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Abstract: Robotic machining has obtained growing attention recently because of the low cost, high
flexibility and large workspace of industrial robots (IRs). Multiple degrees of freedom of IRs improve
the dexterity of machining while causing the problem of redundancy. Meanwhile, the performance of
IRs, such as their stiffness and dexterity, is affected by their position and posture obviously. Therefore,
a redundant posture optimization method for robotic milling is proposed to improve the machining
performance of the robot. The multiple characteristics of the robot are considered, including the
joint-limit, singularity and stiffness, which have symmetry in its workspace. Firstly, the joint-limit is
regarded as the constraint. And a symmetrical and effective constraint method is proposed to simply
guarantee that all the interpolation points can avoid joint interference. Then, the performance indices
of singularity and stiffness are designed as the optimization target. On this basis, the piecewise-
global-optimization-strategy (PGOS) is proposed for redundant optimization. Owning to the PGOS,
all the given planned tool points in their corresponding segment are considered simultaneously to
avoid the gradual deterioration in traditional methods, which is especially suitable for the machining
process with a continuous path. Moreover, the computational load of the optimization solution
is considered and limited by the designed segmentation strategy. Finally, a series of comparative
simulations are conducted to validate the good performance of the proposed method.

Keywords: robotic milling; redundant posture optimization; joint-limit avoidance; stiffness; singularity

1. Introduction

Presently, CNC machine tools are the mean equipment for metal cutting, which is
suitable for production with high precision and large quantity [1]. However, conventional
CNC machine tools suffer from several limitations in the production of large size and small
batches, such as high cost and low flexibility [2,3]. In recent years, robotic machining by
industrial robots (IRs), especially robotic milling, has attracted growing attention owing to
the low cost, high flexibility and large workspace of IRs [4].

As shown in Figure 1, a six revolute (6R) serial robot is usually employed to construct a
robotic milling system where the spindle is mounted as the end-effector (EE). The computer-
aided manufacturing (CAM) system designed for five-axis CNC milling, such as the
Mastercam and Siemens NX, is usually used to generate the target milling path with a
series of tool points [5,6]. During the milling process, the motion control of the 6R robot
needs six coordinates at each milling point, including three position coordinates to locate
the tool center point (TCP) and three posture coordinates to orient the EE [7]. However,
the typical CAM system can only provide five coordinates without the rotational degree of
freedom (DoF) around the tool axis [8], which can be represented by a γ coordinate in the
Euler frame as shown in Figure 1. Hence, the absent γ needs to be determined for the robot
controller for the following posture tracking [9,10], which can be summed up as a planning
problem of redundant DoF.
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Figure 1. Layout of the robotic milling system and the redundant γ coordinate.

The γ coordinate can be directly selected as a fixed value, which solves the redundancy
problem reluctantly. However, the dexterity of the 6R robot is lost. In addition, the
performance, such as the singularity and stiffness of EE, changes with the position and
posture of IRs, which affects the machining quality directly [11]. Therefore, optimization
planning considering the performance of the robot is the most reasonable and valuable
mode for the redundancy problem [12]. For 6R robotic milling, three main performances
are widely considered, including joint-limit, singularity and stiffness of EE, which are
introduced in detail as follows:

• Joint-limit performance

Joint-limit performance is always regarded as one of the optimization targets to avoid
joint interference. Zhu et al. [13] define a joint-limit index to keep each joint angle away
from the limit boundary and its value range is [1, + ∞]. A similar joint-limit index is
designed and applied in [14], which obtains a similar optimization result.

In general, the purpose of these performance indices and their optimization is to
maintain each joint angle close to the middle of the limit range. In fact, this is not necessary
because the joint-limit is to avoid joint interference of mechanical structure but has no effect
on the motion performance when approaching the boundary. Therefore, the joint-limit
does not need to be the optimization target but should be the constraint for judgment.

In this regard, some researchers use the joint-limit as the constraint to judge whether
each joint angle of the planned tool points is within the limit range [15,16]. However, these
methods can only ensure the joint-limit avoidance of the planned tool points. But the
middle interpolation points between the planned points are ignored, which might result
in the risk of joint interference due to the complex nonlinear mapping between Cartesian
space and the joint space of IRs.

• Singularity performance

The singularity of IRs affects their motion performance obviously and the singular con-
figuration should be kept away during the milling process. Hence, singularity performance
should be regarded as one of the optimization targets.

Several singularity performance indices, such as the manipulability index [17] and the
condition number of the Jacobian matrix [18], are designed as the distance metrics to avoid
the singularity. The condition number of Jacobian has many different forms and reflects the
transfer relationship between force and motion [13]. Among them, the condition number
defined in the Frobenius norm [19] is the most widely used owing to the low computational
load. These singularity performance indices have different value ranges and can be selected
according to the application requirements.

• Stiffness performance
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The stiffness performance affects the machining accuracy and surface quality directly
and is the most important factor limiting the application of robot machining compared
with CNC machine tools [20]. The greater stiffness of robot EE can obtain better machine
quality [21]. Therefore, stiffness performance should be regarded as one of the optimiza-
tion targets.

The stiffness matrix of robot EE Kcar in Cartesian space can reflect the operational
stiffness. However, Kcar is the tensor index with various parameters and is difficult to
use in optimization solutions directly. Hence, the scalar index needs to be constructed.
Assuming the robot link is rigid and the joint is elastic, the stiffness distribution of robot EE
is an ellipsoid, which is called a stiffness or compliance ellipsoid. Several scalar stiffness
indices are designed based on stiffness ellipsoids for different occasions. To improve
the accuracy and efficiency of robotic drilling, Jiao et al. [14] and Chen et al. [22] select
maximizing the stiffness in the normal direction of the workpiece as the optimization target.
Correspondingly, the stiffness indices are designed to describe the deviation of the long
axis of the stiffness ellipsoid from the normal direction. Xiong et al. [23] proposes a feed
direction stiffness index where the stiffness along the feed direction is maximized to obtain
a high feed rate. Guo et al. [7] selects the volume of the stiffness ellipsoid as a performance
index to improve the overall machining quality. Similarly, several overall indices are
defined in [22,24,25]. These indices realize the scalar metrics of stiffness performance in
different aspects and can be selected for specific applications.

Based on the above constraint and performance indices, various redundant posture
optimization methods are developed. The stiffness and singularity performance are con-
sidered respectively in [8,22]. For better comprehensive performance, the joint-limit and
singularity indices are combined as the optimization target in [13,23]. However, as men-
tioned before, taking a joint-limit as an optimization objective is unnecessary and might
limit the performance of IRs. Jiao et al. [14] and Xiong et al. [24] consider three factors
simultaneously, where the joint-limit and singularity are used as judgmental constraints.
Nevertheless, the threshold of the singularity index is difficult to determine due to the lack
of clear physical meaning. Lin et al. [16] takes the stiffness and singularity indices as the
optimization targets, respectively. Meanwhile, the constraint for the variation range of γ
between two adjacent planned tool points, which is called the displacement constraint of
γ, is considered to ensure the machining efficiency and quality. And the corresponding
constraint strategy is proposed. However, the velocity planning of the other five DoFs is
needed previously, which is complex and has low accuracy. Most importantly, the above
optimization methods all employ the sequential-single-point-optimization-strategy (SS-
POS), where only one point is considered in each optimization process. Thus, SSPOS is
easy to lead to a gradual deterioration in subsequent optimization. Moreover, due to the
variation range constraint of γ, the optimization process might even fall into the bad region
and cannot jump out.

To overcome these problems, a novel redundant posture optimization method consid-
ering joint-limit, singularity and stiffness is proposed in this paper. The main contributions
can be described as follows:

• A symmetrical judgment method for joint-limit avoidance is proposed to guarantee
that both the planned tool points and their middle points can satisfy the joint-limit
constraint, which is effective and simple to apply;

• A new stiffness index based on the stiffness ellipsoid and its symmetry is designed
to balance the effects of stiffness and singularity indices in a weighted combination,
which can prevent stiffness from being submerged by the singularity index in value;

• Corresponding to SSPOS, the piecewise-global-optimization-strategy (PGOS) and its
redundant optimization method are proposed, which can comprehensively consider all
the given tool points and the computational load. Meanwhile, a simple displacement
constraint method of γ is designed.

The remainder of this paper is organized as follows. Section 2 presents the performance
indices and their combination method. In Section 3, the proposed posture optimization
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method is introduced in detail. The simulation and experiment results are analyzed and
compared with previous research work in Section 4. And the conclusions are given in
Section 5.

2. Performance Indices and Their Combination Method

In this section, the join-limit is discussed as the judgmental constraint and the corre-
sponding judgment method is proposed. Meanwhile, the singularity and stiffness perfor-
mance indices and their combination are illustrated.

2.1. Joint-Limit Constraint

Before the trajectory planning of robot milling, a series of tool points on the target
milling path is obtained by the CAM system. For the posture optimization of these tool
points, the traditional joint-limit judgment method is to directly compare the current joint
angle with the corresponding limit range as follows:

θ
j
min ≤ θ

j
i ≤ θ

j
max (1)

where θ
j
i is the angle of j-th joint in i-th tool point, [θ j

min, θ
j
max] is the value range of i-th joint.

However, Equation (1) only ensures that the optimized points can satisfy the joint-limit
constraints, which is suitable for the machining process without contour motion, such as
robot drilling. But for the milling process, joint interference might occur at the middle
points between adjacent planned points.

The distance between the given tool points is generally close because of the accuracy
constraint. Hence, the change range of each joint angle between two given points is small
when they are away from the singular position. Therefore, a simple judgment method of
joint-limit is designed as follows:

θ
j
min + ∆θ j ≤ θ

j
i ≤ θ

j
max − ∆θ j (2)

where ∆θ j > 0 is the designed allowance, which acts on the initial value boundary sym-
metrically. The value of ∆θ j can be set according to the distance between the two planned
points. The farther the distance, the larger the value of ∆θ j. Equation (2) provides a simple
and effective method to guarantee that both the optimized points and the corresponding
middle points can be limited to avoid joint interference.

2.2. Singularity Performance Index

There are two main, widely used singularity performance indices that are manipula-
bility and condition number of the Jacobian matrix. The manipulability index Kmani can be
defined as follows:

Kmani =
√

det[J(θ)JT(θ)] (3)

where J(θ) is the Jacobian matrix and Kmani ∈ [0, + ∞). The larger the value of Kmani, the
better the manipulability.

In general, the condition number index of the Jacobian matrix can be defined as
follows:

Kcond = ||J(θ)||||J−1(θ)|| (4)

where ‖·‖ denotes the condition number of matrix. In particular, the condition number
defined in the Frobenius norm form is the analytic function of J(θ) and does not need to
calculate the singular value. Therefore, the singularity index Ksin in the Frobenius norm
form is employed in this paper as follows:

Ksin =
1
m

√
tr(HHT)tr[(HHT)

−1
] (5)
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where Ksin ∈ [1, + ∞), H =

[ 1
L I3 × 3 03 × 3
03 × 3 I3 × 3

]
J(θ), m is the number of rows of J(θ), L is

the characteristic length of the robot. The closer the distance to the singular position, the
greater the value of Ksin.

2.3. Stiffness Performance Index

Under the assumption of flexible joints and rigid links, the compliance matrix of robot
EE in the Cartesian space can be obtained as follows:

C(θ) = J(θ)Kθ JT(θ) (6)

where Kθ is the diagonal matrix of joint stiffness. For 6R IRs shown in Figure 1, C(θ) is a 6
× 6 matrix and can be partitioned as follows:

C(θ) =

[
C f d(θ) C f δ(θ)
Ctd(θ) Ctδ(θ)

]
(7)

where C f d(θ), C f δ(θ), Ctd(θ) and Ctδ(θ) are 3 × 3 compliance submatrices and reflect
force-linear displacement, force-angular displacement, torque-linear displacement and
torque-angular displacement, respectively.

During the robotic milling process, the cutting force is small, owing to the shallow
cutting depth and high spindle speed. Thus, to reduce the complexity and computational
load, only the force-linear displacement is considered. The force-linear displacement can
be described as follows:

d =

dx
dy
dz

 = C f d(θ)

 fx
fy
fz

 = C f d(θ) f (8)

where f is the cutting force and d is the corresponding displacement vector with three
elements. Assuming that unit deformation occurs at robot EE, it can be written as follows:

‖d‖ = dTd = 1 (9)

Based on Equations (8) and (9), the following relationship can be obtained:

f T
uniC

T
f d(θ)C f d(θ) funi = 1 (10)

where funi is the fore vector causing unit deformation. As shown in Figure 2, the distribution
of funi in Cartesian space can be described as an ellipsoidal surface called force-linear
stiffness ellipsoid, which is symmetrical in space. The volume, shape and posture of
the stiffness ellipsoid reflect the distribution of the end stiffness in space. The values and
directions of the short and long semi-axes are the magnitude and directions of the minimum
and maximum stiffness, respectively.

Based on the stiffness ellipsoid and its symmetry, various stiffness indices are designed.
In this paper, the omnidirectional index is employed based on the volume of stiffness
ellipsoid as follows:

Ksti =
1

Vse
(11)

where Vse is the volume of stiffness ellipsoid and can be calculated as follows:

Vse =
4
3
ß˘1˘2˘3 (12)

where ˘1, ˘2 and ˘3 are the eigenvalues of CT
f d(θ)C f d(θ), respectively. Ksti ∈ (0, + ∞) and

the smaller the Ksti, the better the stiffness performance of robot EE.
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Figure 2. Force-linear stiffness ellipsoid.

2.4. Combination of Singularity and Stiffness Indices

The singularity and stiffness indices need to be combined as one scalar index for
the following optimal process, where the weighted combination is the most wildly used
method. As can be seen from Equations (12) and (13), the value range of Ksti is (0, + ∞).
However, the stiffness of each joint is finite for a real IR. Meanwhile, the volume of the
stiffness ellipsoid changes gently at the same tool point with different postures. Therefore,
there is a big gap between Ksin and Ksti in terms of value boundary, change amplitude and
order of magnitude. In some tool points, the effect of Ksti might be submerged by Ksin in
a directly weighted combination. Hence, a new stiffness index is proposed in this paper
based on Ksti as follows:

Knew
sti =

√√√√ (Kstimax − Kstimin)
2

(Kstimax − Ksti)
2 (13)

where Kstimax and Kstimin are the maximum and minimum value according to Equation (12)
at the same point with different γ posture. Knew

sti ∈ [1, + ∞) and the smaller the Knew
sti , the

batter the overall stiffness performance of the robot EE.
According to Equations (5) and (13), Knew

sti and Ksin have same value range and order
of magnitude and can be combined with the following form:

Kcom = ω1Ksin + ω2Knew
sti (14)

where ω1 and ω2 are the weight factors and belong to (0, 1]. At present, Kcom can be
selected as the optimization target for the planning of γ. The smaller the Kcom, the batter
the performance of robotic milling.

3. Redundant Posture Optimization Based on Piecewise Global Optimization Strategy
3.1. Fundamental of the Piecewise Global Optimization Strategy

The traditional SSPOS is the most commonly used method but is easy to lead to
poor optimization effects on subsequent points since only one point is considered in each
optimization process. Moreover, due to the displacement constraint of γ between two
adjacent tool points, the optimization process might even fall into a bad region and cannot
jump out. Hence, SSPOS is only suitable for the machining process with a single-point
operation such as robotic drilling.

The global optimization strategy, which can comprehensively consider all the given
tool points, is an effective method to avoid the problems caused by SSPOS. Nevertheless,
the quantity of tool points is usually large, which leads to a high computational load
for global optimization. Therefore, a piecewise global optimization strategy (PGOS) is
proposed, and its flowchart is shown in Figure 3. Firstly, the segmentation is conducted
for the given path on the principle of fixed length or fixed-point quantity. Then, globe
optimization is employed in each segment until all tool points are optimized, which is



Symmetry 2022, 14, 2066 7 of 14

introduced in detail in Section 3.2. In particular, the last tool point of the previous segment
provides the displacement constraint of γ for the first point of the next segment.

Figure 3. Procedures of the proposed PGOS.

3.2. Redundant Posture Optimization Method Based on PGOS

Based on PGOS given in Section 3.1, the proposed optimization method can be de-
scribed as follows with the flowchart shown in Figure 4.

Figure 4. Redundant posture optimization method based on PGOS.
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• Step 1: Path segmentation

The fix point quantity principle is employed to divide the target path into several
segments. It is assumed that N segments are generated with M tool points in each segment.
Set j = 1 and go to Step 2.

• Step 2: Traversal of each point with step length ∆γ in j-th segment.

For i-th point, the initial value range of γ
j
i is [−ß, ß]. In this range, ∆γ is set to be

the step length for traversal to obtain the critical information. Firstly, the value range
of γ

j
i satisfying the joint-limit constraints can be obtained according to Equation (2) and

described as the data range Ψj
i .

Secondly, the singularity and stiffness indices of each step in Ψj
i can be calculated

according to Equations (5) and (11) and stored into the data sequence [
j
iK

m
sin] and [

j
iK

m
sti]

respectively, where m = 1, 2, . . . , n denotes the step number. After the traversal of i-th
point in j-th segment, the maximum and minimum stiffness indices j

iKstimax and j
iKstimin in

Equation (13) can be obtained from [
j
iK

m
sti].

When all M points are traversed in j-th segment, the critical data obtained above is
stored to the dataset Φj = {Ψ

j
i , [

j
iK

m
sin], [

j
iK

m
sti],

j
iKstimax, j

iKstimin} (i = 1, 2, .., M). Then, go
to Step 3.

• Step 3: Determination of the displacement constraints of γ between adjacent planned
tool points

The displacement constraint of γ should be given to limit its variation range between
two adjacent planned points. In traditional method, the velocity planning of other five
DoFs needs to be executed repeatedly, which is unnecessary and has high computational
load. Therefore, a simple method according to the maximum allowable velocity is designed
as follows:

γ
j
i ∈ [γ

j
i−1 − ∆γ

j
i , γ

j
i−1 + ∆γ

j
i ]

∆γ
j
i = max(

∣∣∣Pj
i−Pj

i−1

∣∣∣
vpmax

,

∣∣∣αj
i−α

j
i−1

∣∣∣
ωαmax

,

∣∣∣βj
i−β

j
i−1

∣∣∣
ωβmax

)ωγmax
(15)

where Pj
i = [pj

ix, pj
iy, pj

iz

]
is the position vector, α

j
i and β

j
i are the posture coordinate, vpmax,

ωαmax, ωβmax and ωγmax are the given maximum allowable velocities, respectively. The
displacement constraint given in Equation (15) is effective and efficiency without prior
velocity planning. In particular, the displacement constraint of γ

j
1 (j > 1) should be

determined by γ
j−1
M as shown in Figure 3. Then, go to Step 4.

• Step 4: Globe optimization of j-th segment

For j-th segment, the globe optimization model of M points can be constructed as
follows: 

min
M
∑

i = 1
Kcom(γ

j
i)

s.t.γj
i ∈ Ψj C1

γ
j
i−1 − ∆γ

j
i ≤ γ

j
i ≤ γ

j
i−1 + ∆γ

j
i C2

(16)

where condition C1 can be obtained from dataset Φj, C2 can be determined by Equation

(15). During the calculation of Kcom(γ
j
i) according to Equation (14), the performance indices

Ksin(γ
j
i) and Knew

sti (γ
j
i) can be obtained by linear interpolation based on Φj and without

complex calculation process, such as the inverse kinematics of robot.
The Fmincon function in MATLAB is employed to conduct the optimization solution

where condition C2 is used as the linear inequality constraint. After the optimization of j-th
segment, make the following judgment:

If j = N, the redundant posture optimization of the total path is finished;
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If j < N, then empty the dataset Φj, j = j + 1 and back to Step 2 to conduct the
optimization of next segment.

4. Simulation and Validation

In this section, the posture optimization simulation of a complex spatial path is
performed to evaluate the good performance of the proposed method. Analysis and
comparisons are conducted with the representative method.

4.1. Environment Setup

As shown in Figure 5a, the YASKAWA ES165D serial robot assembled with a high-
speed spindle is employed in the simulation and experiments. The Denavit–Hartenberg
(D-H) parameters under the modified D-H method are shown in Figure 5b and Table 1.
The joint limit parameters are given in Table 2.

Figure 5. Robotic milling system. (a) YASKAWA ES165D serial robot with a high-speed spindle.
(b) D-H model of robotic milling system.

Table 1. D-H parameters of ES165D robot.

Coordinate System i ai−1 (mm) αi−1 (Degree) di (mm) θi

1 0 0 650 θ1
2 285 90 0 θ2
3 1150 0 0 θ3
4 250 90 1225 θ4
5 0 −90 0 θ5
6 0 90 225 θ6
7 250 0 123 0

Table 2. Joint-limit parameters of ES165D robot.

Joint i Positive Limit (Degree) Negative Limit (Degree)

1 180 −180
2 166 30
3 120 −80
4 360 −360
5 130 −130
6 360 −360
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The joint stiffness of the ES165D robot can be measured and identified by the loading
and measuring experiments. The force loaded on the robot EE is measured by a six-
dimensional force sensor and the corresponding translational deformation is obtained by
the RADIAN Core (API) laser tracker. The stiffness of each joint is illustrated in Table 3.

Table 3. Joint stiffness of ES165D robot (Nmm/rad).

kθ1 kθ2 kθ3 kθ4 kθ5 kθ6

1.187 × 109 2.578 × 109 3.301 × 109 3.401 × 108 2.608 × 108 3.158 × 107

4.2. Simulation Results of Posture Optimization

As shown in Figure 6, the intersecting line constructed by two orthogonal cylindrical
surfaces is employed as the test path. And the position and posture relationship between
the test intersecting line and the milling robot is shown in Figure 7 where OW XWYW ZW
is the workpiece coordinate system. The mathematical expression of intersecting line in
OW XWYW ZW is defined as follows:

x = r cos θ
y = r sin θ

z = R2 − r2 sin2 θ

(17)

where θ ∈ [0, 2ß], R = 500 and r = 300 are the radius of two cylindrical surfaces,
respectively. The blue line containing 100 points is the target path of the tool center point
(TCP). And the red arrow is the posture of the milling tool. Hence, the γ coordinate rotating
around the red arrow is redundant and needs to be optimized.

Figure 6. Test intersecting line.

Based on the performance indices given in Section 2, the comprehensive performance
of the robot in each tool point with different postures can be illustrated in Figure 8. The
white areas indicate the region of joint-limit, where the corresponding γ cannot be chosen.
In other areas, according to the color bar on the right, the darker the color, the better the
comprehensive performance. Therefore, the redundant posture optimization is to obtain a
continuous path in Figure 8, which can go through dark areas.

As shown in Figure 9a, the optimization results obtained by the traditional SSPOS
method are illustrated by the red curve. As can be seen, due to the unreasonable joint-limit
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judge method, the middle points between the adjacent given tool points might not be able
to satisfy the joint-limit constraint, such as the B area, especially when the given tool points
have a long distance. Meanwhile, the SSPOS can easily to lead to the gradual deterioration
of the optimization process. As can be seen from the A area, the γ optimization enters the
bad area and cannot jump out because of the displacement constraint of γ between adjacent
points. Therefore, the SSPOS has good performance for single-point optimization, such as
robotic drilling, but is not suitable for robotic milling with a continuous path.

Figure 7. Pose and posture relationship between the test intersecting line and milling robot.

Figure 8. The comprehensive performance of robot in each tool point with different posture.
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Figure 9. Optimization results of redundant posture. (a) Result by SSPOS. (b) Result by PGOS.

The optimization results obtained by PGOS are shown in Figure 9b, and the corre-
sponding joint angles are shown in Figure 10. For the first 50 points, the optimization
results are similar to SSPOS. The difference is that both the optimized tool points and their
middle points in the D area can be guaranteed to satisfy the joint-limit constraints where
∆θi = 5 ◦ (i = 1, 2, .., 6) in Equation (2). It means that the joint-limit constraint strategy
given in Equation (2) is a simple and effective scheme, especially for the areas near the
joint-limit boundary. For the subsequent 50 points, the PGOS finds the optimal path, which
is away from the A area in Figure 9a. Overall, the robot always has a good comprehensive
performance by the proposed PGOS.

Figure 10. Optimized γ and the corresponding joint angles by PGOS.

5. Conclusions

In this paper, a novel redundant posture optimization method is proposed, and the
main conclusions are as follows:

• The joint-limit is regarded as a constraint and the singularity and stiffness perfor-
mances are the optimization target. Correspondingly, the effective and symmetrical
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judgment method of joint-limit and the performance indices of singularity and stiffness
are designed;

• The PGOS is proposed and all the given tool points in their corresponding segment are
considered simultaneously. Meanwhile, the computational load of the optimization
solution is limited by the designed segmentation strategy;

• As can be seen from the simulation results, the proposed method has better planning
quality and can avoid the gradual deterioration caused by SSPOS, which is suitable
for the machining process with a continuous path.
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