Symmetries and Solutions for Some Classes of Advective Reaction–Diffusion Systems
Abstract
:1. Introduction
2. Symmetries: Classifying Equations
3. Symmetries and Solutions for Systems with Linear Advection
3.1. Logistic u- Production
3.2. -Logistic u- Production
4. Symmetries and Solutions for Systems with Non-Linear Advection
5. Some Remarks about the Constitutive Functions and H
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medvedev, G.S.; Kaper, T.J.; Kopell, N. A reaction diffusion system with periodic front Dynamics. SIAM J. Appl. Math. 2000, 60, 1601–1638. [Google Scholar] [CrossRef]
- Czirok, A.; Matsushita, M.; Vicsek, T. Theory of periodic swarming of batteria: Application to Proteus mirabilis. Phys. Rev. E 2001, 63, 031915. [Google Scholar] [CrossRef]
- Rauprich, O.; Matsushita, M.; Weijer, K.; Siegert, F.; Esipov, S.E.; Shapiro, J.A. Periodic phenomena in Proteus mirabilis swarm colony development. J. Bacteriol. 1996, 178, 6525–6538. [Google Scholar] [CrossRef]
- Esipov, S.E.; Shapiro, J.A. Kinetic model of Proteus mirabilis swarm colony development. J. Math. Biol. 1998, 36, 249–268. [Google Scholar] [CrossRef]
- Orhan, Ö.; Torrisi, M.; Tracinà, R. Group methods applied to a reaction-diffusion system generalizing Proteus Mirabilis models. Commun. Nonlinear Sci. Numer. Simulat. 2019, 70, 223–233. [Google Scholar] [CrossRef]
- Takahashi, L.T.; Maidana, N.A.; Ferreira, W.C., Jr.; Pulino, P.; Yang, H.M. Mathematical models for the Aedes aegypti dispersal dynamics: Travelling waves by wing and wind. Bull. Math. Biol. 2005, 67, 509–528. [Google Scholar] [CrossRef] [PubMed]
- Freire I., L.; Torrisi, M. Symmetry methods in mathematical modeling of Aedes aegypti dispersal dynamics. Nonlinear Anal. Real World Appl. 2013, 14, 1300–1307. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, Z. A reaction-diffusion-advection model for Aedes aegypti mosquitoes in a time-periodic environment. Nonlinear Anal. Real World Appl. 2019, 46, 219–237. [Google Scholar] [CrossRef]
- Liu, Y.; Jiao, F.; Hu, L. Modeling mosquito population control by a coupled system. J. Math. Anal. Appl. 2022, 506, 125671. [Google Scholar] [CrossRef]
- Anguelov, R.; Dumont, Y.; Lubuma, J.-S. Mathematical modeling of sterile insect technology for control of anopheles mosquito. Comput. Math. Appl. 2012, 64, 374–389. [Google Scholar] [CrossRef]
- Olaniyi, S.; Obabiyi, O.S. Mathematical model for malaria transmission dynamics in human and mosquito populations with non linear force of infection. Int. J. Pure Appl. Math. 2013, 88, 125–156. [Google Scholar] [CrossRef]
- Tello, J.I.; Winkler, M. Stabilization in a two-species chemotaxis system with logistic source. Nonlinearity 2012, 25, 1413–1425. [Google Scholar] [CrossRef]
- Cherniha, R.; Didovych, M. Exact solutions of the simplified Keller-Segel model. Commun. Nonlinear Sci. Numer. Simulat. 2013, 18, 2960–2971. [Google Scholar] [CrossRef]
- Akhatov, I.S.; Gazizov, R.K.; Ibragimov, N.H. Nonlocal symmetries: A heuristic approach. J. Soviet Math. 1991, 55, 1401–1450. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cole, J.D. Similarity Methods for Differential Equations; Springer: New York, NY, USA, 1974. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Ibragimov, N.H. Transformation Groups Applied to Mathematical Physics; Reidel: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Ibragimov, N.H. CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Cantwell, B.J. Introduction to Symmetry Analysis; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Ibragimov, N.H. A Practical Course in Differential Equations and Mathematical Modelling; World Scientific Publishing Co Pvt Ltd.: Singapore, 2009. [Google Scholar]
- Zaitsev, V.F.; Polyanin, A.D. Discrete-Group Methods for Integrating Equations of Nonlinear Mechanics; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Torrisi, M.; Tracinà, R.; Valenti, A. On the linearization of semilinear wave equations. Nonlinear Dyn. 2004, 36, 97–106. [Google Scholar] [CrossRef]
- Torrisi, M.; Tracinà, R. An Application of Equivalence Transformations to Reaction Diffusion Equations. Symmetry 2015, 7, 1929–1944. [Google Scholar] [CrossRef]
- Torrisi, M.; Tracinà, R. Lie symmetries and solutions of reaction diffusion systems arising in biomathematics. Symmetry 2021, 13, 1530. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrisi, M.; Tracinà, R. Symmetries and Solutions for Some Classes of Advective Reaction–Diffusion Systems. Symmetry 2022, 14, 2009. https://doi.org/10.3390/sym14102009
Torrisi M, Tracinà R. Symmetries and Solutions for Some Classes of Advective Reaction–Diffusion Systems. Symmetry. 2022; 14(10):2009. https://doi.org/10.3390/sym14102009
Chicago/Turabian StyleTorrisi, Mariano, and Rita Tracinà. 2022. "Symmetries and Solutions for Some Classes of Advective Reaction–Diffusion Systems" Symmetry 14, no. 10: 2009. https://doi.org/10.3390/sym14102009
APA StyleTorrisi, M., & Tracinà, R. (2022). Symmetries and Solutions for Some Classes of Advective Reaction–Diffusion Systems. Symmetry, 14(10), 2009. https://doi.org/10.3390/sym14102009