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Probably the best example to start with with regard to structures with high symmetry
(SHS) is C60 fullerene (buckminsterfullerene) [1], a synthetic form of carbon resembling
footballs [2]. Inside of an applicability domain with structure–property relationships
applied, designs may serve as tools for the in silico construction of chemical SHS, as well as
for the characterization of structure, the classification of series of structures, and property
prediction [3]. Investigation into these structures helps us to better understand their natural
tendencies to stabilize matter into chemicals, as well as to further develop new classes
of highly symmetric chemical compounds. Several experimental [4,5] and theoretical
tools [6–8] are now available for this task.

“Applied Designs in Chemical Structures with High Symmetry” (ADCSHS) is a
collection of twelve articles.

1. Contributions

Rhombellane was defined by Diudea [9] in the context of distinguishing between
cycles, rings, and strong rings. Having in mind the real interest for new potent drug
carriers, the potential of these new topologies to be implemented as real chemical struc-
tures has been explored further in [10]. ADCSHS gives a group of five papers on this
topic ([11–15]). In [11], by using the rhombellane framework, several dual-layer covalent
assemblies were designed as potential drug delivery systems. Following a computational
study, the authors concluded that the aromatic moieties through stacking interactions, as
well as the hydrogen bond donor and acceptor groups on the surface layer, significantly
contribute to the ligand binding capacity. They also noted that the immobilization of
compounds with pharmaceutical potential could be further enhanced by attachment of
functional groups to the aromatic rings. In a subsequent docking study [12], the immobi-
lization of oxindole derivatives was evaluated against immobilization on C60, where, in
one instance, an increase up to 4–5 times of the binding constant was noticed.

Docking provides preferred orientation, affinity, and interaction of a ligand in the binding
site of a host molecule, and several computer programs are dedicated to do this task. ADCSHS
provides two papers on this topic (Refs. [16,17] docking to enzymes’ active sites). With the use
of AutoDock (v.4 [18] and Vina [19] in [13] and in [14–17]), Dr. Szefler and Dr. Czelen docked
several ligands (cisplatin in [13], polyethylenimines derivatives in [14], ChEMBL474807 in [15],
oxindole derivatives in [16]) to different hosts (rhombellane homeomorphs and C60 in [13–15],
nanotubes in [15], 1E9H (CDK2, PDB [20]) and 3QVR (GOx, PDB [21]) enzymes active sites
in [16] and in [17]) when similar binding affinities were observed. However, some distinct
conclusions were drawn; thus, the highest values of both binding affinity and binding constant
were found in the case of carbon nanotubes [15] when compared with the other alternatives
(rhombellane homeomorphs and C60 fullerene).

COSMO (from COnductor-like Screening MOdel) is a method which has become
popular in recent years [22,23] for calculating the electrostatic interaction of a molecule
with a solvent [24]. Some challenges and possible solutions in the case of fullerenes are
provided in [25]. It was documented in [25] that, from the perspective of the COSMO-RS
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approach, in the case of C60, it is indispensable to distinguish calorimetric contributions to
Gibbs free energy of fusion from the fluidization term; classification of solvents into groups
with similar values of fluidization term proved to significantly increase the accuracy of the
predicted solubility.

In the search for improving the explanatory power of structure–activity relationships,
in [26], starting from binding constants of 1:1 β-cyclodextrin complexes with different
organic compounds, the authors apply a previously reported approach [27] of non-linear
multivariate adaptive regression splines (implemented in STATISTICA v.12 software) on
common molecular descriptors calculated from simplified molecular input line entry
specification. The study included internal and external validation, which indicated good
accuracy of the model, while inclusion of the XlogP (polarity-related descriptor) gives the
physical support of the model since the cyclodextrin cavity is hydrophobic.

Some of the research carried out under the framework of the GEMNS project (Self-
navigated integrin receptors seeking ’thermally-smart’ multifunctional few-layer graphene-
encapsulated magnetic nanoparticles for molecular MRI-guided anticancer treatments in ’real
time’ personalized nanomedicine) from the EuroNanoMed-II, PN III, ERA-NET program (ID
57, Grant no. 8/2015, Director Prof. Mircea V. Diudea) was highlighted in [28]. The authors
of [28], combining data from Chemoffice (v. 2005) software with tools from Mathematica (v. 5.0)
software constructed QSAR models using the AutoQSAR (v. 2009) software. Hypotheses were
derived from QSARs, and finally, a merged (combined from two) hypothesis was formulated.
Based on their study, the authors concluded that a mathematical model based on Riemann
surfaces can be built in order to screen and characterize polymers with gene transfer properties.

At over fifty years since its formulation [29], density functional theory is has become
a very powerful tool for molecular and materials modeling. As a typical case study of
its capabilities, in [30], dimensionless ratio, elastic constants, shear modulus, Young’s
modulus, bulk modulus, ductile–brittle transition, material anisotropy, and Poisson’s ratio,
as functions of applied pressure, are calculated for TiV alloys with symmetric structures
under high pressure. The authors of [30] were able to extract from their computations a
series of important specific information, for example, that the symmetric crystal structure
of the TiV alloy produces structural phase transitions when the applied pressure exceeds
42.05 GPa, which was found to be the critical pressure of the structural phase transition.

Molecular conformation as a subproblem of the geometrical shaping of molecules is
essential for the expression of biological activity, and two typical examples are sugars [31]
and amino acids [32]. In [33], the author stresses the connection between geometrical
orthogonalization and molecular alignment. In [33], it is shown that while the eigenproblem
arises when topological adjacencies are represented into the Hessian, molecular alignment
is achieved when projections of the geometrical adjacencies follow a transformation which
maximizes its principal components.

2. Perspectives

As later studies showed [34,35], similarity invokes symmetry (and vice versa) in
certain details, and there is plenty of research on the formulation of the eigenproblem in
chemistry. Moving from the molecular level to macroscopic level requires a change in
perspective regarding the objects subjected to the symmetry analysis [36,37]. Molecular
clusters are an interesting case of similarity symmetry, the topology being taken to the next
level [38].

Even if the primary use of symmetry is to predict or explain properties such as
dipole moment and allowed spectroscopic transitions, there is an increasing number of
studies [39–43] recognizing and documenting the role of symmetry in the biological mani-
festations of chemical compounds since the control of the symmetry in synthetic molecules
increases the ability to provide therapies with minimal side effects.
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