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Abstract: In (Al2O3-Cu/H2O) hybridized nanofluid (HYNF) is an unsteady electro-hydrodynamic
stagnation point flow. A stretchable (shrinkable) surface that was convectively heated was studied in
the past. In addition to the traditional nonslip surface, the heat generating (absorbing) and the velocity
slippage constraints are deliberated in this research. An obtained nonlinear scheme is resolved by
the homotopy analysis method. Governing parameters are the electric field parameters, that is,
the dimensionless parameters including the magnetic parameter, Prandtl quantity, heat generating
factor, Eckert quantity, and unsteady factor. We discuss in detail the effects of these variables on
the movement of problems and thermal transmission characteristics. Increasing the values of the
magneto and electric force parameters increased the temperature. Increasing the Prandtl number
lowered the temperature. For the Eckert parameter, an increase in temperature was recognized. The
symmetric form of the geometry model displayed improved the fluid flow by the same amount both
above and below the stagnation streamline, while it decreased the flow pressure by the same level.
The more heat source uses to increase the temperature of the HYNF over the entire area, the more
heat is supplied to the plate, but with a heat sink, the opposite effect is observed.

Keywords: hybridized nanofluid; unsteadiness stagnating point; velocity slippage; convective
boundary constraint; magnetic nanofluid; electric field; homotopy analysis method (HAM)

1. Introduction

Nanofluids have gained increasing attention due to their ability to recover heat transfer
efficiency in an assortment of industrial presentations, as well as the considerable upsurge
in the thermal conducting of the subsequent liquid. As a continuation of nanofluids, HYNFs
can be made by diffusing compound nano-powders or numerous types of nanomolecules in
the solution. HYNF is an innovative nanoliquid with two separate nanoparticles immersed
in the base fluid.

In recent years, many scholars have been involved in researching the heat transfer of
HYNF because HYNFs exhibit a higher heat transfer coefficient than conventional nanoflu-
ids. As a result, most heat transfer applications (e.g., machined coolants and HYNF) have
been explored to increase the thermal transmission coefficient of traditional nanoliquids.
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Several authors used computational techniques to observe the boundary layer flow
and thermal transmission of HYNFs. For example, Devi and Devi [1] used Cu-Al2O3
magnetically effective nanoparticles to revise the flow of HYNFs through elastic surfaces.
This problem was then extended by Devi [2] to a three-dimensional flow that follows
Newton’s heating conditions. They exposed that the heat transmission factor of HYNFs was
greater than that of regular nanofluids in both studies. Hayat and Nadeem [3] considered
the issue of (Ag-CuO/water) and HYNF that does not shake concerning rotating currents.
The consequence of rapid slippage on heat transmission in an unsteady stagnating point
flow of HYNF throughout a convective-heated enlarging (dwindling) plate was examined
by Zainal et al. [4]. Daniel et al. [5] investigated unstable combined natural and forced
convective electrical magnetohydrodynamic (MHD) flow and thermal transmission across
a transparent stretched layer using the Buongiorno model. Xie et al. [6] investigated the
frictional force factor and put it on a quantity of hybridized nanomolecules to evaluate
their tribological assets. HYNFs have reduced wear and coefficient of friction compared
to pure nanofluids, according to Devi et al. [2] examination on three-dimensional flow
of (Cu-Al2O3/H2O) HYNF using the RK Fehlberg integration process. Considering the
Lorentz force, the movement is caused by the unidirectional linear elongation of a flat
surface. Numerical results suggest that the heat exchange ratio of (Cu-Al2O3) HYNF is more
advanced than that of the mono nanoliquid. The impact of temperature distribution and
nanoparticle attention on the rheological interest of a magnetite ferrofluid silver/ethylene
glycol (Fe3O4-Ag/EG) HYNF was studied by Afrand et al. [7].

In the existence of Lorentz forces, Ghadikolaei et al. [8] explored the physical and
thermal characteristics of (TiO2-Cu/H2O) HYNF with shape factor. Hussian et al. [9]
investigated the flow of HYNF covering (Cu-Al2O3/H2O) combination via an open hollow
space with an adiabatic square obstruction in the hollow space. They calculated numerical
answers to the usage of the finite detail technique and explored the effect of numerous
physical parameters on HYNFs.

Magnetohydrodynamics (MHD) has recently gained attention due to its extensive
selection of solicitations in engineering, chemical knowledge, petroleum use, the environ-
ment, and geophysics. MHD implements a magneto force, usually orthogonal to the flow
of liquid, which can generate the Lorentz force, which is a drag. This force faces the flow
of the fluid and affects the velocity of the fluid, which tends to be critical [10]. We found
that power-law fluid MHD combined convective flows over a nonlinearly stretched layer.
Zhao et al. reported on the impact of magneto heat transmission regarding nanoliquids in
micro-channels [11]. Many more major works in this field are attributed to refs. [12–14].

Scientists are interested in strained surfaces for a variety of engineering applications
such as blown glass, cooling of microelectronics, metal foundry quenching, wire drawing,
polymer extrusion, and high-speed spraying. The theoretical boundary layer flow on
an expanding surface was discovered by Crane [15]. Exponentially expanding surface
area [16–19] and important industrial and technological applications have been studied
by many researchers. In everyday life and industry, exponentially contracting/expanding
surfaces are frequently used for liquid flow and thermal transfer. A study by Magyari
and Keller [20] seems to have initially addressed the flow of the fluid boundary layer on
an exponential expanding plate. The exponential comparison variable was calculated by
Mushtaq et al. [21] to convert the predominant PDE to ODE. In addition, Reddy et al. [22]
studied the mixed convection of nanofluids on an exponential surface and observed that
the concentricity, momentum, and thickness of the thermal boundary layer increased as the
viscosity ratio parameter increased. The stagnating point MHD flow model was developed
by Rahman et al. [23], who generated the ODE using the exponential similarity variable.

The liquid movement at the rigid surface’s stagnating point is represented by the
stagnating point flow. Hiemenz1 [24] was the main researcher to probe the problem of fluid
stagnating points flowing via a rigid surface. Homann [25] extended these concerns to the
case of axis symmetry for the flow of 3D stagnation spots. Meanwhile, he reported a stream
of stagnation towards the contracting plate. In the work of Wang [26], the presence of
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stagnant flow rates could limit turbulence and maintain flow, excluding the need to apply
suction to the shrinking film. Several researchers have extended the stagnation point flow
problem to the effects of different flow behaviors. For example, the problem is present with
or without heat transfer melting, studied by Bachok et al. [27]. They did not find a solution.

The heat transfer coefficient at the solid–liquid boundary tends to decrease only when
shrinking and when increasing the melting parameters. Fang and Wang [28] also studied
the flow of temporary stagnation points to the movable plate and provided an accurate
result to the problem. In the fields of mathematics, fluid mechanics, and engineering,
several approximation methods have been used to solve real problems. In 1992, Liao [29]
learned that this method was a quick fix and better suited for solving nonlinear problems.
Homotopy analysis (HAM) [30–32] was used for the solution.

This study aims to investigate the interactions between an electrical force, a magnetic
field, a magneto force, and heat-producing (absorbing) impacts in a conductive HYNF that
integrates stability analysis and rapid slippage parameters. The incorporation of hybrid
nanoparticles aids in the stabilizing of a nanofluid’s motion and retains the symmetry of
the moving configuration. Due to the above problems, researchers are now encouraged to
perform numerical studies with unstable stagnation point flow on alumina–copper–water
convection heating plates (alumina, copper-to-water) under the influence of a reduced heat
transfer coefficient. Using the appropriate set of dimensionless variables to reduce the
independent variables of the mathematical model equations, the analytical solution was
calculated using the homotopy method.

2. Mathematical Formulation

In this research work, as illustrated in Figure 1, the unsteady 2D stagnation point
flow of (Al2O3-Cu/H2O) HYNF above a convective-heated stretchable (shrinkable) plate
influencing the speed of slippage is deliberated.
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The extending/shrinking velocity is marked by uw(x, t) = bx
(1−ct) , where b represents

constant stretchable (b > 0) and a shrinkable (b < 0) cases, while c indicates the time-based
issue, a > 0 signifies the asset of the flow of stagnations, and ue(x, t) = ax

(1−ct) is the speed
of the free stream. T1 and T0 stand for the free temperature and the standard temperature,
respectively. We let the bottom of the surface warm up by convective heat from a hot liquid

at a certain temperature Tf (x, t) = T1 − T0
ax2

2υ (1− ct)−
3
2 , which generated a heat transfer
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coefficient, denoted by h f . Taking into account all of the aforementioned hypotheses, the
regulating boundary layer formulas may be identified as [4]:

∂u
∂x

+
∂u
∂y

= 0, (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
∂ue

∂t
+ ue

∂ue

∂x
+

µhn f

ρhn f

∂2u
∂y2 +

σhn f

ρhn f

(
E0B0 − B2

0u
)

, (2)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρcp
)

hn f

∂2T
∂y2 +

σhn f(
ρcp
)

hn f
(B0u− E0)

2 +
Q0(

ρcp
)

hn f
(T − T∞), (3)

where v is the velocity factor in y-axis, u symbolizes the elements of rapidity in x-axis,
µhn f is the (Al2O3-Cu/H2O) dynamic viscosity, ρhn f the consistency of (Al2O3-Cu/H2O),
T is the HYNF temperature,

(
ρcp
)

hn f is HYNF heat capacity, and khn f is the thermal
conductance. The boundary conditions, composed through the restricted slippage for
rapidity, are established as:

u = uw(x, t) + υH1
∂u
∂y , v = 0,−khn f

∂T
∂y = h f

(
Tf − T

)
at y = 0,

u→ ue(x, t), T → T∞ as y→ ∞.

}
(4)

where H1 = H(1− ct)
1
2 is the quickness slippage variable, and H denotes the original value

of the speed slippage variable. Copper (Cu) physical–thermal characteristics, laterally with
aluminum-oxide (Al2O3) and H2O nanomolecules, are provided in Table 1. Table 2 shows
the physical–thermal characteristics of HYNF. The nanomolecules’ volumetric fraction is
denoted by φ, ρ f specifies H2O consistency, ρs is the consistency of the nanosolid particles,
cp is the continuous pressure of heat capacity, k f symbolizes the thermal conductivity of
H2O, and ks is the nanoparticles’ thermal conductivity.

Table 1. Cu thermophysical properties laterally with Al2O3 and H2O [4].

Properties Cu Al2O3 H2O

k(W/mK) 400 40 0.613
ρ
(
kg/m3) 8933 3970 9971

cp(J/kgK) 385 765 4179
β×105

(
1
K

)
1.67 0.85 21

Table 2. Utilized relations for physical–thermal characteristics of HYNF [4].

Characteristic HYNF

µ µhn f =
1

(1−φhn f )
2.5

ρ ρhn f =
(

1− φhn f

)
ρ f + φ1ρs1 + φ2ρs2(

ρcp
) (

ρcp
)

hn f =
(

1− φhn f

)(
ρcp
)

f + φ1
(
ρcp
)

s1 + φ2
(
ρcp
)

s2

k khn f
k f

=


(

φ1ks1+φ2ks2
φhn f

)
+2k f +2(φ1ks1+φ2ks2)−2φhn f k f(

φ1ks1+φ2ks2
φhn f

)
+2k f−2(φ1ks1+φ2ks2)+φhn f k f



The following similarity transformations are presented [4] in the context of the gov-
erning Equations (1)–(3) about boundary conditions (4).

ψ =

(
aυ

1− ct

) 1
2
x f (η), θ(η) =

T − T∞

Tf − T∞
, η =

[
a

υ(1− ct)

] 1
2
y, (5)
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Here, ψ is the streaming function which is obtained from relations u = ∂ψ
∂y , v = − ∂ψ

∂x ,
and η is a similar variant. Consequently, we achieve

u =
ax

1− ct
f ′(η), v = −

(
aυ

1− ct

) 1
2

f (η). (6)

Concerning these relations, Equations (2) and (3) diminish the difference between the
subsequent sets of nonlinear similitudes by using the similarity variables (5) and (6).

µhn f
µ f

ρhn f
ρ f

f ′′′ + f f ′′ − f ′2 + 1− ε

(
f ′ +

1
2

η f ′′ − 1
)
+

σhn f
σf

ρhn f
ρ f

M
(
E− f ′

)
= 0, (7)

1
Pr

khn f
k f

(ρcp)hn f

(ρcp) f

θ′′ + f θ′ − 2 f ′θ +
ε

2
(
ηθ′ + 3θ

)
+

σhn f
σf

(ρcp)hn f
ρ f

MEc
(

f ′ − E
)
+

Q
(
ρcp
)

f(
ρcp
)

hn f
θ = 0. (8)

Then, the initial and limit conditions (4) are transformed in

f (0) = 0, f ′(0) = λ + γ f ′′ (0),− khn f
k f

θ′(0) = Bi[1− θ(0)],

f ′(∞)→ 1, θ(∞)→ 0,

}
(9)

In the following, ε, M, E, Ec, Pr, Bi, Rex, λ, and Q are time-dependent parameter, mag-
neto force, electrical force parameters, Eckert, Prandtl, Biot, Reynolds numbers in x-axis,
the proportion of speed slippage, and heat generating (absorbing) parameter:

λ = b
a , ε = c

a , Rex = uex
ν f

, Pr =
ν f
α , M =

σβ2
0

ρ f a , γ = H
(

aν f

) 1
2

Bi =
h f
k f

√
ν f (1−ct)

a , Ec = ax2

cp∆T , Q = Q0(1−ct)2

ax , E = E0
β0ax .

 (10)

For the above model, the frictional surface force
(

C f

)
and Nusselt amount (Nux)

remain clear as follows
C f =

τw

ρ f u2
e

, Nux =
xqw

k f

(
Tf − T∞

) (11)

where

τw = µhn f

(
∂u
∂y

)
y=0

, qw = −khn f

(
∂T
∂y

)∣∣∣∣
y=0

, (12)

In the dimensional form, we have from above

Re1/2
x C f =

µhn f

µ f
f ′′ (0), Re−1/2

x Nux = −
khn f

k f
θ′(0). (13)

3. HAM Solution

The HAM is used to solve Equations (7) and (8) using the boundary condition (9).
Mathematica software was used for this. In Figure 2, the HAM approach includes the
following steps.

The model equations are described as fundamental derivations using HAM.

L_
f

(
_
f
)
=

_
f
′′′

, L_
θ

(
_
θ

)
=

_
θ
′′
−

_
θ (14)
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Linear operators L_
f
, and L_

θ
are defined by

L_
f

(
γ1 + γ2e−η + γ3eη

)
= 0, L_

θ

(
γ4e−η + γ5eη

)
= 0. (15)
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The nonlinear operators are N_
f

and N_
θ

that are identified in the structure:

N_
f

[
_
f (η; ζ)

]
=

µhn f
µ f

ρhn f
ρ f

_
f ηηη +

_
f
_
f ηη −

_
f

2

η + 1− ε

(
_
f η +

1
2

η
_
f ηη − 1

)
+

σhn f
σf

ρhn f
ρ f

M
(

E−
_
f η

)
, (16)

N_
θ

[
_
f (η; ζ),

_
θ (η; ζ),

_
φ (η; ζ)

]
= 1

Pr

khn f
k f

(ρcp)hn f
(ρcp) f

_
θ ηη +

_
f
_
θ η − 2

_
f η

_
θ + ε

2 (η
_
θ η + 3

_
θ ) +

σhn f
σf

(ρcp)hn f
ρ f

MEc(
_
f η − E) +

Q(ρcp) f

(ρcp)hn f
θ

(17)

For Equations (7) and (8) the 0th-order structure is exposed as

(1− ζ)L_
f

[
_
f (η; ζ)−

_
f 0(η)

]
= p}_

f
N_

f

[
_
f (η; ζ)

]
(18)

(1− ζ) L_
θ

[
_
θ (η; ζ)−

_
θ 0(η)

]
= p}_

θ
N_

θ

[
_
θ (η; ζ),

_
f (η; ζ)

]
(19)

Though BCs are

_
f (η; ζ)

∣∣∣∣
η=0

= 0, ∂
_
f (η;ζ)
∂η

∣∣∣∣
η=0

= λ + γ
_
f ηη(0), f (0) = 0,

kn f
k f

∂
_
θ (η;ζ)

∂η

∣∣∣∣
η=0

= −Bi
(

1−
_
θ (0)

)
, ∂

_
f (η;ζ)
∂η

∣∣∣∣
η=∞
→ 1,

_
θ (η; ζ)

∣∣∣∣
η=∞
→ 0,

 (20)

The embedding constraint is ζ ∈ [0, 1], and to regulate the result converging }_
f

and

}_
θ

are utilized. At ζ = 0 and ζ = 1 we have:

_
f (η; 1) =

_
f (η),

_
θ (η; 1) =

_
θ (η) , (21)
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Enlarging the
_
f (η; ζ) and

_
θ (η; ζ) over Taylor’s series for ζ = 0, we obtain:

_
f (η; ζ) =

_
f 0(η) + ∑∞

n=1

_
f n(η)ζ

n,
_
θ (η; ζ) =

_
θ 0(η) + ∑∞

n=1

_
θ n(η)ζn

 (22)

_
f n(η) =

1
n!

∂
_
f (η; ζ)

∂η

∣∣∣∣∣∣
p=0

,
_
θ n(η) =

1
n!

∂
_
θ (η; ζ)

∂η

∣∣∣∣∣∣
p=0

, (23)

BCs are:

_
f (0) = 0,

_
f
′
(0) = λ + γ

_
f
′′
(0),− khn f

k f

_
θ
′
(0) = Bi

[
1−

_
θ (0)

]
,

_
f
′
(∞)→ 1,

_
θ (∞)→ 0,

 (24)

Now,

<
_
f

n (η) =

µhn f
µ f

ρhn f
ρ f

_
f
′′′

n−1 +
w−1

∑
j=0

_
f w−1−j f

_
′′

j + 1− ε

(
_
f
′
n−1 +

1
2

η
_
f
′′

n−1 − 1
)
+

σhn f
σf

ρhn f
ρ f

M
(

E−
_
f
′
n−1

)
(25)

<
_
θ
n (η) =

1
Pr

khn f
k f

(ρcp)hn f /(ρcp) f

(
_
θ
′′

n−1

)
+

w−1
∑

j=0

_
θ
′
w−1−j f̂ j − 2

w−1
∑

j=0

_
θ w−1−j

_
f
′
j +

ε
2

(
η
_
θ
′
n−1 + 3

_
θ n−1

)
+

σhn f /σf

(ρcp)hn f /ρ f
MEc

(
_
f
′
n−1 − E

)
+

Q(ρcp) f

(ρcp)hn f

_
θ n−1,

(26)

where

χn =

{
0, if n ≤ 1
1, if n > 1.

(27)

4. Results and Discussion

This study solved a homotopy analysis system for the transformed calculations of
momentum, energy, and concentration ((7), (8)). Computational analysis was performed
using various parameters such as Prandtl quantity, magneto force, electric field, time-
dependent parameter, Eckert number, and parameter of heat source/sink. Figures 3–5
show various implanted parameters: electric field, magnetic field, and discontinuous
velocity profile f ′(η).
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1 1

1 ˆ( ) 2 3
Pr 2

,

hnf

w w
f

n n w j j w j j n n
j jp phnf f

phnf f f
n n

p f phnf hnf

k
k

f f
c c

Q c
MEc f E

c c

θ εη θ θ θ ηθ θ
ρ ρ

ρσ σ
θ

ρ ρ ρ

− −
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= =
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′ − +
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Figure 5. Consequence of ε on f ′(η).

Figure 3 specifies that as the electric parameter values rise, the rate of HYNF will
increase. Electrical parameters act as accelerating forces. The better the Lorentz pressure
and the smaller the Lorentz pressure, the better the electric confinement. A more potent
Lorentz pressure will increase and release the stick impact with liquid nanoparticles that
imply improved convection warmth switch and the width of the boundary momentum
layer. The electric force increases the stored internal energy of the particles, which leads
to an increase in the movement within the liquid, as a result of the increased collisions
between the particles and each other and as a result of the internal acceleration among
them. Figure 4 indicates the impact of the magneto force constraint M on the rate profile of
HYNF. The better the magneto parameter value the more the width of the rate-momentum
boundary layer is diminished. The magnetic area creates a drag referred to as the Lorenz
wave that opposes the flow. This creates resistance to fluid flow, slows down, and decreases
the width of the boundary layer. Thus, it works to slow the movement of particles within
the fluid, which in turn reduces the general velocity of the fluid as a result of this increased
resistance. Figure 5 indicates the impact of the unsteadiness parameter at the nanoliquid
pace profile. This conduct is because of the deceleration case, which boosts the momentum
boundary layer thickness and decreases HYNF flow. As the acceleration increases, the flow
rate profile decreases. Over time, the internal energy of the molecules is lost, and thus the
overall movement of the fluid is reduced.

In addition, Figures 6–11 show the properties of Eckert amount Ec, time-dependent
variant ε, heat source/sink Q, magneto force constraint M, electrical force E, and Prandtl
amount Pr on the temperature outlines θ(η). In Figure 6, when the kinetic energy to
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enthalpy ratio rises with a rise in the Ec, the temperatures of the nanoliquid increase, as
does the width of the thermal boundary layer. This leads to an increase in heat dissipation
within the HYNF. The effect of the unsteadiness parameter on θ(η) outlined in Figure 7 is
contrary to the speed behavior in Figure 5. The unsteadiness parameter works overtime to
make the molecules dissipate the stored energy internally, which boosts the heat transfer
process, which in turn raises the temperature of the hybrid nanoliquid. It is obvious that the
temperature is more affected by unsteadiness and increment values of it. The consequence
of heat generation (absorption) on θ(η) is shown in Figures 8 and 9. It is shown that the heat
source (Q > 0) rises the fluid’s temperature and the width of the temperature boundary
layer, although the heat absorption (Q < 0) delivers a diminution in θ(η) and slimmer
temperature boundary layer width. Q = 0 implies the lack of heat generation (absorption).
Figure 10 launches the effect of magneto force variant M on the nanoliquid energy contours.
The width of the thermal boundary layer has risen owing to the transverse magnetic field.
As a result, the thickness of the thermal boundary layer and θ(η) outlines are improved.
The magneto force performs as a sturdy Lorentz power, growing θ(η) of the nanoliquid
inside a border area. Lorentz forces work to boost the internally stored energy inside the
nanomolecules, which leads to an excess in the temperature of the nanofluid and thus
restores its movement, which reverses the effect between the rapidity of movement and
the temperature as a result of raising the value of the magnetic field applied to the fluid.
The influence of the electrical force variant at the temperature outline is found in Figure 11.
The electric power performs as a speed-up force, boosting the nanoliquid temperature and
developing the thickness of the temperature boundary layer. A wider, higher capacity θ(η)
outline inside the boundary layer in proximity to the HYNF is hooked up with a larger
amount of an electrical power variant. Higher Prandtl’s quantities range is very satisfactory
and differs from one fluid to the next. Figure 11 demonstrates that as it improves, the
nanoliquid energy drops. The diffusivity impetus is more than the thermal diffusion for
big values. As a result, the thickener of the energy boundary layer diminishes. The excess
in the Prandtl quantity diminishes the thermal diffusivity factor as well as the boost in
the viscidness of the hybrid nanoliquid, which in turn reduces the temperature of the
hybrid nanoliquid as a whole, and this is the effect that is observed in the figure. In most
warmness switch problems, the comparative thickness of each thermal boundary layer
is reduced. Table 3 shows that C f is enlarged after the standards of M, ε, E are enlarged.
Table 4 displays that Nux is enlarged once the standards of M, Q are enlarged. Nux is
diminished as the standards of Pr, E, Ec are enlarged.
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Table 3. Effect of various physical parameters on skin friction Re1/2
x C f =

µhn f
µ f

f ′′ (0).

ε E M µhnf
µf

f”(0)

0.3 0.1 0.4 0.72059328
0.5 0.83542092
0.7 1.03614135

0.1 1.86313569
0.2 1.64385204
0.3 1.76103193

0.4 1.03873708
0.8 1.30863981
1.0 1.58376213
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Table 4. Consequence of various physical parameters on Nusselt number
[
− khn f

k f
θ′(0)

]
.

Ec Q Pr M E − khnf
kf

θ’(0)

0.3 0.5 4.5 0.4 0.1 1.07386504
0.5 1.17290347
0.7 1.23893104

0.5 2.30319769
1.0 2.15912307
1.5 2.02463073

4.5 0.54354079
5.5 0.73865302
6.5 0.93865321

0.4 1.13159603
0.8 1.09764384
1.0 1.05346068

0.1 1.12183304
0.2 1.23583931
0.3 1.30346893

5. Conclusions

An evaluation of the unstable electro-hydrodynamic stagnation factor float of HYNF
via a convective heated stretchable (shrinkable) plate including the speed slippage effect
on the heat switch is investigated in this study. Electrical and magneto forces and heat
generating (absorbing) parameters were measured. The principal equations of the system
were transmuted to nonlinear regular differential equalities with the use of similar variants
and then resolved via the homotopy analysis method. The effects of numerous variables
on pace and temperature were examined. Mathematical consequences of pace gradient
and warmth switch quotes in opposition to numerous parameters were deliberated. The
following are the most important observations of the study:

• Speed and temperature rise with a rise in an electrical constraint.
• Magnetic constraint has an inverted influence on rapidity and energy parameters.
• Heat generation increases the temperature, while the converse happens with a heat sink.
• Higher values of the unsteadiness constraint decrease the velocity and temperature.
• An augmentation in temperature is observed for Eckert amount, while it decreases for

the Prandtl number.

The current technique could be implemented in other fields of science and engineering,
especially when related to the simulation of fluid dynamics in the future [33–36].
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Nomenclature

u and v quickness elements (m/s)
uw stretching/shrinking rapidity (m/s)
T1 ambient temperature (K)
h f heat transmission factor
khn f thermal conductance
µhn f viscidness

(
kgm−1s−1)

Rex Reynolds quantity
H1 quickness slippage factor
ρs nanoparticle density

(
kgm−3)

ks solid thermal conductance
(
Wm−1K−1)

ψ stream function
M∗ magnetic parameter
Ec Eckert Number
Bi Biot amount
λ rapidity and heat ratio
Nux local Nusselt number
f ′ non-dimensional rapidity
υ kinematic viscidness

(
m2s−1)

φ nanoparticle solid volume fraction
x,y plane coordinate axis
ue strength of stagnation flow
T0 reference temperature (K)
ρhn f density

(
kgm−3)(

ρcp
)

hn f volume heat capacitance
(
m2s−2K−1)

η similarity parameter
H primary speed slippage
cp constant pressure of heat capacity
ρ f Base fluid density

(
kgm−3)

k f fluid thermal conductance
(
Wm−1K−1)

ε unsteady factor
E electrical force factor
Pr Prandtl number
Q heat generating (absorbing)
c f skin friction factor
T temperature of fluid (K)
µ f dynamical viscidness

(
kgm−1s−1)

τw wall shear stress
qw transportation of heat
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