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Abstract: As is known, integral inequalities related to convexity have a close relationship with
symmetry. In this paper, we introduce a new notion of interval-valued harmonically (m, hq, hy)-
Godunova-Levin functions, and we establish some new Hermite-Hadamard inequalities. Moreover,
we show how this new notion of interval-valued convexity has a close relationship with many existing
definitions in the literature. As a result, our theory generalizes many published results. Several
interesting examples are provided to illustrate our results.

Keywords: interval-valued analysis; Hermite-Hadamard type inequalities; Godunova-Levin functions;
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1. Introduction

Interval analysis is a subset of set-valued analysis, which is the study of sets in
the context of mathematics and general topology. The Archimedean approach, which
includes determining a circle’s circumference, is a classic illustration of interval enclosure.
This theory addresses the interval uncertainty that exists in many computational and
mathematical models of deterministic real-world systems. With this approach, errors
that result in incorrect conclusions are avoided by studying interval variables instead of
point variables and expressing computation results as intervals. Consideration of the error
estimates of the numerical solutions for finite state machines was one of the initial goals of
the interval-valued analysis. Interval analysis, which Moore first described in his renowned
book [1], is one of the fundamental techniques in numerical analysis. As a result, it has
found applications in many fields, including differential equations for intervals [2], neural
network output optimization [3], automatic error analysis [4], computer graphics [5], and
many more. For results and applications, we refer interested readers to [6-10].

Inequalities have a significant impact on mathematics, particularly those connected
to the Jensen, Ostrowski, Hermite-Hadamard, Bullen, Simpson, and Opial inequalities.
Many of these inequalities have recently been extended to interval-valued functions by
some well-known researchers (see, for example, [11-14]), and many have also researched
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the Hermite-Hadamard inequality for convex functions. The traditional H-H inequality is

given as:
+d 1 d +6(d
g(cz )<d_c./c g(a)d“ng

where G is a convex function.

On the other hand, the generalized convexity of mappings is a potent tool for ad-
dressing a broad range of issues in applied analysis and nonlinear analysis, including
various problems in mathematical physics. Recently, a number of generalizations of convex
functions have been thoroughly researched. Mathematical analytic study on the idea of
integral inequalities is interesting. The study of differential and integral equations has also
been considered to be relevant for inequalities and various extended convex mappings.
Electrical networks, symmetry analysis, operations research, finance, decision making,
numerical analysis, and equilibrium are just a few areas where they have had a substantial
impact. We investigate how the subjective properties of convexity might be encouraged by
using a number of fundamental integral inequalities.

The Hermite-Hadamard inequality is related to various classes of convexity; for some
examples, see [15-19]. Iscan [20], in 2014, presented the idea of harmonic convexity and es-
tablished a few related Hermite-Hadamard type inequalities. Harmonic h-convex functions
and some associated Hermite-Hadamard inequalities were first described by the authors
of [21]in 2015. Numerous researchers have linked integral inequalities with interval-valued
functions in recent years, producing many significant findings. The Opial-type inequal-
ities were introduced by Costa [22], the Ostrowski-type inequalities were investigated
by Chalco-Cano [23] by using the generalized Hukuhara derivative, the Minkowski-type
inequalities and the Beckenbach-type inequalities were established by Roman-Flores [24].
By introducing interval-valued coordinated convex functions and creating related H — H-
type inequalities, Zhao et al. [25] recently improved on this idea. It was also utilized to
support the H — H- and Fejér-type inequalities for the n-polynomial convex interval-valued
function [26] and preinvex function [27,28]. Interval-valued coordinated preinvex functions
are a recent extension of the interval-valued preinvex function notion introduced by Lai et
al. [29]. Combined with interval analysis, the H — H inequality was extended to interval
h-convex functions in [30], to interval harmonic h-convex functions in [31], to interval
(h1, hp)-convex functions in [32] and to interval harmonically (h1, hy)-convex functions
in [33]. The definition of the h-Godunova-Levin function was utilized by the authors
in [34] to take into account this inequality. Additionally, the author in [35] published a
fuzzy Jensen-type integral inequality for fuzzy interval-valued functions, while the authors
in [36] created a Jensen-type inequality for (h1, i) interval-nonconvex functions.

Our research is inspired by the strong literature and the specific articles [33,34]. The
idea of interval-valued harmonically (m, h1, h2)-Godunova-Levin functions is introduced
first, and new H — H-type inequalities are then constructed for the aforementioned notion.
The structure of the paper is as follows: In Section 2, the introduction and the mathematical
background are given. The issue and our key findings are discussed in Section 3. Section 5
contains the conclusion and future scope.

2. Preliminaries

We begin by introducing some of the terms, characteristics, and notations that will be
utilized in the article. Let I be represented as the intervals of the collection of real numbers R.

[a] =[a,3 = {x € R|a<x<a},aa € R, where the real interval [a] is a closed and
bounded subset of R. We call [a] positive when a > 0, and [a] is negative when a < 0. Let
us denote all intervals of the set of real numbers by R; of R, all positive intervals by RT,
and all negative intervals by R; . The inclusion" C ” is defined as:

[a] C [b] <= [23] C [bB] <> b<aa<h

Suppose A is any real number, and [a] is an interval; then, the v[a] is given as:
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{0}, if A=0

[Aa,A@], if A >0
A-laa] =
[Ag, Aa], if A <O.

For [a] = [a,a], and [b] = [b, b], the following algebraic operations hold true:

where 0 £ [a,3].
For the intervals [a,a] and [b, b] the Hausdorff~Pompeiu distance is defined as:

d([2,al, [b,b]) = max{|a — b, [a - b[}.

Definition 1 (see [37]). Let G : [c,d] — Rj be an interval valued function such that G(u) =
[G(u),G(u)] for each u € [c,d]. Then, the function G is Riemann integrable over the interval [c,d],
and

(IR) / ® G(w)du = [(R) / * G(w)du, (R) / dg(u)du],

[

where G, G are Riemann integrable over the interval [c,d].
The set of all Riemann integrable interval-valued functions and real-valued functions are
represented by the symbols IR ¢ g and R q), respectively.

Definition 2 (see [20]). A set, S C R — {0}, is said to be a harmonic convex set if

cd

uc + (1 —u)d €5

whereVc,d € Sandu € [0,1].

Definition 3 (see [38]). A nonnegative function G : S — R is said to be a Godunova—Levin

function, if

Gluc+ (1—u)a) <
where Vc,d € Sandu € (0,1).

Definition 4 (see [20]). A function G : S — R is said to be a harmonically convex function, if

cd
g(uc + (1 — u)d) = ug(d) + (1 B u)g(c),
where Vc,d € Sandu € [0,1].

Definition 5 (see [21]). The function G : S — R is said to be a harmonically h-convex function, if
Ve,d € Sandu € [0,1], we have

cd
g<11c+(1—u)d> < h(u)G(d) + h(1 —u)G(c),

where h : [0,1] C S — R is a nonnegative function with h # 0.
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Definition 6 (see [39]). The function G : S — R is said to be a harmonically (m,h)-convex
function, if Ve,d € S, m € (0,1] and u € [0,1], we have

mcd
(e ig ) < MWL)+ (1 —w)G(c),

where h : [0,1] C S — R is a nonnegative function with h # 0.

Definition 7 (see [33]). The function G : S — R is said to be a harmonically (hy, hy)-convex
function, if Ve,d € S and u € [0, 1], we have

g (uc+(cldu)d> <mh (u)hz(l — u)g(c) +h(1- u)hZ(u)g(d),

where h : [0,1] C S — R is a nonnegative function with h # 0.

Definition 8 (see [34]). The function G : S — R is said to be a h-Godunova—Levin function, if for
allc,d € Sandu € (0,1), we have

g(d)
h(1—u),

Gluc+ (1—u)d) < iés)) +

where h : (0,1) C S — R is a nonnegative function.

3. Main Results

We will now introduce harmonically interval-valued (m, h1, hy) Godunova-Levin
functions (this idea was motivated by [32]).

Definition 9. A function G : S — R is said to be a harmonically (m, h)-Godunova—Levin function,
ifforallc,d € S,u € (0,1) and m € (0,1], we have

mecd G(d) mg(c)
(muc+(1—u)d> = 4w Tr—w

where h : (0,1) C S — R is a nonnegative function.

Definition 10. A function G : S — R is said to be a harmonically (m, hy, hy )-Godunova—Levin
function, if forall c,d € S,u € (0,1) and m € (0, 1], we have

( med ) < mg(c) g(d)
1

muc 1 (1 —w)d A E ROk

where hy, hy : (0,1) € S — R is a nonnegative functions.

Remark 1. e If wechoose m = 1 and hy(u) = hp(u) = 1 in Definition 10, then the notion of a
harmonically P-convex function [21] is recovered.

e If we choose m = 1, hy(u) = 1, and hy(u) = L in Definition 10, then the notion of
harmonically convex function [20] is recovered.

o If we choose m = 1, hy(u) = 1, and hp(u) = ﬁ in Definition 10, then the notion of
harmonic h-convex function [21] is recovered.

o If we choose m = 1, hy(u) = 1, and hy(u) = (u)® in Definition 10, then the notion of
harmonically s-Godunova—Levin function [40] is recovered.
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Definition 11. The function G : S — R is said to be a harmonically (m, hy, hy )-Godunova—Levin
interval-valued convex function, if Ve,d € S,u € (0,1) and m € (0, 1], we have

mgG(c) G(d) mecd
W —w i —wh@ =Y <muc . u)d>' @)

where hy, hy : (0,1) € S — R are non-negative functions such that hy, hy # 0.

If the above inequality is in reverse order, then the function G is known as a harmonically
(m, hy, hy)-Godunova-Levin concave interval-valued function. The space of all harmonically
(m, hy, hy)-Godunova—Levin convex and (m, hy, hy)-Godunova-Levin concave interval-valued

functions are denoted by SGHX((h Ty ) S, R; )and SGHV((h Ty ) S,R ) respectively.

Proposition 1. Suppose G : [x,y] — Rj is a harmonically (m, hy, hy)-Godunova—Levin
interval-valued function such that G(u) = [G(u),G(uw)], m € (0,1]. Then,

ge SGHX(( ) [x, ], R*) if and only if

11 N o 1Y e
QESGHX((h hz) [x,y],R] > and QESGHV<<h1,h2),[x,y],RI).

Proof. Let G be a harmonically (m, h1, h;)-Godunova-Levin interval valued convex func-
tion. Assume ¢, d € [x,y],u € (0,1) and m € (0,1]. Then, we have

mg(c) G(d) mcd
A E R E O g<muc+ 1 —u)d>‘

That is,
mg(c) g(d) mg(c) n G(a)
hi(wha(1—u) * h(1—wha(u)” hi(w)ha(l—u) = (1 —w)ha(u)

mcd
& g(muc—l— (1 —u)d>'

+
\
'

mG(c) G(d) — mecd
hi(wha(1—u) * k(1 —u)ho(u) = mo (muc +(1- u)d>'

and

This shows that G € SGHX((hl, hz) x,y], R+),anc1§ € SGHV((%,,}—Z), [x,y},R;r)
Conversely, let G € SGHX(( ) [x,y], R ) and G € SGHV (%,%),[x,y],Rf)
Based on the above definition and set inclusion, we obtain G € SGHX (%, h%) BEAIE RI+
This completes the proof. O
Proposition 2. Suppose G : [c,d] — Rjr isa harmomcully interval-valued (m, hy, hy)-Godunova—

Levin function such that G(u) = [G(u),G(u)], m € (0,1].
Then, G € SGHV((}% hl) [c,d],R;r) if and only if

1 1 = 1 1
geSGHv(<hl h ) [c,d], R+) and gesGHX<(hl,hz),[c,d],Rl+).
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The proof can be conducted in a similar manner as in Proposition 1; hence, it is omitted
for the readers.

Hermite—-Hadamard Inequalities
Throughout, H(x,y) = hy(x)ha(y)Vx,y € (0,1).

Theorem 1. Let iy, hy : (0,1) — R™ and G : [c,d] — R be an interval-valued function defined
with G, G. If G € SGHX( , i) d], R} ) m € (0,1],and G € IRy g, then

mc+d/) = d—mc Juc u?

[H(%z%ﬂ g< 2mcd ) | mea /d G(u)

du D [mg(c)+g(d)]/01Hw’df_U). @

where
. mcd
P~ hoe+ (1—0)d’
and ed
c
=———— h 0,1].
1 m(l —o)c+od’ ere ¢ €[0,1]
Then,

1 mcd mcd 2mcd
H(11)] [g<mac+(1—0)d) +g(m(1—(f)c+(fd)] < g(mc+d>' ®)
11
H<2/2)r
we obtain

i) 5 a) (G )e(2)

If we integrate the above inequality over (0, 1) with respect to "ce", we have

Bl Greti=aa) o Greraa) J oo < #(33) f 9 (e

Thus,

1 mcd mcd 11 1 2mcd
> -z
/0 g(mac—i—( )d0+/ ( 1-0c c—i—(fd)dU_H<2'2)/o g(mc—i—d)da'

and

1_ mcd mcd 11 1/ 2mcd
< -, = .
/0 g(mac+( )da+/ ( 1-0c c+0d)dU_H<2'2)/o g<mc+d)da

Multiplying both sides by
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It follows (change of variables) that

2mecd (4 G(u) 11 1 2mcd 11 2mcd
= > I — I
d—mc/C u? du_H(z’z)/o g(mc+d>d‘7 H<2'2)g<mc—|—d)
and
2med (4 G(u) 11\ 1=/ 2mecd 1 1\=/ 2mcd
X du < —Z = —Z .
cl—mc/C u? du < H 272 /Og mc +d do=H 2°2 g mc+d

As a result, we have

11 2mecd \ =/ 2mcd 2med (4 G(u)
{H<2’2>] [g<mc+d)'g<mc+d>} 2 T me /mc o

Upon dividing both sides by %, we obtain the desired first inclusion of Theorem 1.

)@ e o

2 mc +d mc+d —d—mc Jme uw
From our hypothesis, we have

mG(c) G(d mcd
(O —0) =)o) = g(mac g —o—)d>'

1—
mg(c) G(d) mecd
hi(1—0o)hy (o) + hi(o)hay(1—0) — g(m(l —0)c +Ud>'

Adding the above two inclusions and integrating over (0, 1) with respect to "o" gives

Oy e e (ORI et

1 mcd mcd
- _ —_— .
- /0 [g<m(fc +(1- (T)d) * g(m(l —0)c —I—(Td)}da
L 1 1 o
It is easily seen that [; mdu =/, mda This implies

dx.

2(mG(c) +G(a)] /01 H(U,i s — /,:c gg )

From the above developments, it follows

[mg(c)+g(d)]./(;1 H(Uli_a)dag el [* 00 g ©)

mc

Now, combining (5) and (6), we obtain the required result

11 d
{H(z'zﬂ g< 2mcd > ~ _mecd / G(x)dx S [mG(e) + G(a)] /01 H(U,dl‘f_ -

2 mc+d) — d—mc Jme 2
O

Remark 2. (1) If we put hy(c) = hy(0) = 1 into Theorem 1, then it gives results for interval-
valued harmonically (m, P)-functions.

1g< 2med ) o Ml " IR S fg(e) + 6(a)

27 \mc+d/) = d—mc Jpe 2
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(2) If we put m = 1 hy(c) = hy(o) = 1 into Theorem 1, then it gives results for interval-
valued harmonically (m, P)-functions.

1g<2°d>3 cd /Cdg(ugdug[g(c)_’_g(d)]‘

2 c+d/) " d—c u

(3) Choosing H(c,y) = h(c), Theorem 1 gives results for harmonically (m,h)-Godunova—
Levin interval-valued functions.

[’1(5)}9<2m°d>3 med [* I8 b > mg(e) + 1) [ 127

2 mc+d) = d—mc Jme u? 0o h(o)

(4) Choosing m = 1 and H(c,y) = h(c), Theorem 1 gives results for harmonically h-
Godunova—Levin interval-valued functions.

{h(;)}g< 2cd > 5 cd /Cd g(u)dug [g(c)—l—g(d)] 1d70

2 c+d) T d—c u? o h(o)’
(5) If we choose H(c,y) = ﬁ, then Theorem 1 gives results for harmonically m-interval-
valued h-convex functions.

! g( 2med ) o _Mmed /d 9 1y > [mG(e) + 6(a)] /Olh(a)da.

2@(%)} mc+d/) = d—mc Jme u
(6) If we choose m = 1 and H(co,y) = ﬁ then Theorem 1 gives results for harmonically

interval-valued h-convex functions.

z{hé)} g(czjdd> = dc:ic /Cd gé;) du 2 [G(c) +G(a)] /01 h(o)do.

(7) Again, if we choose H(o,y) = ﬁy)

in Theorem 1, it recovers a result for harmonic

(h1, hy)-convex interval-valued functions.

1 )}g( 2mcd ) 5 mcd /d Q(;l)dug [mG(c) + G(d)] /01 H(o,1—0)do.

Z[HG% mc+d) = d—mc Jpme u
1

(8) Again, if we choose m = 1 and H(o,y) = Ao in Theorem 1, it recovers a result for

harmonic (hy, hy)-convex interval-valued functions.

2c c d Gy 1
2[H(§,§)}g(c+dd> 5 d_dC/C éz)dug [g(c)+g(d)]/0 H(o,1 - 0)do.
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Theorem 2. Let G : [c,d] —

that H(3,1) # 0. IfG € scHx((
following inequality holds true.

2mecd

— R} bean interval-valuedfunction and hy,hy : (0,1) — R such

), [c, d],R?), m € (0,1 and G € IR(¢q) then, the

[H(uﬂzg(

mcd 4 G(u)
4 mc—i—d)DAlDd—mc./m w12
1 1
D{m[g(c)+g(d)] >t 713 ]}/ HU’l—
H z z
where
. [H(%%)} g Amed \ g ( Amed
1= 1 mc + 3d md+3c ) |’
2mcd G(c) +6(d) ! do
f2= [g<mc+d) +m<2>“0 H(o,1-0)
Proof. Assume that § € SGHX((J% %)f[c,d]/R;r) and G € IR(q. For [me, 35],

we have

meetq

g <mac+(1—a) Zed

a

1 (k3]
and we obtain

2cd
mc—c+d

ne2s
o)c+o 2l 4mcd
mc + 3d

(2]

geyldCee

Integrating over (0, 1) with respect to

2cd
mc c+d

2cd
c+d

)=o)

2cd

+G moeis
o 2cd
m(l—o)ec+ossy

, we have

2cd

iy e
/01 ( me sy

moe+ (1 —

Q|

)eSa

2mecd

>dg+/ ( ;

2cd
c+d

_|_/ C+d dU'

4mcd
)d(’] < g<m—|—3d>

2mecd

2cd
c+d
2cd

—0)c+0s

mc

2mcd

u

ke

2cd
/c+d Q(;J.) du
mc

[

[

du,
d —mc d —mc Jmc

4mcd

d“] <6(nerm)

2mecd
d —mc
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ie.,
r 2cd 2cd = T
1 4med /:Ta g(u)du 4dmed /m Q(u)du CQ( 4dmced >
[H(%%)} |d—mc Jme w2 " Td—mc)me w2 | T T \mc+3d)
Thus,
4 [ mea /cszi *(u)du med /'czf:i ?(u)du_ Cg( 4dmcd )
[H(%,%)} _d_mc mc u2 Id_mC mc u2 | - mC+3d !
S0,
4 [ med /czifi Q(u)du cg 4mcd
(L 1] |d—mcJme u? =~ \mc+3d)’
2:2)| L
and consequently,
11
mecd /fii W, [H<z/z)}g 4med @
d—mc Jme 2 = 4 mc+3d /)
Similarly, for the interval [ffr‘é, md], we can have
11
mcd md G(q H{3,3 4mcd
o

_ 2cd
d —mc Zd w

md + 3c
Adding (8) and (9), we obtain

. [H(i%)} {g( 4mcd )+g< dmcd )} . [ med /d g(;)du}

3c+md mc + 3d d—mc Jme u

Consequently, we obtain
{H(; ;)r 'H<1 1)‘2 4med dmed
272 g 2mcd L 272 1 g 2mc+3d md+3c
o 4mcd

N + e

mc+3d

V)

(1)) [o(imes,) g(m)]
R TCRYRATT(%)

)_ [ 4mcd 4mcd

1) _g(mc+3d>+g<md+3c>]

2

)_ 4mcd 4mcd
[g(mc+3d> +g(mc +3d)]

mcd /d G(u) Ju

~ d—mc 2

mc W
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A minor modification of the argument in Theorem 1 will give

mcd /d G(u) .

d —mc Jme 112
2cd md
:1 2mcd /+d g(u)du+ 2mcd / g(u)du
2|d—mec u? d—mc /24 u?

HIES <3fd>}/ Aei=a "0+ 9(5)] | mei=a)
[{ +zg<2°d>}/w_ )

1
=3
[ — g(ﬁi>LAHWJ—)
YAV

G(c) +mg(d) = mgG(c)
2 2 +H(§,% 2/2 /Hal—a
| mG(c) +mG(d) 1
o 2 +H<%,%>[ ¢) +mg(d /Hal—a
1
={[m>+g<n f{%%]}/’Hal_a

This completes the proof. [

Theorem 3. Let hy,hy : (0,1) — R and G,V : [c,d] — R?“ be interval-valued functions. If
G, Ve SGHX((h s ) [c ,d],R;r), m € (0,1] and GV € IR g, then, we have

mcd (4 G(u)V(u)
d — mc /mc u2 du

1 1 ! 1
QM(C,d)/O mda+/\f(c,d)/() H(U’U)H(l_g,]—g)dgl

where

M(e,d) = 12G(c)V(c) + G(a) V().
N(e,d) = m[G(e)V(@) + G(@)V(c)].

Proof. Assume thatG,V € SGHX((hil,hi) [c,d], R} ) Then, we have

med mg(c) g(d)
g(mac +(1- (T)d) = hi(o)hy(1— o) + hi(1—=0o)hy(o)
(c
(1

mecd my V(d)
D
V(moc +(1 —(7)d> = hy(0)hy

(1= 0)hy(0)
From the above hypotheses, we obtain
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g (m(fc Il(cld— ff)d> Y (””‘TC +m(cld_ U)d)

mG(V(e) | MGV +G@V(e)] | @V
~ H%(0,1—0¢) H(oc,0)H(1-—0,1-0)  H?*(1-—o0,0)

"n_n

Integrating both sides over (0, 1) with respect to "¢, we have

1 med med

/0 g(mac+(1—0)d>v<mac+(1—U)d>da
[t mcd mcd

:_/0 g(mo'c—i—(l— )V<mac+(1—¢7)d)da’
1 mcd mcd

/0 g(m(fc—l- ) <m0c+ 1—(7)d>da]

_[ mea /d Gy ( i, M8 /d g(u)V(u)du]

d —mc "d —mc u?

B -mcd d Q(u)V(u)
T d—mc /m u? du

L [m?G(c)V(c) +G(d)V(q)] m[G(c)V(d) + G(d)V(c)]
3/0 H2(0,1— o) Lie +/ H(o, ) HA —0,1—0)

It follows that

mcd (4 G(u)V(u) do 1 do
d—mc/mc w2 duDMCd/ H2(o,1— )+N(C’d)/0 H(o,")H1—-0,1—0)

The Theorem is proved. O

Theorem 4. Let iy, hy : (0,1) — RT and G,V : [c,d] — R} be interval-valued functions. If
G, Ve SGHX(( s ) [c, ],Rfr), m € (0,1] and GV € IR 4, then, we have

2)]2g< 2med )v( 2med > L _med /d g(u);/(u)du

mc+d mc+d d —mc u

1+ m?
d d) —————do.
/HO'O' H(l—0,1- )U+A[C /HZJl—U)U

Proof. By hypothesis, one has
2mcd
g (mc + d)

V( 2mcd )
mc+d

6 (ettian) . G (raee)
H(z4) H(z3)

() )

V]

19

Then,
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g(nffidd)])(nfﬁdd)g[ (1 )} [ (mv +( o)d ) <m(d)>
+g<mad+ ) mad—iin(cld—a)c>]
+ [H(;,;)r [g(mac —Ir—n(ld—a)d)v<madf(ld—a)c)

+ g<mad J:n(cldl— (f)c)V(m‘TC Il(cld_ U)dﬂ

mcd mcd

> oyl o) e o)

+g(madf(c:ld—a)c:)]}(mad—:—n(cld— a)c>1
g(c g c
’ [H(;%)r [(H(’le(_)a) T HA £dt)f,ff)) (H(nlﬂi(a?o') * H(;i(ldz a))

g(c) mG(d) V(c) mV(d)
+ (H(l —0,0) + H(U’,l—O’)) (H(U’,l—O’) + H(1 —0',0')>‘|

S (et ) (reri=o)

+ g(mad f(cld— a)c)v<m‘7d Il(cld_ J)Cﬂ

1+ m?

<H(0’,0’)H(1 —o,1— 0.)> [G(c)V(c)+G(a)V(d)]

(e * ey ) 9V +g<d>v<c>]]

: [H(ll, %)}2 [g(mac f(cld— a)d) V(WC f(cld— ‘T>d)
ot i)

1 1+
T | (e e s

1 1
+ m(HZ((f,l —0) * H2(1 - U,U))N(C’d)l'
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" _n

Integrating with respect to "o" over (0,1), we have

Jy G (2228 v (2258 )do
=y G(sh)v () do fo G(2meg )V (2usd )do| = g (2ued )V (2ues)

c d G(u
R S 1 m2do mdo
THGDT M(ea) mﬂv ¢,d) fy it .

112
Multiplying both sides of the above equation by M, we obtain

[H(H)]zg< 2mcd )v( 2med >

1+m2 mc +d mc +d
med (4 G(u)V(u) / 1+ m?
_dfmc/mc u? dut M(c,d) H(c )H(l—al—a)dg
+ch/ H2(01— 7

This completes the proof. [

4. Examples
Example 1. Let m = 1, hy(0) = L, and hy(0) = 1 where o € (0,1),[c,d] = [%,1} and
G : [c,d] — R} is defined by G(u) = [u?,5 — €®]. Then,

GO ORESY
d(fc cd gé;)duz U; du,/; (5 _zeu)du] ~ [2,2.98].
G(c) + G(a)] ;Hw,dl‘fa) = [G(c) + G(a)] /;m [;g 31(’8@}

32’ 8

[4 5—e§] ») Blz_gg] ) [15 3(10_\/5_6)}
This verifies Theorem 1.

Example 2. For m = 1, hi(0) = %, and hy(0) = 1, where ¢ € (0,1),[c,d] = [%,1} and
G : [c,d] — R{ is defined as G(u) = [u?,4 — ¢*]. Then,
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592 8—e7—es
225" 2 ‘

do
H(o,1—0)

1
Mi( 2cd>+<g( c)+G(d)

)
o) ()] -

L L
N\.i\
A

192’ 16

[77 —3e —3,/c — 6e5 +48

2
77 —3e-3/e—6e3+48
= | 192~ 16 :

This verifies Theorem 2.

Example 3. Let m = 1, hy(0) = 1, and hy(c) = 1, where o € (0,1),[c,d] = [%,1}, and
G,V : [c,d] — R} aredefined as G(u) = [u?,4 — %] and V(u) = [v,3 — u?|. Then,

cd [4G(u 4—e" 3 w?) | [3
— /C [ / udu, / du} ~ {8,5.0094}
_ 1 1, 9 19 2ye 1le

! 1 (1 1 ) 319 11/ e
N(C’d)/o H(U,U)H(l—(r,l—U)dU_N<2’1)/o (‘7_‘7 )d”” [24 6 _24_3]‘

It follows that

24’ 3 3 12 24" 6 24 3
119  —30e —27+/e+152
26 24 :

{2/5‘0094}2[9 19 2\ 1le}+{3 19 11/ e}

This verifies Theorem 3.

Example 4. Let m = 1, hy(0) = %, and hy(0) = 1, where 0 € (0,1),[c,d] = [%,1}, and
G,V : [c,d] — R} aredefined as G(u) = [u?,4 — ] and V(u) = [v,3 — u?|. Then,
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NM—‘

N»—\

wIN
N—

cd

4 G(w)V(

2cd 264\ _o5(2)p(2) ~ E%(‘l—@
c+d c+d) T\3 3) 7 |27 9

d—c

oo 25

1

! _ 1 1 N, [9 19 e 1le
M) | H(ona)H(la,la)d”‘M(z’l)/o (-)ar= e -5 5

! 1 (1 1, 3 19 11ye 2
N(C’d)/o Hz(a,l—a)dU_N<2'1)/o oo~ [12 '3 12 _3]'

It follows that

16 184 — 4663
27’ 9

o (2 som] 4 [ 2,19 v2 11

+[3 19 11/e 21

12" 3 12 3

13 19 —27e - 30y +152
16" 6 24

+ 5.0094] .

This verifies Theorem 4.

5. Conclusions

Interval-valued functions may be a valuable alternative for incorporating uncertainty
into the prediction processes. We first introduced a new notion of interval-valued harmonic
convexity, i.e., a harmonically interval-valued (hy, hy )-Godunova-Levin function and estab-
lished the Hermite-Hadamard and Pachpatt- type inequalities employing this new notion.
Our new definition generalized many existing definitions present in the literature. We
thereby added to the extension of many classical integral inequalities in the set-valued
setting. Some numerical examples were provided to further explain the results.

Future presentations of various inequalities, including those of the Hermite-Hadamard,
Ostrowski, Hadamard—Mercer, Simpson, Fejér, and Bullen types, could make use of this
novel idea. The inequalities indicated above can be demonstrated for a variety of interval-
valued LR convexities, fuzzy interval convexities, and CR convexities. These findings will
also be generalized in relation to quantum calculus, coordinated interval-valued functions,
fractional calculus, etc. Due to the fact that these are the most active areas of study in the
subject of integral inequalities, many mathematicians will be interested in investigating
how different types of interval-valued analysis might be applied to the integral inequalities.
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