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Abstract: Using Bell’s polynomials it is possible to approximate the Laplace Transform of composite
functions. The same methodology can be adopted for the evaluation of the Laplace Transform of
higher-order nested functions. In this case, a suitable extension of Bell’s polynomials, as previously
introduced in the scientific literature, is used, namely higher order Bell’s polynomials used in the
representation of the derivatives of multiple nested functions. Some worked examples are shown,
and some of the polynomials used are reported in the Appendices.
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1. Introduction

In this study, we illustrate a procedure for the evaluation of the Laplace Transform (LT)
of multi-nested analytic functions. To this end, we make use of Bell’s polynomials [1–5],
which constitute the essential tool for computing the subsequent derivatives of compos-
ite functions.

The Bell’s polynomials appear in many different fields, ranging from number theory [6–8]
to operator theory [9], and from differential equations [4] to integral transforms [10,11]. It is
worth noting here that Bell’s polynomials are closely related to and can be written in terms of
symmetric functions in combinatorial Hopf algebras [12].

The importance of the LT [13,14] is well known and it is redundant to remind it here.
We use the classic definition of the LT:

L( f ) :=
∫ ∞

0
exp(−s t) f (t) dt = L(s) .

The LT converts a function of a real variable t (usually representing the time) to a
function of a complex variable s (which represents the complex frequency). The LT holds
for locally integrable functions on [0,+∞). It is convergent in every half-plane Re(s) > a,
where a is the so-called convergence abscissa, depending on the growth rate at infinity
of f (t).

Our procedure is as follows: we use Taylor’s expansion of the considered analytic
function, and express the relevant coefficients in terms of Bell’s polynomials; then, we
approximate the LT of the given nested function by a series expansion, which provides an
asymptotic representation of the LT when that exists.

We start from the easier case of the LT of a nested exponential function, considering
the first few values of the complete Bell’s polynomials. The result is a Laurent expansion
which approximates the relevant LT.
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Then, we consider the case of the LT of general nested functions. The main problem
is to provide a table of Bell’s polynomials. These exhibit higher complexity, but their
evaluation can be easily performed through a dedicated computer code.

Our results can be compared with the LT of nested functions appearing in the literature only
in a few cases [15], but the results we have obtained in these cases are completely satisfactory.

All the computations reported in this study have been performed using the computer
algebra program Mathematica©.

The second-order Bell’s polynomials Y[2]
n , representing the derivatives of nested func-

tions of the type f (g(h(t)) are then introduced, and two examples of LT of these functions
are given.

In Appendix A a table of the second-order Bell’s polynomials is reported.
Lastly, we give some examples to show that the same methodology can be used even

for the LT of higher-order nested functions. The first few terms of the corresponding
generalized Bell’s polynomials, of order 4, Y[4]

n , are shown in Appendix B The polynomials
Y[7]

n have been computed in the same way but are not reported here owing to the lack
of space.

It is worth noting that more general extensions of Bell’s polynomials have been
introduced in the past, including those appearing in the two-variable case [16], as well as
the multi-variable case [17]. Since all the aforementioned extensions have been proven
through the classical case, more general results could be obtained by applying the methods
described in this article.

2. Definition of Bell’s Polynomials

The n-th derivative of the composite (differentiable) function Φ(t) := f (g(t)), as
evaluated by the chain rule, is expressed by Bell’s polynomials as follows

Φn := Dn
t Φ(t) = Yn( f1, g1; f2, g2; . . . ; fn, gn) =

n

∑
k=1

Bn,k(g1, g2, . . . , gn−k+1) fk, (1)

where

fh := Dh
x f (x)|x=g(t), gk := Dk

t g(t). (2)

The coefficients Bn,k, for all k = 1, . . . , n, are polynomials of the variables g1, g2, . . . ,
gn−k+1, that are homogeneous of degree k and isobaric of weight n (i.e., they are a linear
combination of monomials gk1

1 gk2
2 · · · g

kn
n whose weight is constantly given by k1 + 2k2 + . . . +

nkn = n); in the literature, they are also referred to as partial Bell’s polynomials.
Bell’s polynomials satisfy the recursion

Y0 := f1;
Yn+1( f1, g1; . . . ; fn, gn; fn+1, gn+1) =

=
n

∑
k=0

(
n
k

)
Yn−k( f2, g1; f3, g2; . . . ; fn−k+1, gn−k)gk+1 .

(3)

An explicit representation is given by the Faà di Bruno’s formula

Yn( f1, g1; f2, g2; . . . ; fn, gn) = ∑
π(n)

n!
r1!r2! . . . rn!

fr

[ g1

1!

]r1
[ g2

2!

]r2
· · ·
[ gn

n!

]rn
, (4)

where the sum runs over all the partitions π(n) of the integer n, ri denotes the number of
parts of size i, and r = r1 + r2 + · · ·+ rn denotes the number of parts of the considered
partition [5].
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The Bn,k coefficients satisfy the recursion ∀ n

Bn,1 = gn , Bn,n = gn
1 ,

Bn,k(g1, g2, . . . , gn−k+1) =
n−k

∑
h=0

(
n− 1

h

)
Bn−h−1,k−1(g1, g2, . . . , gn−k−h+1) gh+1 .

(5)

3. LT of Composite Functions

Let f (g(t)) be a composite function that is analytic in a neighborhood of the origin,
and whose Taylor’s expansion is given by

f (g(t)) =
∞

∑
n=0

an
tn

n!
, an = Dn

t [ f (g(t))]t=0 . (6)

According to the preceding equations, it results in

a0 = f (
◦
g0) ,

an = Dn
t [ f (g(t))]t=0 =

n

∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k , (n ≥ 1) ,

(7)

where

◦
f k := Dk

x f (x)|x=g(0),
◦
gh:= Dh

t g(t)|t=0. (8)

Then, the following result easily follows.

Theorem 1. Consider a composite function f (g(t)) that is analytic in a neighborhood of the
origin, and can be expressed by Taylor’s expansion in (6). For its LT the following asymptotic
representation holds

∫ +∞

0
f (g(t))e−tsdt ' f (

◦
g0)

s
+

N

∑
n=1

∫ +∞

0

n

∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k

tn

n!
e−tsdt =

=
f (
◦
g0)

s
+

N

∑
n=1

(
n

∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k

) ∫ +∞

0

tn

n!
e−tsdt =

=
f (
◦
g0)

s
+

N

∑
n=1

(
n

∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k

)
1

sn+1 ,

(9)

where N denotes a finite expansion order.

3.1. The Particular Case of the Exponential Function

In the particular case when f (x) = ex, that is considering the function eg(t), and
assuming g(0) = 0, we have the simple form

n

∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k =

n

∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1) = Bn(

◦
g1,
◦
g2, . . . ,

◦
gn) , (10)

where the Bn are the complete Bell’s polynomials. It results B0(g0) := f (g0), and the first few
values of Bn, for n = 1, 2, . . . , 5, are given by
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B1 = g1,

B2 = g2
1 + g2,

B3 = g3
1 + 3g1g2 + g3,

B4 = g4
1 + 6g2

1g2 + 4g1g3 + 3g2
2 + g4,

B5 = g5
1 + 10g3

1g2 + 15g1g2
2 + 10g2

1g3 + 10g2g3 + 5g1g4 + g5,

B6 = g6
1 + 15g4

1g2 + 45g2
1g2

2 + 15g3
2 + 20g3

1g3 + 60g1g2g3 + 10g2
3 + 15g2

1g4 + 15g2g4 + 6g1g5 + g6,

B7 = g7
1 + 21g5

1g2 + 105g3
1g2

2 + 105g1g3
2 + 35g4

1g3 + 210g2
1g2g3 + 105g2

2g3 + 70g1g2
3 + 35g3

1g4+
105g1g2g4 + 35g3g4 + 21g2

1g5 + 21g2g5 + 7g1g6 + g7,

B8 = g8
1 + 28g6

1g2 + 210g4
1g2

2 + 420g2
1g3

2 + 105g4
2 + 56g5

1g3 + 560g3
1g2g3 + 840g1g2

2g3 + 280g2
1g2

3+
280g2g2

3 + 70g4
1g4 + 420g2

1g2g4 + 210g2
2g4 + 280g1g3g4 + 35g2

4 + 56g3
1g5 + 168g1g2g5+

56g3g5 + 28g2
1g6 + 28g2g6 + 8g1g7 + g8,

B9 = g9
1 + 36g7

1g2 + 378g5
1g2

2 + 1260g3
1g3

2 + 945g1g4
2 + 84g6

1g3 + 1260g4
1g2g3 + 3780g2

1g2
2g3+

1260g3
2g3 + 840g3

1g2
3 + 2520g1g2g2

3 + 280g3
3 + 126g5

1g4 + 1260g3
1g2g4 + 1890g1g2

2g4+
1260g2

1g3g4 + 1260g2g3g4 + 315g1g2
4 + 126g4

1g5 + 756g2
1g2g5 + 378g2

2g5 + 504g1g3g5+
126g4g5 + 84g3

1g6 + 252g1g2g6 + 84g3g6 + 36g2
1g7 + 36g2g7 + 9g1g8 + g9,

B10 = g10
1 + 45g8

1g2 + 630g6
1g2

2 + 3150g4
1g3

2 + 4725g2
1g4

2 + 945g5
2 + 120g7

1g3 + 2520g5
1g2g3+

12600g3
1g2

2g3 + 12600g1g3
2g3 + 2100g4

1g2
3 + 12600g2

1g2g2
3 + 6300g2

2g2
3 + 2800g1g3

3+
210g6

1g4 + 3150g4
1g2g4 + 9450g2

1g2
2g4 + 3150g3

2g4 + 4200g3
1g3g4 + 12600g1g2g3g4+

2100g2
3g4 + 1575g2

1g2
4 + 1575g2g2

4 + 252g5
1g5 + 2520g3

1g2g5 + 3780g1g2
2g5 + 2520g2

1g3g5+
2520g2g3g5 + 1260g1g4g5 + 126g2

5 + 210g4
1g6 + 1260g2

1g2g6 + 630g2
2g6 + 840g1g3g6+

210g4g6 + 120g3
1g7 + 360g1g2g7 + 120g3g7 + 45g2

1g8 + 45g2g8 + 10g1g9 + g10 .

The values of the complete Bell’s polynomials for particular choices of the relevant
parameters can be found in [6].

The complete Bell’s polynomials satisfy the identity (see, e.g., [4])

Bn+1(g1, . . . , gn+1) =
n

∑
k=0

(
n
k

)
Bn−k(g1, . . . , gn−k) gk+1. (11)

In this case Equation (9) reduces to

∫ +∞

0
exp(g(t)) e−tsdt ' exp(

◦
g0)

s
+

N

∑
n=1

Bn(
◦
g1,
◦
g2, . . . ,

◦
gn)

1
sn+1 . (12)

In what follows, we evaluate the approximation of the LT of nested functions. The
reported results have been obtained using the computer algebra program Mathematica©.

Examples

We first recall the case of the LT of nested exponential functions, showing two particu-
lar examples.

• Consider the Bessel function g(t) := J1(t) and the LT of the corresponding exponential
function. We find
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∫ +∞

0
exp(J1(t)) e−tsdt =

1
s
+

1
2s2 +

1
4s3 −

3
4s4 −

11
16s5 −

19
32s6 +

91
64s7 +

+
701

128s8 +
953

256s9 −
15245
512s10 + O

(
1

s11

)
,

(13)

for s→ ∞.

• Consider the function g(t) := arctan(t) and the LT of the corresponding exponential
function. We find

∫ +∞

0
exp(arctan(t)) e−tsdt =

1
s
− 1

s2 +
1
s3 +

1
s4 −

7
s5 −

5
s6 +

145
s7 +

+
5
s8 −

6095
s9 +

5815
s10 + O

(
1

s11

)
,

(14)

for s→ ∞.

4. LT in Two Known Cases

We considered two cases concerning composite functions whose transform and anti-
transform are known (see [15]). By using the computer algebra program Mathematica©, we
have been able to prove the correctness of the methodology used.

4.1. Case #1

Consider the function l(t) = log[cosh(t)]. The LT of l(t) is found to be [15]:

L(s) =
1
2s

[
ψ

(
1
2
+

s
4

)
− ψ

( s
4

)]
− 1

s2 , (15)

for <s > 0, and where ψ(z) is the logarithmic derivative of the gamma function, given by

ψ(z) ≡ d
dz ln Γ(z) = Γ′(z)

Γ(z) . (16)

Using our methodology, we find that

L(s) ' L̃(s) =
1
s3 −

2
s5 +

16
s7 −

272
s9 +

7936
s11 , (17)

so that, the inverse Laplace transformation is given by

l̃(t) '
(

t2

2
− t4

12
+

t6

45
− 17t8

2520
+

31t10

14175

)
H(t) , (18)

with H(·) denoting the Heaviside distribution which can be defined as follows:

H(x) =
∫ x

−∞
δ(u)du , (19)

in terms of the Dirac delta distribution δ(·).

4.2. Case #2

Let us consider the function l(t) = J0(t2). The LT of l(t) is found to be [15]:

L(s) =
πs
16

{[
J1/4(s2/8)

]2
+
[
Y1/4(s2/8)

]2
}

, (20)
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for <s > 0.
Using our methodology, we find that

L(s) ' L̃(s) =
1
s
− 6

s5 +
630
s9 −

207900
s13 +

141891750
s17 − 164991726900

s21 , (21)

so that, the inverse Laplace transformation is given by

l̃(t) '
(

1− t4

4
+

t8

64
− t12

2304
+

t16

147456
− t20

14745600

)
H(t) . (22)

5. A First Extension of Bell’s Polynomials

We consider the second-order Bell’s polynomials, Y[2]
n ( f1, g1, h1; f2, g2, h2; . . . ; fn, gn, hn),

defined by the n-th derivative of the composite function Φ(t) := f (g(h(t))).
Consider the functions x = h(t), z = g(x), and y = f (z), and suppose that h(t), g(x),

and f (z) are n times differentiable with respect to their variables, so that the composite
function Φ(t) := f (g(h(t))) can be differentiated n times with respect to t, by using the
chain rule.

We use, as before, the following notation:

Φj := Dj
tΦ(t), fh := Dh

y f (y)|y=g(x), gk := Dk
xg(x)|x=h(t), hr := Dr

t h(t).

Then, the n-th derivative can be represented by the compact symbol:

Φn = Y[2]
n ( f1, g1, h1; f2, g2, h2; . . . ; fn, gn, hn) = Y[2]

n ([ f , g, h]n) , (23)

where the Y[2]
n are defined as the second order Bell’s polynomials.

The first few terms are as follows.

Y[2]
1 ([ f , g, h]1) = f1g1h1;

Y[2]
2 ([ f , g, h]2) = f1g1h2 + f1g2h2

1 + f2g2
1h2

1;

Y[2]
3 ([ f , g, h]3) = f1g1h3 + f1g3h3

1 + 3 f1g2h1h2 + 3 f2g1g2h3
1 + f3g3

1h3
1;

Y[2]
4 ([ f , g, h]4) = f4g4

1h4
1 + 6 f3g2

1g2h4
1 + 3 f2g2

2h4
1 + 4 f2g1g3h4

1 + f1g4h4
1 + 6 f3g3

1h2
1h2 +

+ 18 f2g1g2h2
1h2 + 6 f1g3h2

1h2 + 3 f2g2
1h2

2 + 3 f1g2h2
2 + 4 f2g2

1h1h3 + 4 f1g2h1h3 + f1g1h4;

Y[2]
5 ([ f , g, h]5) = f5g5

1h5
1 + 10 f4g3

1g2h5
1 + 15 f3g1g2

2h5
1 + 10 f3g2

1g3h5
1 + 10 f2g2g3h5

1 +

+ 5 f2g1g4h5
1 + f1g5h5

1 + 10 f4g4
1h3

1h2 + 60 f3g2
1g2h3

1h2 + 30 f2g2
2h3

1h2 + 40 f2g1g3h3
1h2 +

+ 10 f1g4h3
1h2 + 15 f3g3

1h1h2
2 + 45 f2g1g2h1h2

2 + 15 f1g3h1h2
2 + 10 f3g3

1h2
1h3 + 30 f2g1g2h2

1h3 +

+ 10 f1g3h2
1h3 + 10 f2g2

1h2h3 + 10 f1g2h2h3 + 5 f2g2
1h1h4 + 5 f1g2h1h4 + f1g1h5 .

A more extended table is given in Appendix A.
The connections to the ordinary Bell’s polynomials are highlighted below.
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Theorem 2. For every integer n, the polynomials Y[2]
n are represented in terms of the ordinary

Bell’s polynomials by the following equation, where a compact notation similar to the one in (23)
is used:

Y[2]
n ([ f , g, h]n) =

= Yn( f1, Y1([g, h]1); f2, Y2([g, h]2); . . . ; fn, Yn([g, h]n))
(24)

Proof. Using induction, we can conclude that (24) is true for n = 1, since

Y[2]
1 ([ f , g, h]1) = f1 g1 h1 = f1 Y1([g, h]1) = Y1( f1, Y1([g, h]1)).

Then, assuming that (24) is true for every n, it follows that

Y[2]
n+1([ f , g, h]n+1) = Dt Y[2]

n ([ f , g, h]n) = Dt Yn( f1, Y1([g, h]1); . . . ; fn, Yn([g, h]n)) =

= Yn+1( f1, Y1([g, h]1); f2, Y2([g, h]2); . . . ; fn+1, Yn+1([g, h]n+1)) .
(25)

Consequently, we have the theorem:

Theorem 3. The second-order Bell’s polynomials verify the recursion

Y[2]
0 = f1;

Y[2]
n+1([ f , g, h]n+1) =

=
n

∑
k=0

(
n
k

)
Y[2]

n−k( f2, g1, h1; f3, g2, h2; . . . ; fn−k+1, gn−k, hn−k)Yk+1([g, h]k+1).

(26)

Proof. By means of (24) we express Y[2]
n+1([ f , g, h]n+1) in terms of

Yn+1( f1, Y1([g, h]1); . . . ; fn+1, Yn+1([g, h]n+1)).

Then, by using the recursion (9) and again Equation (24), the expression (26) follows.

6. LT of Second-Order Nested Functions

Let be f (g(h(t))) be a composite function that is analytic in a neighborhood of the
origin and, therefore, can be expressed by the Taylor’s expansion

f (g((h(t))) =
∞

∑
n=0

an
tn

n!
, an = Dn

t [ f (g((h(t)))]t=0 . (27)

According to the preceding equations, it results

a0 =
◦
f 0= f (g(h(0)) ,

an = Dn
t [ f (g((h(t)))]t=0 = Y[2]

n ([
◦
f ,
◦
g,
◦
h]n) , (n ≥ 1) ,

(28)

where

◦
f h:= Dh

x f (y)|y=g(0),
◦
gk := Dk

t g(x)|x=h(0),
◦
hr := Dr

t h(t)|t=0 . (29)

This expansion can be used to evaluate the LT of analytic nested functions.
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Theorem 4. Consider a nested function f (g((h(t))) that is analytic in a neighborhood of the
origin, and whose Taylor’s expansion is given by (27). For its LT, the following asymptotic represen-
tation holds

∫ +∞

0
f (g((h(t)))e−tsdt '

◦
f 0
s
+

N

∑
n=1

Y[2]
n ([

◦
f ,
◦
g,
◦
h]n)

∫ +∞

0

tn

n!
e−tsdt =

=

◦
f 0
s
+

N

∑
n=1

Y[2]
n ([

◦
f ,
◦
g,
◦
h]n)

1
sn+1 ,

(30)

where N denotes a finite expansion order.

Proof. It is a straightforward application of the definition of the second-order Bell’s
polynomials.

Example 1. • Assuming f (x) = ex−1, g(y) = cos(y), h(t) = sin(t), it results in (see Figure 1)

∫ +∞

0
exp[cos(sin(t))− 1] e−tsdt =

1
s
− 1

s3 +
8
s5 −

127
s7 +

3523
s9 − 146964

s11 + O
(

1
s13

)
, (31)

for s→ ∞. The corresponding inverse LT is approximated by (see Figure 2)

l̃(t) '
(

1− 1
2

t2 +
1
3

t4 − 127
720

t6 +
3523
40320

t8 − 12247
302400

t10
)

H(t) . (32)

(a) (b)

Figure 1. Magnitude (a) and argument (b) of the Laplace transform of exp[cos(sin(t))− 1] as evalu-
ated through the approximant L̃(s) and the rigorous integral expression L(s) for s = 5 + i ω.

Figure 2. Distribution of l(t) = exp[cos(sin(t))− 1] and the relevant approximant l̃(t).
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Example 2. • Upon assuming f (x) = log
(
1 + x

2
)
, g(y) = cosh(y) − 1, h(t) = sin(t), it

results in (see Figure 3)

∫ +∞

0
log
[

1 +
cosh(sin(t))− 1

2

]
e−tsdt =

1
2s3 −

9
4s5 −

27
2s7 +

1169
8s9 −

5869
2s11 + O

(
1

s13

)
, (33)

for s→ ∞. The corresponding inverse LT can be approximated as (see Figure 4)

l̃(t) '
(

1
4

t2 − 3
32

t4 +
3

160
t6 − 167

46080
t8 +

5869
7257600

t10
)

H(t) . (34)

(a) (b)

Figure 3. Magnitude (a) and argument (b) of the Laplace transform of log
[
1 + cosh(sin(t))−1

2

]
as

evaluated through the approximant L̃(s) and the rigorous integral expression L(s) for s = 5 + i ω.

Figure 4. Distribution of l(t) = log
[
1 + cosh(sin(t))−1

2

]
and the relevant approximant l̃(t).

7. Higher Order Bell’s Polynomials

Consider the nested function Φ(t) := f(1)( f(2)(· · · ( f(M)(t)))), i.e., the composition of
the functions xM−1 = f(M)(t), . . . , x1 = f(2)(x2), y = f(1)(x1), and suppose that f(M), . . . ,
f(2), f(1) are n times differentiable with respect to their independent variables. Then, Φ(t)
can be differentiated n times with respect to t using the chain rule. By definition we put
xM := t, so that y = Φ(t).

We use the following notation:

Φh := Dh
t Φ(t),

f(1),h := Dh
x1

f(1)|x1= f(2)( f(3)(···( f(M)(t)))),

f(2),k := Dk
x2

f(2)|x2= f(3)( f(4)(···( f(M)(t)))),

. . . . . . . . . . . . . .

f(M),j := Dj
xM f(M)|xM=t.

(35)
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Then, the n-th derivative can be represented as

Φn = Y[M−1]
n ( f(1),1, . . . , f(M),1; f(1),2, . . . , f(M),2; . . . ; f(1),n, . . . , f(M),n),

where the Y[M−1]
n are, by definition, Bell’s polynomials of order M− 1.

The above Theorems 2 and 3 can be generalized as follows.

Theorem 5. For every integer n, the polynomials Y[M−1]
n are expressed in terms of Bell’s polyno-

mials of a lower order, through the following equation:

Y[M−1]
n

(
f(1),1, . . . , f(M),1; . . . ; f(1),n, . . . , f(M),n

)
=

= Yn

(
f(1),1, Y[M−2]

1 ( f(2),1, . . . , f(M),1);

f(1),2, Y[M−2]
2 ( f(2),1, . . . , f(M),1; f(2),2, . . . , f(M),2); . . .

. . . ; f(1),n, Y[M−2]
n ( f(2),1, . . . , f(M),1; . . . ; f(2),n, . . . , f(M),n)

)
.

(36)

Theorem 6. The following recurrence relation for the Bell’s polynomials Y[M−1]
n of order M− 1

holds true:

Y[M−1]
0 = f(1),1;

Y[M−1]
n+1

(
f(1),1, . . . , f(M),1; . . . ; f(1),n+1, . . . , f(M),n+1

)
=

=
n

∑
k=0

(
n
k

)
Y[M−1]

n−k

(
f(1),2, f(2),1, . . . , f(M),1; f(1),3, f(2),2, . . . , f(M),2; . . .

. . . ; f(1),n−k+1, f(2),n−k, . . . , f(M),n−k

)
×

×Y[M−2]
k+1

(
f(2),1, . . . , f(M),1; . . . ; f(2),k+1, . . . , f(M),k+1

)
.

(37)

Example 3. We apply the above results to the case of the LT of nested sine functions, assuming
M = 4 and M = 7.
• Let be M = 4. We have (see Figure 5):

f4(t) = f3(t) = f2(t) = f1(t) = sin(t) , f (t) = sin(sin(sin(sin(t)))) ,

∫ ∞

0
exp(−s t) sin(sin(sin(sin(t)))) dt =

1
s2 −

4
s4 +

64
s6 −

2160
s8 +

121600
s10 + O

(
1

s12

)
,

for s→ ∞.
The corresponding inverse LT is approximated by (see Figure 6).

l̃(t) '
(

t− 2
3

t3 +
8
15

t5 − 3
7

t7 +
190
567

t9
)

H(t) . (38)
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(a) (b)

Figure 5. Magnitude (a) and argument (b) of the Laplace transform of sin(sin(sin(sin(t)))) as
evaluated through the approximant L̃(s) and the rigorous integral expression L(s) for s = 10 + i ω.

Figure 6. Distribution of l(t) = sin(sin(sin(sin(t)))) and the relevant approximant l̃(t).

• Let be M = 7. We have (see Figure 7):

f7(t) = f6(t) = · · · = f1(t) = sin(t) , f (t) = sin(sin(· · · sin(sin(t)))) ,

∫ ∞

0
exp(−s t) f (t) dt =

1
s2 −

7
s4 +

217
s6 −

14903
s8 +

1776817
s10 + O

(
1

s12

)
,

for s→ ∞.
The corresponding inverse LT is approximated by (see Figure 8).

l̃(t) '
(

t− 7
6

t3 +
217
120

t5 − 2129
720

t7 +
253831
51840

t9
)

H(t) . (39)

(a) (b)

Figure 7. Magnitude (a) and argument (b) of the Laplace transform of sin(sin(. . . (sin(t)))) as
evaluated through the approximant L̃(s) and the rigorous integral expression L(s) for s = 10 + i ω.
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Figure 8. Distribution of l(t) = sin(sin(. . . (sin(t)))) and the relevant approximant l̃(t).

8. Conclusions

We have presented a method for approximating the integral of analytic composite func-
tions. We started from the Taylor expansion of the considered function in a neighborhood of
the origin. Since the coefficients can be expressed in terms of Bell’s polynomials, the integral
is reduced to the computation of an approximating series, which obviously converges if the
integral is convergent. Then, this methodology has been applied to the case of the LT of an
analytic composite function, starting from the case of analytic nested exponential functions.
Furthermore, the evaluation of the LT of analytic nested functions is discussed, and the first
few second-order Bell’s polynomials used in the framework of the presented methodology
are reported in Appendix A, whereas those of order 4 are given in Appendix B. A graphical
verification of the proposed technique, performed in the case when the analytical forms of both
the transform and anti-transform are known, proved the correctness of our results. In future
studies, attention will be devoted to the evaluation of more complex functions, such as the
basic class of symmetric orthogonal polynomials (BCSOP) introduced in [18].
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