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Abstract: Epidemiologists often study the associations between a set of exposures and multiple
biologically relevant outcomes. However, the frequently used scale-and-context-dependent regression
coefficients may not offer meaningful comparisons and could further complicate the interpretation
if these outcomes do not have similar units. Additionally, when scaling up a hypothesis-driven
study based on preliminary data, knowing how large to make the sample size is a major uncertainty
for epidemiologists. Conventional p-value-based sample size calculations emphasize precision and
might lead to a large sample size for small- to moderate-effect sizes. This asymmetry between
precision and utility is costly and might lead to the detection of irrelevant effects. Here, we introduce
the “δ-score” concept, by modifying Cohen’s f 2. δ-score is scale independent and circumvents the
challenges of regression coefficients. Further, under a new hypothesis testing framework, it quantifies
the maximum Cohen’s f 2 with certain optimal properties. We also introduced “Sufficient sample
size”, which is the minimum sample size required to attain a δ-score. Finally, we used data on
adults from a 2017–2018 U.S. National Health and Nutrition Examination Survey to demonstrate
how the δ-score and sufficient sample size reduced the asymmetry between precision and utility by
finding associations between mixtures of per-and polyfluoroalkyl substances and metals with serum
high-density and low-density lipoprotein cholesterol.

Keywords: Cohen’s f 2; environmental health; weighted quantile sum regression; effect size; sample
size estimation

1. Introduction

Estimating an effect size with high precision is the essence of epidemiological research,
so when given a hypothesis with specific aims, preliminary data is collected. But this can
be costly, as can processing biological samples; therefore, this stage protects against the
waste of resources should the study does not progress as planned. Next depending on the
effect estimate and resource constraints, a larger study is planned. For example, consider a
scenario where an epidemiologist wants to study the association between perfluoroalkyl
and polyfluoroalkyl substances (PFAS) and liver enzyme alanine aminotransferase (ALT)
and cytokeratin-18 (CK-18), a marker of liver-cell death in school-age children.

PFAS belong to a diverse class of environmental pollutants of “emerging concern”
because they interfere with multiple metabolic and hormonal systems in humans [1]. ALT
and CK-18 may or may not be measured in similar units, and they quantify different aspects
of liver injury. Although animal studies have shown a biologically plausible cause-effect
relationship between PFAS exposure and increased ALT/CK-18 levels, their associations in
humans are not well studied ([2,3]).
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Now, let us assume that the regression estimate for both the associations is a two-
unit increase for every unit increase in PFAS. If the units of ALT and CK-18 are different,
comparing these estimates is difficult. Even a conversion to scale-free outcomes makes the
interpretation non-intuitive. Further, if ALT and CK-18 are measured in same scale, a two-
unit increase in one would have very different clinical and practical implications to a similar
increase in the other, because one has a higher potential for public health intervention.
Moreover, it was assumed that none of these associations is statistically significant at the
current sample size. Based on this hypothesis, the epidemiologist decided to scale up the
study and apply for a grant based on the preliminary data. A p-value based sample-size
calculation yielded large and comparable sample sizes with corresponding statistically
significant effect sizes. This situation led to some quandaries. First, the increased precision
due to a larger sample size may not indicate a meaningful effect size, but it would guarantee
that any irrelevant or tiny effect sizes would be detectable ([4,5]). Second, for a meaningful
and statistically significant effect size, this high precision may not be needed if the effect
size does not change considerably with sample size increases. Moreover, measuring
PFAS/ALT/CK-18 in child serum is time consuming and costly; therefore, if the effect
estimate allows for a contextual, biological or clinical implication, even for a small-to-
moderate sample size, there would be no need to increase the sample size without a strong
justification for higher precision. Therefore a p-value based association analysis further
deepens the asymmetry between precision and utility.

A long established index for reporting the strength of an explanatory association is
Cohen’s f 2 [6], which evaluates the impact of additional variables over baseline covariates.
Over the past three decades, Cohen’s f 2 has been used extensively in the behavioral,
psychological, and social sciences because of its immense practical utility and ease of
interpretation [7]. A similar treatment for scale-free effect-size methodologies can be
found in [8,9]. Analogous ideas like genome-wide complex trait analysis are widely used
in genome-wide association studies to estimate heritability ([10,11]). In environmental
epidemiology, ref. [12] recently introduced the idea of total explained variation (TEV)
approach to estimate an overall effect for highly correlated mixtures of exposures using
a p-value-based inference. In this paper, we propose a δ-score by modifying Cohen’s f 2

to evaluate the strength of the explanatory association in a more fundamental and scale-
independent way. Similar to Cohen’s f 2, the δ-score moves the contextual reference to
baseline covariates and evaluates the effect size contributed solely by a set of exposures or
exposure-mixtures on top of those baseline covariates. Further, under a special hypothesis-
testing framework, we show that the δ-score quantifies the maximum Cohen’s f 2 and
admits some useful optimal properties. The idea was naturally extended to a new concept,
“Sufficient sample size", which is an estimate of the minimum sample size required to attain
a δ-score.

Through illustrative examples and application in 2017–2018 U.S. National Health and
Nutrition Examination Survey (NHANES) data, we quantified δ-scores and sufficient sam-
ple sizes for associations between mixtures of PFAS and metals on lipoprotein-cholesterols
and demonstrated that sufficient sample sizes are usually smaller than the p-value-based
sample-size estimates.

2. Methods

A common problem of testing occurs when a set of exposures in a regression model is
associated with the outcome after adjusting for covariates and confounders. For example,
consider the linear model, y = X0b0 +X1b1 + ε: we want to find out the strength of the asso-
ciation of X1 after adjusting for X0 and to compare hypothesis H0 (Effect size due to X1 = 0)
with hypothesis H1 (Effect size due to X1 = δ), where δ is a positive and pre-defined mean-
ingful quantity. In the sections below, we briefly discuss Cohen’s f 2 in linear regression
and then move on to formulate an error-calibrated hypothesis-testing framework. Lastly,
we introduce the idea of the δ-score and sufficient sample size under that framework.
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2.1. Cohen’s f 2 in Linear Regression

Consider the linear regression model noted above and assume ε ∼ N(0, σ2 In), where
In is an identity matrix of dimension n × n. Let γn be the non-centrality parameter, then
γn equals 0 when y is generated under H0. When y is generated under the alternative, γn

has the form of γn =
∥(In−PX0)X1b1∥

2

σ2 , where PX0 = X0(X0
⊺X0)

−1
X⊺

0 is the projection matrix
onto the linear space spanned by the column vectors of X0 ([13,14]) (see Section S1 of the
Supplementary Materials). For the typical regression design in which the predictor vector
of each subject is drawn from a common population, γn grows linearly on n. Note that
γn does not depend on y but rather on the design matrix X and underlying parameters b1
and σ2. A long-established index of quantifying additional impact in linear regression is
Cohen’s f 2,

f 2
=

R2
y,X0,X1

− R2
y,X0

1− R2
y,X0,X1

,

where R2
y,X0,X1

and R2
y,X0

are the squared multiple correlations for X0, X1 under H1 and

X0 under H0, respectively. f 2 quantifies the proportion of variation in y accounted for by
X1 on top of the variation accounted for by X0, a concept most researchers can relate to
intuitively [15]. In linear regression, Cohen’s f 2 and non-centrality parameter γn can be
connected through Lemma 1.

Lemma 1.
n f 2

γn

P
ÐÐÐ→
n→∞

1,

where the notation
P

ÐÐÐ→
n→∞

denotes convergence in probability. See the proof in Section S2

of the Supplementary Materials. Further discussion on Cohen’s f 2 in generalized linear
models is presented in Section S3 of the Supplementary Materials.

2.2. Formulation of Error Calibrated Cutoff in a New Hypothesis Testing Framework

Following the hypothesis in (1) and for a meaningful value of δ > 0, we specify our
main hypothesis:

H0 ∶ f 2
= 0 vs. H1 ∶ f 2

= δ. (1)

Let b̂0,H0 be the maximum likelihood estimate (MLE) for a model with only design matrix X0,
and let b̂0,H1 and b̂1,H1 be the MLEs for the model with design matrices X0 and X1. The stan-

dard test to compare a null and alternative is through F statistic, F(y) =
(SSR0−SSR1)/p1
SSR1/(n−p0−p1)

,

where SSR0 = (y −X0b̂0,H0)
t(y −X0b̂0,H0) is the sum of the squared errors under H0, and

SSR1 = (y −X0b̂0,H1 −X1b̂1,H1)
t(y −X0b̂0,H1 −X1b̂1,H1) is the sum of the squared errors un-

der H1. Then F(y) ∼ Fp1,n−p0−p1(γn), where p1 and n − p0 − p1 are degrees of freedom
and γn is the non-centrality parameter. When the data is generated under the null or
the alternative hypothesis, and, as n → ∞ while p0, p1 remain fixed, this F distribution
can be approximated by the chi-squared distribution limn→∞ p1F(y) ∼ χ2

p1
(γn). On the

other hand, suppose that the likelihood ratio test statistic for testing this hypothesis is,
Λ(y) = 2{`(b̂1,H1 , b̂0,H1 ∣X0, X1)− `(b̂0,H0 ∣X0)}. As the sample size n →∞, the likelihood ra-
tio statistic Λ(y) follows a central chi-squared distribution χ2

p1
with p1 degrees of freedom

when y is generated under the model in H0. Λ(y) follows a non-central chi-squared dis-
tribution χ2

p1
(γn) with degrees of freedom p1 and non-centrality parameter γn when y is

generated under H1.
Let the test statistic S(y) = p1F(y) for a linear regression and S(y) = Λ(y) for other

generalized linear models. These specifications are motivated by the fact that S(y) asymp-
totically follows a chi-squared distribution. Let, T be a cutoff value which depends on
sample size n and unknown parameters p1 and effect size δ. Then, given a cutoff value T
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and based on hypothesis (1), the type 1 error α(T) can be expressed as P(S(y) > T ∣ f 2 = 0),
and the type 2 error β(T) can be expressed as P(S(y) < T ∣ f 2 = δ). Such specification of
type 1 and type 2 errors is inspired by model selection procedures, Akaike’s information cri-
terion [16] and the Bayesian information criterion [17], which are often used in place of
hypothesis testing for choosing between competing models [18]. As a consequence, given
the error calibrated cutoff value of T, we have

α(T) = P(S(y) > T ∣ f 2
= 0) = P(χ2

p1
> T)

β(T) = P(S(y) < T ∣ f 2
= δ) = P(χ2

p1
(γn) < T∣γn = nδ).

Our central idea was to choose T so that the type 1 error α(T) and the type 2 error β(T)

satisfied the relationship, α(T) = θβ(T), with 0 < θ <∞, and θ is pre-specified. Using the
chi-square approximation to S(y), we solved for the calibrated cutoff value T by equation

P(χ2
p1
> T∣γn = 0) = θP(χ2

p1
(γn) < T∣γn = nδ). (2)

When T is fixed, the left side of Equation (2) remains constant as n → ∞, while the right
side diminishes to 0 rapidly under the non-centrality parameter nδ. Therefore, Equation (2)
implies T→∞ as n →∞. In Theorem 1 stated below, we elaborate more on T. The results
in this theorem depend on the normality approximation of the non-central chi-square
distribution; that is, for large n, Equation (2) was rewritten as

P(χ2
p1
> T∣γn = 0) = θΦ

⎛

⎝

T− p1 − nδ
√

2(p1 + 2nδ)

⎞

⎠
, (3)

where, Φ(.) denotes the cumulative density function of a standardized normal random
variable. For ease of interpretation and theoretical derivations, we considered θ = 1 in the
following sections when both the type 1 and type 2 errors decay at the same rate. The cases
with θ ≠ 1 can be developed similarly.

Theorem 1. Consider the hypothesis of interest H0 ∶ f 2 = 0 vs. H1 ∶ f 2 = δ where f 2 de-
notes Cohen’s f 2. Assume response vector y is generated under the alternative. Then following
the constraint α(T) = β(T), as in (2) and for large n, the error calibrated cutoff value T has
the expression

T = (
δn

2K − 1
+ c1n

1
2K )(1+ o(1)). (4)

Further, the type 1 or type 2 error rates can be expressed as

d
dn

log{α(T)} =
d

dn
log{β(T)} = −

δ(K − 1)2

2(2K − 1)2 + o(1), (5)

where K → (2+
√

2)(1+ o(1)) and c1 is a constant of integration.

The proof is presented in Section S4 of the Supplementary Materials, and in Section S4.2
the explicit expressions of log{α(T)} and log{β(T)} are derived. Theorem 1 sheds light on
the behavior of the cutoff value T and the rates of the corresponding type 1 or type 2 errors
when the sample size n is large. Since both errors tended to 0 as n →∞, this procedure for
testing the hypothesis was consistent and kept error rates equal. It should be noted that
both errors decayed at an exponential rate even at moderate sample sizes. To gauge the
accuracy of Theorem 1, we presented the type 1 and type 2 error rates and the rate of change
of T with respect to n using the results from Theorem 1 and the corresponding numerical
results from Equation (3). As seen in Table 1, irrespective of Cohen’s f 2, as n increased,
the rate of change of T, log (type 1) and log (type 2) converged to the corresponding
theoretical rates specified in Theorem 1. We also conducted a Monte Carlo simulation to
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estimate the calibrated type 1 and type 2 errors for different values of n, p1 and f 2 (see
Section S5 and Table S1 of the Supplementary Materials). Moreover, a detailed discussion
of the properties of the error calibrated cutoff T and the type 2 error is presented in Section
S6 of the Supplementary Materials.

Table 1. Rates of cutoff value T, log (type 1) or log (type 2) with respect to sample size n based on
Equation (3) and Theorem 1.

Numerical Approximation Using Using Theorem
Equation (3) (1)

p1 f 2 n d
dn T d

dn log(α) d
dn T d

dn log(α)
1 2.5% 250 0.0042895 −0.0031 0.0042893 −0.0021
1 10% 250 0.0171573 −0.0100 0.0171573 −0.0086
5 2.5% 250 0.0043764 −0.0025 0.0042893 −0.0021
5 10% 250 0.0172491 −0.0090 0.0171573 −0.0086
1 2.5% 500 0.0042896 −0.0028 0.0042893 −0.0021
1 10% 500 0.0171573 −0.0094 0.0171573 −0.0086
5 2.5% 500 0.0043764 −0.0024 0.0042893 −0.0021
5 10% 500 0.0172491 −0.0087 0.0171573 −0.0086

2.3. Notion of δ-Score

We can borrow the convention for f 2 [6] and call f 2 ≥ 0.02, f 2 ≥ 0.15 and f 2 ≥ 0.35 as
representing small, moderate, and large effect sizes, respectively. This can serve as a guide
to understating the effect size obtained from the data. Further, given the data, one can use
this hypothesis by sequentially choosing and testing increasing values of δ as long as the
null is rejected and stops when the it can no longer be rejected. Finally, this brings us to the
question of whether, given any data, there exists any maximum δ such that the null will
always be rejected. Let the likelihood ratio test statistic be Λ(y). We reject the null if and
only if T(δ) ≤ Λ(y). Hence, T(δ) attains a maximum at the upper bound Λ(y). Denote this
δ−value at which T(δ) attains the maximum value as δ∗, and consider the reformulated
hypothesis (1) as below, with δ∗ as the final choice of δ:

H0 ∶ f 2
= 0 vs. H1 ∶ f 2

= δ∗. (6)

We note some interesting properties of δ∗ through the following corollary,

Corollary 1. Under the hypothesis in (6), let δ∗ be the unique solution to the equation
T(δ∗) = Λ(y). Therefore, δ∗ admits the following properties:

1. δ∗ is the maximum value of Cohen’s f 2 such that the null is still rejected.

2. For any h ≥ −δ∗, the asymptotic type 1 error, P(χ2
p1
> T(δ∗ + h)∣γn = 0) is a monotonically

decreasing function of h, whereas the asymptotic type 2 error,
P(χ2

p1
(γn) < T(δ∗ + h)∣γn = Ey{Λ(y)}) is a monotonically increasing function of h.

See the proof in Section S8 of Supplementary Materials. Further, for large n, δ∗ under-
takes asymptotic convergence (Lemma 3.1 of [19]), and we define “δ-score” as noted below:

δ-score ∶= Ey{δ∗}, n →∞.

Under the hypothesis-testing framework in (1), δ-score captures the asymptotic and maxi-
mum Cohen’s f 2, which was contributed solely by the larger exposure model on top of the
baseline covariate-only model. Unlike usual null hypothesis significance testing based on
sequential testing [20], this framework does not inflate the type 1 error and circumvents
the issue through its use of the error calibrated cutoff value and keeps the error rates in
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balance. Instead of simply estimating Cohen’s f 2, this procedure introduces hypothesis
testing for error-balanced decision making.

One might use hypothesis (1) solely for testing, since, under the error calibrated
framework it induces an expanded null hypothesis which nicely connects to the interval
null hypothesis in the literature ([21–24]). This expanded null hypothesis guards against
near-certain rejection of the null when the sample size is large enough and the null is
true (see Section S6 of Supplementary Materials). Although the δ-score can be interpreted
through the lens of this hypothesis, it should be primarily used only for estimations and
comparisons. The reason is that, for a set of exposures and their corresponding outcome,
the δ-score signifies the maximum Cohen’s f 2 that can be attained within the possible
zone of rejection. Therefore, the δ-score concept is firmly rooted in the rejection interval no
matter the effect size; however, since Cohen’s f 2 cannot be larger than the δ-score within
this region, the δ-score facilitates comparisons among multiple outcomes.

2.4. Notion of Sufficient Sample Size

The δ-score can be estimated by bootstrapping a large sample size N (say N = 5000
or 10, 000) with replacement from the original sample of size n, with n < N. Moreover,
because of its convergence, one can find a much smaller bootstrapped sample size and
corresponding estimated δ-score such that it will be in the “practically close neighborhood”
of the converged δ-score based on a considerably large bootstrap size. We defined the
smaller bootstrapped size as a “Sufficient sample size”.

Consider the equivalence tests for the ratio of two means with prespecified equiva-
lence bounds ([25,26]). Let δs and δopt be the underlying random variables for two separate
δ-scores to be estimated under sample sizes N and ns, respectively. To formulate the test of
non-equivalence between these two estimated δ-scores, consider this hypothesis:

H0 ∶ µ(log{
δs

δopt }) < lR or µ(log{
δs

δopt }) > lU vs. H1 ∶ lR ≤ µ(log{
δs

δopt }) ≤ lU , (7)

where, lR and lU are the lower and upper equivalence bounds with lR < 0 and lU > 0.
The null hypothesis will be rejected to favour the alternative if a two-sided 100(1− 2α)% CI
is completely included within lR and lU . We will assume lR = log(0.8) and lU = log(1.25)
following typical practice [27], but less strict values can be chosen for practical purposes.
µ( δs

δopt ) and σ( δs

δopt ) are approximated by using Taylor series expansions (detailed in Sec-
tion S2 of the Supplementary Materials). The mean and variance after logarithmic trans-
formation are found using direct application of the delta theorem on δs

δopt . Finally, we

declared an alternative hypothesis if the 2α level CI on µ(log{ δs

δopt }) were within the
equivalence limits:

lR ≤ log(µ̂{
δs

δopt })−
t1−α,M−1
√

M

σ̂( δs

δopt )

µ̂( δs

δopt )
and log(µ̂{

δs

δopt })+
t1−α,M−1
√

M

σ̂( δs

δopt )

µ̂( δs

δopt )
≤ lU ,

where t1−α,M−1 is the 100(1 − α)th percentile in a standard t-distribution. As long as the
hypothesis of non-equivalence in (7) is rejected in favour of the alternative, ns can be
regarded as a “sufficient sample size” at equivalence bounds of [log( 8

10), log( 10
8 )] with

a corresponding δ-score of µ̂(δs). Ratio type estimators such as discussed above can be
further improved by involving either first or third quartile of the corresponding auxiliary
variable (see [28] for further details).

3. Illustration with a Simulated Example

Consider a normally distributed outcome and one single exposure with five baseline
covariates with a sample size of 300. Further assume that the R2 for the baseline covariate-
only model is 20%, and the true and unknown δ-score due to the exposure is 5.8%. Therefore,
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the R2 for the larger model with a single exposure and five covariates is 20.8% (the mean
correlation between the covariates is set at 0.3, and the error variance is assumed to be 5).
See Section S7 of the Supplementary Materials for the data generating process.

Assume a researcher collected these data and intends to find the association between
the outcome and exposure after controlling for the five baseline covariates. As a first step,
the δ-score is estimated by bootstrapping a sample of size N = 5000 from an original sample
size of n = 300. The estimated δ-score is 6.1%, which is very close to the true δ-score of 5.8%).
Similarly, the δ-scores are estimated at bootstrapped sample sizes N = 200, 300, 400, 500, 600,
and 2500 to illustrate the gradual convergence as the bootstrap size increases (Figure 1A).
Further note that even when precision increased with bootstrap size, the mean of regression
coefficients remained stable (Figure 1B) while the p-values from linear regression keep
getting smaller (Figure 1C). Moreover, the power based on the likelihood ratio test and
corresponding calibrated cutoff value of T(p1, n, δ) kept increasing rapidly (Figure 1D).

Figure 1. Results from simulated example. (A) Illustration of δ-scores for different bootstrapped
sample sizes and their eventual convergence, (B) Mean β estimates and standard errors of the
exposure–outcome association, (C) Negative log (base = e) p-values as bootstrapped sample sizes
increased, (D) Power of the likelihood ratio test based on the calibrated cutoff value T(n, p1, δ),
and (E) Sufficient sample sizes concerning the choices of equivalence bounds.

For the original sample size of n = 300, the corresponding p-value of the regression
estimate was not significant. The researcher, therefore, might have wanted to scale up the
study to collect more data and increase the original sample size based on statistical power
calculation and sample size determination, which estimated that a sample size of around
1000 was required assuming 80% power of the test and the type 1 error was fixed at 5%.
Sufficient sample-size estimation using δ-score struck a balance between precision and
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utility. We estimated µ(log{ δs

δopt }) based on 2000 iterations and used the non-equivalence
hypothesis in (7) to compare the δ-scores at N = 200, 300, 400, 500, 600, and 2500 with respect
to the estimated δ-score at N = 5000 (Figure 1E). At N = 600, µ(log{ δs

δopt }) and its 95%
CI lie within the bounds of lR = log(8/10) and lU = log(10/8), whereas at N = 500, 400
and 300, it breached the upper bound of lU = log(10/8) but stayed within the bounds
of lR = log(7/10) and lU = log(10/7). Accordingly, the researcher can choose a sufficient
sample size of N = 600 or N = 300 at equivalence bounds of [log(8/10), log(10/8)] or
[log(7/10), log(10/7)], respectively, with corresponding δ-scores of 7% and 7.9%. These
δ-scores were within a close neighborhood of the converged δ-scores of 6% (based on the
bootstrapped size of N = 5000).

4. Application in Exposure–Mixture Association of PFAS and Metals with Serum
Lipids among US Adults

PFAS are exclusively artificial endocrine disrupting chemicals (EDCs) and environ-
mentally persistent chemicals that are used to manufacture a wide variety of consumer
and industrial products: non-stick, stain, and water resistant coatings; fire suppression
foam; and cleaning products ([29,30]). Both PFAS and metals have been associated with an
increase in cardiovascular disease (CVD) or death as evidenced by many cross-sectional
and longitudinal observational studies and experimental animal models [31]. Hyperc-
holesterolemia is one of the significant risk factors for CVD characterized by high levels of
serum cholesterol. High levels of low-density lipoprotein (LDL), total serum cholesterol,
and low levels of high-density lipoprotein (HDL) are some of the factors implicated in the
pathogenesis of this disorder [32]. Using the theory discussed in the sections above, we
quantified the δ-scores of PFAS and metal mixtures on serum lipoprotein cholesterols and
estimated corresponding sufficient sample sizes.

4.1. Study Population

Using cross-sectional data from the 2017–2018 U.S. NHANES [33], this study used data
on 683 adults. Data on baseline covariates–––age, sex, ethnicity, body mass index (BMI) (in
kg/m2), smoking status, and ratio of family income to poverty—were downloaded and
matched to the IDs of the NHANES participants. See Table 2 for details on participant
characteristics. A weight variable was added in the regression models to adjust for over-
sampling of non-Hispanic black, non-Hispanic Asian, and Hispanic in this NHANES data.
A list of individual PFAS, metals, and their lower detection limits can be found in Section
S9 in the Supplementary Material.

Table 2. Study characteristics of the population under investigation. (Data from National Health and
Nutrition Examination Survey 2017–2018.)

Total Male Female % Observations ≥ LLOD

Sample size (n) 683 339 344

Baseline Covariates

Age (years) 49.51 (18.77) 50.38 (18.81) 48.65 (18.73)

Ethnicity

Mexican American 88 43 (49%) 45 (51%)
Other Hispanic 58 23 (40%) 35 (60%)
Non-Hispanic White 260 135 (52%) 125 (48%)
Non-Hispanic Black 155 79 (51%) 76 (49%)
Other Race—Including Multi-Racial 122 59 (48%) 63 (52%)
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Table 2. Cont.

Total Male Female % Observations ≥ LLOD

Body mass index (kg/m2) 29.59 (7.90) 28.67 (6.36) 30.49 (9.09)

Smoking Status

Never 402 170 (42%) 232 (58%)
Smoked at least 100 cigarettes
but doesn’t smoke now 163 100 (61%) 63 (39%)
Smoked at least 100 cigarettes
and still smokes now 118 69 (58%) 49 (42%)

Ratio of family income to poverty 2.56 (1.61) 2.64 (1.63) 2.48 (1.59)

Outcomes

HDL-C (mg/dL) 53.91 (15.53) 49.19 (13.10) 58.56 (16.33)

LDL-C (mg/dL) 109.35 (37.11) 108.99 (35.35) 109.71 (38.83)

PFAS exposures (Unadjusted geometric means with 95% confidence intervals)

PFDeA (ng/mL) 0.20 (0.19, 0.21) 0.21 (0.19, 0.22) 0.20 (0.18, 0.22) 68.73 %

PFHxS (ng/mL) 1.10 (1.03, 1.17) 1.49 (1.38, 1.61) 0.81 (0.74, 0.89) 99.12%

Me-PFOSA-AcOH (ng/mL) 0.13 (0.12, 0.14) 0.14 (0.13, 0.15) 0.12 (0.11, 0.13) 38.64%

PFNA (ng/mL) 0.42 (0.39, 0.44) 0.46 (0.42, 0.5) 0.38 (0.34, 0.42) 91.74%

PFUA (ng/mL) 0.14 (0.13, 0.15) 0.14 (0.13, 0.15) 0.14 (0.13, 0.15) 41.59%

n-PFOA (ng/mL) 1.28 (1.22, 1.35) 1.52 (1.42, 1.64) 1.08 (1, 1.17) 99.41%

n-PFOS (ng/mL) 3.26 (3.04, 3.5) 4.11 (3.74, 4.51) 2.59 (2.35, 2.86) 99.41%

Sm-PFOS (ng/mL) 1.28 (1.19, 1.37) 1.73 (1.58, 1.89) 0.95 (0.86, 1.04) 98.82 %

Lead, Cadmium, Total Mercury, Selenium, & Manganese exposures
(Unadjusted geometric means with 95% confidence intervals)

Cd (µg/L) 0.32 (0.3, 0.34) 0.29 (0.27, 0.32) 0.35 (0.32, 0.38) 91.36%

Pb (µg/dL) 0.91 (0.86, 0.96) 1.09 (1, 1.18) 0.76 (0.7, 0.82) 100%

Mn (µg/L) 9.45 (9.21, 9.7) 8.91 (8.62, 9.22) 10.01 (9.64, 10.41) 100%

THg (µg/L) 0.78 (0.72, 0.84) 0.81 (0.73, 0.9) 0.75 (0.67, 0.83) 84.77%

Se (µg/L) 188.62 (186.75,
190.52)

189.28 (186.57,
192.04)

187.97 (185.38,
190.6) 100%

Data presented as mean (SD) or n(%); LLOD: lower limit of detection; LDL-C: low-density lipoprotein-
cholesterol (mg/dL) ; HDL-C: high-density lipoprotein-cholesterol (mg/dL); PFDeA: Perfluorodecanoic acid;
PFHxS: Perfluorohexane sulfonic acid; Me-PFOSA-AcOH: 2-(N-methylperfluoroctanesulfonamido)acetic acid;
PFNA: Perfluorononanoic acid; PFUA: Perfluoroundecanoic acid; PFDoA: Perfluorododecanoic acid; n-PFOA:
n-perfluorooctanoic acid; Sb-PFOA: Branch perfluorooctanoic acid isomers; n-PFOS: n-perfluorooctane sulfonic
acid; Sm-PFOS: Perfluoromethylheptane sulfonic acid isomers; Pb: Lead; Cd: Cadmium; THg: Total Mercury; Se:
Selenium; Mn: Manganese.

4.2. Methods

We used weighted quantile sum regression [34], but other exposure mixture models
such as Bayesian kernel machine regression [35], Bayesian weighted quantile sum regres-
sion [36], and Quantile g-computation [37] can also be used, as long as the likelihood ratio
test statistic can be estimated (see [11,38] for a detailed discussion on exposure–mixture
methods in environmental epidemiology). All the PFAS and metals were converted to
decile. As an additional analysis, both serum cholesterols were dichotomized using their
90th percentile, to demonstrate the effectiveness of δ-scores on binary outcomes. δ-scores
were estimated using bootstrapped sizes of 5000 from the original sample size of 683,
and the process was iterated 100 times.

4.3. Results

For metals and PFAS, the δ-scores of continuous HDL-C were 9.6%[95% CI: (9.1%, 10.0%)]

and 10.7%[95% CI: (10.2%, 11.1%)], respectively, whereas for continuous LDL-C, the scores
were 14.7%[95% CI: (14.2%, 15.2%)] and 16.2%[95% CI: (15.6%, 16.7%)], respectively. Both
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mixtures had relatively higher δ-scores on LDL-C than HDL-C. Furthermore, for both choles-
terols, the metal mixture had a slightly higher δ-score than the PFAS mixture (Figure 2A,B).
PFAS and Metal mixtures have higher δ-scores for LDL-C than HDL-C. Further, after di-
chotomizing the cholesterols at their 90th percentile, the δ-scores for the metal mixture re-
mained similar to the continuous cholesterol outcome (HDL-C: 9.8%[95% CI: (9.4%, 10.2%)]

and LDL-C: 17.2%[95% CI: (16.6%, 17.8%)]), but decreased slightly for the PFAS mixture
(HDL-C: 6.9%[95% CI: (6.5%, 7.2%)] and LDL-C: 11.5%[95% CI: (11.0%, 12.0%)]). The de-
crease might have been due to some loss of information during dichotomizing the outcomes
(Figure 2C,D).

Figure 2. δ-scores of EDC exposure–mixture of metals and PFAS for continuous (A,B) and di-
chotomized (C,D) serum lipoprotein–cholesterols.

Sufficient sample sizes were also estimated for this dataset at the equivalence bounds
of [log( 75

100), log( 100
75 )]. For both metal and PFAS mixtures, the µ(log{ δs

δopt }) and their cor-
responding 95% CIs for bootstrap size 683, lay well within the equivalence bounds. Further,
even at a decreased sample size of 483, the µ(log{ δs

δopt }) and their 95% CIs, remained
within the equivalence bounds. Therefore, N = 483 is a sufficient sample size at equivalence
bounds [log( 75

100), log( 100
75 )] for both metal and PFAS mixtures (Figure 3), but a further

decrease in the bootstrap size, would not be sufficient at this pre-fixed equivalence bounds.
One can further modify the bootstrap size N = 483 to obtain a precise estimate of sufficient
sample size.
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Figure 3. Sufficient sample sizes to estimate the δ-scores in serum lipoprotein-cholesterols at equiva-
lence bounds of [ 75

100 , 100
75 ] with respect to EDC metal mixtures (A,B) and EDC PFAS mixtures (C,D).

5. Concluding Remarks

This paper introduced the idea of the δ-score and sufficient sample size for the
exposure–outcome association. δ-score is easily interpretable, scale independent, and be-
cause of its connection to Cohen’s f 2, it allows for direct comparisons between outcomes
measured on different scales, separate studies or in meta-analyses. The δ-score could be
used to compare and choose between multiple outcomes with varying units and scales.
Furthermore, sample-size determination based on preliminary data might use a sufficient
sample size in designing more cost-efficient human studies. We recommend the simultane-
ous use of the δ−score and regression coefficient-based measures in designing studies to
balance precision and utility.

This framework has limitations. The bootstrapped estimation of the δ-score assumed
that the original sample was well representative of the true target population. Any estimate of
the δ-score, therefore, carried this implicit assumption, but such an assumption is at the core
of many statistical analyses, and a well-designed study can ideally resolve such issues or be
corrected to be well represented. Oversampling with replacement might cause over-fitting
of the data, but splitting the data repeatedly in training and testing under various random
seeds can overcome this issue [39]. In addition, this theory is based on the likelihood ratio
test of nested models, but future work can extend this framework to strictly non-nested or
overlapping models [19]. Although the δ-score was initially developed for nested linear
models, its theoretical framework can be extended to non-linear regressions, as well as to non-
Gaussian error distributions. For example, ref. [40] studied growth variability in harvested
fish populations using a nonlinear mixed effects (NLME) model, developed under a Bayesian
approach with non-Gaussian distributions. The δ−score can be used for such a model since
it basically requires an estimate of the likelihood ratio test statistics under the null and the
alternative hypothesis (see the definition of f 2 in generalized linear models). The likelihood
ratio statistics for this Bayesian formulation of NLME has often been used in the literature
and is readily available through various R functions [41]. Further, in cases of non-Gaussian
error distribution, the focus should shift to improving the error variance estimate.

Progress can also be made to estimate the δ-score in a high-dimensional setting, for
example, in metabolomic studies ([11,42]). Although concepts rooted in “proportion of the
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variation” are extensively used in genome-wide association studies, such measures are
rarely used in environmental epidemiology or population health studies. This highlights
new opportunities for theoretical development and practical implementation in exposomic
studies, especially in multi-scale geospatial environmental data, where the integration of
multi-source high-dimensional data is not straightforward [43]. In conclusion, quantifying
the impact of the exposure–mixture on health using the δ−score could have direct impli-
cations for policy decisions and, when used with regression estimates, might prove to be
very informative.

Supplementary Materials: The Supplementary information can be downloaded at: https://www.
mdpi.com/article/10.3390/sym14101962/s1, Figure S1: Null and alternative neighborhoods induced
through neutral effect size and corresponding type 2 error function for sample sizes n = 250 and
n = 1000; Table S1: Type 1 and type 2 error rates for error calibrated cutoff; Supplementary Methods:
(1) Derivation of non-centrality parameter γn in linear regression using Information Method, (2) Proof
of Lemma 1, (3) Cohen’s f 2 in Generalized Linear Models, (4) Proof of Lemma 1, (5) Calibrated
type 1 and type 2 errors remain approximately same under T, (6) Type 2 error function, (7) Proof of
Corollary 1, (8) Data generating process for simulation, (9) List of PFAS and metal exposures and
Serum lipoprotein-cholesterols outcomes.
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