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Abstract: In our present study, two subclasses of starlike functions which are symmetric about the
origin are considered. These two classes are defined with the use of the sigmoid function and the
trigonometric function, respectively. We estimate the first four initial logarithmic coefficients, the
Zalcman functional, the Fekete–Szegö functional, and the bounds of second-order Hankel determi-
nants with logarithmic coefficients for the first class S∗seg and improve the obtained estimate of the
existing second-order Hankel determinant of logarithmic coefficients for the second class S∗sin. All
the bounds that we obtain in this article are proven to be sharp.

Keywords: starlike functions; sigmoid function; logarithmic coefficient; Hankel determinant

1. Introduction, Definitions and Preliminaries

To aid readers in interpreting the basics used throughout our reporting of these im-
portant results, certain fundamental knowledge from function theory is included here,
starting with the letters S and A, which stand for the normalized univalent (or Schlicht)
functions class and the normalized holomorphic (or analytic) functions class, respec-
tively. The subsequent set builder representations in the region of the open unit disc
Od = {z ∈ C : |z| < 1} present these fundamental notions:

A =

{
g ∈ H(Od) : g(z) =

∞

∑
j=1

bjzj, (z ∈ Od)

}
, (1)

whereH(Od) shows the class of holomorphic functions, and

S = {g ∈ A : g is schlicht in Od }.

A stunning interplay between univalent function theory and fluid dynamics has
recently been shown by Aleman and Constantin [1]. In fact, they showed a straightforward
technique for using a univalent harmonic map to obtain explicit solutions of incompressible
two-dimensional Euler equations.

The formula below provides the logarithmic coefficients λn of g ∈ S

Gg(z) := log
(

g(z)
z

)
= 2

∞

∑
n=1

λnzn for z ∈ Od.
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These coefficients have a considerable impact on the theory of Schlicht functions in
many estimations. In 1985, de Branges [2] deduced that, for n ≥ 1,

n

∑
j=1

j(n− j + 1)|λn|2 ≤
n

∑
j=1

n− j + 1
j

,

and equality is achieved if g has the form z/
(
1− eiθz

)2 for some θ ∈ R. It is evident
that this inequality yields the most general version of the well-established Bieberbach–
Robertson–Milin conjectures involving Taylor coefficients of g belonging to S . For further
details on the explanation of de Brange’s assertion, see [3–5]. By taking into consideration
the logarithmic coefficients, in 2005 Kayumov [6] was able to resolve Brennan’s conjecture
for conformal mappings. We include a few studies here that have made major contributions
to the investigation of logarithmic coefficients [7–15].

From the definition provided above, it is not challenging to calculate that, for g
belonging to S , its logarithmic coefficients are provided by

λ1 =
1
2

a2, (2)

λ2 =
1
2

(
a3 −

1
2

a2
2

)
, (3)

λ3 =
1
2

(
a4 − a2a3 +

1
3

a3
2

)
, (4)

λ4 =
1
2

(
a5 − a2a4 + a2

2a3 −
1
2

a2
3 −

1
4

a4
2

)
. (5)

It is quite clear that the geometric interpretations of an analytic function depend on the
bounds of the coefficients that appear in its Taylor series form. This is why researchers have
shown keen interest in studying coefficient-related problems for various analytic functions
in recent years. Among these problems, the Hankel determinant for m, n ∈ N = {1, 2, . . .}
and g ∈ S ,

Hm,n(g) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+m−1
an+1 an+2 . . . an+m
...

... . . .
...

an+m−1 an+m . . . an+2m−2

∣∣∣∣∣∣∣∣∣ (6)

created by Pommerenke [16,17] is perhaps the most challenging problem in this field, in
particular the determination of the sharp bounds. Here, we cite several recent works on
Hankel determinants of different orders in which the authors investigated sharp bounds
for different subclasses of univalent functions; see [18–30].

In recent times, Kowalczyk and Lecko [31,32] have offered analyses of the Hankel
determinant Hm,n

(
Gg/2

)
, the members of which are logarithmic coefficients of g, that is,

Hm,n
(
Gg/2

)
=

∣∣∣∣∣∣∣∣∣
λn λn+1 . . . λn+m−1
λn+1 λn+2 . . . λn+m
...

... . . .
...

λn+m−1 λn+m . . . λn+2m−2

∣∣∣∣∣∣∣∣∣. (7)

It has been noted that

H2,1
(
Gg/2

)
= λ1λ3 − λ2

2, (8)

H2,2
(
Gg/2

)
= λ2λ4 − λ2

3. (9)
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In the present paper, our main focus is on finding the sharp upper bounds of loga-
rithmic coefficient-related problems, including the Zalcman functional and Fekete–Szegö
functional, along with (8) and (9) for the subclass S∗seg of starlike functions established by
Kumar and Goel [33], which is stated as

S∗seg :=
{

g ∈ S :
zg′(z)
g(z)

≺ 2
1 + e−z , (z ∈ Od)

}
.

In addition, for the following defined class S∗sin introduced by Cho et al. [34], we im-
prove the obtained estimate of the existing second-order Hankel determinant of logarithmic
coefficients:

S∗sin :=
{

g ∈ S :
zg′(z)
g(z)

≺ 1 + sin z, (z ∈ Od)

}
,

where "≺" denotes the familiar subordination between analytic functions.

2. A Set of Lemmas

Here, we include the facts that are incorporated into our main problems. First, we
define the class shown below.

P :=

{
q ∈ A : q(z) =

∞

∑
n=1

cnzn ≺ 1 + z
1− z

(z ∈ Od)

}
(10)

The following Lemma consists of the widely used c2 formula [35], the c3 formula [36],
and the c4 formula illustrated in [37].

Lemma 1. Let q ∈ P have the form (10). Then, for x, $, δ ∈ Od = Od ∪ {1},

2c2 = c2
1 + x

(
4− c2

1

)
, (11)

4c3 = c3
1 + 2

(
4− c2

1

)
c1x− c1

(
4− c2

1

)
x2 + 2

(
4− c2

1

)(
1− |x|2

)
$, (12)

8c4 = c4
1 +

(
4− c2

1

)
x
[
c2

1

(
x2 − 3x + 3

)
+ 4x

]
− 4
(

4− c2
1

)(
1− |x|2

)
[
c(x− 1)$ + x$2 −

(
1− |$|2

)
δ
]
. (13)

Lemma 2 ([38]). If q ∈ P is provided by (10) and if E ∈ [0, 1] with E(2E− 1) ≤ F ≤ E, then
we have ∣∣∣c3 − 2Ec1c2 + Fc3

1

∣∣∣ ≤ 2. (14)

Lemma 3. Let q ∈ P be the series expansion (10). Then,

|cn| ≤ 2 n ≥ 1. (15)

and

|cn+k − δcnck| ≤ 2 max{1, |2δ− 1|} =
{

2 f or 0 ≤ δ ≤ 1;
2|2δ− 1| otherwise.

(16)

Inequalities (15) and (16) are studied in [35,39], respectively.

Lemma 4 ([40]). Let τ, ψ, $ and ς satify the inequalities 0 < τ < 1, 0 < ς < 1 and

8ς(1− ς)
(
(τψ− 2$)2 + (τ(ς + τ)− ψ)2

)
+ τ(1− τ)(ψ− 2ςτ)2 ≤ 4ςτ2(1− τ)2(1− ς).
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If q ∈ P is the series form (10), then∣∣∣∣$c4
1 + ςc2

2 + 2τc1c3 −
3
2

ψc2
1c2 − c4

∣∣∣∣ ≤ 2.

3. Logarithmic Coefficient Inequalities for the Class S∗seg

In this section, we study problems involving coefficients for the class S∗seg. The bound
of the most difficult problem of the third-order Hankel determinant is under consideration
here for this class as well. We begin by proving the sharp bounds of the initial coefficient of
g ∈ S∗seg.

Theorem 1. If the function g ∈ S∗seg is defined by (1), then

|λ1| ≤
1
4

,

|λ2| ≤
1
8

,

|λ3| ≤
1

12
,

|λ4| ≤
1

16
.

The above inequalities are sharp.

Proof. From the definition of the class S∗seg along with subordination principal, there is a
Schwarz function w(z) such that

zg′(z)
g(z)

=
2

1 + e−w(z)
, (z ∈ Od).

Assuming that q ∈ P , by writing q in terms of the Schwarz function w(z), we have

q(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + c3z3 + · · · ,

which is equivalent to

w(z) =
q(z)− 1
q(z) + 1

=
c1z + c2z2 + c3z3 + c4z4 + · · ·

2 + c1z + c2z2 + c3z3 + c4z4 + · · · . (17)

Using (1), we can easily obtain

zg′(z)
g(z)

= 1 + (a2)z +
(
−a2

2 + 2a3

)
z2 +

(
−3a2a3 + 3a4 + a3

2

)
z3

+
(
−4a2a4 − a4

2 + 4a5 + 4a2
2a3 − 2a2

3

)
z4 + · · · . (18)

From the series expansion of (17), we have

2
1 + e−w(z)

= 1 +
(

1
4

c1

)
z +

(
−1

8
c2

1 +
1
4

c2

)
z2 +

(
−1

4
c1c2 +

11
192

c3
1 +

1
4

c3

)
z3

+

(
11
64

c2
1c2 −

1
4

c1c3 −
3

128
c4

1 +
1
4

c4 −
1
8

c2
2

)
z4 + · · · . (19)

By comparing (18) and (19), it follows that
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a2 =

(
1
4

)
c1,

a3 = − 1
32

c2
1 +

1
8

c2,

a4 = − 5
96

c1c2 +
7

1152
c3

1 +
1

12
c3,

a5 =
7

384
c2

1c2 −
1
24

c1c3 −
17

18432
c4

1 +
1

16
c4 −

3
128

c2
2. (20)

By using (20) in (2)–(5), we can obtain

λ1 =
1
8

c1, (21)

λ2 = − 1
32

c2
1 +

1
16

c2, (22)

λ3 = − 1
24

c1c2 +
11

1152
c3

1 +
1
24

c3, (23)

λ4 =
11

512
c2

1c2 +
1

32
c4 −

1
32

c1c3 −
3

1024
c4

1 −
1

64
c2

2. (24)

Implementing (15) in (21), we obtain

|λ1| ≤
1
4

.

Now, reshuffling (22), we obtain

λ2 =
1

16

(
c2 −

1
2

c2
1

)
.

Applying (16), we obtain

|λ2| ≤
1
8

.

From (23), we can deduce that

|λ3| =
1

24

∣∣∣∣(c3 − 2
(

1
2

)
c1c2 +

(
11
48

)
c3

1

)∣∣∣∣.
From (14), let

E =
1
2

and F =
11
48

.

It is clear that 0 ≤ E ≤ 1, E ≥ F, and

E(2E− 1) = 0 ≤ F.

Thus, all the conditions of Lemma 2 are satisfied. Hence, we have

|λ3| ≤
1

12
.

From (24), we can deduce that

λ4 = − 1
32

((
3
32

)
c4

1 +

(
1
2

)
c2

2 + 2
(

1
2

)
c1c3 −

3
2

(
11
24

)
c2

1c2 − c4

)
. (25)
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By comparing the right side of (25) with∣∣∣∣$c4
1 + ςc2

2 + 2τc1c3 −
3
2

ψc2
1c2 − c4

∣∣∣∣,
we obtain the following values:

$ =
3
32

, ς =
1
2

, τ =
1
2

, ψ =
11
24

.

It follows that 0 < ς < 1, 0 < τ < 1, and

8ς(1− ς)
(
(τψ− 2$)2 + (τ(ς + τ)− ψ)2

)
+ τ(1− τ)(ψ− 2ςτ)2 =

17
2304

,

and
4ςτ2(1− τ)2(1− ς) =

1
16

.

Thus, all the conditions of Lemma 4 are satisfied. Hence, we have

|λ4| ≤
1

16
.

The required inequalities are sharp and the equality is determined from (2)–(5) along
with consideration of a function

g′n(z) =
2

1 + e−zn , n = 1, 2, 3, 4.

Thus, we have

g1(z) = z exp
(∫ z

0

2
1 + e−t dt

)
= z +

1
2

z2 +
1
8

z3 + · · · ,

g2(z) = z exp
(∫ z

0

2
1 + e−t2 dt

)
= z +

1
4

z3 +
1

32
z5 + · · · ,

g3(z) = z exp
(∫ z

0

2
1 + e−t3 dt

)
= z +

1
6

z4 +
1

72
z7 + · · · ,

g4(z) = z exp
(∫ z

0

2
1 + e−t4 dt

)
= z +

1
8

z5 +
1

128
z9 + · · · .

Theorem 2. If the function g ∈ S∗seg is defined by (1), then

∣∣∣λ2 − δλ2
1

∣∣∣ ≤ max
{

1
8

,
|δ|
16

}
.

Thus, the Fekete–Szegö functional is the best possible.

Proof. By employing (21) and (22), we obtain∣∣∣λ2 − δλ2
1

∣∣∣ = 1
16

∣∣∣∣c2 −
1
2

c2
1 −

1
4

δc2
1

∣∣∣∣.
By applying (16) to the above equation, we obtain∣∣∣λ2 − δλ2

1

∣∣∣ ≤ 2
16

max
{

1,
∣∣∣∣2 + δ

2
− 1
∣∣∣∣}.
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After simplification, we have∣∣∣λ2 − δλ2
1

∣∣∣ ≤ max
{

1
8

,
|δ|
16

}
.

The required Fekete–Szegö functional is the best possible and is obtained using
(2), (3), and

g2(z) = z exp
(∫ z

0

2
1 + e−t2 dt

)
= z +

1
4

z3 +
1
32

z5 + · · · .

Theorem 3. If the function g ∈ S∗seg is of the form (1), then

|λ1λ2 − λ3| ≤
1
12

.

This inequality is the best possible.

Proof. Using (21)–(23), we have

|λ1λ2 − λ3| =
1
24

∣∣∣∣c3 − 2
(

19
32

)
c1c2 +

(
31
96

)
c3

1

∣∣∣∣.
From (14), let

E =
19
32

and F =
31
96

.

It is clear that 0 ≤ E ≤ 1, E ≥ F, and

E(2E− 1) =
57

512
≤ F.

Thus, all the conditions of Lemma 2 are satisfied. Hence, we have

|λ1λ2 − λ3| ≤
1
12

.

The required inequality is the best possible and is determined using (2)–(4) and

g3(z) = z exp
(∫ z

0

2
1 + e−t3 dt

)
= z +

1
6

z4 +
1
72

z7 + · · · .

Theorem 4. If g ∈ S∗seg is of the form (1), then∣∣∣λ4 − λ2
2

∣∣∣ ≤ 1
16

.

The Zalcman functional is sharp.

Proof. From (22) and (24), we obtain∣∣∣λ4 − λ2
2

∣∣∣ = − 1
32

∣∣∣∣(1
8

)
c4

1 +

(
5
8

)
c2

2 + 2
(

1
2

)
c1c3 −

3
2

(
13
24

)
c2

1c2 − c4

∣∣∣∣. (26)

By comparing the right side of (26) with∣∣∣∣$c4
1 + ςc2

2 + 2τc1c3 −
3
2

ψc2
1c2 − c4

∣∣∣∣,
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we obtain the following values:

$ =
1
8

, ς =
5
8

, τ =
1
2

, ψ =
13
24

.

It follows that 0 < ς < 1, 0 < τ < 1, and

8ς(1− ς)
(
(τψ− 2$)2 + (τ(ς + τ)− ψ)2

)
+ τ(1− τ)(ψ− 2ςτ)2 =

31
9216

,

and
4ςτ2(1− τ)2(1− ς) =

15
256

.

Thus, all the conditions of Lemma 4 are satisfied. Hence, we have∣∣∣λ4 − λ2
2

∣∣∣ ≤ 1
16

.

The required Zalcman functional is sharp and the equality is obtained using (3), (5),
and

g4(z) = z exp
(∫ z

0

2
1 + e−t4 dt

)
= z +

1
8

z5 +
1

128
z9 + · · · .

4. Second Hankel Determinant with Logarithmic Coefficients for Class S∗seg

Theorem 5. If the function g ∈ S∗seg is defined by (1), then

∣∣H2,1
(
Gg/2

)∣∣ ≤ 1
64

.

This inequality is the best possible.

Proof. The determinant H2,1
(
Gg/2

)
can be reconfigured as follows:

H2,1
(
Gg/2

)
= λ1λ3 − λ2

2.

From (21)–(23), we achieve

H2,1
(
Gg/2

)
= − 1

768
c2

1c2 +
1

4608
c4

1 +
1

192
c1c3 −

1
256

c2
2.

Using (11) and (12) to express c2 and c3 in terms of c1, and with c1 = c, and c ∈ [0, 2],
we obtain ∣∣H2,1

(
Gg/2

)∣∣ =

∣∣∣∣− 1
9216

c4 − 1
768

c2x2
(

4− c2
)
− 1

1024
x2
(

4− c2
)2

+
1

384
c
(

4− c2
)(

1− |x|2
)

$

∣∣∣∣,
By replacing |$| ≤ 1 and |x| = t, where t ≤ 1, and using triangle inequality while

taking c ∈ [0, 2], we have

∣∣H2,1
(
Gg/2

)∣∣ ≤ 1
9216

c4 +
1

768
c2t2

(
4− c2

)
+

1
1024

t2
(

4− c2
)2

+
1

384
c
(

4− c2
)(

1− t2
)

:= Θ(c, t) .

Now, differentiating Θ(c, t) with respect to t, we have
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∂Θ(c, t)
∂t

= t
(

4− c2
)( 1

1536
c2 − 1

192
c +

1
128

)
.

It is a simple exercise to show that ∂Θ(c,t)
∂t ≥ 0 on [0, 1], thus, Θ(c, t) ≤ Θ(c, 1). If t = 1,

we have ∣∣H2,1
(
Gg/2

)∣∣ ≤ 1
9216

c4 +
1

768
c2
(

4− c2
)
+

1
1024

(
4− c2

)2
:= K(c).

Clearly, K′(c) < 0; thus, it follows that K(c) is a decreasing function. Hence, K(c)
achieves its maximum value at c = 0. We can see that∣∣H2,1

(
Gg/2

)∣∣ ≤ 1
64

.

The required H2,1
(
Gg/2

)
is the best possible and is determined using (2)–(4) and

g2(z) = z exp
(∫ z

0

2
1 + e−t2 dt

)
= z +

1
4

z3 +
1
32

z5 + · · · .

Theorem 6. If the function g ∈ S∗seg is defined by (1), then

∣∣H2,2
(
Gg/2

)∣∣ ≤ 1
144

.

The inequality is sharp.

Proof. The determinant H2,2
(
Gg/2

)
is described as follows:

H2,2
(
Gg/2

)
= λ2λ4 − λ2

3.

By virtue of (22)–(24), along with c1 = c ∈ [0, 2], it can be determined that

H2,2
(
Gg/2

)
=

1
2654208

(
c6 − 156c4c2 + 480c3c3 + 252c2c2

2 − 2592c2c4

+4032cc2c3 − 2592c3
2 + 5184c2c4 − 4608c2

3

)
. (27)

Let j = 4− c2 in (11)–(13). Now, using these lemmas, we obtain

156c4c2 = 78c6 + 78c4 jx,

480c3c3 = 120
(

c6 − c4 jx2
)
+ 240

(
c4xj + c3 j

(
1− |x|2

)
$
)

,

252c2c2
2 = 126c4 jx + 63

(
c6 + c2 j2x2

)
,

2592c2c4 = 324c6 + 324c4 jx3 − 972c4 jx2 + 972c4xj + 1296jc2x2 − 1296c3 j(
1− |x|2

)
x$− 1296c2 j

(
1− |x|2

)
x$2 + 1296c2 j

(
1− |x|2

)(
1− |$|2

)
δ

+1296c3 j
(

1− |x|2
)

$,

4032cc2c3 = −504x3 j2c2 − 504c4 jx2 + 1008cxj2
(

1− |x|2
)

$ + 1008x2 j2c2

+1008c3 j
(

1− |x|2
)

$ + 1512c4xj + 504c6,

2592c3
2 = 972

(
c4 jx + c2 j2x2

)
+ 324

(
j3x3 + c6

)
,
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5184c2c4 = 324c6 + 324c4 jx3 − 972c4 jx2 + 1296c4xj + 1296jc2x2 − 1296c3 j(
1− |x|2

)
x$− 1296c2 j

(
1− |x|2

)
x$2 + 1296c2 j

(
1− |x|2

)(
1− |$|2

)
δ

+1296c3 j
(

1− |x|2
)

$ + 324x4 j2c2 − 972x3 j2c2 + 972x2 j2c2

+1296x3 j2 − 1296x2 j2
(

1− |x|2
)

c$− 1296xj2
(

1− |x|2
)

x$2

+1296xj2
(

1− |x|2
)(

1− |$|2
)

δ + 1296cxj2
(

1− |x|2
)

$,

4608c2
3 = 288x4 j2c2 − 1152x2 j2

(
1− |x|2

)
c$− 1152x3 j2c2 − 576c4 jx2 + 1152

j2
(

1− |x|2
)2

$2 + 2304cxj2
(

1− |x|2
)

$ + 1152x2 j2c2 + 1152c4xj

+288c6 + 1152c3 j
(

1− |x|2
)

$.

Inserting the above formulae into (27), we obtain

H2,2
(
Gg/2

)
=

1
2654208

{
96c3 j

(
1− |x|2

)
$− 324x3 j3 + 1296x3 j2 − 48c4 jx2

−81c2x2 j2 − 324x3 j2c2 + 36x4 j2c2 − 1152j2
(

1− |x|2
)2

$2

−144x2 j2
(

1− |x|2
)

c$− 1296xj2
(

1− |x|2
)

x$2 + 1296xj2(
1− |x|2

)(
1− |$|2

)
δ− 2c6

}
.

Because j = 4− c2,

H2,2
(
Gg/2

)
=

1
2654208

(
q1(c, x) + q2(c, x)$ + q3(c, x)$2 + ω(c, x, $)δ

)
,

where x, $, δ ∈ Od and

q1(c, x) = −2c6 +
(

4− c2
)[(

4− c2
)(
−81c2x2 + 36c2x4

)
− 48c4x2

]
,

q2(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−144cx2

)
+ 96c3

]
,

q3(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−144|x|2 − 1152

)]
,

ω(c, x, $) =
(

4− c2
)(

1− |x|2
)(

1− |$|2
)[

1296x
(

4− c2
)]

.

Let |x| = x and |$| = y. By taking |δ| ≤ 1, we achieve

∣∣H2,2
(
Gg/2

)∣∣ ≤ 1
2654208

(
|q1(c, x)|+ |q2(c, x)|y + |q3(c, x)|y2 + |ω(c, x, $)|

)
.

≤ 1
2654208

(z(c, x, y)), (28)

where
z(c, x, y) = s1(c, x) + s2(c, x)y + s3(c, x)y2 + s4(c, x)

(
1− y2

)
,

with

s1(c, x) = 2c6 +
(

4− c2
)[(

4− c2
)(

81c2x2 + 36c2x4
)
+ 48c4x2

]
,

s2(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

144cx2
)
+ 96c3

]
,

s3(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

144x2 + 1152
)]

,

s4(c, x) =
(

4− c2
)(

1− x2
)[

1296x
(

4− c2
)]

.
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Now, we have to maximize z(c, x, y) in the closed cuboid Γ : [0, 2]× [0, 1]× [0, 1].
For this, we have to discuss the maximum values of z(c, x, y) in the interior of Γ, in

the interior of its six faces, and on its twelve edges.
1. Interior points of cuboid Γ :
Let (c, x, y) ∈ (0, 2)× (0, 1)× (0, 1). By taking a partial derivative of z(c, x, y) with

respect to y, we obtain

∂z
∂y

= 48
(

4− c2
)
(1− x2)

[
6y
(

4− c2
)
(x− 1)(x− 8) + c

(
3x2
(

4− c2
)
+ 2c2

)]
.

Setting ∂z
∂y = 0 yields

y =
c
(
3x2(4− c2)+ 2c2)

6(4− c2)(x− 1)(8− x)
= y0.

If y0 is a critical point inside Γ, then y0 ∈ (0, 1), which is possible only if

3cx2
(

4− c2
)
+ 2c3 < 6

(
4− c2

)
(x− 1)(8− x). (29)

and
c2 > 4. (30)

For the existence of the critical points, we have to obtain the solutions which satisfy
both inequalities (29) and (30).

As c2 > 4, it is not hard to show that (29) does not hold true in this case for all values
of x ∈ (0, 1). Thus, there is no critical point of z(c, x, y) that exists in (0, 2)× (0, 1)× (0, 1).

2. Interior of all the six faces of cuboid Γ :
(i) On face c = 0, z(c, x, y) yields

z(0, x, y) = h1(x, y) = 2304y2(1− x2)(x− 8)(x− 1) + 20736x
(

1− x2
)

.

Taking the partial derivative with respect to y, we obtain

∂h1

∂y
= 4608y(1− x2)(x− 8)(x− 1).

However, ∂h1
∂y 6= 0. Thus, h1(x, y) has no critical point in the interval (0, 1)× (0, 1).

(ii) On face c = 2, z(c, x, y) reduces to

z(2, x, y) = 128.

(iii) On face x = 0, z(c, x, y) is equivalent to

z(c, 0, y) = h2(c, y) = 2c6 + 96c3y(4− c2) + 1152y2
(

4− c2
)2

.

Taking the derivative of h2(c, y) partially with respect to y, we have

∂h2

∂y
= 96c3(4− c2) + 2304y

(
4− c2

)2
.

Again, taking derivative of h2(c, y) partially with respect to c, we have

∂h2

∂c
= 12c5 − 192c4y + 288c2y

(
4− c2

)
− 4608cy2

(
4− c2

)
.
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A numerical calculation shows that the system of equations

∂h2

∂y
= 0 and

∂h2

∂c
= 0,

has no solution in (0, 2) × (0, 1). Hence, h2(c, y) has no optimal point in the interval
(0, 2)× (0, 1).

(iv) On face x = 1, z(c, x, y) takes the form

z(c, 1, y) = h3(c, y) = 71c6 − 744c4 + 1872c2

Clearly,
∂h3

∂c
= 426c5 − 2976c3 + 3744c.

By solving ∂h3
∂c = 0, we can find that the only critical point in (0, 2) is c = 2

71

√
4402− 355

√
43,

at which h3(c, y) achieves its maximum value, provided by

z(c, 1, y) ≤ 345551959
250000

.

(v) On face y = 0, z(c, x, y) becomes

z(c, x, 0) = h4(c, x) = 36c6x4 + 33c6x2 − 288c4x4 − 1296c4x3 + 2c6 − 456c4x2

+ 576c2x4 + 1296c4x + 10368c2x3 + 1296c2x2 − 10368c2x

− 20736x3 + 20736x.

Taking the derivative partially with respect to x and then simplifying, with respect to
c we have

∂h4

∂x
= 144c6x3 + 66c6x− 1152c4x3 − 3888c4x2 − 912c4x + 2304c2x3 + 1296c4

+31104c2x2 + 2592c2x− 10368c2 − 62208x2 + 20736.

and

∂h4

∂c
= 216c5x4 + 198c5x2 − 1152c3x4 − 5184c3x3 + 12c5 − 1824c3x2 + 1152cx4

+5184c3x + 20736cx3 + 2592cx2 − 20736cx.

Thus, after a few basic calculations we can find that the system of equations has no
solution

∂h4

∂x
= 0 and

∂h4

∂c
= 0,

in the interval (0, 2)× (0, 1). Hence, h4(c, x) has no optimal solution in the interval (0, 2)×
(0, 1).

(vi) On face y = 1, z(c, x, y) yields

z(c, x, 1) = h5(c, x) = 36c6x4 − 144c5x4 + 33c6x2 − 432c4x4 + 240c5x2 + 1152c3x4

+2c6 − 1464c4x2 + 1728c2x4 − 96c5 − 1536c3x2 − 2304cx4 + 1152c4

+9360c2x2 − 2304x4 + 384c3 + 2304cx2 − 9216c2 − 16128x2 + 18432.

Taking the partial derivative of h5(c, x) with respect to x, with respect to c we have

∂h5

∂x
= 144c6x3 − 576c5x3 − 1728c4x3 + 480c5x + 4608c3x3 − 2928c4x− 9216x3

+6912c2x3 − 3072c3x− 9216cx3 + 18720c2x + 4608cx− 32256x + 66c6x.
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and

∂h5

∂c
= 216c5x4 − 720c4x4 + 198c5x2 − 1728c3x4 + 1200c4x2 + 3456c2x4 + 12c5

−5856c3x2 + 3456cx4 − 480c4 − 4608c2x2 − 2304x4 + 4608c3 + 1152c2

+18720cx2 + 2304x2 − 18432c.

As in the above case, we can obtain the same result for face y = 0, that is, that there is
no existing solution for the system of equations

∂h5

∂x
= 0 and

∂h5

∂c
= 0,

in the interval (0, 2)× (0, 1).
3. On the Edges of Cuboid Γ :
(i) On edge x = 0 and y = 0, z(c, x, y) reduces to

z(c, 0, 0) = 2c6 = h6(c).

By simple computation, it follows that h6(c) achieves its maximum value at c = 2,
provided by

z(c, 0, 0) ≤ 128.

(ii) On edge x = 0 and y = 1, z(c, x, y) is equivalent to

z(c, 0, 1) = 2c6 − 96c5 + 1152c4 + 384c3 − 9216c2 + 18432 = h7(c).

Clearly,
h′7(c) = 12c5 − 480c4 + 4608c3 + 1152c2 − 18432c.

We can see that h′7(c) < 0 in [0, 2] shows that h7(c) is decreasing over [0, 2]. Thus, h7(c)
achieves its maximum at c = 0. Hence,

z(c, 0, 1) ≤ 18432.

(iii) On edge c = 0 and x = 0, z(c, x, y) reduces to

z(0, 0, y) = 18432y2 = h8(y).

Note that h′8(y) > 0 in [0, 1] follows h8(y) increasing over [0, 1]. Thus, h8(y) achieve
its maxima at y = 1, and we have

z(0, 0, y) ≤ 18432.

(iv) As we can see that z(c, 1, y) is independent of y, we have

z(c, 1, 0) = z(c, 1, 1) = h9(c).

h9(c) = 71c6 − 744c4 + 1872c2.

Taking the derivative with respect to c, we obtain

h′9(c) = 426c5 − 2976c3 + 3744c.

By setting h′9(c) = 0, we obtain the critical point c = 2
71

√
4402− 355

√
43 at which

h9(c) achieves its maximum value, that is,

z(c, 1, 0) ≤ 345551959
250000

.
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(v) On edge c = 0 and x = 1, z(c, x, y) yields

z(0, 1, y) = 0

(vi) On edge c = 2, z(c, x, y) takes the form

z(2, x, y) = 128.

As z(2, x, y) is independent of c, x and y, we have

z(2, 0, y) = z(2, 1, y) = z(2, x, 0) = z(2, x, 1) = 128.

(vii) On edge c = 0 and y = 1, z(c, x, y) is equivalent to

z(0, x, 1) = −2304x4 − 16128x2 + 18432 = h10(x).

It is clear that
h′10(x) = −9216x3 − 32256x.

Note that h′10(x) < 0 in [0, 1], therefore, h10(x) is decreasing in [0, 1]. Hence, h10(x)
achieves its maximum at x = 0, which is provided by

z(0, x, 1) ≤ 18432.

(viii) On edge c = 0 and y = 0, z(c, x, y) becomes

z(0, x, 0) = −20736x3 + 20736x = h11(x).

Clearly,
h′11(x) = −62208x2 + 20736.

We know that h′11(x) = 0 provides the critical point x = 1√
3

at which h11(x) achieves
its maximum value. Thus, we have

z(0, x, 0) ≤ 4608
√

3.

Hence, from the above cases we can deduce that

z(c, x, y) ≤ 18432 on [0, 2]× [0, 1]× [0, 1].

From (28), we have

∣∣H2,2
(
Gg/2

)∣∣ ≤ 1
2654208

(z(c, x, y)) ≤ 1
144

.

If g ∈ S∗seg, then the sharp bound for the second Hankel determinant is achieved using
(3)–(5) and

g3(z) = z exp
(∫ z

0

2
1 + e−t3 dt

)
= z +

1
6

z4 +
1
72

z7 + · · · .

5. Second Hankel Determinant with Logarithmic Coefficients for the Class S∗sin

Theorem 7. If the function g ∈ S∗sin is defined by (1), then

∣∣H2,2
(
Gg/2

)∣∣ ≤ 1
36

.

The inequality is sharp.
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Proof. From the definition of the class S∗sin along with the subordination principal, there is
a Schwarz function w(z) such that

zg′(z)
g(z)

= 1 + sin(w(z)), (z ∈ Od).

Assuming that q ∈ P , by writing q in terms of the Schwarz function w(z), we have

q(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + c3z3 + · · ·

which is equivalent to

w(z) =
q(z)− 1
q(z) + 1

=
c1z + c2z2 + c3z3 + c4z4 + · · ·

2 + c1z + c2z2 + c3z3 + c4z4 + · · · . (31)

Using (1), we can easily obtain

zg′(z)
g(z)

= 1 + a2z +
(
−a2

2 + 2a3

)
z2 +

(
3a4 − 3a2a3 + a3

2

)
z3

+
(
−a4

2 + 4a2
2a3 − 4a2a4 − 2a2

3 + 4a5

)
z4 + · · · . (32)

From the series expansion of (31), we have

1 + sin(w(z)) = 1 +
(

1
2

c1

)
z +

(
−1

4
c2

1 +
1
2

c2

)
z2 +

(
−1

2
c1c2 +

5
48

c3
1 +

1
2

c3

)
z3

+

(
−1

4
c2

2 −
1
2

c1c3 −
1

32
c4

1 +
1
2

c4 +
5

16
c2

1c2

)
z4 + · · · . (33)

By comparing (32) and (33), it follows that

a2 =

(
1
2

)
c1,

a3 =

(
1
4

)
c2,

a4 = − 1
24

c1c2 −
1

144
c3

1 +
1
6

c3,

a5 = − 1
32

c2
2 −

1
24

c1c3 +
5

1152
c4

1 +
1
8

c4 −
1

192
c2

1c2. (34)

By using (34) in (2)–(5), we achieve

λ1 =

(
1
4

)
c1, (35)

λ2 = − 1
16

c2
1 +

1
8

c2, (36)

λ3 = − 1
12

c1c2 +
5

288
c3

1 +
1
12

c3, (37)

λ4 = − 1
32

c2
2 −

1
256

c4
1 +

1
16

c4 −
1

16
c1c3 +

5
128

c2
1c2. (38)

The determinant H2,2
(
Gg/2

)
is described as follows:

H2,2
(
Gg/2

)
= λ2λ4 − λ2

3.
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By virtue of (36)–(38) along with c1 = c ∈ [0, 2], we can find that

H2,2
(
Gg/2

)
=

1
331776

(
−19c6 − 12c4c2 + 336c3c3 − 36c2c2

2 − 1296c2c4

+2016cc2c3 − 1296c3
2 + 2592c2c4 − 2304c2

3

)
. (39)

Let j = 4− c2 in (11)–(13). Now, using the aforementioned lemmas, we obtain

12c4c2 = 6c6 + 6c4 jx,

336c3c3 = 84
(

c6 − c4 jx2
)
+ 168

(
c4xj + c3 j

(
1− |x|2

)
$
)

,

36c2c2
2 = 18c4 jx + 9

(
c6 + c2 j2x2

)
,

1296c2c4 = 162c6 + 162c4 jx3 − 486c4 jx2 + 486c4xj + 648jc2x2

−648c3 j
(

1− |x|2
)

x$− 648c2 j
(

1− |x|2
)

x$2 + 648c2 j
(

1− |x|2
)

(
1− |$|2

)
δ + 648c3 j

(
1− |x|2

)
$,

2016cc2c3 = −252x3 j2c2 − 252c4 jx2 + 504cxj2
(

1− |x|2
)

$ + 504x2 j2c2

+504c3 j
(

1− |x|2
)

$ + 756c4xj + 252c6,

1296c3
2 = 486

(
c4 jx + c2 j2x2

)
+ 162

(
j3x3 + c6

)
,

2592c2c4 = 162c6 + 162c4 jx3 − 486c4 jx2 + 648c4xj + 648jc2x2

−648c3 j
(

1− |x|2
)

x$− 648c2 j
(

1− |x|2
)

x$2 + 648c2 j
(

1− |x|2
)

(
1− |$|2

)
δ + 648c3 j

(
1− |x|2

)
$ + 162x4 j2c2 − 486x3 j2c2

+486x2 j2c2 + 648x3 j2 − 648x2 j2
(

1− |x|2
)

c$− 648xj2
(

1− |x|2
)

x$2

+648xj2
(

1− |x|2
)(

1− |$|2
)

δ + 648cxj2
(

1− |x|2
)

$,

2304c2
3 = 144x4 j2c2 − 576x2 j2

(
1− |x|2

)
c$− 576x3 j2c2 − 288c4 jx2 + 576j2(

1− |x|2
)2

$2 + 1152cxj2
(

1− |x|2
)

$ + 576x2 j2c2 + 576c3 j
(

1− |x|2
)

$

+576c4xj + 144c6.

Inserting the above formulae into (39), we obtain

H2,2
(
Gg/2

)
=

1
331776

{
96c3 j

(
1− |x|2

)
$− 162x3 j3 + 648x3 j2 − 48c4 jx2

−81c2x2 j2 − 162x3 j2c2 + 18x4 j2c2 − 576j2
(

1− |x|2
)2

$2

−72x2 j2
(

1− |x|2
)

c$− 648xj2
(

1− |x|2
)

x$2 + 648xj2(
1− |x|2

)(
1− |$|2

)
δ− 4c6

}
.

Because j = 4− c2,

H2,2
(
Gg/2

)
=

1
331776

(
q1(c, x) + q2(c, x)$ + q3(c, x)$2 + ω(c, x, $)δ

)
,
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where x, $, δ ∈ Od and

q1(c, x) = −4c6 +
(

4− c2
)[(

4− c2
)(
−81c2x2 + 18c2x4

)
− 48c4x2

]
,

q2(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−72cx2

)
− 96c3

]
,

q3(c, x) =
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−72|x|2 − 576

)]
,

ω(c, x, $) =
(

4− c2
)(

1− |x|2
)(

1− |$|2
)[

648x
(

4− c2
)]

.

Let |x| = x and |$| = y. Taking |δ| ≤ 1, we obtain

∣∣H2,2
(
Gg/2

)∣∣ ≤ 1
331776

(
|q1(c, x)|+ |q2(c, x)|y + |q3(c, x)|y2 + |ω(c, x, $)|

)
.

≤ 1
331776

(E(c, x, y)), (40)

where
E(c, x, y) = v1(c, x) + v2(c, x)y + v3(c, x)y2 + v4(c, x)

(
1− y2

)
,

with

v1(c, x) = 4c6 +
(

4− c2
)[(

4− c2
)(

81c2x2 + 18c2x4
)
+ 48c4x2

]
,

v2(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

72cx2
)
+ 96c3

]
,

v3(c, x) =
(

4− c2
)(

1− x2
)[(

4− c2
)(

72x2 + 576
)]

,

v4(c, x) =
(

4− c2
)(

1− x2
)[

648x
(

4− c2
)]

.

Now, we have to maximize E(c, x, y) in the closed cuboid Γ : [0, 2]× [0, 1]× [0, 1].
For this, we have to discuss the maximum values of E(c, x, y) in the interior of Γ, in

the interior of its six faces, and on its twelve edges.
1. Interior points of cuboid Γ :
Let (c, x, y) ∈ (0, 2)× (0, 1)× (0, 1). By taking a partial derivative of E(c, x, y) with

respect to y, we obtain

∂E
∂y

= 24
(

4− c2
)
(1− x2)

[
6y
(

4− c2
)
(x− 1)(x− 8) + c

(
3x2
(

4− c2
)
+ 4c2

)]
.

Setting ∂E
∂y = 0 yields

y =
c
(
3x2(4− c2)+ 4c2)

6(4− c2)(x− 1)(8− x)
= y0.

If y0 is a critical point inside Γ, then y0 ∈ (0, 1), which is possible only if

3cx2
(

4− c2
)
+ 4c3 < 6

(
4− c2

)
(x− 1)(8− x). (41)

and
c2 > 4. (42)

For the existence of the critical points, we have to obtain the solutions which satisfy
both inequalities (41) and (42).

As c2 > 4, it is not hard to show that (41) does not hold true in this case for all values
of x ∈ (0, 1). Thus, there is no critical point of E(c, x, y) in (0, 2)× (0, 1)× (0, 1).

2. Interior of all six faces of cuboid Γ :
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(i) On face c = 0, E(c, x, y) yields

E(0, x, y) = I1(x, y) = 1152y2(1− x2)(x− 8)(x− 1) + 10368x
(

1− x2
)

.

Taking the partial derivative with respect to y, we obtain

∂I1

∂y
= 2304y(1− x2)(x− 8)(x− 1).

However, ∂I1
∂y 6= 0. Hence, I1(x, y) has no critical point in the interval (0, 1)× (0, 1).

(ii) On face c = 2, E(c, x, y) reduces to

E(2, x, y) = 256.

(iii) On face x = 0, E(c, x, y) is equivalent to

E(c, 0, y) = I2(c, y) = 4c6 + 96c3y(4− c2) + 576y2
(

4− c2
)2

.

Taking the derivative of I2(c, y) partially with respect to y, we have

∂I2

∂y
= 96c3(4− c2) + 1152y

(
4− c2

)2
.

Again, taking the derivative of I2(c, y) partially with respect to c, we have

∂I2

∂c
= 24c5 − 192c4y + 288c2y

(
4− c2

)
− 2304cy2

(
4− c2

)
.

A numerical calculation shows that the system of equations

∂I2

∂y
= 0 and

∂I2

∂c
= 0,

has no solution in (0, 2)× (0, 1). Hence, I2(c, y) has no optimal point in the interval (0, 2)×
(0, 1).

(iv) On face x = 1, E(c, x, y) takes the form

E(c, 1, y) = I3(c, y) = 55c6 − 600c4 + 1584c2

Clearly,
∂I3

∂c
= 330c5 − 2400c3 + 3168c.

By solving ∂I3
∂c = 0, we can find that the only critical point in (0, 2) is

c = 2
55

√
2750− 55

√
685, at which I3(c, y) achieves its maximum value, which is provided by

E(c, 1, y) ≤ 284800 + 17536
√

685
605

.

Now, using (40) along with the last obtained value, we can conclude that |H2,2
(
Gg/2

)
| < 1

36 .
(v) On face y = 0, E(c, x, y) becomes

E(c, x, 0) = I4(c, x) = 18c6x4 + 33c6x2 − 144c4x4 − 648c4x3 + 4c6 − 456c4x2

+ 288c2x4 + 648c4x + 5184c2x3 + 1296c2x2 − 5184c2x

− 10368x3 + 10368x.
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Taking the derivative partially with respect to x and then simplifying, with respect to
c we have

∂I4

∂x
= 72c6x3 + 66c6x− 576c4x3 − 1944c4x2 − 912c4x + 1152c2x3 + 648c4

+15552c2x2 + 2592c2x− 5184c2 − 31104x2 + 10368.

and

∂I4

∂c
= 108c5x4 + 198c5x2 − 576c3x4 − 2592c3x3 + 24c5 − 1824c3x2 + 576cx4

+2592c3x + 10368cx3 + 2592cx2 − 10368cx.

Thus, after a few basic calculations we can find that the system of equations has no
solution

∂I4

∂x
= 0 and

∂I4

∂c
= 0,

in the interval (0, 2)× (0, 1). Hence, I4(c, x) has no optimal solution in the interval (0, 2)×
(0, 1).

(vi) On face y = 1, E(c, x, y) yields

E(c, x, 1) = I5(c, x) = 18c6x4 − 72c5x4 + 33c6x2 − 216c4x4 + 168c5x2 + 576c3x4

+4c6 − 960c4x2 + 864c2x4 − 96c5 − 960c3x2 − 1152cx4 + 576c4

+5328c2x2 − 1152x4 + 384c3 + 1152cx2 − 4608c2 − 8064x2 + 9216.

Taking the partial derivative of I5(c, x) with respect to x, with respect to c we have

∂I5

∂x
= 72c6x3 − 288c5x3 − 864c4x3 + 336c5x + 2304c3x3 − 1920c4x− 4608x3

+3456c2x3 − 1920c3x− 4608cx3 + 10656c2x + 2304cx− 16128x + 66c6x.

and

∂I5

∂c
= 108c5x4 − 360c4x4 + 198c5x2 − 864c3x4 + 840c4x2 + 1728c2x4 + 24c5

−3840c3x2 + 1728cx4 − 480c4 − 2880c2x2 − 1152x4 + 2304c3

+10656cx2 + 1152c2 + 1152x2 − 9216c.

As in the above case, we can obtain the same result for face y = 0, that is, that there is
no existing solution for the system of equations

∂I5

∂x
= 0 and

∂I5

∂c
= 0,

in the interval (0, 2)× (0, 1).
3. On the Edges of Cuboid Γ :
(i) On edge x = 0 and y = 0, E(c, x, y) reduces to

E(c, 0, 0) = 4c6 = I6(c).

Clearly, the function I6(c) achieves its maximum value at c = 2, as provided by

E(c, 0, 0) ≤ 256.

(ii) On edge x = 0 and y = 1, E(c, x, y) is equivalent to

E(c, 0, 1) = 4c6 − 96c5 + 576c4 + 384c3 − 4608c2 + 9216 = I7(c).
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Clearly,
I′7(c) = 24c5 − 480c4 + 2304c3 + 1152c2 − 9216c.

We can see that I′7(c) < 0 in [0, 2] shows that I7(c) is decreasing over [0, 2]. Thus, I7(c)
achieves its maxima at c = 0. Hence,

E(c, 0, 1) ≤ 9216.

(iii) On edge c = 0 and x = 0, E(c, x, y) reduces to

E(0, 0, y) = 9216y2 = I8(y).

Note that from I′8(y) > 0 in [0, 1] it follows that I8(y) is increasing over [0, 1]. Thus,
I8(y) achieves its maxima at y = 1. Thus, we have

E(0, 0, y) ≤ 9216.

(iv) As we can see that E(c, 1, y) is independent of y, we have

E(c, 1, 0) = E(c, 1, 1) = I9(c).

I9(c) = 55c6 − 600c4 + 1584c2.

Taking the derivative with respect to c, we have

I′9(c) = 330c5 − 2400c3 + 3168c.

Setting I′9(c) = 0, we obtain the critical point c = 2
55

√
2750− 55

√
685 at which I9(c)

achieves its maximum value, which is provided by

E(c, 1, 0) ≤ 284800 + 17536
√

685
605

.

(v) On the edge c = 0 and x = 1, E(c, x, y) yields

E(0, 1, y) = 0

(vi) On edge c = 2, E(c, x, y) takes the form

E(2, x, y) = 256.

As E(2, x, y) is independent of c, x and y, we have

E(2, 0, y) = E(2, 1, y) = E(2, x, 0) = E(2, x, 1) = 256.

(vii) On edge c = 0 and y = 1, E(c, x, y) is equivalent to

E(0, x, 1) = −1152x4 − 8064x2 + 9216 = I10(x).

It is clear that
I′10(x) = −4608x3 − 16128x.

Note that I′10(x) < 0 in [0, 1]; therefore, I10(x) is decreasing in [0, 1]. Hence, I10(x)
achieves its maxima at x = 0, which is provided by

E(0, x, 1) ≤ 9216.

(viii) On edge c = 0 and y = 0, E(c, x, y) becomes

E(0, x, 0) = −10368x3 + 10368x = I11(x).
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Clearly,
I′11(x) = −31104x2 + 10368.

We know that I′11(x) = 0 yields the critical point x = 1√
3

at which I11(x) achieve its
maximum value. Thus, we have

E(0, x, 0) ≤ 2304
√

3.

Hence, from the above cases we can deduce that

E(c, x, y) ≤ 9216 on [0, 2]× [0, 1]× [0, 1].

From (40), we have

∣∣H2,2
(
Gg/2

)∣∣ ≤ 1
331776

(E(c, x, y)) ≤ 1
36

.

If g ∈ S∗sin, then the sharp bound for the second Hankel determinant can be achieved
using (3)–(5) and

g(z) = z exp

(∫ z

0

1 + sin
(
t3)− 1

t
dt

)
= z +

1
3

z4 + · · · .

6. Conclusions

Calculating the third-order Hankel determinant sharp bound is a challenging task
in spite of the extensive literature on the Hankel determinants in the area of geometric
function theory. In the present article, two subfamilies of starlike functions connected to
special functions are taken into consideration. For the stated classes, we achieve sharp
bounds on the coefficient-related problems. In particular, by transforming the third Hankel
determinant to a real function with three variables defined on a cuboid, we determine the
exact bound of the third Hankel determinant with logarithmic coefficient entries. This
makes it easier to comprehend the additional geometric characteristics of these function
classes. By upgrading the current methodologies, it could be feasible to obtain more results
for other univalent or analytic function subfamilies.
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