OpenFOAMTM Simulation of the Shock Wave Reflection in Unsteady Flow
Abstract
:1. Introduction
2. Physical Model and Numerical Scheme
2.1. Gas Dynamics Equations
2.2. Finite Volume Formulation
- To obtain better stability of the solutions, upwind reconstruction functions were recommended. Upwind reconstructions produce accurate results, and they do not generate non-physical oscillations.
- Time-accurate solutions are obtained when CFL ≤ 0.5.
3. Spherical and Cylindrical Shock Wave Reflections over Straight Surfaces
- (1)
- Reflecting on a non-straight surface of a shock wave moving with constant velocity.
- (2)
- Reflecting on a straight surface of a shock wave moving with variable velocity.
- (3)
- Reflecting on a non-straight surface of a shock wave moving with variable velocity.
- If the triple point moves away from the reflective surface, then the MR is a direct Mach reflection: DiMR;
- If the triple point moves parallel to the solid surface, then it is a stationary Mach reflection: StMR;
- If the triple point moves closer to the surface, then it is an inverse Mach reflection: InMR.
- A single-Mach reflection (SMR);
- A transitional-Mach reflection (TMR);
- A double-Mach reflection (DMR).
- The first transition is from RR to IR. In this study, the IR can be a DMR, TMR or SMR depending on the value of (height of burst). According to [19], for example:
- -
- If , the transition will be from RR to DMR;
- -
- If , the transition will be from RR to TMR;
- -
- If , the transition will be from RR to SMR.
The transition criterion for RR ⇄ IR was established in Equation (18).
4. Numerical Simulations
4.1. Test of Study
4.2. Meshes and Boundaries
4.3. Grid Independence
4.4. Time Step Sensitivity Analysis
4.5. 2D Case. Comparisons with Pseudo-Steady Results
4.5.1. m
Transition from RR to DMR
Transition from DMR to TMR
Transition from TMR to SMR
4.5.2. m
4.5.3. m
4.5.4. m
4.5.5. m
4.6. 3D Case. Spherical Shock Waves
5. Comparison with Other Numerical Simulations
6. Comparison with Experimental Data
7. Discussion of Results
- There was accuracy for the reflecting angle where the maximum difference is up to .
- The greatest differences for the Mach number of the shock wave, , occur for the TMR ⇄ SMR (, , and ). For other transitions, the differences are less significant (between and .
- The numerical simulations could not properly predict the position of the triple point (from the reflecting wall). The differences between the pseudo-steady and numerical results measure approximately between and .
- In all transitions, the poorest approximation was observed for the triple point position (from the reflecting wall).
- The numerical predictions for the Mach of the incident wave are in good agreement, but the highest difference was observed on the TMR ⇄ SMR ().
- The predictions of the wedge angle can be considered in fair agreement, with the poor prediction for the RR ⇄ DMR ().
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HOB | Height of burst |
RR | Regular reflection |
IR | Irregular reflection |
SMR | Single-Mach reflection |
TMR | Transitional-Mach reflection |
DMR | Double-Mach reflection |
vNR | von-Neumann reflection |
MR | Mach reflection |
DiMR | Direct Mach reflection |
SiMR | Stationary Mach reflection |
IniMR | Inverse Mach reflection |
T | Triple point |
T’ | Double triple point |
Mach number of the shock wave | |
Reflected angle | |
Position of the triple point | |
Proprietary cell volume | |
Convective flux | |
u | Transported conservative field |
Face value | |
Face surface vector |
References
- Radchenko, P.A.; Batuev, S.P.; Radchenko, A.V. Numerical analysis of concrete fracture under shock wave loading. Phys. Mesomech. 2021, 24, 40–45. [Google Scholar] [CrossRef]
- Figuli, L.; Zvaková, Z.; Kavický, V.; Loveček, T. Dependency of the Blast Wave Pressure on the Amount of Used Booster. Symmetry 2021, 13, 1813. [Google Scholar] [CrossRef]
- Marcantoni, L.F.; Elaskar, S.; Tamagno, J.; Saldía, J.; Krause, G. An assessment of the OpenFOAM implementation of the KNP scheme to simulate strong explosions. Shock Waves 2021, 31, 193–202. [Google Scholar] [CrossRef]
- Chauhan, A.; Arora, R.; Siddiqui, M.J. Propagation of blast waves in a non-ideal magnetogasdynamics. Symmetry 2019, 11, 458. [Google Scholar] [CrossRef] [Green Version]
- Lechat, T.; Emmanuelli, A.; Dragna, D.; Ollivier, S. Propagation of spherical weak blast waves over rough periodic surfaces. Shock Waves 2021, 31, 379–398. [Google Scholar] [CrossRef]
- Cullis, I.G. Blast waves and how they interact with structures. BMJ Mil. Health 2001, 147, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draganić, H.; Sigmund, V. Blast loading on structures. Tehnički Vjesnik 2012, 19, 643–652. [Google Scholar]
- Nartu, M.K.; Kumar, M.; Ramisetti, S.B. Improved Methodology for Accurate Prediction of Blast Wave Clearing on a Finite Target. J. Eng. Mech. 2022, 148, 04022049. [Google Scholar] [CrossRef]
- Anas, S.M.; Alam, M. Comparison of existing empirical equations for blast peak positive overpressure from spherical free air and hemispherical surface bursts. Iran. J. Sci. Technol. 2022, 46, 965–984. [Google Scholar] [CrossRef]
- Ben-Dor, G. Shock Wave Reflection Phenomena, 2nd ed.; Springer: Berlin/Germany, Germany, 2007. [Google Scholar]
- Brode, H.L. Numerical solutions of spherical blast waves. J. Appl. Phys. 1955, 6, 766–775. [Google Scholar] [CrossRef]
- Brode, H.L. Blast wave from a spherical charge. Phys. Fluids 1959, 2, 217–229. [Google Scholar] [CrossRef]
- Dewey, J.; McMillin, D.; Classen, D. Photogrammetry of spherical shocks reflected from real and ideal surfaces. J. Fluid Mech. 1977, 81, 701–717. [Google Scholar] [CrossRef]
- Dewey, J.; McMillin, D. An analysis of the particle trajectories in spherical blast waves reflected from real and ideal surfaces. Can. J. Phys. 1981, 59, 1380–1390. [Google Scholar] [CrossRef]
- Takayama, K.; Sekiguchi, H. Formation and diffraction of spherical shock waves in a shock tube. Rep. Inst. High Speed Mech. Tohoku Univ. 1981, 43, 89–119. [Google Scholar]
- Colella, P.; Ferguson, R.E.; Glaz, H.M.; Kuhl, A.L. Mach reflection from an HE-driven blast wave. In Dynamics of Explosions; International Colloquium on Dynamics of Explosions and Reactive Systems: New York, NY, USA, 1986; pp. 388–421. [Google Scholar]
- Liang, S.; Hsu, J.; Wang, J. Numerical study of cylindrical blast-wave propagation and reflection. AIAA J. 2001, 39, 1152–1158. [Google Scholar] [CrossRef]
- Liang, S.; Hsu, J.; Chen, H. Numerical Study of Spherical Blast-Wave Propagation and Reflection. Shock Waves 2002, 12, 59–68. [Google Scholar] [CrossRef]
- Hu, T.; Glass, C.J.I. Blast wave reflection trajectories from a height of burst. AIAA J. 1986, 24, 607–610. [Google Scholar] [CrossRef]
- Bazhenova, T.V.; Gvozdeva, L.G.; Nettleton, M.A. Unsteady interactions of shock waves. Prog. Aerosp. Sci. 1984, 21, 249–331. [Google Scholar] [CrossRef]
- Gvozdeva, L.G.; Predvoditeleva, O.A.; Fokeev, V.P. Double Mach reflection of strong shock waves. Fluid Dyn. 1968, 3, 6–11. [Google Scholar] [CrossRef]
- Bazhenova, T.V.; Fokeev, V.P.; Gvozdeva, L.G. Regions of various forms of Mach reflection and its transition to regular reflection. Acta Astronaut. 1976, 3, 131–140. [Google Scholar] [CrossRef]
- Dixon-Hiester, L.; Reisler, R.; Keefer, J.; Ethridge, N. Shock enhancement at transition from regular to Mach reflection. Am. Inst. Phys. 1990, 208, 204–209. [Google Scholar]
- Kleine, H.; Timofeev, E.; Takayama, K. Reflection of blast waves from straight surfaces. In Shock Waves; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1019–1024. [Google Scholar]
- Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F. Extension of geometrical shock dynamics for blast wave propagation. Shock Waves 2020, 30, 563–583. [Google Scholar] [CrossRef]
- Kurganov, A.; Tadmor, E. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 2000, 160, 241–282. [Google Scholar] [CrossRef] [Green Version]
- Kurganov, A.; Noelle, S.; Petrova, G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton—Jacobi equations. SIAM J. Sci. Comput. 2001, 23, 707–740. [Google Scholar] [CrossRef] [Green Version]
- Greenshields, C.; Weller, H.; Gasparini, H.; Reese, J. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids 2010, 63, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Marcantoni, L.F.G.; Tamagno, J.P.; Elaskar, S.A. Two-dimensional numerical simulation of detonation celluler structures in H2-O2-Ar mixture with OpenFOAM. Int. J. Hydrogen Energy 2017, 42, 26102–26113. [Google Scholar] [CrossRef]
- Marcantoni, L.F.G.; Tamagno, J.P.; Elaskar, S.A. rhocentralRffoam: An Openfoam solver for high speed chemically active flows—Simulation of planar detonations. Comput. Phys. Commun. 2017, 219, 209–222. [Google Scholar]
- Marcantoni, L.G.; Tamagno, J.; Elaskar, S. A numerical study on the impact of chemical modeling on simulating methane-air detonations. Fuel 2019, 240, 289–298. [Google Scholar] [CrossRef]
- Azadboni, R.K.; Wen, J.X.; Heidari, A.; Wang, C. Numerical modeling of deflagration to detonation transition in inhomogeneous hydrogen/air mixtures. J. Loss Prev. Process. Ind. 2017, 49, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Toro, E. Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hung, C. Definition of contravariant velocity components. Theor. Fluid Mech. Meet. 2002, 3, 3202. [Google Scholar]
- Jasak, H.; Jemcov, A.; Tukovic, A. OpenFOAM: A C++ library for complex physics simulations. Int. Workshop Coupled Methods Numer. Dyn. 2007, 1000, 1–20. [Google Scholar]
- Espinoza, D.; Casseau, V.; Scanlon, T.; Brown, R. An open-source hybrid CDF-DNSC solver for high speed flows. AIP Conf. Proc. 2016, 1786, 50–70. [Google Scholar]
- Zang, B.; Vevek, U.; Lim, H.; Wei, X.; New, T. An assessment of OpenFOAM solver on RANS simulations of round supersonic free jets. Comput. Sci. 2018, 28, 18–31. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K. Supersonic Flow and Shock Waves; Wiley Interscience: New York, NY, USA, 1948. [Google Scholar]
- Ben-Dor, G.; Takayama, K. The dynamics of the transition from Mach to regular reflection over concave cylinders. Isr. J. Technol. 1986, 23, 71–74. [Google Scholar]
Time [μs] | |
---|---|
540 | 1.073 |
550 | 1.071 |
560 | 1.079 |
600 | 1.085 |
Ben-Dor [10] | μs | μs | |
---|---|---|---|
[deg] | 50.78 | 49.635 | 46.85 |
2.77 | 2.88 | 2.77 | |
x [m] | 0.65 | 0.68 | 0.75 |
0.0005 | 0.0006 | 0.0065 |
Time [μs] | Ben-Dor [10] | μs | ||
---|---|---|---|---|
610 | 1.0191 | [deg] | 45.05 | 44.12 |
620 | 1.0082 | 2.49 | 2.62 | |
630 | 1.0258 | x [m] | 0.8 | 0.825 |
640 | 1.0264 | 0.01 | 0.01625 |
Time [μs] | Ben-Dor [10] | μs | ||
---|---|---|---|---|
940 | 1.0464 | [deg] | 33.19 | 33.25 |
950 | 1.0264 | 1.99 | 2.306 | |
960 | 1.0313 | x [m] | 1.25 | 1.22 |
970 | 1.0345 | 0.05 | 0.0687 |
Time [μs] | Ben-Dor [10] | μs | ||
---|---|---|---|---|
2800 | 1.00817 | [deg] | 46.01 | 47.231 |
2900 | 1.00523 | 1.321 | 1.6 | |
3000 | 1.02218 | x [m] | 1.95 | 1.85 |
3100 | 1.0673 | 0.001 | 0.0015 |
Time [μs] | Ben-Dor [10] | μs | ||
---|---|---|---|---|
1700 | 1.0186 | [deg] | 48.96 | 48.118 |
1725 | 1.0095 | 1.6 | 1.872 | |
1750 | 1.0032 | x [m] | 1.4 | 1.345 |
1775 | 1.0086 | 0.0005 | 0.0003 |
Time [μs] | Ben-Dor [10] | μs | ||
---|---|---|---|---|
800 | 1.02084 | [deg] | 50.98 | 48.65 |
825 | 1.0084 | 2.13 | 2.235 | |
850 | 1.01458 | x [m] | 0.81 | 0.88 |
875 | 1.02164 | 0.0006 | 0.0005 |
Time [μs] | Ben-Dor [10] | μs | ||
---|---|---|---|---|
1275 | 1.01899 | [deg] | 39.0791 | 35.34 |
1300 | 1.00382 | 1.805 | 2.051 | |
1325 | 0.9996 | x [m] | 1.3 | 1.051 |
1350 | 0.9933 | 0.05 | 0.06 |
RR ⇄ DMR | Ben-Dor [10] | μs |
[deg] | 31.16 | 31.6 |
5.73 | 5.2 | |
x [m] | 0.35 | 0.36 |
0.0005 | 0.0006 | |
DMR ⇄ TMR | Ben-Dor [10] | μs |
[deg] | 49.61 | 48.01 |
4.13 | 3.85 | |
x [m] | 0.62 | 0.65 |
0.07 | 0.1 | |
TMR ⇄ SMR | Ben-Dor [10] | μs |
[deg] | 19.25 | 21.22 |
3.02 | 4.058 | |
x [m] | 0.95 | 1.03 |
0.2 | 0.425 |
Time [μs] | |
---|---|
540 | 0.9993 |
550 | 1.004 |
600 | 1.073 |
Ben-Dor [10] | μs | μs | |
---|---|---|---|
[deg] | 50.78 | 47.86 | 45.16 |
2.77 | 2.63 | 2.70 | |
x [m] | 0.65 | 0.693 | 0.797 |
0.0005 | 0.0085 | 0.009 |
Time [μs] | Ben-Dor [10] | μs | ||
---|---|---|---|---|
610 | 0.9930 | [deg] | 45.05 | 43.89 |
620 | 1.039 | 2.49 | 2.1 | |
630 | 1.052 | x [m] | 0.8 | 0.77 |
640 | 1.046 | 0.01 | 0.0157 |
Time [μs] | Ben-Dor [10] | μs | ||
---|---|---|---|---|
940 | 1.064 | [deg] | 33.19 | 34.75 |
950 | 1.032 | 1.99 | 2.11 | |
960 | 1.075 | x [m] | 1.25 | 1.026 |
970 | 1.076 | 0.05 | 0.0817 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monaldi, L.; Marcantoni, L.G.; Elaskar, S. OpenFOAMTM Simulation of the Shock Wave Reflection in Unsteady Flow. Symmetry 2022, 14, 2048. https://doi.org/10.3390/sym14102048
Monaldi L, Marcantoni LG, Elaskar S. OpenFOAMTM Simulation of the Shock Wave Reflection in Unsteady Flow. Symmetry. 2022; 14(10):2048. https://doi.org/10.3390/sym14102048
Chicago/Turabian StyleMonaldi, Lucas, Luis Gutiérrez Marcantoni, and Sergio Elaskar. 2022. "OpenFOAMTM Simulation of the Shock Wave Reflection in Unsteady Flow" Symmetry 14, no. 10: 2048. https://doi.org/10.3390/sym14102048
APA StyleMonaldi, L., Marcantoni, L. G., & Elaskar, S. (2022). OpenFOAMTM Simulation of the Shock Wave Reflection in Unsteady Flow. Symmetry, 14(10), 2048. https://doi.org/10.3390/sym14102048