3. Method

As shown in Figure 2, the proposed PointSCNet first uses the original point set
P ∈ RN×C as the input. C is the feature channel of the point set. After a regular sampling
and grouping [13] block, we obtain the sampled point set of N

′
points with the original

spatial position information, denoted as Xposition∈RN
′×3, and the embedded sampled point

set with a C
′

dimension feature, in which each point represents information of the sur-

rounding points within a certain radius, denoted as Xembedding∈RN
′×C

′
. Then, we send

Xembedding and Xposition to a Z-order sampling module for further sampling based on the
points’ geometrical relation. The sampled point set contains the shape structure and local

regions correlation information, denoted as X
′
Z-order∈R

N
′′×C

′
and XZ-order∈RN

′′×3. After
that, an information fusion module is designed to establish the correlation between each lo-
cal sub-cloud and the entire point cloud for the shape structure and local region correlation
information learning. Moreover, after the information fusion procedure, the point cloud
feature is forwarded to a channel-spatial attention module for feature refinement.

The pipeline of classification and segmentation module is similar to the PointNet++ [13].
The dimension of local point cloud features is increased to 1024 first, and then, an aggregate
function pooling is adopted to obtain Xglobal∈R1×1024 global features. For the shape
classification task, after being fed into the fully connected layers, the dimension of the
global feature is reduced to 1× k as the output of the PointSCNet, where k is the number
of classes. For the part segmentation task, the output is the segmentation result N × k

′

obtained by up-sampling the global feature Xglobal , where k
′

is the number of part classes.
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Figure 2. Model architecture of PointSCNet: The original point cloud is fed to a sampling and
grouping block. Then, a Z-order sampling block is designed for further generation of local regions.
After the sampled point cloud feature is extracted, the feature fusion module is designed to learn the
structure and correlation information. Lastly, the point cloud feature is forwarded to the PointCSA
block, which is based on a channel-spatial attention mechanism to obtain the refined feature for
classification and segmentation.

3.1. Initial Sampling and Grouping

The PointSCNet first uses the original point cloud data as input. A series of points

Xposition∈RN
′×3 in the space are sampled via FPS, and the ball query method is used to

obtain all points that are within a radius to the sampled point, denoted as

d(Xr, Xposition) < r, Xr∈RNr×3, (1)

where Xposition∈RN
′×3 are the points sampled by FPS, Xr∈RNr×3 are the points around

Xposition, and d() is the Euclidean distance.
These points are encoded to a high-dimensional space through MLPs and aggregated

to the sampled point via the aggregation function Pooling() to obtain Xembedding ∈ RN
′×C

′
,

and the aggregation function can be denoted as

Xembedding = Pooling(Concat(Conv(Xr), Xr))), (2)

where Xembedding∈RN
′×C

′
is the encoded points feature, max-pooling function is used for

pooling operation, the Concat() function represents point feature concatenation, and the
Conv() function is the 1D convolution operation.

After this procedure, the feature information of neighboring points is aggregated to
all sampled points Xembedding.

3.2. Z-Order Curve-Guided Sampling Module

The principle of a space-filling curve is to use a continuous curve to pass through
all points in the space, and each point corresponds to a position code. After the FPS-
based sampling and grouping, the Z-order curve coding function is adopted to further
downsample the local sub-cloud Xembedding to obtain local regions with semantically
high-level correlations.

After the Z-order encoding, the 3D position coordinates of the local sub-cloud are
mapped to the 1D feature space, as shown in Figure 3. The locality of the original point



Symmetry 2022, 14, 8 6 of 16

can be well preserved due to the nature of a Z-order curve, which means direct Euclidean
neighbors in 1D tend to be similar to those in 3D. After the points are encoded and sorted,
equally spaced points are sampled, as shown in Figure 4. Then, the point set with N

′′

points and C
′

dimension feature, denoted as X
′
Z-order∈R

N
′′×C

′
, and the point set with N

′′

points and 3D coordinate, denoted as XZ-order∈RN
′′×3, are sampled. The final sampled

point set represents the global structure and local correlation of the original point set.

Z-order

1024 points 64 points

Figure 3. The point cloud structure obtained by sampling 1024 points in the original point cloud
using the Z-order space-filling curve.

Sampled PointsPoints

Figure 4. Sampling strategy based on Z-order curve sorting. Equally spaced points are sampled, and
the spacing is set to 3 in the figure.

3.3. Information Fusion of Local Feature and Structure Feature

After obtaining the Z-order based sampled point cloud, the local sub-cloud feature and
the structure feature are correlated to learn the shape structure and local region correlation
information. As shown in Figure 5, a correlation tensor, represented as N

′ × N
′′× 2C, is

developed to evaluate the correlation between a local sub-cloud feature, represented as
N
′×C, and a structure feature, represented as N

′′×C. The generation of the correlation
tensor can be formalized as

Pstructure = Fusion(Xembedding, X
′
Z-order), Pposition = Fusion(Xposition, XZ-order), (3)

Fusion(X, Y) =


Concat(X1, Y1) Concat(X1, Y2) · · · Concat(X1, Yn)
Concat(X2, Y1) Concat(X2, Y2) · · · Concat(X2, Yn)

...
...

. . .
...

Concat(Xm, Y1) Concat(Xm, Y2) · · · Concat(Xm, Yn)

, (4)
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where X ∈ Rn×c and Y ∈ Rm×c, and X, Y have the same numbers of feature channel.
Xi ∈ X and Yj ∈ Y are single points in point sets. The Concat() function is proposed to
concatenate the feature channels of Xi and Yj.

N'×C

N''×C

C

N'

C

N''

Fusion 

Operation

N'×N''×2C

Correlation tensor

Figure 5. The correlation tensor is designed for the evaluation of the correlation between the local
feature and structure feature. N

′
and N

′′
represent the number of points sampled via FPS and Z-order

sampling block, and C is the feature channel of points.

Then, 2D convolution layers are designed to obtain the structure and local correlation
of the point cloud, as shown in Figure 2. After the information fusion, a point cloud feature

XC&S∈RN
′×C

′
containing structure and correlation information is extracted. This process

can be formalized as

XC&S = H(Pstructure, Pposition) = Pooling(Relu(g(Concat(Pstructure, Pposition)))), (5)

where g() is the Conv2d function and Concat() is the concatenation operation.
Finally, as shown in Figure 2, XC&S, Xembedding, and Xposition are fused together to the

fusion feature X f usion via skip connections and the process can be formalized as

X f usion = Concat(Xembedding + XC&S, Xposition), (6)

where Xembedding∈RN
′×C represents local point cloud features, Xstructure∈RN

′×C represents

skeleton point cloud features, Xposition∈RN
′×3 represents point cloud location features, and

the Concat function represents feature dimension concatenation of points.

3.4. Points Channel-Spatial Attention Module

As shown in Figure 6, a channel-spatial attention module parallel to the channel
attention block and the spatial attention block is adopted to strengthen the PointSCNet’s
ability by capturing the most important points and feature channels. In the channel
attention module, the point cloud feature is aggregated by max-pooling and average
pooling operation and then forwarded to convolution layers. The design of the convolution
layer reduces the feature dimension first and then raises it for better feature extraction. The
outputs of convolution layers are summed and activated to learn the weight of each feature
channel. The channel attention block is formalized as

Channel(X) = ReLU(MLP(Max(X) + Avg(X))), (7)

where X∈RN
′×C

′
,Max() and Avg() represent max-pooling and average-pooling functions.

In the spatial attention module, the feature is fed to the MLPs with shared weights, and
then, the information on each channel is aggregated through the batch normalization layer
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and the pooling layer to obtain the spatial position attention weight. The spatial attention
block is formalized as

Spatial(X) = Pooling(BN(MLP(X))). (8)

N'×C'

Wc

Maxpooing Avgpooing

N×C

FP.Avg 

FP.Max 

1×C

1×C

WS
T

N

C

P
o

o
li

n
g

B
N

Conv layer Shared MLPs

N'×C'

Figure 6. Points channel-spatial attention module: The points feature is fed to the channel-spatial
module to capture the most important points and feature channels. In channel attention module,
channel weights are obtained via the two aggregation functions and convolution layers. In the spatial
attention module, spatial weights are obtained via shared MLPs.

4. Experiments

In this section, some quantitative and qualitative experiments are designed to demon-
strate the performance of our proposed PointSCNet. First, the network is evaluated on
shape classification and part segmentation tasks. Then, more quantitative analyses of the
network are presented. Moreover, some more visualization experiments are performed to
demonstrate the ability of PointSCNet quantitatively. Finally, the ablation study is designed
to show the effectiveness of each module of PointSCNet. The source code of the PointSCNet
is available at https://github.com/Chenguoz/PointSCNet (accessed on 1 December 2021).

4.1. Implementation Details

The development environment is Ubuntu18.04+Cuda11.1+Pytorch1.8.0, and the hard-
ware environment includes a GPU device, an RTX3080 single discrete graphics card. In
the classification task, we set the random sampling of 1024 points as the input of the
PointSCNet and the random sampling of 2048 points in the segmentation task. Our train-
ing hyperparameters are set to the batch size of 24, the number of iterations is set to 200,
the initial learning rate is set to 1× 10−3, and the learning rate decays to the original 0.9
after every 20 iterations. The optimizer is Adam, and the weight decay rate is 1× 10−4.
In Z-order sampling, the number of sampled points is set to 64. The loss is measured
by calculating the cross entropy between the real label and the predicted value. We set
the number of local sub-clouds as N

′
= 256, and the number of local sub-cloud feature

channels as C = 192. The number of skeleton sub-clouds is N
′′
= 64.

4.2. Shape Classification on ModelNet40

The shape classification experiment was performed on the ModelNet40 [23] dataset,
which is the most commonly used dataset for training point cloud classification net-
works. The dataset has 9843 training data and 2468 test data, belonging to 40 different
shape classes.

https://github.com/Chenguoz/PointSCNet
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In the shape classification experiment, we randomly sampled 1024 point features as
the input, and 64 regions were sampled based on the Z-order curve coding. The PointSCNet
is compared with some of the state-of-the-art methods. As shown in Table 1, the overall
classification accuracy of PointSCNet on ModelNet40 reaches 93.7%, which outperforms or
is on par with classical classification networks and recent state-of-the-art methods.

Table 1. Comparison with state-of-the-art methods on the ModelNet40 classification dataset. The
column of “Acc” means overall accuracy(%). All results quoted are taken from the cited papers. “xyz”
in the column of Input means the 3D coordinate of points and nr means normal.

Method Input Points Acc

Pointnet [12] xyz 1024 89.2
Pointnet++ [13] xyz 1024 90.7
Kd-Net [21] xyz 32k 91.8
DGCNN [40] xyz 1024 92.9
SRN [14] xyz 1024 91.5
PointGrid [11] xyz 1024 92.0
PointCNN [41] xyz 1024 92.2
RS-CNN [42] xyz 1024 93.6
PCT [33] xyz 1024 93.6
PAConv [43] xyz 1024 93.9
CurveNet [44] xyz 1024 93.8
RPNet-W9 [45] xyz 1024 93.9
Pointnet++ [13] xyz,nr 1024 91.7
PAT [16] xyz,nr 1024 91.7
SpiderCNN [46] xyz,nr 5k 92.4
A-CNN [47] xyz,nr 1024 92.6
PointASNL [48] xyz,nr 1024 93.2
SO-Net [49] xyz,nr 1024 93.4
PointSCNet xyz,nr 1024 93.7

PointNet++ [13] is the pioneer work of hierarchical point cloud feature extraction,
which captures the multi-scale local structure with hierarchical layers. It aggregates local
features through a simple maximum pooling operation without using their structural
relationship. The DGCNN [40] and the SRN [14] are both classical methods used to
learn structural relation of point cloud. The DGCNN [40] simply concatenates the feature
relationships of local sub-clouds in different dimensions, and the captured structural
relationship features cannot fully represent the structure of the point cloud.The SRN [14]
adopts a regular FPS-based sampling and grouping method to obtain local point clouds
and simply concatenates the points position and geometry feature to capture the structure
relationship. The PointSCNet uses the space-filling curve to sample the points in the point
cloud that can characterize the point cloud structure and, then, processes them through a
specially designed feature fusion module to explore the correlations between local regions
and the structure of the point cloud. The performance is significantly improved compared
with these baseline methods.

4.3. Part Segmentation on ShapeNet

The ShapeNet [50] dataset covers 55 common object categories, and there are approx-
imately 51,300 3D models. The part segmentation task is performed on the ShapeNet
part segmentation dataset with 16,880 models and 16 categories. The 3D models are di-
vided into 14,006 training point clouds and 2874 test point clouds, where each point is
associated with a point-by-point label of the point cloud segmentation task. In the point
cloud component segmentation task, we randomly sampled 2048 point features as the
original input of PointSCNet. The quantitative results of PointSCNet and some classical
state-of-the-art methods are shown in Table 2. By capturing the skeleton structure features
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of the point cloud, the PointSCNet significantly outperforms Pointnet [12], Pointnet++ [13],
and SRN [14], and the performance of PointSCNet is particularly outstanding in some
specific classes, as shown in the table. Figure 7 shows the visualization part segmentation
result of PointSCNet.

Table 2. The performance of part segmentation task on ShapeNet. The metric is part-average Inter-
section-over-Union (IoU, %). All results quoted are taken from the cited papers.

Class Pointnet [12] Pointnet++ [13] SRN [14] PCNN [51] PointCNN [41] PointSCNet

Airplane 83.4 82.3 82.4 82.4 84.1 83.3
Bag 78.7 79.7 79.8 80.1 86.4 84.3
Cap 82.5 86.1 88.1 85.5 86.0 88.1
Car 74.9 78.2 77.9 79.5 80.8 79.2
Chair 89.6 90.5 90.7 90.8 90.6 91.0
Earphone 73.0 73.7 69.6 73.2 79.7 74.3
Guitar 91.5 91.5 90.9 91.3 92.3 91.2
Knife 85.9 86.2 86.3 86.0 88.4 87.4
Lamp 80.8 83.6 84.0 85.0 85.3 84.5
Laptop 95.3 95.2 95.4 95.7 96.1 95.7
Motorbike 65.2 71.0 72.2 73.2 77.2 73.4
Mug 93.0 94.5 94.9 94.8 95.3 95.3
Pistol 91.2 80.8 81.3 83.3 84.2 81.7
Rocket 57.9 57.7 62.1 51.0 64.2 60.7
Skateboard 72.8 74.8 75.9 75.0 80.0 75.9
Mean 83.7 85.1 85.3 85.1 86.1 85.6

Figure 7. Results of our PointSCNet on the part segmentation.

4.4. Additional Quantitative Analyses

The number of model parameters reflect the training speed of the network indirectly.
Our PointSCNet adopts the space-filling curve-guided sampling strategy to capture a few
points to represent local regions and the structure of the point cloud, which reduces the
number of model parameters. The PointSCNet achieves outstanding classification accuracy
with relatively few model parameters, as shown in Table 3. For the PointNet [13], its multi-
layer sampling structure introduces redundant information and slows down the training
speed. Figure 8 shows the loss curve of PointSCNet decreases more rapidly compared
with the Pointnet++. The PCT [33] network uses the Transformer structure repeatedly to
capture the structural relationship characteristics of the point cloud. Hence, it has excessive
parameters and its convergence speed is slow. The SRN [14] adopts a regular FPS-based
sampling and grouping method to obtain sub-regions and adopts a duplicated SRN module,
which leads to a large number of parameters and a slow convergence speed too.
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Table 3. The performance of PointSCNet on the ModelNet40 dataset to test classification tasks.

Method Params Acc

Pointnet [12] 3.472 M 89.2
Pointnet++ [13] 1.748 M 91.9
SRN [14] 3.743 M 91.5
DGCNN [40] 1.811 M 92.9
NPCT [33] 1.36 M 91.0
SPCT [33] 1.36 M 92.0
PCT [33] 2.88 M 93.2
PointSCNet 1.827 M 93.7
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50
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150

200

250

300 Total Loss
Ours

Pointnet++

Figure 8. Experiment on the drop speed of the loss curve.

4.5. Additional Visualization Experiments

The heat map for points with a high response to PointSCNet is shown in Figure 9.
The points are colored according to their response to the network and those with higher
response are colored darker. The darker points in of the mug display the model structure.
The darker points in the airplane mainly gather on one side of the symmetry axis, which
indicates the symmetry of the airplane model. In the table model, both the model structure
and a repetitive arrayed table leg are emphasized. The points with high responses appear
on the rim of the bowl.

According to the visualization results, points with higher responses either present
the structure of a point cloud or show the geometrical and locational interactions of local
regions, which proves that the points sampled by the Z-order sampling module represents
meaningful geometrical local regions and that the information fusion block extracts the
structure and correlation information effectively.

Figure 10 shows the performance of our PointSCNet in feature extraction. By using
t-SNE [52] to reduce the dimension of high-dimensional features to 2D, the classification
ability of our network is visualized as shown in the figure. It can be seen that most of
the classes are divided into separate clusters. For some clusters with similar point cloud
structures, such as tables and stools being close in semantic space, the PointSCNet can still
distinguish them precisely.
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Figure 9. Heat map for points with high responses to PointSCNet.
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Figure 10. Visualization results of t-SNE on the ModelNet40 dataset.
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4.6. Ablation Study

A set of ablation studies were designed to test the impacts of critical components of our
network, including the Z-order sampling block (Section 3.2), structure and correlation in-
formation fusion module (Section 3.3) and the channel-spatial attention block (Section 3.4).
The ablation strategies and results are shown in Table 4. It can be found that all of the
critical components of the PointSCNet improve the network performance. The Z-order
sampling block and C&S module provide obvious improvement. The convergence speed
is slow while only using the information fusion module. When all these three modules
are used at the same time, the model training speed is greatly improved, and the highest
accuracy of the classification task is achieved, which further proves the importance of
each module.

Table 4. The strategies and results of ablation studies. “ZS” represents the Z-order curve guided
sampling block. “C&S” represents the structure and correlation information fusion module. “AM”
is the channel-spatial attention module. “X” represents existence, and “×” represents inexistence.
“ToBestAcc” is the minimum number of epochs when the PointSCNet achieves the highest accuracy
in the training phase.

Methods ZS C&S AM Acc ToBestAcc/Epochs

A X × × 93.0 87
B X X × 93.4 95
C X × X 93.2 85
D × X X 93.3 120
E × X × 93.2 148
F × × X 93.2 73
PointSCNet X X X 93.7 67

5. Conclusions

In this paper, a point cloud processing network named PointSCNet is proposed to
learn the shape structure and local region correlation information based on space-filling
curve-guided sampling. Different from most existing methods using FPS method for
downsampling, which only utilizes the low-dimension Euclidean distance, our proposed
space-filling curve-guided sampling module uses the Z-order curve for sampling to explore
high-level correlations of points and local regions. The feature of sampled points are fused
in the proposed information fusion block, in which the shape structure and local region
correlation are learned. Finally, the channel-spatial module is designed to enhance the
feature of key points. Quantitative and qualitative experimental results demonstrate that
the proposed PointSCNet learns the point cloud structure and correlation effectively and
achieves superior performance on shape classification and part segmentation tasks. The
idea of structure and correlation learning can be adopted for related vision tasks other than
3D points processing. Hence, in the future, we plan to optimize our network and to apply
the method to more vision scenarios [53–55].
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