
����������
�������

Citation: Battista, E.; Esposito, G.

Discontinuous Normals in

Non-Euclidean Geometries and

Two-Dimensional Gravity. Symmetry

2022, 14, 1979. https://doi.org/

10.3390/sym14101979

Academic Editors: Xin Wu and

Wenbiao Han

Received: 8 August 2022

Accepted: 16 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Discontinuous Normals in Non-Euclidean Geometries and
Two-Dimensional Gravity
Emmanuele Battista 1,* and Giampiero Esposito 2

1 Department of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
2 Dipartimento di Fisica “Ettore Pancini” and INFN Sezione di Napoli, Complesso Universitario di Monte

S. Angelo, Via Cintia Edificio 6, 80126 Napoli, Italy
* Correspondence: emmanuele.battista@univie.ac.at

Abstract: This paper builds two detailed examples of generalized normal in non-Euclidean spaces,
i.e., the hyperbolic and elliptic geometries. In the hyperbolic plane we define a n-sided hyperbolic
polygon P , which is the Euclidean closure of the hyperbolic plane H, bounded by n hyperbolic
geodesic segments. The polygon P is built by considering the unique geodesic that connects the n+ 2
vertices z̃, z0, z1, ..., zn−1, zn. The geodesics that link the vertices are Euclidean semicircles centred on
the real axis. The vector normal to the geodesic linking two consecutive vertices is evaluated and
turns out to be discontinuous. Within the framework of elliptic geometry, we solve the geodesic
equation and construct a geodesic triangle. Additionally in this case, we obtain a discontinuous
normal vector field. Last, the possible application to two-dimensional Euclidean quantum gravity
is outlined.

Keywords: geometric measure theory; non-euclidean geometries; two-dimensional quantum gravity

1. Introduction

Suppose we want to measure the perimeter of a plane curve and we only have at our
disposal a ruler, but not a wire that would perfectly match the boundary [1]. How are
we going to evaluate the perimeter? One can indeed look for polygons whose sides are
measurable with the help of the ruler, and one can “approximate” the shape of the curve by
means of such polygons, asking ourselves the question by how much such polygons are
close to the figure whose perimeter we want to evaluate. Within this framework, the very
fruitful idea of Caccioppoli [2,3] was to “measure” the distance between the polygon and
the figure by means of the area of the difference set. In order to gain an idea of the perimeter,
we have to take a sequence of polygons, such that the area of the difference set becomes
smaller, and they will provide a sequence of approximate values of the perimeter. However,
the area-type approximation of the figure can be obtained also by means of polygons having
a perimeter unnecessarily large (for example, if we curl a polygon, we can achieve a very
large perimeter). Thus, among all sequences of polygons which approximate a geometric
figure, we must take, among the limits of their perimeters, the smallest value, i.e., the
minimal limit of perimeters of the approximating polygons.

The development of geometric measure theory [2–12] therefore led to the discovery of
many important concepts including, in particular, finite-perimeter sets with their reduced
boundary (see definitions in Appendix A), two concepts that play an important role in
modern mathematics. With hindsight, one can say that the divergence theorem does
not hold on the topological boundary of a finite-perimeter set, but only on the reduced
boundary, which is therefore the truly important concept of the boundary. Let us here
review some key aspects of this framework, which provide a motivation of our research.

If E ⊂ Rn is a finite-perimeter set, the De Giorgi structure theorem ensures that its
reduced boundary ∂∗E can be written in the form
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∂∗E = ∪∞
l=1Kl ∪ N0, (1)

where the Kl are disjoint compact sets, and N0 is a set having vanishing (n− 1)-dimensional
Hausdorff measure. The sets Kl are contained in (n− 1)-dimensional manifolds Ml of class
C1. If the point x belongs to Kl , one finds that the generalized normal to E, denoted by νE,
can be obtained by the equation

νE(x) = νMl (x). (2)

This means that the normal νE at x is given by the normal existing at x on the manifold
Ml (for this purpose, it is of crucial importance that the manifold Ml should be of class C1).
Thus, the generalized normal is evaluated from the usual normal to a countable infinity of
compact portions Kl of smooth manifolds Ml .

However, despite this profound result, the actual evaluation of the generalized normal
may turn out to be impossible in some cases. In order to understand this feature, one
can consider a dense sequence {qk} of points of Rn. If the points qk are vectors with n
components which have rational coordinates

(qk1, qk2, ..., qkn),

then within each ball B 1
k
(qk) centred at the point qk ∈ Rn and having radius 1

k one can find
infinitely many points, and the same is true outside such a ball. The desired set E is in
this case

E = ∪∞
k=1B 1

k
(qk), (3)

and its volume can be majorized as follows:

Vol(E) ≤
∞

∑
k=1

Vol
(

B 1
k
(qk)

)
= Vol(B1)

∞

∑
k=1

1
kn < ∞, (4)

where B1 is the ball of unit radius. We have therefore defined a finite-volume set. Al-
though no picture can be drawn, one can think of E as consisting of infinitely many balls
about the points qk of Rn, which are dense in Rn.

The topological boundary ∂E of E coincides with the whole of Rn minus E. In fact,
given a point x of Rn, one can find a sequence of points with rational coordinates, extracted
from the sequence {qk} considered previously. Such an extracted sequence tends to x ∈ Rn

because the points with rational coordinates are dense. This means that x ∈ Rn is an
accumulation point for E. Thus x belongs to the closure E of E. In turn, since E is an open
set (being formed by a countable union of open balls), the closure of E is given by

E = E ∪ ∂E, (5)

and hence
∂E = Rn − E =⇒ Vol(∂E) = +∞. (6)

Let us now prove that E is a finite-perimeter set, despite the fact that its topological
boundary has infinite volume. Indeed, by definition, the perimeter P(E) is given by

P(E) ≡ sup
{∫

E
divT dx : ‖T‖L∞ ≤ 1, T ∈ C1

c (Rn,Rn)

}
, (7)

where the integral over E is a volume integral, and the defining conditions mean that T is a
vector field of L∞ norm never bigger than 1, of class C1 on Rn and having compact support
on Rn. By virtue of the definition (3), one can write the volume integral of the divergence
of T in the form ∫

E
divT dx = lim

m→∞

∫
∪m

k=1B 1
k
(qk)

divT dx. (8)
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The union of a finite number of balls B 1
k
(qk) gives rise to an irregular set, because the

balls do not have smooth intersections. Nevertheless, on such a set the divergence theorem
holds, since such a set is piecewise smooth. One can therefore write, by virtue of the
divergence theorem:

lim
m→∞

∫
∪m

k=1B 1
k
(qk)

divT dx = lim
m→∞

∫
∂

(
∪m

k=1B 1
k
(qk)

) T · ν dHn−1, (9)

where ν is the normal to the topological boundary of the union of open balls, and dHn−1

is a surface measure. By virtue of (8) and (9), one finds the majorization (Hn−1 being
the measure of the surface given by the topological boundary of the union of open
balls B 1

k
(qk)) ∫

E
divT dx ≤ lim

m→∞
Hn−1

(
∂
(
∪m

k=1B 1
k
(qk)

))
≤ lim

m→∞

m

∑
k=1

Hn−1
(

∂B 1
k
(qk)

)
, (10)

where, on the first line, we have exploited the majorization of the L∞ norm of T and the
unit norm of ν, while on the second line we have exploited the property

∂
(
∪m

k=1B 1
k
(qk)

)
≤ ∪m

k=1

(
∂B 1

k
(qk)

)
. (11)

This latter condition means that the topological boundary of the union of balls B 1
k
(qk)

is in general smaller than the union of the various topological boundaries of such balls.
Furthermore, we can re-express the majorization (10) as follows:

∫
E

divT dx ≤ lim
m→∞

Hn−1(∂B1)
m

∑
k=1

1
kn−1 ≤ M, if n ≥ 3. (12)

Indeed, if n ≥ 3, one can find a constant M for which

m

∑
k=1

1
kn−1 ≤ M.

By virtue of (12), a real number M exists such that∫
E

divT dx ≤ M =⇒ P(E) ≤ M, (13)

i.e., the set E has a finite perimeter.
To sum up, the set E defined in Equation (3) is a finite-perimeter set of finite volume,

while its topological boundary has infinite volume. Moreover, another consequence of De
Giorgi’s structure theorem is that, if E is a finite-perimeter set and if T is a vector field of
class C1, then ∫

E
divT =

∫
∂∗E

T · νE dHn−1. (14)

Thus, the divergence theorem holds for a finite-perimeter set, but it does not involve
the whole of the topological boundary ∂E (because ∂E might contain parts that are too
irregular to see the divergence of T). The divergence theorem involves therefore only the
reduced boundary ∂∗E, which represents the truly useful part of the topological boundary
∂E. With hindsight, this is the ultimate meaning of De Giorgi’s structure theorem and of
the concept of reduced boundary. The finite-perimeter sets are therefore the most general
objects for which the divergence theorem still holds.
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In the example we have investigated it is impossible to explicitly evaluate the gener-
alized normal. Nevertheless, by virtue of De Giorgi’s structure theorem, we know some
qualitative properties of great value: the reduced boundary is given by the countable union
of pieces of manifolds of class C1, and the generalized normal is given by the normal to
such manifolds. In such an example the reduced boundary is given by the countable union
of pieces Kl of smooth manifolds, and such pieces are represented by awkward-looking
pieces of spherical surfaces. One can also prove, for this example, the inclusion property

∂∗E ⊂ ∪∞
k=1∂B 1

k
(qk), (15)

i.e., the reduced boundary is a subset of the countable union of the topological boundaries
of all open balls centred at qk and having radius 1

k .
It is therefore clear that every explicit construction of generalized normal is a challeng-

ing task, which is nevertheless necessary if one wants to go beyond the purely qualitative
properties. The following sections are devoted to two original examples, motivated by the
desire to study geometric measure theory in non-Euclidean spaces. In particular, in Section 2
we deal with hyperbolic geometry, whereas the case of elliptic geometry is investigated in
Section 3. The physical relevance of our framework is discussed in Section 4, where we con-
sider possible applications to the action principle for two-dimensional Euclidean quantum
gravity. In particular, we deal with the Euclidean two-dimensional Callan–Giddings–
Harvey–Strominger (hereafter referred to as CGHS) dilaton gravity model [13–15] (see also
Refs. [16–19]). As we will show, a two-dimensional model makes it possible to overcome the
issue regarding the definition of the normal vector in higher-dimensional theories such as
general relativity (for recent reviews of general relativity and beyond, see, e.g., Refs. [20–22]
and references therein). Last, the concluding remarks are made in Section 5.

2. An Example of Generalized Normal in the Hyperbolic Plane

The hyperbolic (or Lobachevsky) plane [23–25] is defined as the upper half-plane H in
the complex plane C

H = {z ∈ C : Im(z) > 0}, (16)

endowed with the metric

gabdxa ⊗ dxb =
dx⊗ dx + dy⊗ dy

y2 , (a, b = 1, 2). (17)

Geodesics (or hyperbolic lines) in H are defined in terms of Euclidean objects in C,
being represented either by (the intersection of H with) Euclidean segments in C perpendic-
ular to the real axis R = {z ∈ C : Im(z) = 0} or by (the intersection of H with) Euclidean
circles (strictly speaking, we should distinguish between a circle and the associated circum-
ference) in C having Euclidean centre on R and Euclidean radius r. Any two points in H can
be joined by a unique geodesic. Let ϕ : I ⊂ R→ H be the piecewise differentiable path

ϕ = {z(t) = x(t) + iy(t) ∈ H : t ∈ I}, (18)

defining a geodesic in H. Bearing in mind (17), one finds that the geodesic (18) satisfies the
following system of ordinary differential equations [26]:{

yẍ− 2ẋẏ = 0, (19a)

yÿ + (ẋ)2 − (ẏ)2 = 0, (19b)

where ẋ(t) ≡ dx(t)
dt

and ẏ(t) ≡ dy(t)
dt

. When ẋ(t) = 0 ∀ t ∈ I, the solution of (19) is
given by

z(t) =
(
a, b e±t), a ∈ R, b > 0, (20)
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representing a vertical line in H. On the other hand, if ẋ(t) is nonvanishing, the system (19)
leads to

z(t) =
(

r tanh t + c,
r

cosh t

)
, r > 0, c ∈ R, (21)

which describes a Euclidean positive semicircle with an Euclidean centre at (c, 0) and
Euclidean radius r, since z(t) = (x(t), y(t)) satisfies

(x(t)− c)2 + y2(t) = r2. (22)

It is not difficult to show that the Euclidean center (c, 0) and the Euclidean radius r of
the Euclidean circle through p, q ∈ H can be written as [24]

c =
1
2

(
|p|2 − |q|2

Re(p)− Re(q)

)
, (23a)

r = |c− p| = |c− q|. (23b)

The hyperbolic length `H(γ) of a piecewise differentiable path

γ = {z(t) = x(t) + iy(t) ∈ H : t ∈ I ⊂ R}, (24)

is given by

`H(γ) =
∫

I

dt
y(t)

∣∣∣∣dz(t)
dt

∣∣∣∣. (25)

The hyperbolic distance ρH(z, w) between two points z, w ∈ H is defined by the formula

ρH(z, w) = inf `H(γ), (26)

where the infimum is taken over all paths γ joining z, w ∈ H. Equation (26) defines
a distance function on H, since it is non-negative, symmetric, and satisfies the triangle
inequality [23]. Moreover, it can be shown that for any z, w ∈ H [23] (when the points
z, w ∈ H are such that Re(z) = Re(w), their hyperbolic distance reads as [23,24]

ρH(z, w)|Re(z)=Re(w) = log
(

Im(w)

Im(z)

)
, (Im(w) > Im(z))).

ρH(z, w) = log
(
|z− w̄|+ |z− w|
|z− w̄| − |z− w|

)
. (27)

The hyperbolic distance ρH(z, w) can also be written in terms of the Euclidean radius
r and the Euclidean center (c, 0) of the geodesic connecting z, w ∈ H as [24]

ρH(z, w) =

∣∣∣∣∣log

[(
w− (c + r)

)(
z− (c− r)

)(
w− (c− r)

)
(z− (c + r))

]∣∣∣∣∣. (28)

The group of all isometries of H is isomorphic to the space PSL(2,R), which is defined
as follows:

PSL(2,R) ≡
{

z→ T(z) =
(az + b)
(cz + d)

|(ad− bc = 1)
}

.

This is equivalent to expressing PSL(2,R) as the quotient space SL(2,R)/Z2 because,
if we change sign to all matrix entries, both T(z) and the determinant condition are pre-
served. Besides being a group, PSL(2,R) is also a topological space in which the fractional
linear transformation T(z) can be identified with the point (a, b, c, d) of R4. More precisely,
as a topological space, SL(2,R) can be identified with the following subset of R4:

X ≡
{
(a, b, c, d) ∈ R4 : ad− bc = 1

}
.
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If one defines
δ(a, b, c, d) ≡ (−a,−b,−c,−d),

the map δ : X → X is therefore a homeomorphism, and we can write that

PSL(2,R) = SL(2,R)/δ,

which is a more precise expression of the quotient space formula involving Z2. Therefore
PSL(2,R) is a topological group, and the fractional linear maps T have a norm induced
from R4 given by

‖T‖ ≡
√

a2 + b2 + c2 + d2.

A hyperbolic n-sided polygon P is a closed set of H ∪R ∪ {∞} (i.e., the Euclidean
closure of H) bounded by n hyperbolic geodesic segments. The vertices of P , defined as
the points of intersection of two line segments, can lie in R∪ {∞}, although no segment of
R can belong to P [23].

An example that makes it possible for us to display an explicit expression for the dual
normal can be constructed as follows. Let

z̃ = (0, 1), (29a)

z0 = (1, 1), (29b)

z1 =

(
1 +

1
3

,
1
2

)
, (29c)

z2 =

(
1 +

1
3
+

1
9

,
1
4

)
, (29d)

...

zn−1 =

(
1 +

1
3
+

1
9
+ · · ·+ 1

3n−1 ,
1

2n−1

)
, (29e)

zn =

(
1 +

1
3
+

1
9
+ · · ·+ 1

3n−1 +
1
3n ,

1
2n

)
(29f)

denote the n + 2 vertices of a hyperbolic (n + 2)-sided polygon P . Such a polygon can be
constructed by considering the unique geodesic connecting the following pairs of points:
z̃ and z0, z0 and z1, z1 and z2, . . . , zn−1 and zn, and eventually zn and z̃. Since the points
occurring in Equation (29) have different real parts, all the aforementioned geodesics will
be Euclidean positive semicircles with a centre on the real axis R. The generic geodesic ϕn
joining zn−1 and zn will be defined by

ϕn = {z ∈ H : f (z) ≡ |z− cn|2 − (rn)
2 = 0}, (30)

where, from Equation (19), we have

cn =
1
2

(
|zn−1|2 − |zn|2

Re(zn−1)− Re(zn)

)
, (31)

rn = |cn − zn−1| = |cn − zn|. (32)

Therefore, we find that

cn =
1
3n

n

∑
j=1

3j + αn, (33)

rn =

√
(αn)

2 +
1

22n−2 , (34)
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where

αn ≡
22n − 32n+1

3n 22n+1 . (35)

The unit normal vector N(n) to the geodesic (30) will be

N(n) =
(

N1
(n), N2

(n)

)
=

y
rn
(x− cn, y), (n ∈ N), (36)

with x, y subjected to the conditions (x− cn)
2 + y2 = (rn)

2 and y > 0.
We note that

lim
n→∞

cn =
3
2

,

lim
n→∞

rn = 0, (37)

which define an Euclidean degenerate circle. From the above equation jointly with
formula (28), we find that

ρH(zn−1, zn) −−−→n→∞
0. (38)

We note that the above result cannot be obtained by employing Equation (27), since

zn −−−→n→∞

(
3
2

, 0
)

, (39)

meaning that zn does not belong to H when n → ∞ (see Appendix B for further details).
In this limit, Equation (27) would lead to a meaningless result.

The geodesic ϕ̃ connecting z̃ and z0

ϕ̃ = {z ∈ H : f (z) ≡ |z− c̃|2 − r̃2 = 0}, (40)

will have a Euclidean centre at (c̃, 0) and Euclidean radius r̃, whereas for the geodesic ϕ̂
through zn and z̃

ϕ̂ = {z ∈ H : f (z) ≡ |z− ĉ|2 − r̂2 = 0}, (41)

the Euclidean centre lies at (ĉ, 0) and the Euclidean radius is r̂. From Equation (23), we find

c̃ =
1
2

,

r̃ =
√

5
2

, (42)

and

ĉ =
3
4

(
1− 1

3n+1

)
+

3n(1− 22n)
22n(3n+1 − 1)

,

r̂ =
√

ĉ2 + 1. (43)

In the limit of large n, we obtain

lim
n→∞

ĉ =
5
12

,

lim
n→∞

r̂ =
13
12

, (44)

which agree with Equation (39) (cf. also Equation (37)).
The unit normal vector to the geodesic (40) will be

Ñ =
(

Ñ1, Ñ2
)
=

y
r̃
(x− c̃, y), (45)
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x, y satisfying the conditions (x− c̃)2 + y2 = (r̃)2 and y > 0, whereas the unit normal
vector to (41) is

N̂ =
(

N̂1, N̂2
)
=

y
r̂
(x− ĉ, y), (46)

where x, y are such that the relations (x− ĉ)2 + y2 = (r̂)2 and y > 0 are fulfilled.
The polygon P having vertices (29) has thus a generalized normal represented by

Equations (36), (45), and (46), i.e.,

νE =
{

N(n), Ñ, N̂
}

, (n ∈ N). (47)

It follows from the above equation that the n-th segment of the polygon P admits
a normal vector which differs from the one of the (n + 1)-th segment. In other words,
the generalized normal (47) defines a discontinuous vector field and, in the limit of large
n, assumes an infinite number of values. Furthermore, we note that in our example the
reduced boundary ∂∗E of the polygon P has a form that agrees with the De Giorgi structure
theorem (cf. Equation (1)).

3. An Example of Generalized Normal in Elliptic Geometry

In Euclidean geometry, given a line and a point that does not lie on this line, there
exists one and only one line that passes through the given point and is parallel to the given
line. On the other hand, in hyperbolic geometry, which we have considered in the previous
section, infinitely many distinct parallel lines can be found. A third option, where no
parallel lines exist, gives rise to elliptic geometry [27] and will be considered here. The most
common model of elliptic geometry is represented by the surface of a sphere (however, it
should be noted that in elliptic geometry two lines are usually assumed to intersect at a
single point, while in spherical geometry two great circles intersect at two points, which is
why spherical geometry is said to be a doubly elliptic geometry). Another relevant example
of (two-dimensional) elliptic geometry is Klein’s conformal model of the elliptic plane [27].

In this section, we consider an example of two-dimensional elliptic geometry having a
squared line element [28]

ds2 =
dx2 + dy2 + (xdy− ydx)2

(1 + x2 + y2)
2 . (48)

The resulting connection coefficients read as

Γx
xx = − 2x

(1 + x2 + y2)
,

Γx
xy = − y

(1 + x2 + y2)
,

Γy
xy = − x

(1 + x2 + y2)
,

Γy
yy = − 2y

(1 + x2 + y2)
, (49)

and hence the geodesic equations take the form
x′′ =

2x′

(1 + x2 + y2)

(
xx′ + yy′

)
, (50a)

y′′ =
2y′

(1 + x2 + y2)

(
xx′ + yy′

)
, (50b)
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where the prime denotes differentiation with respect to the affine parameter τ. If we
eliminate the factor (xx′ + yy′)/(1 + x2 + y2) from the second equation and substitute it in
the first, we get

d
dτ

[
log
(

x′

y′

)]
= 0, (51)

which leads to

x(τ) = α1y(τ) + α2, (α1 6= 0, α2 ∈ R). (52)

Then, from Equations (50b) and (52) we obtain the geodesic solutions

x(τ) =
α2 +

(
α1

√
1 + (α1)

2 + (α2)
2
)

tan
[

c1(τ + c2)
√

1 + (α1)
2 + (α2)

2
]

1 + (α1)
2 , (53)

y(τ) =
−α1α2 +

(√
1 + (α1)

2 + (α2)
2
)

tan
[

c1(τ + c2)
√

1 + (α1)
2 + (α2)

2
]

1 + (α1)
2 , (54)

where c1 and c2 are integration constants.
We note that the system (50) is not affected if we interchange the role of x and y, i.e., it

is invariant under the transformation

x ↔ y. (55)

This means that

x2(τ) =

−α̃1α̃2 +

(√
1 + (α̃1)

2 + (α̃2)
2
)

tan
[

c̃1(τ + c̃2)
√

1 + (α̃1)
2 + (α̃2)

2
]

1 + (α̃1)
2 , (56)

y2(τ) =

α̃2 +

(
α̃1

√
1 + (α̃1)

2 + (α̃2)
2
)

tan
[

c̃1(τ + c̃2)
√

1 + (α̃1)
2 + (α̃2)

2
]

1 + (α̃1)
2 , (57)

is a solution of Equation (50), where c̃1, c̃2 are real-valued integration constants and

y2(τ) = α̃1x2(τ) + α̃2, (α̃1 6= 0, α̃2 ∈ R). (58)

We can now set up a geodesic triangle T by means of Equations (52)–(54). Let

A ≡ (0,−1),

B ≡ (1, 0),

C ≡ (0, 1), (59)

be the vertices of T (see Figure 1).
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0.2 0.4 0.6 0.8 1.0
x(τ)

-1.0

-0.5

0.5

1.0

y(τ)

A

B

C

Figure 1. The geodesic triangle T having vertices (59) and parametrized by Equations (60), (63),
and (65).

Then, the side TAB of T connecting A and B is parametrized by

TAB :


xAB(τ) =

1
2

{
1 +
√

3 tan
[
2
√

3(3 + τ)
]}

,

yAB(τ) =
1
2

{
−1 +

√
3 tan

[
2
√

3(3 + τ)
]}

,

τ1 ≤ τ ≤ τ2,

(60)

where

τ1 ≡ −

(
6
√

3 + π/6
)

2
√

3
,

τ2 ≡ −

(
6
√

3− π/6
)

2
√

3
, (61)

and the functions xAB(τ) and yAB(τ) can be obtained from Equations (53) and (54), respec-
tively, by setting

α1 = α2 = 1, (62a)

c1 = 2, (62b)

c2 = 3. (62c)
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The side TBC, which links the vertices B and C, is defined by

TBC :


xBC(τ) =

1
2

{
1−
√

3 tan
[
2
√

3(3 + τ)
]}

,

yBC(τ) =
1
2

{
1 +
√

3 tan
[
2
√

3(3 + τ)
]}

,

τ1 ≤ τ ≤ τ2.

(63)

The functions xBC(τ) and yBC(τ) can be read off from Equations (53) and (54), respec-
tively, with

α1 = −α2 = −1, (64a)

c1 = 2, (64b)

c2 = 3. (64c)

Last, TCA can be obtained from

TCA :


xCA(τ) = 0,

yCA(τ) = − tan[2(−3 + τ)],

τ3 ≤ τ ≤ τ4,

(65)

with

τ3 ≡
1
2
(6− π/4),

τ4 ≡
1
2
(6 + π/4), (66)

the functions xCA(τ) and yCA(τ) stemming from Equations (53) and (54), respectively,
when

α1 = α2 = 0, (67a)

c1 = −2, (67b)

c2 = −3. (67c)

It should be noted that the solution having α1 = 0 can be regarded as a “limiting” case
of Equations (52)–(54).

At this stage, we are ready to evaluate the normal vector field to the geodesic triangle
T . Given the curve y = f (x), it is known that the equation of its normal to a generic point
with the coordinates (X, Y) is [29]

y−Y = − 1
f ′(X)

(x− X), (68)

the prime denoting differentiation with respect to the x variable. In our example, the geodesics
can be equivalently described by means of (cf. Equation (52))

y(x) =
x
α1
− α2

α1
, (α1 6= 0, α2 ∈ R), (69)

which means that, recalling Equation (62a), the equation of the side TAB reads also as (it is
clear that Equation (70) can also be obtained from Equation (60))

TAB : yAB(x) = x− 1, x ∈ [0, 1], (70)
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and hence by virtue of Equation (68) the normal vector field NAB to TAB is defined by

NAB : ynAB(x) = −x + x̄ + ȳ, (71)

where (x̄, ȳ) are the coordinates of a generic point belonging to TAB. As a consequence of
(64a) (or, equivalently, Equation (63)), we have for the side TBC

TBC : yBC(x) = −x + 1, x ∈ [0, 1], (72)

from which we derive the form of its normal vector field NBC

NBC : ynBC (x) = x− x̂ + ŷ, (73)

(x̂, ŷ) being the coordinates of a point lying on TBC. As pointed out previously, the side
TCA cannot be obtained directly from (69). Indeed, its equation is

TCA :

 xCA = 0,

−1 ≤ y ≤ 1,
(74)

which means that NCA is

NCA : ynCA = k, −1 ≤ k ≤ 1. (75)

Likewise the hyperbolic example discussed in Section 2, Equations (71), (73), and (75)
give rise to a discontinuous normal vector field.

4. Application to Two-Dimensional Euclidean Quantum Gravity

As far as we know, the kind of thinking used so far in our paper has been lacking
in the literature on fundamental interactions in physics. In recent times, much work in
the mathematical literature has been devoted to the investigation of geometric measure
theory in non-Euclidean spaces [30]. Within such a framework, the occurrence of discontin-
uous normal vector fields has to be considered [10], and our original explicit examples in
Sections 2 and 3 can be of interest.

On the other hand, the examples of Sections 2 and 3 have a clear mathematical
motivation, but they do not have an impact on theoretical physics. For this purpose,
we are currently considering the case of Euclidean quantum gravity [31–40]. Within
this framework, a prescription for functional integration is necessary, and we propose to
consider only finite-perimeter sets that match the assigned data on their reduced boundary.
We arrive at this prescription upon bearing in mind that measurable sets belong to two
families: either they have finite perimeter, or they do not. The restriction to finite-perimeter
sets might be severe, but it leads to mathematical properties which are under control and
hence merits a careful assessment.

A second choice is also in order, and it has to do with the dimension of such finite-
perimeter sets. In higher dimensions a problem arises, i.e., how to define a vector that plays
the role of normal. Even just for a straight line in three-dimensional Euclidean space, what
is defined is the plane orthogonal to such a line, but there is no coordinate-independent
way of selecting two linearly independent normal vector fields to the line. Thus, a four-
dimensional analogue of our Sections 2 and 3 is not conceivable, as far as we can see. We
have therefore resorted to two-dimensional Euclidean quantum gravity, by focusing on the
Euclidean two-dimensional CGHS dilaton gravity model [13–15] (see also e.g., Ref. [41]
for a general framework pertaining to Euclidean dilaton gravity in two dimensions). This
example will clarify the role of the discontinuous normal νE occurring in the divergence
theorem (14).
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The Euclidean CGHS action reads as

IE = − 1
2π

∫
d2x
√

g e−2φ
(

R + 4∇µφ∇µφ + 4Λ2
)

, (76)

g denoting the metric determinant, R the Ricci scalar, φ the dilaton field, and Λ2 a cosmo-
logical constant. Bearing in mind the recipes of Ref. [42] (see also Refs. [43,44]), we can
write the variations of the Lagrangian LE occurring in Equation (76) as

δ(
√

gLE) = −
√

g
2π

[(
Eg
)

µν
δgµν + Eφδφ +∇αΘα

]
, (77)

where (
Eg
)

µν
= 0,

Eφ = 0, (78)

are the metric and the dilaton field equations, respectively, and Θα is referred to as the
symplectic potential current density. By virtue of Equation (76), we find(

Eg
)

µν
= 2e−2φ

[
gµν

(
(∇αφ)(∇αφ)−Λ2 −∇α∇αφ

)
+∇µ∇νφ

]
, (79a)

Eφ = −2e−2φ
(

R + 4∇α∇αφ + 4Λ2 − 4∇αφ∇αφ
)

, (79b)

Θα = e−2φ
[
8(∇αφ)δφ−∇µδgµα + gµν∇αδgµν − 2

(
∇µφ

)
δgµα

+ 2(∇αφ)gµνδgµν
]
. (79c)

We aim at evaluating the integral

− 1
2π

∫
C

d2x
√

g∇αΘα, (80)

where C is a two-dimensional region having finite perimeter. For this purpose, we find
it more convenient to consider an off-shell calculation, i.e., for metric and dilaton field
which do not obey the Euclidean field equations. In such a way, we may choose an
example as close as possible to the ones developed in the theory of finite-perimeter sets in
n-dimensional Euclidean space [11], while avoiding the difficult task of solving the coupled
partial differential equations for metric and dilaton.

Preparing the Ground for Evaluating the Integral

In order to prepare the ground for investigating the integral (80), let us consider the
following example of two-dimensional finite-perimeter set [11], which provides a slight
modification of the case discussed in Section 1 (which we recall is valid in Rn with n ≥ 3,
see Equation (12)). Consider in R2 the set E defined by

E = ∪∞
k=1 Brk (xk) (81)

where, as before, Brk (xk) denotes the Euclidean open ball centred at the point xk ∈ R2 and
having small positive radius rk, which is supposed to satisfy

rk < ε, ∀ k ∈ N, (82)

such that

2ω2

∞

∑
k=1

rk ≤ 1, (83)
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with

ω2 =
Γ(1/2)2

Γ(1)
= π, (84)

Γ(n) being the Euler Γ-function. The perimeter of Brk (xk) is

P
(

Brk (xk)

)
= H1

(
∂Brk (xk)

)
= 2ω2rk, (85)

H1 denoting the one-dimensional Hausdorff measure. Starting from Equation (85), it can
be shown [11] that for every N ∈ N, the set

EN =
N

∑
k=1

Brk (xk), (86)

has finite perimeter since, by virtue of Equation (83),

P(EN) ≤
N

∑
k=1

P
(

Brk (xk)

)
≤ 2ω2

∞

∑
k=1

rk ≤ 1. (87)

Therefore, as |E| ≤ ω2 < ∞ (|E| being the volume of E), we have EN → E as N → ∞
and hence

P(E) ≤ 1, (88)

which means that E has finite perimeter. Furthermore, it is possible to prove that |∂E| ≥
ω2 − ε, which implies as a consequence H1(∂E) = ∞ [11].

We can now extend the previous example to a two-dimensional analytic Riemannian
manifold M . For this reason, let us consider the two-dimensional geodesic ball BG

r (p)
having small positive radius r and centred at the point p ∈M . The volume Vr(p) of BG

r (p)
can be written by means of the power series [45]

Vr(p) = ω2r2

[
1− R

24
r2 +

r4

8640

(
−3RµνρσRµνρσ + 8RµνRµν + 5R2

− 18∇µ∇µR
)
+ O

(
r6
)]

p

, (89)

whereas the volume Sr(p) of ∂BG
r (p) reads as [45]

Sr(p) = 2ω2r

[
1− R

12
r2 +

r4

2880

(
−3RµνρσRµνρσ + 8RµνRµν + 5R2

− 18∇µ∇µR
)
+ O

(
r6
)]

p

. (90)

If the trace R of the Ricci tensor is positive, then it follows from Equations (89) and (90)
that, for sufficiently small r,

Vr(p) < ω2r2, (91)

and

Sr(p) < 2ω2r, (92)
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respectively.
At this stage, we have the necessary ingredients to generalize the previous example to

the case when the manifold M admits a positive trace R of Ricci. Indeed, along the same
lines as before, let

C = ∪∞
k=1 BG

rk
(xk), (93)

be a surface of M constructed in terms of the geodesic balls BG
rk
(xk) whose radius rk is

subject to the condition (83). Bearing in mind Equation (92), we have

P
(

BG
rk
(xk)

)
= H1

(
∂BG

rk
(xk)

)
< 2ω2rk, (94)

which makes it possible for us to prove that the set

CN =
N

∑
k=1

BG
rk
(xk), (95)

has finite perimeter, since, similarly to Equation (87),

P(CN) ≤
N

∑
k=1

P
(

Brk (xk)

)
< 2ω2

∞

∑
k=1

rk ≤ 1. (96)

Therefore, the set C, which can be obtained from CN in the limit N → ∞, has finite
perimeter with

P(C) < 1, (97)

although H1(∂C) = ∞.

5. Concluding Remarks

By means of the methods presented in our paper, it is possible to evaluate the
integral (80) over the finite-perimeter set C, and we hope to have outlined the good poten-
tialities of geometric measure theory for a fresh look at the unsolved problems of traditional
formulations of Euclidean quantum gravity.

The next task wil be the rigorous proof of existence theorems of Euclidean functional
integrals for gravity in two and higher dimensions, when restricted to finite-perimeter sets.
If it were possible to accomplish this, the associated reduced boundary construction might
open a new era in quantum gravity and quantum cosmology.
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Appendix A. Finite-Perimeter Sets and Their Reduced Boundary

On denoting by ϕ(x, E) the characteristic function of a set E ⊂ Rn (by definition,
ϕ(x, E) equals 1 at points x ∈ E, and 0 otherwise) and by ∗ the convolution product of two
functions defined on Rn:

f ∗ h(x) ≡
∫

f (x− ξ)h(ξ)dξ, (A1)

De Giorgi defined [4,5,7] for all integer n ≥ 2 and for all λ > 0 the function

ϕλ : x → ϕλ(x) ≡ (πλ)−
n
2 exp

−
n
∑

k=1
(xk)

2

λ

 ∗ ϕ(x, E), (A2)

and, as a next step, the perimeter of the set E ⊂ Rn

P(E) ≡ lim
λ→0

∫
Rn

√√√√ n

∑
k=1

(
∂ϕλ

∂xk

)2
dx. (A3)

The perimeter defined in Equation (A3) is not always finite. A necessary and sufficient
condition for P(E) to be finite is the existence of a set function of vector nature completely
additive and bounded, defined for any set B ⊂ Rn and denoted by a(B), verifying the
generalized Gauss–Green formula∫

E
Dh dx = −

∫
Rn

h(x) da. (A4)

If Equation (A4) holds, the function a is said to be the distributional gradient of the
characteristic function ϕ(x, E). A polygonal domain is every set E ⊂ Rn that is, the closure
of an open set and whose topological boundary ∂E is contained in the union of a finite
number of hyperplanes of Rn. The sets approximated by polygonal domains having finite
perimeter were introduced by Caccioppoli [2,3] and coincide with the collection of all
finite-perimeter sets [7]. This is why finite-perimeter sets are said to be Caccioppoli sets.

If E is a finite-perimeter set of Rn, its reduced boundary ∂∗E is the collection of all
points ξ for which:

(i) The integral of the norm of the gradient of the characteristic function, when taken
over the ball (our ball is called open hypersphere by De Giorgi) centred at ξ and of
radius ρ, is always positive, i.e.,∫

Bρ(ξ)
‖grad ϕ(x, E)‖ > 0 ∀ρ > 0, (A5)

(ii) The limit defining the normal vector exists, i.e.,

lim
ρ→0

∫
Bρ(ξ)

gradϕ(x, E)∫
Bρ(ξ)
‖gradϕ(x, E)‖

= ν(ξ), (A6)

(iii) The resulting normal vector has the unit Euclidean norm.

Appendix B. Calculation of the Hyperbolic Distance in the Limit of Large n

In Section 2, we evaluated the large-n limit of the hyperbolic distance ρH(zn−1, zn)
between the vertices zn−1 and zn of the (n + 2)-sided hyperbolic polygon P , defined by
Equation (29), by employing Equation (28). The final result of this computation is displayed
in Equation (38). In this appendix, we show how the application of Equation (27) for this
calculation would have led to a misleading result.
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Bearing in mind Equations (29e) and (29f), from Equation (27) we obtain

ρH(zn−1, zn) = log


1 +

√
22n + 32n

22n + 32n+2

1−

√
22n + 32n

22n + 32n+2

, (A7)

and hence, in the limit of large n, the above equation yields

lim
n→∞

ρH(zn−1, zn) = log

1 +

√
1
9

1−
√

1
9

 = log 2. (A8)

Therefore, in Equation (A8) we recover a different result from the one given in Equation (38).
As pointed out before, this is due to the fact that the vertices zn−1 and zn of the polygon P
do not belong, in the limit of large n, to the hyperbolic plane H, and hence Equation (27)
becomes meaningless under this hypothesis.
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