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Abstract: We show that the equations of motion governing the dynamics of strings in a compact
internal space can be written as dispersion relations, with a local speed that depends on the velocity
and curvature of the string in the large dimensions. From a (3+1)-dimensional perspective these can be
viewed as dispersion relations for waves propagating in the string interior and are analogous to those
for current-carrying topological defects. This allows us to construct a unified framework with which
to study and interpret the internal structure of various field-theoretic and fundamental string species,
in a simple physically intuitive coordinate system, without the need for dimensional reduction or
approximate effective actions. This, in turn, allows us to identify the precise conditions under which
higher-dimensional strings and current-carrying defects are observationally indistinguishable, for
macroscopic observers. Our approach naturally incorporates the description of so-called ‘cosmic
springs’, whose dynamics are expressed in terms of an effective Finsler geometry, for circular loops,
or generalised Finsler geometry, for non-circular configurations. This demonstrates the importance
of these novel geometric structures and their utility in modelling complex physical phenomena in
cosmology and astrophysics.

Keywords: superconducting cosmic string; cosmic spring; Finsler geometry; higher-dimensional
windings; mathematical modelling

1. Introduction

Cosmic strings are line-like concentrations of mass-energy, thought to have formed
during symmetry-breaking phase transitions in the early Universe [1–6]. Though the string
width is determined by the inverse of the symmetry-breaking energy scale, this is small
compared to cosmological distances, and they may be approximated as one-dimensional
objects for many purposes [7,8]. Such strings may have been produced at the epoch of
electro-weak symmetry-breaking [9–11], or the GUT scale, and their formation is also a
generic feature of the phase transitions predicted by many extensions of the Standard
Model [12–14].

In field theory they are a type of topological defect, analogous to the magnetic flux
tubes and other types of vortex configuration created in condensed matter systems [15–23].
They are produced via the Kibble-Zurek mechanism [24] when the vacuum manifold of
the fields (M) possesses a nontrivial first homotopy group, e.g., π1(M) = Z, in which
each nonzero integer corresponds to a possible winding number of the vortex-string cross-
section. In recent years, the formation of ‘cosmic’, i.e., horizon-sized, fundamental strings
(F-strings) and one-dimensional D-branes (D-strings) has also been extensively studied in
string theory [25–34], particularly in the context of brane inflation [35–40], in which such
defects can be copiously produced [41–43].
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However, regardless of the precise details of individual models, the main phenomeno-
logical and observationally relevant parameters that characterise the string are its linear
mass density, or energy per unit length, often denoted as µ or T, and tension, which is
often denoted, somewhat confusingly, by the letters U or T . (Different conventions are
prevalent in different areas of research, e.g., µ is the preferred notation for the linear mass
density of defect strings, whereas T is more commonly used for F-strings in string theory.
In this work, we employ various notations, in keeping with the conventions of the relevant
research fields, but clearly define our notation at the beginning of the relevant section(s) of
the paper). For vacuum strings in field theory and the fundamental strings of string theory,
µ = −U, but for current-carrying strings the mass density and tension may differ so that
µ 6= −U [44,45]. The relationship between the macroscopic string dynamics and the current
at a given point on the string, at a given time, is complicated, since the local tension is
determined by the local flux density. This can vary as a function of both position and time,
giving rise to so-called ‘cosmic springs’, i.e., strings with variable effective local tension.

In this paper, we study the complex interplay between the spring-like properties of
current-carrying strings and their macroscopic evolution. We begin by demonstrating
the equivalence, under dimensional reduction, between current-carrying defect strings
and wound-strings in geometries with compact extra dimensions, providing a unified
framework for modelling a variety of cosmic string species. However, the demonstration
of equivalence between wound-strings and superconducting defect strings, under dimen-
sional reduction, is not new and was first shown by Nielsen [46]. We then show how, by
rewriting the equations of motion (EOM) for the current as dispersion relations, the correct
EOM for the macroscopic evolution of the string can be obtained without dimensional
reduction and without the need to construct an approximate effective action.

When the EOM for the fluxes on the effective string world sheet in (3+1) dimensions
are written as dispersion relations, the local speed of propagation depends on the velocity
and curvature of the string in the noncompact space. For circular string loops, this implies
that the macroscopic dynamics can be modelled in terms of an effective Finsler metric, but
for noncircular configurations a generalised Finsler geometry is required. This method
provides a new set of tools, and a new geometric language, with which to describe the
dynamics of cosmic springs, i.e., strings with variable effective tension due to the presence
of fluxes within the string core.

The structure of this paper is as follows. In Section 2, we review the necessary
background for our model of F-strings with higher-dimensional windings, including the
space-time embedding, EOM, and physical observables of the string. Section 2.1.1 cov-
ers the background geometry, embedding, string action and covariant EOM, while in
Section 2.1.2 we determine general expressions for the constants of motion and the effective
pressures and shears, from a (3+1)-dimensional perspective. In Section 2.1.3, we demon-
strate the one-to-one equivalence of the Euler–Lagrange equations and the conservation
equations for the space-time energy-momentum tensor in a simple, physically intuitive
coordinate system. We adopt these coordinates, and the associated gauge conditions for
the string, throughout the rest of the paper. The wound-string model parameters, which
determine the physically observable properties such as the effective linear mass density and
tension, are defined in Section 2.1.4. Sections 2.2–2.4 then deal with long strings, circular
loops and arbitrary planar loops, respectively. Each subsection is further divided into
two. The part first deals with unwound strings whereas the second considers the effects of
higher-dimensional windings on the chosen ansatz for the configuration of the string in
the macroscopic dimensions. Hence, in each case, we first review the string dynamics in
the absence of high-dimensional effects, before considering the generalisation to strings
with nontrivial embeddings in the internal space. We explicitly show that the conservation
of momentum in the extra dimensions is equivalent to the conservation of current from a
(3+1)-dimensional perspective and that the string EOM take the form of dispersion relations
for waves ‘inside’ the string. A brief summary of these results is given in Section 2.5.
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In Section 3, we review the necessary background for our model of current-carrying
topological defect strings. Though many superconducting string models exist in the litera-
ture, their basic phenomenology is similar [2], and can be well approximated by considering
the simplest field theory in which vortex-line solutions exist, namely, the Abelian-Higgs
model. In Section 3.1, we review the dynamics of the Abelian-Higgs fields and couple them
to an ‘external’ source of charge which is capable of generating current when confined
to the string core. The simplest vortex-line solution known as the Nielsen-Olesen string,
which does not contain a superconducting current, is also reviewed. Section 3.2 considers
the standard approach to modelling both non-current-carrying and current-carrying strings.
In this approach, the effective action for a zero-width and non-superconducting string is
first constructed, by integrating over the ‘internal’ degrees of freedom that describe the
microscopic structure of the string core in the Nielsen-Olesen solution. It is straightforward
to show that this leads directly to the Nambu-Goto action for the F-string. Current-carrying
strings are then modelled by adding world-sheet fluxes to the effective action.

To the best of our knowledge no detailed study has been made, in the existing literature,
of the evolution of the internal structure of a finite-width string, as it undergoes dynamical
evolution as a solitonic field state in the background space-time. The first goal of this work
is to construct such a model, via an appropriate choice of ansatz for the fundamental field
variables. This allows us to explicitly demonstrate the interplay between the dynamical
evolution of the ‘microscopic’ degrees of freedom (i.e., field states), that characterise the
string interior, and the macroscopic variables that describe the dynamics of the string
as an extended solitonic object. Our second goal is to show that the evolution of these
internal degrees of freedom is completely analogous to the evolution of F-string windings
in the compact ‘internal’ space predicted by string theory. We stress that this program goes
beyond the simple process of dimensional reduction. We do not dimensionally reduce
either the F-string windings or the internal degrees of freedom of the finite-width core
of the defect string. Instead, both microscopic and macroscopic, ‘internal’ and ‘external’
evolution are considered together.

In the case of long, straight strings, we find that the two levels of description can easily
be reconciled within the usual pseudo-Riemannian geometry of special and general rela-
tivity. (For simplicity, we consider a (3+1)-dimensional Minkowski or warped Minkowski
background as the geometry of the large dimensions, throughout this work). However, for
circular defect-string loops, the evolution of the fundamental field variables takes place in
an effective Finsler geometry, in which the metric depends both on the space-time coordi-
nates, x, and on their first derivatives with respect to a time-like internal parameter, ∂τx. In
the absence of circular symmetry, the effective metric also depends on the first derivatives
of the coordinates with respect to a space-like internal variable, ∂σx, corresponding to a
form of generalised Finsler geometry. The connection to string theory is then made by
associating τ and σ with the time-like and space-like world-sheet parameters. Hence, long
strings are modelled in Minkowski space, circular loops are modelled using an effective
Finsler geometry, and arbitrary planar loops are modelled using an effective generalised
Finsler geometry. These cases are dealt with in Sections 5.1–5.3, respectively, and a short
summary of the defect string model is given in Section 5.4. Our Conclusions, and a brief
discussion of prospects for future work, are given in Section 6.

2. Fundamental Strings with Higher-Dimensional Windings

In [46], it was shown that the higher-dimensional dynamics of a fundamental string
embedded in M4 × S1 can be reinterpreted from a four-dimensional perspective as an
effective world-sheet current. There follows a formal equivalence between superconducting
strings (of zero width) in M4 and Nambu-Goto strings [7,9] in M4 × S1 under dimensional
reduction. In [47], it was shown that the equations of motion (EOM) for F-strings in
M4 × S1 admit critical solutions in which the effective four-dimensional tension vanishes
locally everywhere on the string. For the critical case, the string may adopt arbitrary static
configurations in the large dimensions. Phenomenologically, this is consistent with similar
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results for current-carrying strings [48–50] via the general correspondence demonstrated
in [46].

In [51], specific higher-dimensional F-string configurations were investigated together
with corresponding configurations of superconducting defect strings with finite width. For
long strings and circular loops, the embedding of the F-string in the higher-dimensional
space was found to be formally analogous to the phase structure of superconducting
Nielsen-Olesen strings [1] at critical coupling. A key feature of this correspondence is that
the radius of the compact space R and the string width in the field-theoretic model rc play
equivalent roles in determining the constants of motion. This suggests that the radius
of the windings in the higher-dimensional space provides an effective thickness for the
Nambu-Goto string in four dimensions.

Based on these suggestive results, we conjecture that F-strings, which (by definition)
have no internal structure, can mimic the internal structure of current carrying defect strings
via their embedding in the ‘internal’ higher-dimensional space required by string theory,
in which three spatial dimensions are extended and n are compactified. As a qualitative
statement, it is unsurprising that this may sometimes be true and, since the number of string
models available both in string theory and in various field theories is huge, it is too vague
to be of much use in distinguishing string species (or in determining when different species
may be indistinguishable) via current or future observations. However, it is clear that it
would be useful to be able to state under precisely which circumstances a given defect
string will be successfully mimicked by the embedding of a higher-dimensional F-string.

Since cosmic superstring phenomenology offers a probe of high energy physics in the
early universe in the presence of extra dimensions, the detection of higher-dimensional
signatures from strings would be a key piece of evidence in favour of string theory. It is
therefore vital for us to understand what distinguishable higher-dimensional signatures
may actually exist. In this section, of the paper, we extend the results for F-strings presented
in [51] to the case of arbitrary planar loops. Our purpose is to work towards developing a
general formalism through which the EOM governing higher-dimensional F-string dynam-
ics may be interpreted as dispersion relations for waves ‘in’ the effective four-dimensional
width of the string. These can then be compared with dispersion relations which govern the
flow of current (and the evolution of genuine internal structure) in field-theoretic strings,
and the conditions under which two string species give rise to identical phenomenology
may be determined.

Any equivalence should also include the string constants of motion, which should be
formally analogous under a one-to-one correspondence between string theory and field-
theoretic parameters, as in [51]. The finite-width field-theoretic counterparts to the higher-
dimensional F-string configurations considered here are presented in Section 3. Though, for
the sake of brevity, we restrict our present analysis to planar loop configurations, we expect
no significant obstacles in extending this treatment to arbitrary (3+1)-dimensional configu-
rations. Finally, we note that the results presented here also hold for strings wrapping S1

sub-cycles of constant radius in any compactified geometry. The only caveat required is
that the solutions must be dynamically stabilised, where necessary, if topological stability
is not guaranteed (as it is for M4 × S1 compactification). This is the case with the solutions
obtained in [51–53], which are valid for strings wrapping great circles in the S3 manifold
which regularises the conifold tip of the Klebanov-Strassler geometry [54].

2.1. The Background Geometry, Equations of Motion, and Physical Observables for Wound-Strings

In this section, we review the background geometry, EOM, and physical observables
of the wound F-string model.
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2.1.1. The Background Geometry, String Action and the Euler–Lagrange Equations for
Wound-Strings

We use the metric signature (+−−−) and consider a background space-time with
the line element

ds2 = gI JdxIdx J = a2ηµνdxµdxν − R2dϕ2, (1)

where µ, ν ∈ {0, 1, 2, 3}, ηµν is the Minkowski metric, ϕ ∈ [0, 2π) is an angular coordinate
in the internal space and R is a (constant) radius. (The assumption of constant radius is
made for simplicity and this condition should be loosened in a more thorough treatment.
Interestingly, this could lead to the description of so-called ‘lumpy’ cosmic strings, from
a (3+1)-dimensional perspective [55], but we leave this study to a future work). The phe-
nomenological ‘warp factor’, a ∈ (0, 1], accounts for the fact that the internal dimensions
may be flux-compactified, as expected in string theory. In this case, a2 < 1 represents the
back reaction of the fluxes on the large dimensions [56].

Note that we need not literally assume an M4 × S1 compactification and, in principle,
the internal space may be far more complicated. Equation (1) represents the effective metric
‘seen’ by any string wrapping an S1 sub-cycle of constant radius in an (almost) arbitrary
Calabi-Yau manifold. The internal space is almost arbitrary, since the only condition we
impose is that an S1 sub-cycle of constant radius exists. As the string is one-dimensional,
it necessarily wraps (topologically) S1 sub-cycles in the any compact space, though these
need not be of uniform shape or length. For simplicity, we assume windings of con-
stant radius, though it would be interesting to consider the more general case in which
the effective compactification scale Reff(τ, σ) is a function of the world-sheet coordinates
(c.f. [57]). For a constant compactification radius, the part of the background metric seen by
the string is of the form given in Equation (1), regardless of its macroscopic structure [47].
(For example, in [51,53], strings wrapping S1 sub-cycles of constant radius at the tip of
the Klebanov-Strassler geometry [54] were considered. Here the target space manifold
is M4 × S3 and the line element is given by ds2 = a2ηµνdxµdxν − R2dΩ2

3, where dΩ2
3

is the line-element on the unit three-sphere. In Hopf coordinates [58], this is given by
dΩ2

3 = dψ2 + sin2(ψ)dχ2 + cos2(ψ)dϕ2 where ψ ∈ [0, π) is the polar angle and
χ, ϕ ∈ [0, 2π) are the two azimuthal angles. Taking ψ(τ, σ), χ(τ, σ) and ϕ(τ, σ) as em-
bedding coordinates for the string, it is clear that the value of ψ controls the effective radius
of the windings, which may vary as a function of both τ and σ. For ψ = const., the winding
radius is also constant and for ψ = 0 it takes the maximum value R, the radius of the S3.
Similar arguments hold true for more complicated manifolds, as long as they contain at
least one S1 submanifold of constant radius. The advantage of using the effective metric (1)
is that we do not need to make any further assumptions regarding the general structure of
the internal space. Specifically, we do not assume that the string windings will (or will not)
be topologically stabilised).

In the absence of additional fluxes, the basic string action is the Nambu-Goto
action [7,9]

S = −T
∫

d2ζ
√
−γ, (2)

where γ is the the determinant of the induced metric on the world-sheet

γab(X) = gI J(X)∂aX I∂bX J , (3)

with I, J ∈ {0, 1, 2, 3, . . . , d}, a, b ∈ {0, 1}, ∂aX I = ∂X I/∂ζa, and ζ0 = τ, ζ1 = σ, in an
arbitrary number of space-time dimensions, D = 1 + d. The intrinsic string tension is
given by

T =
1

2πα′
, (4)
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where α′ is the Regge slope parameter, which is related to the (fundamental) string scale via

lst =
√

α′. (5)

In the formulae above, and throughout the rest of this paper, we work in natural units,
h̄ = 1, c = 1. Variation of the action with respect to the embedding coordinates gives the
canonical Euler–Lagrange equations, plus a boundary term[

Pσ
I(τ, σ)δX I

]σf

0
= 0, (6)

where

P a
I(τ, σ) =

∂(L
√
−γ)

∂(∂aX I)
(7)

is the canonical momentum of X I with respect to ζa. To satisfy the boundary term, we may
impose Dirichlet, Neumann or periodic boundary conditions

X I(τ, 0) = const., X I(τ, σf ) = const., (8)

Pσ
I(τ, 0) = Pσ

I(τ, σf ) = 0, (9)

X I(τ, σ) = X I(τ, σ + mσf ), m ∈ Z, (10)

where the imposition of Neumann boundary conditions implies that the string end points
move at the speed of light [59]. Using the identity δ(−γ) = (−γ)γabδγab, the canonical
EOM may also be rewritten in the form [8],

∂

∂ζa

(√
−γγabgI J(X)∂bX J

)
− 1

2
√
−γγcd ∂gKL(X)

∂X I ∂cXK∂dXL = 0. (11)

2.1.2. The Space-Time Energy-Momentum Tensor, Constants of Motion, and Effective
Pressures and Shears for Wound-Strings

The space-time energy-momentum tensor is defined by varying the action with respect
to the metric gI J(x)

δS =
∫

T I JδgI J
√
−gddx, (12)

where from here on we use xI to refer to space-time coordinates and X I to refer to the
embedding coordinates of the string. For the Nambu-Goto action, this gives [2,8]

T I J =
1√−g
T
∫ √
−γγab∂aX I∂bX JδD(x− X)dτdσ. (13)

In the static gauge, X0 = t = ζτ, where ζ is constant with dimensions of length, this gives

T I J =
1√−g

ζ−1T
∫ √
−γγab∂aX I∂bX Jδd(x− X)dσ. (14)

The conserved currents associated with the space-time symmetries are

J(I)A = K(I)
BTAB (15)
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where K(I)
B are the Killing vectors, so that the constants of motion are given by

ΠI =
∫

K(I)
BT0B√−gddx = T

∫ √
−γγτbK(I)

B∂bXBdσ. (16)

We also define the covariant components

ΠI =
∫

K(I)BT0B√−gddx = T
∫ √
−γγτbgI J(X)K(J)

B∂bXBdσ, (17)

though these are not conserved if the index I refers to a non-Cartesian coordinate. In
general, indices in the space-time energy-momentum tensor are raised and lowered using
the background metric

T I
J = gJK(x)T IK, (18)

but the integral over ddx together with the factor of δd(x− X) in the expressions above,
fixes x = X.

Using the letters E, P and l to denote energy, linear momentum and angular mo-
mentum, respectively, we then define the warp factor-averaged values of the constants of
motion via

E =
√

P0P0, P I = ±
√
−PI P(I), ΛJ = ±

√
−l J l(J)(ti), (19)

where the space-time index I labels a Cartesian coordinate and J an angular coordinate
in the background space. The presence of of brackets around a repeated index implies
that no summation is implied. For unwarped background geometries, these recover the
standard expressions when a2 = 1. By convention, we take the signs of P I and ΛJ to
match those of PI and l J , and ti denotes the initial time at which we consider the state of
the system. Such definitions are problematic unless the metric gI J(X) is independent of σ.
However, this can be achieved by adopting a gauge in which σ is identified directly with a
background space-time coordinate, such that X I ∝ σ for some I, and the implications of this
for the string EOM and conservation equations are considered in Section 2.1.3. It is then
straightforward to define the warp factor-averaged total linear and angular momentum

P = ±
√
−PI PI , Λ = ±

√
−l J lJ(ti), (20)

and the total 4-momentum

Π = +
√

ΠIΠI = +
√

E2 −P2 −Λ2. (21)

Finally, we define the contravariant and covariant integrated pressures and shears via

TK =
∫

TKK√−gddx, TK =
∫

T(K)
K(ti)

√
−gddx, (22)

for K 6= 0, and

SKL =
∫

TKL√−gddx, SK
L =

∫
TK

L(ti)
√
−gddx, (23)

for K, L 6= 0, K 6= L, so that the warp-averaged values are

T K = ±
√
−TKT(K)(ti), ΣKL = ±

√
SK

(L)S(K)
L(ti). (24)

The magnitudes of the total integrated pressures and shears are given by
T = +

√
−TKTK and Σ = +

√
SK LSK L, where summation is now permitted over repeated
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indices. In addition to giving warp factor averaged values for the conserved quantities
in warped geometries, the definitions above are also convenient in the sense that the T K

always have canonical units of tension/pressure [E][l]−1 = [l]−2, whereas neither TK nor
TK do, individually, unless XK represents a Cartesian coordinate.

2.1.3. The One-to-One Equivalence of the EOM and Conservation Equations in a Physically
Intuitive Coordinate System

The conservation of the space-time energy-momentum tensor may be expressed
as [60]

∇J T J
I
√
−g =

∂

∂x J

(
T J

I
√
−g
)
− 1

2
∂gAB(x)

∂xI TAB√−g = 0. (25)

Substituting the energy-momentum tensor for the Nambu-Goto string gives

∂

∂x J

[∫
dτdσδD(x− X)

√
−γγabgIK(x)∂aX J∂bXK

]
− 1

2
∂gAB(x)

∂xI

∫
dτdσδD(x− X)

√
−γγcd∂cXA∂dXB = 0. (26)

Restricting ourselves to embeddings in which the world-sheet coordinates can be directly
identified with two background space-time coordinates

X0 = x0 = ζτ, X1 = x0 = χσ, (27)

where ζ, χ = const., so that

dτdσ = ζ−1χ−1dX0dX1, (28)

and integrating over ddx, gives

∂

∂x0

[
gIK(X)

√
−γγab∂ax0∂bXK

]
+

∂

∂x1

[
gIK(X)

√
−γγab∂ax1∂bXK

]
+

∫
dD−2x

[
∂δD−2(x− X)

∂xM gIK(x) +
∂gIK(x)

∂xM δD−2(x− X)

]√
−γγab∂aXM∂bXK

− 1
2

∂gAB(X)

∂X I
√
−γγcd∂cXA∂dXB = 0, (29)

for M /∈ {0, 1}. Using ∂ax0 ∝ δ0
a and ∂ax1 ∝ δ1

a, together with the identity [61],∫
dx f (x)

dδ(x)
dx

= −
∫

dxδ(x)
d f (x)

dx
, (30)

this becomes

∂ax0 ∂

∂x0

[
gIK(X)

√
−γγab∂bXK

]
+ ∂ax1 ∂

∂x1

[
gIK(X)

√
−γγab∂bXK

]
+

{
−
[

∂gIK(X)

∂XM

]
∂XM

+

[
∂gIK(X)

∂XM

]
∂XM

}√
−γγab∂aXM∂bXK

− 1
2

∂gAB(X)

∂X I
√
−γγcd∂cXA∂dXB = 0. (31)

Canceling the boundary terms and rewriting the summation over world-sheet indices in
a compact form yields the Euler–Lagrange equations obtained using the metric variation
identity, Equation (11). Hence, in this simple gauge, there is one-to-one correspondence be-
tween the string EOM and the conservation equations for the space-time energy-momentum
tensor. For a given index I, the corresponding equations are identical.
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2.1.4. Definition of the Higher-Dimensional Wound-String Model Parameters

Let l(σ) denote the length of string in the interval [0, σ] at time t. In a D = 1 + d
dimensional space-time

dl2 = −gI J(X)∂σX I∂σX Jdσ2, (32)

where I, J ∈ {1, 2, 3 . . . d} denote only spatial coordinates. This may be split into the sum of
a three-dimensional and an extra-dimensional part

dl2 = dl2
3 + dl2

d−3, (33)

where

dl2
3 = −gkl(X)∂σXk∂σXldσ2 (34)

for k, l ∈ {1, 2, 3}, and

dl2
d−3 = −gmn(X)∂σXm∂σXndσ2 (35)

for m, n ∈ {4, 5, 6, . . . , d}. The (physical) perpendicular velocity of the string is defined in
the static gauge in terms of l(σ) [59]

v2
⊥ = gI J(X)

∂X I

∂t
∂X J

∂t
−
(

gI J(X)
∂X I

∂l
∂X J

∂l

)2

, I, J ∈ {1, 2, 3...d}, (36)

so that in warped backgrounds the action may be written as

S = −T a
∫

dtdσ

(
dl
dσ

)√
1−

v2
⊥

a2 . (37)

This reduces to the standard form given in [59] for a = 1. Thus, in warped geometries,
the velocity of open string end points obeying Neumann boundary conditions is given by
v2
⊥(t, 0) = v2

⊥(t, 2π) = a2.
We note that it is not permissible to substitute the ansatz (or partial ansatz) at the

level of the action before varying to obtain the EOM. The EOM used throughout the rest of
this paper are those obtained from the covariant Euler–Lagrange equations for the string,
Equation (11). However, this representation of the action is often useful, as it provides
physical insight into the motion of the string.

In the study of higher-dimensional strings, it is also useful to define the parameter
Ω2(t) ∈ [0, 1], which represents the (time-dependent) fraction of the string lying in the
large spatial dimensions, via

Ω−2(t) =
1

2π

∫ 2π

0
ω−2(t, σ)dσ, (38)

where ω2(t, σ) ∈ [0, 1] represents the instantaneous local value, at a given point σ and at
time t. In terms of our previously defined notation, this is given as

ω−2(t, σ) =

(
dl
dσ

)2(dl3
dσ

)−2
=

gkl(X)∂σXk∂σXl + gmn(X)∂σXm∂σXn

gkl∂σXk∂σxl . (39)

2.2. Long F-Strings

In this section, we consider long straight strings, both with and without higher-
dimensional windings. Long strings with higher-dimensional windings are considered in
detail in Section 2.2.2, so that it is instructive to first review the treatment of long straight
strings without windings, a brief analysis of which is presented in Section 2.2.1.
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2.2.1. Long F-Strings in (3+1) Dimensions

Let us adopt Cartesian coordinates for the background metric

ds2 = a2(dt2 − dx2 − dy2 − dz2)− R2dϕ2, (40)

and take the embedding

X I(τ, σ) ≡ X I(t, σ) ≡ X I(t, z) =
(

t(τ) = ζτ, x = 0, y = 0, z(σ) = (2π)−1∆σ, ϕ = 0
)

. (41)

Physically, this represents either a string of length ∆, lying along the z-axis, whose end
points are fixed by Dirichlet boundary conditions, or a finite section of (formally infinite)
string, obeying periodic boundary conditions. The action may be written as

S = −T a2∆
∫

dt, (42)

which is equivalent to the form given in Equation (37), with

dl
dσ

= (2π)−1a∆,
v2
⊥

a2 = 0. (43)

The EOM are

∂0(T0
0
√
−g) + ∂z(Tz

0
√
−g) = 0, (44a)

∂0(T0
z
√
−g) + ∂z(Tz

z
√
−g) = 0. (44b)

From here on, we use the following notation:

T I
J
√
−g =

∫
T I

J
√
−gδd(x− X)dσ (45)

where T I
J
√−g denotes the energy-momentum tensor density. Thus, T I

J
√−g has the

same dimensions as T I
J
√−g, but must be multiplied by an appropriate delta function

and integrated over dσ to give the true energy-momentum tensor of the string. For the
sake of notational simplicity, we quote only the relevant components of T I

J
√−g for the

various systems considered in the remainder of this work. For the long straight string, the
components of T I

J
√−g appearing in the EOM are given by

T 0
0
√
−g = T a2(2π)−1∆, T z

0
√
−g = 0, (46a)

T 0
z
√
−g = 0, T z

z
√
−g = T a2(2π)−1∆. (46b)

Clearly, the EOM are trivially satisfied. The only nonzero constants of motion are the energy
and the integrated pressure in the z-direction,

E = T a∆, T z = −T a∆. (47)

These are equal in magnitude but opposite in sign, as for vacuum strings in field-theoretic
models [2].

2.2.2. Long F-Strings with Higher-Dimensional Windings

Let us again adopt Cartesian coordinates for the background space and consider the
new wound-string embedding

X I(τ, σ) ≡ X I(t, σ)

≡ X I(t, z) =
(

t(τ) = ζτ, x = 0, y = 0, z(σ) = (2π)−1∆σ, ϕ(t, σ) ≡ ϕ(t, z)
)

. (48)
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Physically, this represents a finite section of an infinite string, so that we must impose
periodic boundary conditions on ϕ(t, σ). To consider a section of open string, obeying Neu-
mann boundary conditions, we would need to adopt an embedding for the z-coordinate of
the form z(t, σ) = (2π)−1∆σ + g(t). This corresponds to a comoving coordinate system
which ‘tracks’ the propagation of the higher-dimensional windings from a four-dimensional
perspective (i.e., along the z-axis). In this case, the analysis is a straightforward general-
ization of that presented below but, from an astrophysical/cosmological perspective, long
strings are greater interest than open ones. We therefore restrict our current analysis to
finite sections of long string.

For the embedding (48), the action may be written as

S = −T
∫

dtdσ
√

a2((2π)−2a2∆2 + R2(∂σ ϕ)2)− a2R2(2π)−2∆2 ϕ̇2, (49)

which is equivalent to the static gauge form (37) with

dl
dσ

=
√
(2π)−2a2∆2 + R2(∂σ ϕ2),

v2
⊥

a2 =
∆2R2 ϕ̇2

a2∆2 + (2π)2R2(∂σ ϕ2)
. (50)

The EOM are

∂0(T0
0
√
−g) + ∂z(Tz

0
√
−g) = 0, (51)

∂0(T0
z
√
−g) + ∂z(Tz

z
√
−g) = 0,

∂0(T0
ϕ

√
−g) + ∂z(Tz

ϕ

√
−g) = 0.

The EOM in φ may be written explicitly as

(a2 + R2(ϕ′2 − ϕ̇2))(φ′′ − ϕ̈) + a2R2(2ϕ̇ϕ′ ϕ̇′ − ϕ′2 ϕ′′ − ϕ̇2 ϕ̈) = 0, (52)

where a dash represents differentiation with respect to z. This is satisfied for any function
obeying

ϕ̇2 − ϕ′2 = 0, ϕ̇ = ±ϕ′ (53)

which automatically implies

ϕ̈− ϕ′′ = 0. (54)

However, Equation (53) is a stronger condition than Equation (54), since the latter admits
superpositions of both left and right-movers, whereas the former does not. Equation (53) is
satisfied for any function of the form

ϕ(t, z) = ϕ(kzz + ωzt) ≡ ϕ(t, σ) = ϕ(mσ + ωzt), (55)

where

ω2
z = k2

z, ωz = ±kz (56)

and m ∈ Z. Defining

kz = 2π/λz, (57)
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and imposing periodic boundary conditions on ϕ(t, z),

ϕ(kzz + ωzt) = ϕ(kz(z + ∆) + ωzt) ≡ ϕ(mσ + ωzt) = ϕ(m(σ + 2π) + ωzt), (58)

it follows that

∆ = mλz. (59)

Different plane wave modes in the Fourier expansion of ϕ(z± t) correspond to dif-
ferent frequencies ωj and wavelengths λj, such that ωj = ±k j = ±2π/λj = ±2πmj/∆,
for some mj ∈ N. However, by writing ϕ(z± t) in the form (55), which implies ∂ϕ/∂t =
ωzdϕ/du, ∂ϕ/∂z = kzdϕ/du, ∂ϕ/∂σ = mdϕ/du, where u = kzz + ωzt = mσ + ωzt, we
select a single mode as being characteristic of the wave form. The natural choice is the mode
with the highest amplitude which, for nonlinear functions of u, gives the approximate
wavelength of any fluctuation in current density, as seen form a four-dimensional perspec-
tive. If ϕ contains linear terms in z and t, it is most natural to use the associated kz and ωz
to give the characteristic wavelength and frequency. Linear terms give rise to a uniform
current and any additional nonlinear terms describe local fluctuations in current density
around the mean value. In this case, the integer m may be interpreted as the number of
windings present in a four-dimensional string section of length ∆.

Though we may express any functions of t and z as functions of t and σ, or vice versa,
from here on we choose the latter, as this makes the connection between the long string
EOM and their generalisation to loops in Section 2.3 more explicit. The functions ω2(t, σ)
and Ω2(t) are given as

ω−2(t, σ) = 1 +
(2π)2R2

a2∆2 (∂σ ϕ)2, Ω−2(t) = 1 +
2πR2

a2∆2

∫ 2π

0
(∂σ ϕ)2dσ, (60)

and, after substituting for ϕ̇, the components of T I
J
√−g appearing in the EOM may be

written as

T 0
0
√
−g = T a2(2π)−1∆ω−2, T z

0
√
−g = ∓T a2(2π)−1∆

(
1−ω2

ω2

)
, (61a)

T 0
z
√
−g = ±T a2(2π)−1∆

(
1−ω2

ω2

)
, T z

z
√
−g = T a2(2π)−1∆

(
2ω2 − 1

ω2

)
, (61b)

T 0
ϕ

√
−g = ±T a(2π)−1∆R

√
1−ω2

ω
, T z

ϕ

√
−g = ∓T a(2π)−1∆R

√
1−ω2

ω
. (61c)

Following [46], we define the components of the current density as

J 0√−g =
e

2π
ϕ̇, J z√−g =

e
2π

ϕ′. (62)

By analogy with Equation (45) the components of the effective world-sheet current, from a
(3+1)-dimensional perspective, are given by

Jµ
√
−g =

∫
J µ
√
−gδd(x− X)dσ (63)

but, for the sake of notational simplicity, we quote only the relevant values of J µ from here
on. Using the EOM in ϕ, we have

J 0√−g = ± e
2π

ϕ′ = −J z√−g = ∓ e
2π

ϕ̇, (64)

which may be written in terms of the higher-dimensional string variables as

J 0√−g =
e

2π∆R2T T
0

ϕ

√
−g = −J z√−g =

e
2π∆R2T T

z
ϕ

√
−g. (65)
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Equation (65) makes the link between the components of the effective (3+1)-dimensional
current and the higher-dimensional components of the energy-momentum tensor explicit.
Specifically, we see that the (3+1)-dimensional current density, at a given point on the string,
is proportional to the momentum density in the compact direction at that point. Hence,
the conserved current is proportional to the conserved momentum in the internal space.
From Equations (63) and (64), it follows that ∂µ(Jµ√−g) = 0 and the current conservation
equation is equivalent to Equation (61c).

The EOM form a self-consistent set, since each equation is equivalent to

ω̇2 =
(2π)2

∆2 (∂σω)2, ω̇ = ±2π

∆
∂σω2, (66)

which is in turn equivalent to Equation (53). Substituting for ϕ̇ in Equation (50), the
perpendicular velocity and string length may be written in terms of the higher-dimensional
string variables as

dl
dσ

= (2π)−1a∆ω−1,
v2
⊥

a2 = (1−ω2). (67)

The net number of windings in the compact space, which are distributed along the
z-direction, is given by

nz =
1

2π

∫ 2π

0
∂σ ϕ dσ, (68)

and for convenience we may split ϕ into linear and nonlinear parts

ϕ(t, σ) = mσ + ωzt + ϕNL(mσ + ωzt). (69)

However, by the periodic boundary conditions, ϕNL makes no contribution to the net
winding number and

nz = m. (70)

In terms of integrals over ϕNL, the constants of motion are

E = T a∆

[
1 +

2πR2

a2λ2
z

∫ 2π

0

(
1 +

∂σ ϕNL

nz

)2
dσ

]
, (71)

P z = ±2πT × nzR2

aλz

∫ 2π

0

(
1 +

∂σ ϕNL

nz

)2
dσ, (72)

Λϕ = ±2πT aRnz, (73)

Π = T a∆

√
1 +

4πn2
z R2

a2∆2

∫ 2π

0

(
1 +

∂σ ϕNL

nz

)2
dσ− (2π)2R2n2

z
a2∆2 . (74)

The integrated tensions are

T z = −T a∆

[
1− 2πR2

a2λ2
z

∫ 2π

0

(
1 +

∂σ ϕNL

nz

)2
dσ

]
, (75)

T ϕ = 0, (76)
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since T ϕϕ√−g = 0 by the EOM for ϕ, and the only nonzero component of the shear, which
is between the z- and ϕ-directions, is

Σzϕ = − a
R

Λϕ. (77)

In the linear case (ϕNL = 0), these may be written in a compact form as

E = T a∆
(

1 +
(2π)2R2

a2λ2
z

)
= T a∆Ω−2, (78)

P z = ±T nz ×
(2π)2R2

aλz
= ±T a∆

(
1−Ω2

Ω2

)
, (79)

Λϕ = ±2πT aRnz = ±T a∆

√
1−Ω2

Ω
, (80)

Π = T a∆

√
1 +

(2π)2R2

a2λ2
z

= T a∆Ω−1, (81)

T z = −T a∆
(

1− (2π)2R2

a2λ2
z

)
= −T a∆

(
2Ω2 − 1

Ω2

)
. (82)

Clearly, it is possible for the string to be effectively tensionless (everywhere) when the
distance between windings is equal to the circumference of extra dimension

a2λ2
z = (2π)2R2, (83)

or equivalently when

Ω2 = ω2 = 1/2, ∀t, σ. (84)

Under these conditions we also have that

ω2
z ≡ ω2

ϕ =
v2

ϕ

R2 =
a2

R2 , (85)

where ωϕ and vϕ denote the angular and linear velocity of the string in the compact space.
In the classical theory, the four-dimensional string tension reverses sign and becomes

an effective pressure for ω2 < 1/2. This leads to qualitative differences in the macro-
scopic (i.e., (3+1)-dimensional) string dynamics. For example, circular string loops with
initial winding configurations such that aλz(ti) < 2πR oscillate between two critical radii,
ρc1 = ρ(ti) and ρc2 > ρ(ti), implying that loops initially expand, rather than contract,
after chopping off from the long string network [51,53]. This is also shown explicitly, in
the classical theory of circular loops, in Section 2.3. However, due to quantum effects,
superconducting defect strings carrying either bosons or fermions are expected have critical
currents of order

Jmax '
e

2πR
, (86)

where e is the coupling (i.e., charge) [2]. In field theory, an important generalisation of
the original (vacuum) cosmic string models was given by Witten [44], who proposed that
ordinary cosmic strings may carry electric currents, thus behaving like superconducting
wires. The charge carriers may either be bosons, in which case a charged Higgs field with a
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nonzero vacuum expectation value in the core of the string is required, or fermions, which
are trapped as zero modes along the string. For bosonic currents, exceeding the critical
threshold implies electric field strengths large enough to induce pair production via the
Schwinger process whereas, for trapped fermions, this marks the critical point at which it
becomes energetically favourable for particles to leave the string [2].

Although Nielsen [46] established a formal correspondence between superconducting
strings and strings compactified on higher-dimensional cycles at the classical level, it is
reasonable to consider the quantum bound (86) in relation to this model. For the long
straight string, this may be rewritten in terms of the higher-dimensional variable λz as

aλmin
z = 2πR. (87)

In the defect string picture, this is equivalent to requiring the distance between neighbour-
ing twists in the magnetic field lines to be greater than the circumference of the string
core [51]. In the wound string picture, it implies that neighbouring windings must be
separated by a distance larger than the compactification scale. Though a full quantum
mechanical treatment of the wound-string model is needed to confirm this result, we
note that it is physically intuitive and is analogous to a standard result for nonrelativistic
strings of finite width, i.e., that one cannot put ‘twists’ in a length of rope over distances
significantly shorter than its width. It is also interesting to note that the maximum current
allowed by quantum mechanics is exactly that which leads to the tensionless condition, so
that strings with positive effective pressure, or ‘repulsive rods’, are unable to form.

For the treatment of nonlinear windings, it is useful to introduce the parameter
α ∈ [0, 1], defined via

α−2 =
1

2πn2
z

∫ 2π

0
(∂σ ϕ)2dσ =

1
2π

∫ 2π

0

(
1 +

∂σ ϕNL

nz

)2
dσ. (88)

We define α as the inverse of the positive square root of (88) so that α = 1 when ϕNL = 0
and α < 1 when ϕNL 6= 0. It is then straightforward to show that in general

E = T a∆
(

1 +
(2π)2R2

a2α2λ2
z

)
= T a∆Ω−2, (89)

P z = ±T nz

α
× (2π)2R2

aαλz
= ±T a∆

(
1−Ω2

Ω2

)
, (90)

Λϕ = ±2πT aRnz = ±T a∆

√
1−Ω2

Ω
α (91)

Π = T a∆

√
1 +

(2π)2R2

a2λ2
z

(2α−2 − 1) = T a∆Ω−1
√

2− α2 − (1− α2)Ω2, (92)

T z = −T a∆
(

1− (2π)2R2

a2α2λ2
z

)
= −T a∆

(
2Ω2 − 1

Ω2

)
. (93)

Thus, the definition (88) allows us to express the physical parameters of the string in a
compact form in terms of Ω(t) and α, even for strings with complicated nonlinear windings.

In the nonlinear case-that is, for a string with linear extension in the z-direction
of the Minkowski space-time but with nonlinear windings propagating along its (3+1)-
dimensional length-it is not possible for the string to be everywhere tensionless at any
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moment in time. However, it is still possible for the average net tension in the z-direction
to be zero and this occurs when

a2α2λ2
z = (2π)2R2, (94)

or equivalently for

Ω2 = 1/2, ∀t, (ω2 6= 1/2, ∀t, σ). (95)

Note that although Ω2, as we have defined it for a general string configuration, is a function
of time, it is clear that for the embedding considered here it is a constant, even in the
nonlinear case:

Ω2 =

(
1 +

(2π)2R2

a2α2λ2
z

)−1

= const. (96)

The linear case corresponds to α = 1 and α < 1 quantifies the degree of nonlinearity in
the windings. Specifically, we may interpret aαλz as the mean value of the local wavelength
of the windings (in the warped geometry), averaged across the entire length of the string
and nz/α as the average value of the effective ‘local’ winding number at a given point z.
To see this, we now define the local values of the various model parameters-that is, their
effective values at a given point on the string, labelled by σ (or z), at a given time t. Thus,
the local string length in (3+1)-dimensions and the local winding number are defined as

(leff
z )2 = (2π)2(∂σz)2 = ∆2, (neff

z )2 =
∆2

(2π)2 ϕ′2 = (∂σ ϕ)2. (97)

We define the effective wavelength, wavenumber, angular frequency and velocity of the
string in the z-direction via

(ωeff
z )2 = (veff

z )2(keff
z )2, (keff

z )2 =
(2π)2

(λeff
z )2

=
(2π)2

∆
(∂σ ϕ)2. (98)

The instantaneous angular and linear velocities in the ϕ-direction are then related via

(ωeff
z )2 = (ωeff

ϕ )2 =
(veff

ϕ )2

R2 = ϕ̇2, (99)

since the angular frequency associated with the movement of the windings in the large
dimensions must be equal to the angular velocity of the string in the compact space.

In our new notation, the EOM for ϕ is equivalent to the dispersion relation

(ωeff
z )2 = (keff

z )2, ωeff
z = ±keff

z , (100)

and

(veff
z )2 = 1, ∀t, σ. (101)

By combining the various relations above, it follows that

(leff
z )2 = (neff

z )2(λeff
z )2, (veff

ϕ )2(λeff
z )2 = (2π)2R2,

(neff
z )2 =

(veff
ϕ )2(leff

z )2

(2π)2R2 =
(veff

ϕ )2∆2

(2π)2R2 , (102)
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which form a self-consistent set. The expressions for the various components of T I
J
√−g

may now be written entirely in terms of the new parameters since

ω−2 =
a2(leff

z )2 + (2π)2R2(neff
z )2

a2(leff
z )2

= 1 +
(2π)2R2

a2(λeff
z )2

. (103)

In general, we have that

a2(λeff
z )2 = (2π)2R2

(
ω2

1−ω2

)
, (104)

so that the tensionless condition ω2 = 1/2 is equivalent to a2(λeff
z )2 = (2π)2R2 which,

for a string which is ‘straight’ with respect to the Minkowski directions, is clearly only
possible when the windings are linear, λeff

z = λz, thus yielding the condition obtained
previously, (83). It is straightforward to show that the consistency of the relations above
also requires

(veff
ϕ )2 = a2

(
1−ω2

ω2

)
≡

v2
⊥

a2 . (105)

This can be interpreted physically since, for windings formed dynamically by the motion
of the string in the compact space, rather than as an initial condition at the time of string
formation, we expect

(veff
ϕ )2

a2(veff
z )2

=
1−ω2

ω2 . (106)

This is equivalent to the previous relation (105) since (veff
z )2 = 1.

Next, we define the integrated (i.e., spatially-averaged) values of the parameters on
the left-hand sides of Equations (97)–(100) according to the averaging condition

〈Q2〉(t) = 1
2π

∫ 2π

0
(Qeff)2dσ. (107)

The integrated values of any parameters appearing on the right-hand-sides are defined
implicitly in terms of those on the left. Hence, we have

〈l2
z 〉 = ∆2, 〈n2

z〉 = n2
z/α2, (108)

and

〈ω2
z〉 = 〈k2

z〉, 〈k2
z〉 =

(2π)2

〈λ2
z〉

=
(2π)2

∆2 〈(∂σ ϕ)2〉, (109)

where

〈λ2
z〉 = α2λ2

z , (110)

together with

〈ω2
z〉 = 〈ω2

ϕ〉 =
〈v2

ϕ〉
R2 = 〈ϕ̇2〉. (111)

Combining these expression as before gives

〈l2
z 〉 = 〈n2

z〉〈λ2
z〉, 〈v2

ϕ〉〈λ2
z〉 = (2π)2R2, 〈n2

z〉 =
〈v2

ϕ〉〈l2
z 〉

(2π)2R2 =
〈v2

ϕ〉∆2

(2π)2R2 , (112)
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and

〈v2
ϕ〉 = v2

ϕ/α2. (113)

In general, we have

a2〈λ2
z〉 = (2π)2R2

(
Ω2

1−Ω2

)
. (114)

The case of zero net tension occurs when the average value of the wavelength, along the
entire string, is equal to the circumference of the compact space

a2〈λ2
z〉 = (2π)2R2. (115)

As before, the consistency of the above relations also requires

〈v2
ϕ〉 = a2

(
1−Ω2

Ω2

)
≡
〈v2
⊥〉

a2 =
Ω2

a2 〈v
2
ϕ〉. (116)

This follows from the expression for the ratio of the instantaneous velocities for dynamically
formed windings. By integrating Equation (105) over dσ, we obtain

〈v2
ϕ〉

a2〈v2
z〉

=
1−Ω2

Ω2 , (117)

which is equivalent to Equation (116), since 〈v2
z〉 = 1.

The physical parameters E, P z, Π and T z can now be written in terms of the spatially-
averaged variables as

E = T a∆
(

1 +
(2π)2R2

a2〈λ2
z〉

)
, (118)

P z = ±T a∆× (2π)2R2

a2〈λ2
z〉

= ±T
√
〈n2

z〉 ×
(2π)2R2

a
√
〈λ2

z〉
, (119)

Π = T a∆

√
1 +

(2π)2R2

a2〈λ2
z〉

(
2〈n2

z〉 − n2
z

〈n2
z〉

)
, (120)

T z = −T a∆
(

1− (2π)2R2

a2〈λ2
z〉

)
. (121)

These expressions remain consistent with our earlier definitions, since

Ω−2 =
a2〈l2

z 〉+ (2π)2R2〈n2
z〉

a2〈l2
z 〉

= 1 +
(2π)2R2

a2〈λ2
z〉

. (122)

In the linear case, we have

〈Q2〉 = (Qeff)2 = Q2 = const., (123)

ω2 = Ω2 = const., ∀t, σ (124)
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and α = 1, so that the expressions above reduce to

∆2 = n2
zλ2

z , v2
ϕλ2

z = (2π)2R2, n2
z =

v2
ϕ∆2

(2π)2R2 . (125)

ω2
z = k2

z =
(2π)2

λ2
z
≡ ω2

ϕ =
v2

ϕ

R2 , (126)

and v2
z = 1. These last relations also hold true, for the parameters contained within

the argument of the function ϕ(t, z) ≡ ϕ(t, σ), even in the nonlinear case, for which
(Qeff)2 6= 〈Q2〉 6= Q2.

2.3. Circular F-String Loops

In this section, we consider circular loops, both with and without higher-dimensional
windings. Loops with higher-dimensional windings are considered in detail in Section 2.3.2
and the general solution to the string EOM for arbitrary initial conditions is given. As it is
instructive to first review the treatment of circular loops without windings, a brief analysis
of this is presented in Section 2.3.1.

2.3.1. Circular F-String Loops in (3+1) Dimensions

To treat string loops we switch from Cartesian to cylindrical polar coordinates, so that
the (y, z)-plane becomes the (ρ, σ)-plane

ds2 = a2(dt2 − dx2 − dy2 − dz2)− R2dϕ2 = a2(dt2 − dx2 − dρ2 − ρ2dσ2)− R2dϕ2. (127)

For circular loops with no higher-dimensional windings, the embedding is

X I(τ, σ) ≡ X I(t, σ) = (t(τ) = ζτ, x = 0, ρ(t), σ, ϕ = 0), (128)

and the action becomes

S = −T a2
∫

dtdσρ
√

1− ρ̇2. (129)

This can be written in the standard form (37) by setting

dl
dσ

= aρ,
v2
⊥

a2 = ρ̇2. (130)

The EOM are

∂0(T0
0
√
−g) + ∂σ(Tσ

0
√
−g) = 0, (131a)

∂0(T0
σ

√
−g) + ∂σ(Tσ

σ

√
−g) = 0, (131b)

∂0(T0
ρ

√
−g) + ∂σ(Tσ

ρ

√
−g)− 1

2
∂ρgσσTσσ

√
−g = 0, (131c)

where the relevant components of T I
J
√−g are given by

T 0
0
√
−g = T a2ρ√

1− ρ̇2
, T σ

0
√
−g = 0, (132a)

T 0
σ

√
−g = 0, T σ

σ

√
−g = T a2ρ

√
1− ρ̇2, (132b)

T 0
ρ

√
−g = −T a2ρρ̇√

1− ρ̇2
, T σ

ρ

√
−g = 0, T σσ

√
−g = −T

√
1− ρ̇2

ρ
. (132c)
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It is straightforward to show that each of these is equivalent to

1− ρ̇2 + ρρ̈ = 0, (133)

which represents the conservation of energy, since the only nonzero constant of motion is
the Hamiltonian

E = 2πT aρ√
1− ρ̇2

. (134)

The integrated tensions are

T ρ = −2πT aρρ̇√
1− ρ̇2

, T σ = −2πT aρ
√

1− ρ̇2. (135)

and the only possible shear, between the σ- and ρ-directions, is zero

Σρσ = 0, (136)

since T ρσ√−g = 0. The expressions for the Hamiltonian and integrated tensions, and, in
fact, for all the components of the energy momentum tensor T I

J
√−g, become equivalent

to those for the long straight string (with no higher-dimensional windings) for

∆ = 2πρ(ti), ρ̇(t) = 0, ρ̈(t) = 0, ∀t, (137)

where ti denotes the initial time, which is assumed to be the time of loop formation.
Due to the circular symmetry of the system, the Hamiltonian density is independent

of σ and the EOM for ρ(t) is directly integrable. We may solve it, subject to the generic
boundary conditions

ρ(t)|t=ti = ρ(ti), ρ̇(t)|t=ti = ρ̇(ti), (138)

to give

ρ(t) =
ρ(ti)√

1− ρ̇2(ti)

∣∣∣∣∣cos

(√
1− ρ̇2(ti)

ρ(ti)
(t− ti)− sin−1(ρ̇(ti))

)∣∣∣∣∣. (139)

Note that we must make use of the identity

cos(sin−1(x)) =
√

1− x2 (140)

to recover the correct initial radius at t = ti. The loop oscillates between two critical radii

ρc1 = ρ(ti), ρc2 = 0, (141)

performing one full oscillation with a time period

Tc =
ρ(ti)√

1− ρ̇2(ti)
π. (142)

2.3.2. Circular F-String Loops with Higher-Dimensional Windings

Using cylindrical polar coordinates, the general embedding for a circular loop with
higher-dimensional windings is

X I(τ, σ) ≡ X I(t, σ) = (t(τ) = ζτ, x = 0, ρ(t), σ, ϕ(τ, σ) ≡ ϕ(t, σ)), (143)
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so that the action is

S = −T
∫

dtdσ
√

a2(1− ρ̇2)(a2ρ2 + R2(∂σ ϕ)2)− a2ρ2R2 ϕ̇2, (144)

which can be written in the standard form (37) with

dl
dσ

=
√

a2ρ2 + R2(∂σ ϕ)2,
v2
⊥

a2 = ρ̇2 +
ρ2R2 ϕ̇2

a2ρ2 + R2(∂σ ϕ)2 . (145)

The EOM are

∂0(T0
0
√
−g) + ∂σ(Tσ

0
√
−g) = 0, (146a)

∂0(T0
σ

√
−g) + ∂σ(Tσ

σ

√
−g) = 0, (146b)

∂0(T0
ρ

√
−g) + ∂σ(Tσ

ρ

√
−g)− 1

2
∂ρgσσTσσ

√
−g = 0, (146c)

∂0(T0
ϕ

√
−g) + ∂σ(Tσ

ϕ

√
−g) = 0. (146d)

Writing out the EOM in ϕ(t, σ) explicitly in terms of (−γ) and its derivatives, we have

(−γ)[(1− ρ̇2)∂2
σ ϕ− ρ2 ϕ̈− 2ρρ̇ϕ̇] +

1
2

ρ2 ϕ̇
∂(−γ)

∂t
− 1

2
(1− ρ̇2)∂σ ϕ

∂(−γ)

∂σ
= 0, (147)

which may be rearranged to give

a2R2[(1− ρ̇2)∂2
σ ϕ− ρ2 ϕ̈− 2ρρ̇ϕ̇][(1− ρ̇2)(∂σ ϕ)2 − ρ2 ϕ̇2]

+ a2R2ρ2 ϕ̇[(1− ρ̇2)∂σ ϕ∂σ ϕ̇− ρρ̈(∂σ ϕ)2 − ρρ̇ϕ̇2 − ρ2 ϕ̇ϕ̈]

− a2R2(1− ρ̇2)∂σ ϕ[(1− ρ̇2)∂σ ϕ∂2
σ ϕ− ρ2 ϕ̇∂σ ϕ̇]

+ a4ρ2
{
(1− ρ̇2)[(1− ρ̇2)∂2

σ ϕ− ρ2 ϕ̇∂σ ϕ̇]− ρ2ρ̇ρ̈ϕ̇
}

. (148)

This is very complicated, but we may try to guess an equivalent compact form by noting
that Equation (148) reduces to the EOM for ϕ(t, z) for the long straight string, when the
conditions in Equation (137) are satisfied. Thus, let us assume that

ϕ̇2 =
(1− ρ̇2)

ρ2 (∂σ ϕ)2. (149)

Differentiating with respect to t and σ, respectively, then gives

(1− ρ̇2)∂σ ϕ∂σ ϕ̇− ρ̇ρ̈(∂σ ϕ)2 − ρρ̇ϕ̇2 − ρ2 ϕ̇ϕ̈ = 0, (150)

(1− ρ̇2)∂σ ϕ∂2
σ ϕ− ρ2 ϕ̇∂σ ϕ̇ = 0, (151)

and the complicated EOM (148) simplifies to

(1− ρ̇2)2∂2
σ ϕ− ρ2ρ̇ρ̈ϕ̇− (1− ρ̇2)[ρρ̇ϕ̇ + ρ2 ϕ̈] = 0. (152)

Rearranging Equations (150) and (151) to make ∂σ ϕ̇ the subject and equating the results,
gives

(∂σ ϕ)2[(1− ρ̇2)2∂2
σ ϕ− ρ2ρ̇ρ̈ϕ̇]− ρ2 ϕ̇2[ρρ̇ϕ̇ + ρ2 ϕ̈] = 0. (153)

Substituting again from the compact expression Equation (149), we recover the simplified
EOM Equation (152). Hence, our guess (149) is genuinely equivalent to the original
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complicated EOM for ϕ(t, σ), Equation (148). Equation (149) is solved by any function of
the form

ϕ(t, σ) = ϕ

(
nσσ +

∫
ωσ(t)dt

)
, (154)

where

ω2
σ(t) = n2

σ

(
1− ρ̇2

ρ2

)
, ωσ(t) = ±nσ

√
1− ρ̇2

ρ
, (155)

which for convenience may again be split into linear and nonlinear parts

ϕ(t, σ) = nσσ +
∫

ωσ(t)dt + ϕNL

(
nσσ +

∫
ωσ(t)dt

)
. (156)

However, since we have imposed circular symmetry on the (3+1)-dimensional part of the
ansatz, we must also impose this with respect to distribution of the the windings, from a
(3+1)-dimensional perspective. Therefore, we may set ϕNL = 0, so that

ϕ(t, σ) = nσσ +
∫

ωσ(t)dt, (157)

which is equivalent to the condition

∂σω = 0. (158)

Since we have imposed three constraints on a system of four PDEs, i.e., fixing the
forms of X0 = ζτ and X1 = σ, together with the condition (158), we should now be left
with a single remaining (independent) EOM in the Euler–Lagrange equations. In other
words, if the requirement of circular symmetry for the windings is physically necessary, as
symmetry suggests, it should, together with the constraints imposed so far, imply that any
combination of Equations (146a)–(146d) yields the same independent EOM.

After substituting for ϕ̇2 from Equation (149), the components of T I
J
√−g which occur

in the EOM may be written as,

T 0
0
√
−g = T a2ρ√

1− ρ̇2
ω−2, T σ

0
√
−g = ∓T a2

(
1−ω2

ω2

)
, (159a)

T 0
σ

√
−g = ±T a2ρ2

(
1−ω2

ω2

)
, T σ

σ

√
−g = T a2ρ

√
1− ρ̇2

(
2ω2 − 1

ω2

)
, (159b)

T 0
ρ

√
−g = −T a2ρρ̇√

1− ρ̇2
ω−2, T σ

ρ

√
−g = ±T a2ρ̇

(
1−ω2

ω2

)
,

T σσ
√
−g = −T

√
1− ρ̇2

ρ

(
2ω2 − 1

ω2

)
, (159c)

T 0
ϕ

√
−g = ±T aρR

√
1−ω2

ω
, T σ

ϕ

√
−g = ∓T a

√
1− ρ̇2R

√
1−ω2

ω
, (159d)

where

ω−2(t) =
a2ρ2 + R2n2

σ

a2ρ2 . (160)

We now define the normalised components of the current density as

J 0√−g =
e

2π

√
1− ρ̇(ti)

ρ(ti)

ρ√
1− ρ̇

ϕ̇, J σ
√
−g =

e
2π

√
1− ρ̇(ti)

ρ(ti)

√
1− ρ̇

ρ
∂σ ϕ, (161)
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so that using the EOM in ϕ gives

J 0√−g = ± e
2π

√
1− ρ̇(ti)

ρ(ti)
∂σ ϕ = −J σ

√
−g = ∓ e

2π

√
1− ρ̇(ti)

ρ(ti)
ϕ̇. (162)

The components of the 4-current may again be expressed in terms of T 0
ϕ
√−g and

T σ
ϕ
√−g, now given by Equation (159d), and it is straightforward to show that the current

conservation equation is equivalent to Equation (146d).
By direct substitution of Equations (159a)–(159c), together with Equation (158), it may

be verified that Equations (146b) and (146d) yield

ρ

ρ̇

ω̇

ω
= 1−ω2, (163)

and that Equations (146a) and (146c) give, respectively,

(1− ρ̇2)(2ω2 − 1) + ρρ̈ + 2ρ̇2(1− ρ̇2)

(
1−ω2 − ρ

ρ̇

ω̇

ω

)
= 0, (164)

and

(1− ρ̇2)

(
1− 2

ρ

ρ̇

ω̇

ω

)
+ ρρ̈ = 0. (165)

In fact, Equation (163) follows directly from the definition of ω2 under the assumption that
ω2 = ω2(t) (Equation (160)) and is therefore equivalent to the condition ∂σω = 0 (158).
Thus, the sole remaining independent EOM is

(1− ρ̇2)(2ω2 − 1) + ρρ̈ = 0. (166)

In this system, the EOM in ρ(t) is redundant and is satisfied identically according to the
conservation of energy and angular momentum represented by the EOM in X0 = t, σ
and ϕ. It is also possible, though time consuming, to show that for ∂σω 6= 0 (ϕNL 6= 0),
Equations (146a)–(146d) are not self-consistent. Physically, this is because nonlinear fluc-
tuations in the winding density would induce additional σ-dependence in the effective
tension of the string, causing it to contract or expand at different rates at different points
on the circumference of the loop. Therefore, even if the string began in an initially circular
configuration in Minkowski space, this symmetry would immediately be broken if not
reflected in the initial winding distribution.

Again utilising the EOM in ϕ, we may relate the parameter ω2 to the perpendicular
velocity of the string

dl
dσ

= aρω−1,
v2
⊥

a2 = ρ̇2 + (1− ρ̇2)(1−ω2). (167)

The σ-independence of the winding distribution also implies that

ω−2(t) = Ω−2(t) =
a2ρ2 + R2n2

σ

a2ρ2 = 1 +
(2π)2R2

a2λ2
σ

, (168)

where

λσ(t) =
2πρ(t)

nσ
, (169)
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which is analogous to the first relation in Equation (125) for straight strings, and we define
the (time-dependent) wavenumber via

kσ(t) =
2π

λσ(t)
. (170)

As for long straight strings with higher-dimensional windings, the EOM in ϕ(t, σ) may be
written as a dispersion relation

ω2
σ = (1− ρ̇2)k2

σ, ωσ = ±
√

1− ρ̇2kσ, (171)

but now the instantaneous linear velocity of the string is given by

v2
σ = 1− ρ̇2, vσ = ±

√
1− ρ̇2, (172)

i.e., it depends on velocity of the string in the macroscopic dimensions and, also, implicitly
on its curvature, since ρ̇ is related to ρ.

Further expressions, analogous to those in Equations (125) and (126) which are valid
for the straight string in the case of linear windings, also hold:

ω2
σ = ω2

ϕ =
v2

ϕ

R2 , v2
ϕλ2

σ = (1− ρ̇2)(2π)2R2, n2
σ =

v2
ϕ

(1− ρ̇2)

ρ2

R2 . (173)

In general, we have

a2λ2
σ = (2π)2R2

(
Ω2

1−Ω2

)
, (174)

so that consistency requires

v2
ϕ = a2(1− ρ̇2)

(
1−Ω2

Ω2

)
≡

v2
⊥

a2 . (175)

This is automatically satisfied for string loops with dynamically formed windings, for
which the following relation holds

v2
ϕ

a2v2
σ
=

1−Ω2

Ω2 , (176)

and which is equivalent to Equation (175), since v2
σ = 1− ρ̇2. Equations (174)–(176) are the

circular loop equivalents of Equations (104)–(106), respectively. The string is everywhere
effectively tensionless when

v2
⊥

a2 = ω2 = Ω2 = 1/2, ∀t, (177)

or equivalently when

a2λ2
σ = (2π)2R2, (178)

and, from Equation (166), it is immediately clear that under these conditions ρ̇ = 0, ρ̈ = 0 ∀t,
as expected.

In terms of the higher-dimensional string parameters, the constants of motion may be
written as

E = T 2πaρ√
1− ρ̇2

(
1 +

(2π)2R2

a2λ2
σ

)
= T 2πaρ√

1− ρ̇2
Ω−2, (179)
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Λσ = ±2πT ρ

ρ(ti)
nσ ×

(2π)2R2

aλσ
= ±2πT a

ρ2

ρ(ti)

(
1−Ω2

Ω2

)
, (180)

Λϕ = ±2πT nσ = ±2πT aρ

R

√
1−Ω2

Ω
, (181)

Π = T 2πaρ√
1− ρ̇2

Ω−1

√
1

Ω2 − (1− ρ̇2)

{
ρ2

ρ2(ti)

(1−Ω2)2

Ω2 + (1−Ω2)

}
, (182)

and the nonzero effective tensions are given by

T σ = −2πT aρ
√

1− ρ̇2
(

1− (2π)2R2

a2λ2
σ

)
= −2πT aρ

√
1− ρ̇2

(
2Ω2 − 1

Ω2

)
, (183)

T ρ = −T aρρ̇2√
1− ρ̇2

Ω−2 = −ρ̇2E. (184)

Again, T ϕ = 0 since T ϕϕ√−g = 0 by the EOM for ϕ(t, σ). The nonzero shears between
the σ- and ρ-, σ- and ϕ-, and ρ- and φ-directions are

Σρσ = ∓2πT a2ρρ̇

(
1−Ω2

Ω2

)
= −aρ(ti)

ρ̇

ρ
Λσ, (185)

Σσϕ = ∓2πT a2ρ
√

1− ρ̇2

√
1−Ω2

Ω2 = − a
R

√
1− ρ̇2Λϕ, (186)

Σρϕ = ∓2πT a2ρρ̇

√
1−Ω2

Ω2 = −aρ(ti)
ρ̇

ρ
Λϕ. (187)

As expected, all effective pressures and shears vanish locally when ω2 = Ω2 = 1/2 and
under these conditions we again have ω2

σ ≡ ω2
ϕ = a2/R2, as in the straight string case, (85).

We now note that, imposing the boundary conditions given in Equation (137) and
identifying λz ↔ λσ(ti), we may also identify

Pz ↔ lσ

2πρ(ti)
, (188)

which ensures that

PzPz = lσlσ(ti), (189)

and

P z ↔ Λσ. (190)

In this case, the total 4-momentum, given by

Π = 2πT aρ(ti)

√
1 +

(2π)2R2n2
σ

a2λ2
σ(ti)

= 2πT aρ(ti)Ω−1(ti) (191)
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for ρ̇(ti) = 0, is conserved when a long-string section chops off from the network to form a
loop, despite the fact that linear momentum in the z-direction is ‘converted’ into angular
momentum in the σ-direction.

Finally, we consider the general solution of Equation (166). This was solved in [51,53],
for the specific initial velocity ρ̇(ti) = 0, by performing an Eulerian substitution of the
second kind, giving

ρ(t) = ρ(ti)

√
1−

(
2Ω2(ti)− 1

Ω4(ti)

)
sin2

(
Ω2(ti)

ρ(ti)
(t− ti)

)
. (192)

In this case the loop oscillates between two critical radii

ρc1 = ρ(ti), ρc2 =

(
1−Ω2(ti)

Ω2(ti)

)
ρ(ti), (193)

performing one full oscillation with time period

Tc = ρ(ti)Ω−2(ti)π. (194)

The same technique can be used to obtain the general solution for arbitrary initial velocities:
ρ(t) has the same functional form as in Equation (192),

ρ(t) = A
√

1− B sin(C(t− ti) + D), (195)

but the constants A− D are given by more complicated expressions involving ρ̇(ti),

A =
1√
2

ρ(ti)√
1− ρ̇2(ti)

Ω−2(ti)

×
[

1− 2(1− ρ̇2(ti))Ω2(ti)(1−Ω2(ti)) +
√

1− 4(1− ρ̇2(ti))Ω2(ti)(1−Ω2(ti))

] 1
2
, (196a)

B =
2
√

1− 4(1− ρ̇2(ti))Ω2(ti)(1−Ω2(ti))

1− 2(1− ρ̇2(ti))Ω2(ti)(1−Ω2(ti)) +
√

1− 4(1− ρ̇2(ti))Ω2(ti)(1−Ω2(ti))
, (196b)

C =

√
1− ρ̇2(ti))

ρ(ti)Ω−2(ti)
, (196c)

D = − sin−1(B−1/2
√

1− ρ2(ti)/A2), (196d)

In this case, the string oscillates with time period

Tc =
ρ(ti)√

1− ρ̇2(ti)
Ω−2(ti)π. (197)

The second critical radius ρc2 may be deduced from Equation (195), but, since it is also a
complicated function of the initial conditions we do not quote it here, explicitly, for the
sake of brevity. In the limit Ω2(ti) → 1 (ρ̇2(ti) ≥ 0), we recover the previous solution
for unwound circular loops, Equation (139) and for ρ̇2(ti) → 0 (Ω2(ti) < 1), we recover
Equation (192).

2.4. Noncircular F-String Loops

In this section, we consider arbitrary planar loops, both with and without higher-
dimensional windings. Since the EOM for this (most general) case are rather complicated in
our chosen gauge, it is instructive to first review the analysis of noncircular loops without
windings. This is done in Section 2.4.1. Arbitrary planar loops with higher-dimensional
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windings are considered in detail in Section 2.4.2 and the general solution to the higher-
dimensional part of the string EOM is given in terms of (3+1)-dimensional observables.

2.4.1. Noncircular F-String Loops in (3+1) Dimensions

The embedding for an arbitrary planar loop with no higher-dimensional windings, in
cylindrical polar coordinates, is

X I(τ, σ) ≡ X I(t, σ) = (t(τ) = ζτ, x = 0, ρ(t, σ), σ, ϕ = 0). (198)

The action is

S = −T a2
∫

dtdσ
√
(1− ρ̇2)ρ2 + (∂σρ)2, (199)

which may be written in the standard form using

dl
dσ

= a
√

ρ2 + (∂σρ)2,
v2
⊥

a2 = ρ̇2
(

1− (∂σρ)2

ρ2 + (∂σρ)2

)
. (200)

Written terms of the energy-momentum tensor, the EOM are the same as for circular loops
without windings, Equations (131a)–(131c), but the components of T I

J
√−g are different:

T 0
0
√
−g = T ρ2 + (∂σρ)2√

(1− ρ̇2)ρ2 + (∂σρ)2)
, T σ

0
√
−g = −T ρ̇∂σρ√

(1− ρ̇2)ρ2 + (∂σρ)2)
, (201a)

T 0
σ

√
−g = T a2 ρ2ρ̇∂σρ√

(1− ρ̇2)ρ2 + (∂σρ)2)
, T σ

σ

√
−g = T a2 (1− ρ̇2)ρ2√

(1− ρ̇2)ρ2 + (∂σρ)2)
, (201b)

T 0
ρ

√
−g = −T a2 ρ2ρ̇√

(1− ρ̇2)ρ2 + (∂σρ)2)
, T σ

ρ

√
−g = T a2 ∂σρ√

(1− ρ̇2)ρ2 + (∂σρ)2)
,

T σσ
√
−g = −T a2 (1− ρ̇2)√

(1− ρ̇2)ρ2 + (∂σρ)2)
. (201c)

By direct substitution, it is straightforward to show that each EOM is equivalent to

(1− ρ̇2)

(
1− ∂2

σρ

ρ

)
+

(
1 +

(∂σρ)2

ρ2

)
ρρ̈ + 2

(
(∂σρ)2

ρ2 − ρ̇

ρ
∂σρ∂σ ρ̇

)
= 0, (202)

which again expresses the conservation of energy, since the only nonzero constant of motion
is the Hamiltonian. Formally, we may write down expressions for the constants of motion,
integrated pressures and integrated shears, but these cannot be evaluated without adopting
a more specific ansatz for ρ(t, σ). It is sufficient for our purposes to note that in general
E 6= −T σ, and that there is no way to obtain a static tensionless solution for an unwound
string.

2.4.2. Noncircular F-String Loops with Higher-Dimensional Windings

In cylindrical polars, the general embedding for arbitrary planar loops with higher-
dimensional windings is

X I(τ, σ) ≡ X I(t, σ) = (t(τ) = ζτ, x = 0, ρ(t, σ), σ, ϕ(τ, σ) ≡ ϕ(t, σ)). (203)

The action is

S = −T
∫

dtdσ
[
a2(1− ρ̇2)(a2ρ2 + R2(∂σ ϕ)2) + a4(∂σρ)2

−(a2ρ2 + a2(∂σρ)2)R2 ϕ̇2 + 2a2ρ̇∂σρR2 ϕ̇∂σ ϕ
]
, (204)
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which may be written in the standard form by setting

dl
dσ

=
√

a2ρ2 + a2(∂σρ)2 + R2(∂σ ϕ)2,

v2
⊥

a2 = ρ̇2 +
(ρ2 + (∂σρ)2)R2 ϕ̇2 − a2ρ̇2(∂σρ)2 − 2ρ̇∂σρR2 ϕ̇∂σ ϕ

a2ρ2 + a2(∂σρ)2 + R2(∂σ ϕ)2 . (205)

The EOM are

∂0(T0
0
√
−g) + ∂σ(Tσ

0
√
−g) = 0, (206a)

∂0(T0
σ

√
−g) + ∂σ(Tσ

σ

√
−g) = 0, (206b)

∂0(T0
ρ

√
−g) + ∂σ(Tσ

ρ

√
−g)− 1

2
∂ρgσσTσσ

√
−g = 0, (206c)

∂0(T0
ϕ

√
−g) + ∂σ(Tσ

ϕ

√
−g) = 0, (206d)

and Equation (206d) may be written in terms of (−γ) and its derivatives as

(−γ)

[
(1− ρ̇2)∂2

σ ϕ− (ρ2 + (∂σρ)2)ϕ̈− 2(ρρ̇ + ∂σρ∂σ ρ̇)ϕ̇

(ρ̈∂σρ + ρ̇∂σ ρ̇)∂σ ϕ + (ρ̇∂2
σρ + ∂σρ∂σ ρ̇)ϕ̇− 2ρ̇∂σ ρ̇∂σ ϕ + 2ρ̇∂σρ∂σ ϕ̇

]
− 1

2
∂(−γ)

∂t [ρ̇∂σρ∂σ ϕ− (ρ2 + (∂σρ)2)ϕ̇]− 1
2

∂(−γ)
∂σ [(1− ρ̇2)∂σ ϕ + ρ̇∂σρϕ̇] = 0. (207)

Writing out (−γ) and its derivatives explicitly, this expression is even more complicated
than Equation (148). However, bearing in mind our previous results, we may guess that
Equation (207) can be written in a compact form as

(1− ρ̇2)(∂σ ϕ)2 − (ρ2 + (∂σρ)2)ϕ̇2 + 2ρ̇∂σρϕ̇∂σ ϕ = 0, (208)

and that imposing this condition on the remaining EOM, Equations (206a)–(206c), will
lead to a self-consistent set of equations. In fact, it is far simpler to work directly with
Equation (206d) as the EOM in φ(t, σ) and to impose the constraint in Equation (208)
before multiplying out the derivatives. It is then straightforward to show that, subject to
Equation (208),

T 0
ϕ

√
−g = ∓T R2∂σ ϕ,

T σ
ϕ

√
−g = ±T R2 ϕ̇, (209)

so that Equation (206d) reduces to an identity. Thus, Equation (207), which is equiv-
alent to Equation (206d), is automatically satisfied by the imposition of the constraint,
Equation (208).

As in the previous cases considered, for long straight strings and circular loops with
higher-dimensional windings, imposing the constraint which satisfies the EOM in ϕ(t, σ)
implies that all higher-dimensional terms (i.e., terms dependent on ϕ(t, σ) or its derivatives)
cancel in (−γ) at the level of the EOM. This condition also ensures T ϕϕ√−g = 0, so that
there is no effective pressure in either the ϕ-direction or the ‘R-direction’ (i.e., dR = 0).
Physically, this means that there is no effective pressure which can act to change the radius
of the windings in the compact space.

For strings compactified on an genuine M4 × S1 manifold, where the S1 is of constant
radius R, it is physically meaningless to talk about the string moving in the ‘R-direction’.
However, the metric (1) is also valid as an effective metric for embeddings in more complex
internal spaces, where the string wraps cycles of constant radius in the compact dimensions.
For example, in [51–53], strings wrapping great circles of the S3 internal manifold which
regularises the conifold at the tip of the Klebanov-Strassler geometry [54] were considered.
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In such a geometry, the effective winding radius of the string may vary as a function of both
t and σ and, since the windings are not topologically stabilised, they must be stabilised (if
at all), dynamically.

As we have seen, for circular strings with higher-dimensional windings, nonzero
effective pressure in the ρ-direction is associated with nonzero ρ̇, but both these quantities
become zero when there is no effective pressure in the σ-direction, T σσ√−g = 0. Though
we did not explicitly include a term proportional to dR2 in the metric considered in this
paper, or allow R to be a function of the world-sheet coordinates in the embedding, we
made such a restriction purely for simplicity and, in principle, the radius of the windings
can evolve, in an arbitrary internal manifold, as a function of both space and time. Thus,
nonzero Ṙ would be associated with nonzero T ϕϕ√−g, just as nonzero ρ̇ is associated with
nonzero T σσ√−g. Viewed in this way, the condition (208) and the EOM for ϕ(t, σ) and
ϕ(t, z) in Sections 3.2 and 4.2, respectively, result from, and are necessary conditions for,
our initial assumption of a constant winding radius.

Interestingly, in each higher-dimensional case considered so far, the constraint equa-
tion which ensures T ϕϕ√−g = 0 takes the form of a quadratic equation in ϕ̇/∂σ ϕ (or
equivalently ∂σ ϕ/ϕ̇), whose descriminant is directly proportional to the value of (−γ) after
the constraint has been applied, i.e., (−γ) ∝ (1− ρ̇2)ρ2 + (∂σρ)2, or the equivalent thereof.
Thus, from Equation (208), we have that

ϕ̇

∂σ ϕ
=

ρ̇∂σρ±
√
(1− ρ̇2)ρ2 + (∂σρ)2

ρ2 + (∂σρ)2 =
(1− ρ̇2)

−ρ̇∂σρ±
√
(1− ρ̇2)ρ2 + (∂σρ)2

(210)

which reduces to the previous EOM in φ(t, σ) for circular loops in the limit (∂σρ)2 → 0 and
to the EOM in ϕ(t, z) for long straight strings when, in addition, ρ̇→ 0 and 2πρ = ∆.

We must now test the consistency of the Euler–Lagrange equations subject to this con-
straint. After applying Equation (208)/(210) to the components of the energy-momentum
tensor, we have:

T 0
0
√
−g = T a2 ρ2 + (∂σρ)2√

(1− ρ̇2)ρ2 + (∂σρ)2
ω−2,

T σ
0
√
−g = −T a2 ρ̇∂σρ√

(1− ρ̇2)ρ2 + (∂σρ)2
ω−2 ∓ T a2

(
1−ω2

ω2

)
, (211a)

T 0
σ

√
−g = T a2 ρ2ρ̇∂σρ√

(1− ρ̇2)ρ2 + (∂σρ)2
ω−2 ± T a2ρ2

(
1−ω2

ω2

)
,

T σ
σ

√
−g = T a2 (1− ρ̇2)ρ2√

(1− ρ̇2)ρ2 + (∂σρ)2

[
1−

(
1−ω2

ω2

)
(ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2)2

(1− ρ̇2)(ρ2 + (∂σρ)2)

]
, (211b)

T 0
ρ

√
−g = −T a2 ρ2ρ̇√

(1− ρ̇2)ρ2 + (∂σρ)2
ω−2 ∓ T a2∂σρ

(
1−ω2

ω2

)
,

T σ
ρ

√
−g = T a2 ∂σρ√

(1− ρ̇2)ρ2 + (∂σρ)2

[
1−

(
1−ω2

ω2

)
(ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2)2

(1− ρ̇2)(ρ2 + (∂σρ)2)

]

± T a2ρ̇

(
1−ω2

ω2

)
(ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2))2

(1− ρ̇2)(ρ2 + (∂σρ)2)
,

T σσ
√
−g = −T (1− ρ̇2)√

(1− ρ̇2)ρ2 + (∂σρ)2

[
1−

(
1−ω2

ω2

)
(ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2)2

(1− ρ̇2)(ρ2 + (∂σρ)2)

]
(211c)

T 0
ϕ

√
−g = ∓T aR

√
ρ2 + (∂σρ)2

√
1−ω2

ω
,

T σ
ϕ

√
−g = ±T aR

(
ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2√
ρ2 + (∂σρ)2

)√
1−ω2

ω
, (211d)
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where

ω−2(t, σ) =
a2(ρ2 + (∂σρ)2) + R2(∂σ ϕ)2

a2(ρ2 + (∂σρ)2)
. (212)

In appropriate limits, these reduce to the equivalent expressions given in Sections 2.2 and 2.3.
For noncircular loops, the normalized components of the current density are defined as

J 0√−g =
e

2π

ρ̇(ti, σ)∂σρ(ti, σ)±
√
(1− ρ̇2(ti, σ))ρ2(ti, σ) + (∂σρ(ti, σ))2

ρ2(ti, σ) + (∂σρ(ti, σ))2

× ρ2 + (∂σρ)2

ρ̇∂σρ±
√
(1− ρ̇2)ρ2 + (∂σρ)2

ϕ̇,

J σ
√
−g =

e
2π

ρ̇(ti, σ)∂σρ(ti, σ)±
√
(1− ρ̇2(ti, σ))ρ2(ti, σ) + (∂σρ(ti, σ))2

ρ2(ti, σ) + (∂σρ(ti, σ))2

× ρ̇∂σρ±
√
(1− ρ̇2)ρ2 + (∂σρ)2

ρ2 + (∂σρ)2 ∂σ ϕ, (213)

so that using the EOM in ϕ gives

J 0√−g = ± e
2π

ρ̇(ti, σ)∂σρ(ti, σ)±
√
(1− ρ̇2(ti, σ))ρ2(ti, σ) + (∂σρ(ti, σ))2

ρ2(ti, σ) + (∂σρ(ti, σ))2 ∂σ ϕ

= −J σ
√
−g = ∓ e

2π

ρ̇(ti, σ)∂σρ(ti, σ)±
√
(1− ρ̇2(ti, σ))ρ2(ti, σ) + (∂σρ(ti, σ))2

ρ2(ti, σ) + (∂σρ(ti, σ))2 ϕ̇. (214)

The components of the 4-current may again be expressed in terms of T 0
ϕ
√−g and

T σ
ϕ
√−g, now given by Equation (211d), and it is straightforward to show that the current

conservation equation is equivalent to Equation (206d).
It is tempting to think, based on the complexity of the expressions in Equations (211a)–(211c),

that Equations (206a)–(206c) are intractably complex, at least analytically. However, as
we will show in the remainder of this section, careful treatment of the remaining EOM
will allow us to write the general solution of ϕ(t, σ) in terms of ρ(t, σ) and its first and
second derivatives in t and σ. As a first step towards demonstrating the self-consistency
of Equations (206a)–(206c), we note that each contains terms in ω, ω̇ and ∂σω. In the case
of circular loops, we had ∂σω = 0, so that the EOM contained terms in only ω and ω̇.
However, we were able to eliminate the latter via appropriate manipulation, leaving us
with a single self-consistent EOM in ρ and ω, in addition to the constraint on ϕ (which also
allowed ϕ to be solved directly in terms of ρ).

Even in the more general case, we still have three EOM and two quantities (namely
ω̇ and ∂σω) we wish to eliminate, so this poses no problem. One interesting aspect of the
circular string case was that the EOM in ρ was in fact redundant, being simply a ‘composite’
of the expressions for the conservation of energy and momentum, which are equivalent
to the EOM in t, σ and ϕ in our chosen gauge. As we shall see, the same is true even for
noncircular loops, so that one of the (extremely complex) EOM above may be immediately
ignored.

We begin the elimination of ω̇ and ∂σω by first writing each of the components of
T I

J
√−g in Equations (211a) and (211b) as the sum of two terms, one independent of the

factor (ω−2 − 1) and one directly proportional to (ω−2 − 1). Thus, we set

T 0
0
√
−g = β + β(ω−2 − 1), T σ

0
√
−g = γ + δ(ω−2 − 1), (215a)

T 0
σ

√
−g = ε + ζ(ω−2 − 1), T σ

σ

√
−g = η + θ(ω−2 − 1), (215b)
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where the values of β, γ, δ, ε, ζ, η and θ are obtained by comparison of Equations (215a)
and (215b) with Equations (211a) and (211b), i.e.,

β =
ρ2 + (∂σρ)2√

(1− ρ̇2)ρ2 + (∂σρ)2
, (216)

γ = δ∓ 1, δ = − ρ̇∂σρ√
(1− ρ̇2)ρ2 + (∂σρ)2

± 1. (217)

ε = −ρ2(δ∓ 1), ζ = −ρ2δ, (218)

η =
ρ2(1− ρ̇)2√

(1− ρ̇2)ρ2 + (∂σρ)2
, θ = −ρ2δ2

β
. (219)

Substituting from Equations (215a) and (215b) into Equations (206a) and (206b), rearranging
to make ∂t(ω−2 − 1) the subject and equating the results, gives

(ζδ− βθ)∂σ(ω
−2 − 1) + [β(ζ̇ + ∂σθ)− ζ(β̇ + ∂σδ)](ω−2 − 1)

+β(ε̇ + ∂ση)− ζ(β̇ + ∂σγ) = 0. (220)

Then, substituting in for ζ, δ, β and θ from Equations (216)–(219), it may be shown that

ζδ− βθ = 0, (221)

and an EOM involving only ω can be obtained:

[β(ζ̇ + ∂σθ)− ζ(β̇ + ∂σδ)](1−ω2) + [β(ε̇ + ∂ση)− ζ(β̇ + ∂σγ)]ω2 = 0. (222)

Next, we note that substituting for (ε̇ + ∂ση), (β̇ + ∂σγ), β and ζ, the terms in the second set
of square brackets in Equation (222) are proportional to the expression on the left-hand-side
of the EOM for noncircular strings without higher-dimensional windings, Equation (202).
This is to be expected since, in the limit ω2 → 1, consistency requires that we must recover
the EOM for unwound strings. Specifically, we have that

β(ε̇ + ∂ση)− ζ(β̇ + ∂σγ) =
[

β∂σρ− ρ2ρ̇δ
]
× ρ3

[(1− ρ̇2)ρ2 + (∂σρ)2]
3
2

χ, (223)

where

χ = (1− ρ̇2)

(
1− ∂2

σρ

ρ

)
+

(
1 +

(∂σρ)2

ρ2

)
ρρ̈ + 2

(
(∂σρ)2

ρ2 − ρ̇

ρ
∂σρ∂σ ρ̇

)
. (224)

The first set of square brackets in Equation (222) may also be written purely in terms of the
quantities β and δ, i.e.,

β(ζ̇ + ∂σθ)− ζ(β̇ + ∂σδ) = ρ2(δβ̇− βδ̇)

−2δ(ρρ̇β + ρ∂σρδ) +
ρ2δ

β
(δ∂σβ− β∂σδ), (225)

so that the final remaining independent EOM (involving only derivatives of ρ and powers
of ω, but not ω̇ or ∂σω), may be written in a relatively compact form as
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χ +
ρ3(β∂σρ− ρ2ρ̇δ)

[(1− ρ̇2)ρ2 + (∂σρ)2]
3
2

×
[

ρ2(δβ̇− βδ̇)− 2δ(ρρ̇β + ρ∂σρδ) +
ρ2δ

β
(δ∂σβ− β∂σδ)

](
1−ω2

ω2

)
= 0, (226)

where we make use of the definitions for χ, β and δ, given in Equations (224) and (216)–
(217). Hence, the term proportional to (1 − ω2)/ω2 quantifies the contribution of the
higher-dimensional motion to the macroscopic dynamics of the string. In the limit ∂σρ→ 0,
Equation (226) reduces to Equation (166), as required. It may be shown that ω2 = 1/2
corresponds to the tensionless case, for which ρ̇ = 0, ∂σ ρ̇ = 0 and ρ̈ = 0 for all t, by
directly substituting each of these conditions into Equation (226). The EOM then reduces to
ω2 = 1−ω2, which is satisfied if and only if ω2 = 1/2.

Thus, Equations (226) and (208) alone are sufficient to completely specify the dynamics
of the string. The latter arises directly from the conservation of momentum in the compact
space (the ϕ-direction) and the former combines the expressions for energy and momentum
conservation in the whole space-time. As in the circular case, the EOM in ρ is again
redundant and was not used in the derivation of Equation (226).

Finally, we may solve for ϕ(t, σ) in terms of ρ(t, σ) and its derivatives. For the sake of
notational simplicity, we first rewrite Equation (226) as

−Xω2 + Y(1−ω2) = 0, (227)

where the factors X and Y are independent of ∂σ ϕ or, equivalently(
X
Y

)
=

(
1−ω2

ω2

)
, (228)

where the factor (1−ω2)/ω2 is also independent of ∂σ ϕ. Using the definition of ω2(t, σ)
(212), we may also rewrite (∂σ ϕ)2 as

(∂σ ϕ)2 =
a2

R2 (ρ
2 + (∂σρ)2)

(
1−ω2

ω2

)
. (229)

This expression has physical significance: as we we will see, it allows us to interpret the
EOM in ϕ(t, σ) as dispersion relation, as in Sections 2.1 and 2.2. From Equation (210) we
then have

ϕ̇2 =
a2

R2

(
ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2

)2(1−ω2

ω2

)
, (230)

which allows us to reconstruct the required form of ϕ(t, σ):

ϕ(t, σ) =
∫

∂σ ϕdσ +
∫

ϕ̇dt

=
a
R

∫ √
ρ2 + (∂σρ)2

√
1−ω2

ω
dσ± a

R

∫ (
ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2

)√
1−ω2

ω
dt. (231)

For circular strings (∂σρ = 0), Equations (227) and (228) give

n2
σ =

a2

R2 ρ2
(

1−ω2

ω2

)
=

a2

R2 ρ2
(

1− ρ̇2 + ρρ̈

1− ρ̇2 − ρρ̈

)
, (232)
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which is equivalent to Equation (166), using the expression for ω2(t) in Equation (168).
This motivates the following definition for noncircular loops

(neff
σ )2 =

(veff
ϕ )2(leff

σ )2

(veff
σ )2(2π)2R2

= (∂σ ϕ)2, (233)

where

(leff
σ )2 = (2π)2(ρ2 + (∂σρ)2), (234)

and

(veff
ϕ )2

a2(veff
σ )2

=

(
1−ω2

ω2

)
. (235)

Together with Equations (233)–(235), the following definitions then form a self-consistent
set:

(leff
σ )2 = (neff

σ )2(λeff
σ )2, (veff

ϕ )2(λeff
σ )2 = (veff

σ )2(2π)2R2, (236)

(keff
σ )2 =

(2π)2

(λeff
σ )2

, (237)

(ωeff
σ )2 = (veff

σ )2(keff
σ )2 ≡ (ωeff

ϕ )2 =
(ve f f

ϕ )2

R2 = ϕ̇2. (238)

Combining Equations (235) and (236), we then have

a2(λeff
σ )2 = (2π)2R2

(
1−ω2

ω2

)
. (239)

We would like to be able to verify that the expressions for (leff
σ )2, (neff

σ )2, (veff
σ )2, (veff

ϕ )2,
(λeff

σ )2 and (ωeff
σ )2 ≡ (ωeff

ϕ )2 above, reduce to those for l2
σ, n2

σ, v2
σ, v2

ϕ and ω2
σ ≡ ω2

ϕ for
circular strings, and to those for (leff

z )2, (neff
z )2, (veff

z )2, (veff
ϕ )2, (λeff

z )2 and (ωeff
z )2 ≡ (ωeff

ϕ )2

for straight strings, in appropriate limits. However, from Equations (233)–(239) alone, we
do not have enough information to write down explicit expressions for (ωeff

σ )2, (veff
σ )2, or

(veff
ϕ )2. The missing piece comes from identifying (ωeff

σ )2 with the integrand of the integral
over dt in Equation (231). Hence, we have that

ϕ(t, σ) =
∫

neff
σ dσ +

∫
ωeff

σ dt, (240)

where

(neff
σ )2 =

a2

R2 (ρ
2 + (∂σρ)2)

(
1−ω2

ω2

)
, (241)

(ωeff
σ )2 =

a2

R2

(
(ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2)2

ρ2 + (∂σρ)2

)(
1−ω2

ω2

)
, (242)

and the sign of ωeff
σ relative to neff

σ depends on the sign of ϕ̇ relative to ∂σ ϕ.
It may then be shown explicitly that the expressions for (leff

σ )2, (neff
σ )2, (veff

σ )2, (veff
ϕ )2,

(λeff
σ )2 and (ωeff

σ )2 ≡ (ωeff
ϕ )2, defined in Equations (233), (234) and (236)–(238), do in fact

reduce to their counterparts for circular strings and long straight strings in the limits
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∂σρ → 0 and (2π)2ρ → ∆, respectively. Yet again, we see that the tensionless condition,
ω2 = 1/2, corresponds to uniform rotation of the windings, with angular frequency
ω2

σ = a2/R2, and the existence of a constant local wavelength, a2(λeff
σ )2 = a2λσ = (2π)2R2.

Using Equations (208) and (227), we may also express the perpendicular velocity of the
string as

v2
⊥

a2 = (1− ρ̇2)(1−ω2) + ρ̇2
(

1− (∂σρ)2ω2

ρ2 + (∂σρ)2

)
, (243)

which may be seen as a straightforward generalisation of the cases considered previously.
As in Section 2.4.1, formally we may write down exact expressions for the constants of
motion and integrated pressures and shears, but we are unable to evaluate them explicitly
without further specifying the ansatz for ρ(t, σ). It is therefore sufficient for our purposes
to write down the remaining nonzero components of the energy-momentum tensor, from
which, in conjunction with Equations (211a)–(211d), all physical properties of the string
can be calculated:

T ρρ
√
−g =

−T [(1− ρ̇2)(ρ2 + (∂σρ)2)− ρ2]√
(1− ρ̇2)ρ2 + (∂σρ)2

+
T√

(1− ρ̇2)ρ2 + (∂σρ)2

[
ρ̇2(ρ2 + (∂σρ)2)− 2ρ̇∂σρ(ρ̇∂σ ±

√
(1− ρ̇2)ρ2 + (∂σρ)2)

+
(∂σρ)2(ρ̇∂σ ±

√
(1− ρ̇2)ρ2 + (∂σρ)2)2

ρ2 + (∂σρ)2

](
1−ω2

ω2

)
,

T ρϕ
√
−g = ±T a

R
ρ2ρ̇√

(1− ρ̇2)ρ2 + (∂σρ)2

(
ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2√
ρ2 + (∂σρ)2

)√
1−ω2

ω
. (244)

From Equations (211a)–(211d) and (244), we see explicitly that all effective pressures and
shears vanish locally for ω2 = 1/2, as expected.

Finally we note that, though it is beyond the scope of the current work, it would be
useful to define a parameter α(t), the generalization of the constant α defined for long
straight strings, which quantifies the degree of nonlinearity in the windings, at a given
moment in time, for noncircular loops. By analogy with our previous results, we could
then use this to determine the spatially-averaged values of the parameters defined in
Equations (233), (234) and (236)–(238), namely 〈l2

σ〉(t), 〈n2
σ〉(t), 〈v2

σ〉(t), 〈v2
ϕ〉(t), 〈λ2

σ〉(t)
and 〈ω2

σ〉(t) ≡ 〈ω2
ϕ〉(t), as well as a generalized expression for Ω2(t), which is valid for

arbitrary loop configurations. Based on our previous findings, we expect the condition
of zero average tension to correspond to Ω2 = 1/2, for which a2〈λ2

σ〉 = (2π)2R2 and
〈ω2

σ〉 = a2/R2 for all t. Such a definition would allow us to write the constants of motion
and bulk properties of noncircular strings in terms of spatially-averaged parameters. This
could be useful for describing the bulk properties of string networks and help yield further
insights into the relation between their microscopic and macroscopic dynamics. However,
for the sake of brevity, we do not quote the explicit expressions here.

2.5. Summary of the Wound-String Model

We have shown that the EOM corresponding to the higher-dimensional embedding
of strings, with windings of constant radius in an internal manifold, take the form of
canonical dispersion relations. The local propagation velocity of these extra-dimensional
‘waves’, as seen from a (3+1)-dimensional perspective, is a function of the perpendicular
velocity and curvature of the string in the large dimensions. Via the formal correspondence
between higher-dimensional dynamics and an effective (3+1)-dimensional world-sheet
current [46], these dispersion relations may be regarded as governing the local current flow,
at a given point on the string, at a given time t. For arbitrary planar loops, the EOM for the
embedding coordinates in the large dimensions and the compact dimensions are separable,
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in an intuitive gauge in which the world-sheet parameters are directly identified with the
cylindrically polar space-time coordinates. The macroscopic string dynamics can therefore
be determined without reference to the motion of the string in the compact space, and the
latter can be determined (in principle) from (3+1)-dimensional observables.

The constants of motion of the string and all observable (3+1)-dimensional quantities,
such as pressures, shears, etc, may be written in a compact form in terms of ‘microscopic’
variables related to the higher-dimensional embedding, together with the fundamental
model parameters such as the intrinsic tension T and compactification radius R. Partic-
ularly useful is the parameter ω2(t, σ), which represents the local fraction of the string
length lying in the large dimensions. The results obtained for the wound-string model may
be compared with those obtained for current carrying defect strings in the Abelian-Higgs
model, presented in Section 5. Such a comparison suggests that R plays the role of an
effective four-dimensional thickness and that the higher-dimensional embedding parame-
ter ω2(t, σ) corresponds to the embedding of the lines of constant phase, or, equivalently,
magnetic field lines, within the defect-string core.

In principle, a similar analysis to that conducted in Section 5 for Abelian-Higgs strings
may be conducted for any defect string species, including chiral strings [62,63], electroweak
strings [10,11] and GUT scale strings [12–14]. The analysis presented here may also be
extended to include more complex warped geometries or internal manifolds and varieties
of F- and D-string bound states [25,27]. Thus, by writing the EOM for higher-dimensional
dynamics in the form of canonical dispersion relations for waves ‘in’ strings, and comparing
these with genuine dispersion relations governing the flow of current in topological defects,
we are able to predict the conditions under which a given F/D-string species, embedded
in a higher-dimensional space, can be successfully mimicked by a field-theoretic string
living in (3+1)-dimensions. In Section 5, we will see that, mathematically, the exact EOM
governing the evolution of the of the microscopic ‘internal’ variables for current-carrying
defect stings are most naturally expressed in terms of effective Finsler and generalised
Finsler metrics, for the large space-time dimensions.

3. Topological Defect Strings with Internal Currents

In this section, we review the simplest field theory theory that gives rise to vortex-
strings, i.e., the Abelian-Higgs model. The action, EOM and constants of motion for the
Abelian-Higgs fields, coupled to an external source of charge, are reviewed in Section 3.1.1
and the uncharged vortex solution, known as the Nielsen-Olesen string [1], is reviewed
in Section 3.1.2. In Section 3.2, we briefly review the standard derivation of the effective
actions for both non-superconducting and superconducting strings, in the zero-width limit.

3.1. The Abelian-Higgs Model and the Nielsen-Olesen String

In this Section, we give a brief overview of the Abelian-Higgs action, with an additional
‘external’ current coupled to the electromagnetic sector. The EOM and energy-momentum
tensor in the general case, jµ 6= 0, are obtained, and a summary of the Nielsen-Olesen
vortex solution, for jµ = 0, is presented.

3.1.1. The Abelian-Higgs Model with Externally Coupled Charge (jµ 6= 0)

In natural units, using the metric convention (+−−−), the Abelian-Higgs action
with an additional current jµ coupled to the electromagnetic sector is

S =
∫

d4x
√
−g
{

DµφDµ
φ− 1

4
FµνFµν −V(|φ|)− jµ Aµ

}
, (245)

where µ, ν ∈ {0, 1, 2, 3} and V(|φ|) is the potential term, which is determined by the
symmetry breaking energy scale, η, and the scalar coupling, λ:

V(|φ|) = λ

4
(|φ|2 − η2)2. (246)
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The gauge covariant derivative Dµ and the electromagnetic field tensor Fµν are defined
according to

Dµ = ∂µ − ieAµ, Fµν = ∂µ Aν − ∂ν Aµ, (247)

where e is the vector coupling, and the covariant EOM are

1√−g
Dµ

(√
−gDµφ

)
+ λφ

(
|φ|2 − η2

)
= 0, (248)

1√−g
∂ν

(√
−gFµν

)
+ ie

(
φDµφ− φDµ

φ
)
− jν = 0. (249)

The Abelian-Higgs part of the action (245) is invariant under local U(1) transformations of
the form

φ→ φ′ = φeiΛ(x), Aµ → A′µ = Aµ +
1
e

∂µΛ(x), (250)

where Λ(x) is any single-valued real function, giving rise to the conserved current
J µ = −ie

(
φDµφ− φDµ

φ
)

. The total conserved current, including the externally cou-
pled charge is then given by

Jµ = J µ + jµ = −ie
(

φDµφ− φDµ
φ
)
+ jµ. (251)

The conservation of Jµ is expressed directly via the vector EOM, Equation (249), and the
corresponding conserved charge is

Q =
∫

J0√−gd3x. (252)

The energy-momentum tensor is defined implicitly by varying the action with respect to
the metric,

δS =
∫

Tµνδgµν

√
−gd4x, (253)

so that

Tµν =
−2√−g

∂(L√−g)
∂gµν

= DµφDν
φ + Dµ

φDνφ− Fµ
αFνα − 1

2
(jµ Aν + jν Aµ)− gµνL, (254)

where L is the Lagrangian density, that is, the sum of terms inside the curly brackets in
Equation (245).

3.1.2. The Nielsen-Olesen Solution (jµ = 0)

In cylindrical polar coordinates (t, r, θ, z) and assuming a Minkowski background

ds2 = ηµνdxµdxν = dt2 − dr2 − r2dθ2 − dz2, (255)

the ansatz for the Nielsen-Olesen string is [1]

φ(r, θ) = η f (r)einθ , Aθ =
n
e

αθ(r), Ar = Az = A0 = 0, (256)

with jµ = 0, where f (r) and aθ(r) are dimensionless functions which obey the boundary
conditions

f (r) =
{

0, r = 0
1, r → ∞,

(257)
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aθ(r) =
{

0, r = 0
1, r → ∞.

(258)

The EOM may be written as [2]

d2 f
dR2

s|n|
+

1
Rs|n|

d f
dr
− n2 f

R2
s|n|

(1− αθ)
2 − 1

2

( rs|n|
rs

)2
f ( f 2 − 1) = 0, (259)

d2aθ

dR2
v|n|
− 1

Rv|n|

daθ

dRv|n|
+ 2
( rv|n|

rv

)2
f 2(1− aθ)− jν = 0, (260)

where we have defined the dimensionless coordinates

Ri|n| =
r

ri|n|
, i ∈ {s, v}, (261)

and where rs|n| and rv|n| denote the values of the scalar and vector core radii for an |n|-
vortex string, respectively. We also use the simplified notation, rs and rv, to refer to the
scalar and vector core radii of |n| = 1 strings and define the parameters

β|n| =
r2

v|n|
r2

s|n|
, β =

r2
v

r2
s

, (262)

for later convenience. Equations (259) and (260) are solved, to leading order in the uncou-
pled regime, by [64]

f (r) '
{

(r/rs|n|)
|n|, r . rs|n|
1, r & rs|n|,

(263)

aθ(r) '
{

(r/rv|n|)
2, r . rv|n|
1, r & rv|n|.

(264)

Strictly, the power law solutions for f (r) and aθ(r) given in Equations (263) and (264)
are valid only in the ranges r � ri|n|, i ∈ {s, v}, while the asymptotic forms defined in
Equations (257) and (258) hold only for r � ri|n|. However, by assuming that each holds
approximately, up to the limiting value r = ri|n|, and ignoring the discontinuity of the
derivatives, we can easily obtain order of magnitude estimates for the physical parameters
of the string without the need for detailed numerical calculations.

The topological winding number n ∈ Z is given by

n =
1

2π

∫ 2π

0

∂ϑ

∂θ

∣∣∣∣∣
z=const.

dθ, (265)

where ϑ is the phase of the scalar field φ. In general, the core radii are of the order of the
Compton wavelengths of the associated bosons, m−1

s and m−1
v , but may also depend on |n|.

The |n|-dependence is expected to take a simple form [64–66] so that here we assume

rs|n| ' |n|ξ m−1
s = |n|ξ(

√
λη)−1,

rv|n| ' |n|εm−1
v = |n|ε(eη)−1, (266)

where ξ ≥ 0, ε ≥ 0 are constants.
Substituting the ansatz (256) together with the approximate solutions in

Equations (263) and (264) into Equation (254), the only nonzero component of the energy-
momentum tensor is T00 and the only constant of motion is the Hamiltonian E|n|, which
depends on the absolute value of the topological winding number. For rs|n| and rv|n| given
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by Equation (266), it is straight forward to show that, assuming rv ≥ rs (β ≥ 1), which
corresponds to a Type II superconducting regime [2], the (constant) mass-energy per unit
length of the string, µ|n| =

∫
T00rdrdθ, is:

µ|n| = 2πη2
[
|n|+ |n|2−2ε + |n|2ξ + |n|2 ln

(√
β|n|

)]
. (267)

However, Bogomol’nyi showed that for a Nielsen-Olesen string at critical coupling e =
√

λ,
for which

rs|n| = rs|n| ≡ rc|n|, (β|n| = 1), (268)

must satisfy the condition [65,66]

µ|n| ≥ 2πη2|n|, (269)

also known as the Bogomol’nyi-Prasad-Sommerfield (BPS) bound [67]. Since stability
implies saturation of the bound [2,68], we require

0 ≤ ξ ≤ 1/2, ε ≥ 1/2, (270)

for |n| ∼ O(1). Alternatively, we may set

ξ = ε = 1/2, (271)

for arbitrary |n|. It is common in the literature to take ξ = 0 and ε = 1/2, following
Bogomol’nyi’s original assumptions [65,66], but in the present work we instead adopt the
conditions given in Equation (271) to allow for large |n|. For either choice of parameters,
the order of magnitude estimate for the mass-energy per unit length of a Nielsen-Olesen
string with winding number n, at critical coupling, is

µ|n| = 2πη2|n|. (272)

Though, in general, the effective tensions/pressures in the string T r
r =

∫
Tr

rrdrdθ, T θ
θ =∫

Tθ
θrdrdθ and T z

z =
∫

Tz
zrdrdθ, are not necessarily conserved, is straightforward to

show that, for the Nielsen-Olesen string

µ|n| = −T z
z, (273)

for any value of β|n|, and

T r
r = T θ

θ = −2πη2
[
|n|2ξ − |n|2−2ε − |n|2 ln

(√
β|n|

)]
. (274)

Hence, for ξ = ε = 1/2, as in Equation (271), and at critical coupling, the only nonzero
component of the tension is T z

z, which is equal to minus the energy per unit length of the
string. Substituting the ansatz (256) with jµ = 0 into Equation (251), it is straightforward to
show that Jµ = 0 for all µ ∈ {0, 1, 2, 3} so that the string is uncharged.

3.2. String Effective Actions, with and without Currents

An effective action for the Nielsen-Olesen string can be constructed by switching to
a set of dimensionless world-sheet coordinates ζa, a ∈ {0, 1}, where ζ0 = τ is time-like
and ζ1 = σ is space-like, as for F-strings. These parameterize the two-dimensional sheet
swept out by the line 〈φ〉 = 0, which represents the central axis of the string core. Erecting
two normals to this sheet, denoted nα

µ, we may describe the small volume of space-time
swept out by the finite-width string using the coordinates Yµ = Xµ(τ, σ) + nα

µρα, where
Xµ are the embedding coordinates of the core central axis and ρα probe the core region, e.g.,
ρα ∈ {r, θ} where r ∈ [0, rc|n|] and θ ∈ [0, 2π) [49,69].
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If the curvature radius of the string is much greater than its thickness, we may ap-
proximate the integral over this volume as d4x

√−g = d2ζd2ρ
√
−g̃, where g̃µν(ζ̃) is the

induced metric with respect to the coordinates ζ̃µ = {ζa, ρα}. To zeroth order in ρα, this
metric is given by a block diagonal matrix, such that g̃µν = diag(γab, δαβ) +O(ρ), where
δαβ is the usual Kronecker delta symbol and γab is the induced metric on the world-sheet
defined by 〈φ〉 = 0, γab(ζ) = gµν(X)(∂Xµ/∂ζa)(∂Xµ/∂ζb). Substituting from (256) and
(263) and (264) and performing the transverse integration over d2ρ, then gives [49,69]

S = −µ
∫

d2ζ
√
−γ + . . . (275)

where µ ' µ|n| is given by Equation (272) and we have again assumed critical coupling,
rs|n| = rv|n| = rc|n| and |n| ∼ O(1), for the sake of simplicity. Hence, to leading order,
the effective action for a Nielsen-Olesen vacuum string, in the Abelian-Higgs model, is
simply the Nambu-Goto action for an F-string with no electric or magnetic world-sheet
fluxes [7–9].

The presence of additional world-sheet fluxes then generates an additional contribu-
tion to the action (275), given by [70]

∆S =
1

e2µ

∫
d2ζ
√
−γγab Ja Jb, (276)

where Ja denotes the world-sheet components of the physical current. The total effective
action may then be written as

S ' −µ
∫

d2ζ
√
−γ(1− γab ja jb), (277)

where ja = e−1 Ja is the dimensionless current. The world-sheet energy momentum tensor
for the superconducting string is defined as θab = 2ja jb − γab(γcd jc jd), so that the physical
energy-momentum tensor of the effective model is given by

Tµν =
−2√−g

∫
d2ζ
√
−γ(γab + θab)∂aXµ∂bXνδ4(x− X),

where Xµ denotes a string embedding coordinate, as before, and xµ denotes a space-time
background coordinate [49,69,70].

In [44], Witten outlined, from a microphysical perspective, how strings can carry
fermionic currents, with fermionic charge carriers trapped as zero modes along the string.
However, due to Bose–Fermi equivalence in (1+1) dimensions, the effective action (277)
developed in [49,69] is valid for strings with both bosonic and fermionic currents. It is
therefore valid in general, as a first order approximation, for any species of superconducting
string.

Before concluding this section, we note that, for superconducting defect-string loops,
the persistent current is linked to the existence of a second topological invariant N 6= n,
given by

N =
1

2π

∫ 2π

0

∂ϑ

∂σ

∣∣∣∣∣
θ=const.

dσ, (278)

where σ ∈ [0, 2π) again denotes the space-like parameter that parameterizes the string
length. Thus, |N| gives the number of twists in the phase ϑ of φ within the loop and its
conservation follows directly from the imposition of periodic boundary conditions to ensure
continuity. For long strings, N is no longer a topological invariant, but the imposition of
periodic boundary conditions over a finite section of string still ensures the existence of a
nonzero integer winding number.
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In the zero-width approximation (277), the role of N is obscured, but, in Section 5,
we will explore the relationship between the dynamics of these ‘internal’ field lines and
the macroscopic dynamics of the string in detail. Using Finsler and generalised Finsler
constructions we derive the same macroscopic EOM as the effective action approach, using
a microphysical ansatz, and without the need for dimensional reduction or (approximate)
effective actions.

4. Finsler and Generalised Finsler Geometries

In this section, we give a brief review of Finsler geometry, which is used to model
circular superconducting string loops in Section 5.2, and the generalised Finsler geometry
used to model noncircular loops in Section 5.3. For both brevity and clarity, we introduce a
minimum of technical detail, concentrating only on the specific properties of Finsler and
generalised Finsler spaces that will be utilised in our description of current-carrying defect
strings, presented in Section 6. The interested reader is referred to the many excellent
technical summaries of Finsler geometry, such as [71–73], for further details.

4.1. Finsler Geometry

Finsler geometry is a natural generalisation of Riemannian geometry, which, roughly
speaking, is equivalent to “Riemannian geometry without the quadratic restriction” [74].
Hence, while the action for a non-relativistic point-particle in Riemannian space is

S =
∫

ds, (279)

where the multiplicative constant with units of mass has been absorbed into the definition
of the metric tensor (280), and the line-element ds is quadratic in form,

ds2 = gij(x)dxidxj, i, j ∈ {1, 2, 3, . . . }, (280)

the corresponding action in Finsler space is given by the general functional,

S =
∫

F(x, ∂τx). (281)

The metric tensor gij(x) in (280) is a function of the spatial coordinates only whereas the
Finlser space action (281) depends on both x and ∂τx, where τ is an ‘internal’ dynamical
variable, and the derivative terms belong to the tangent space at x, ∂τx ∈ Tx M. Thus, in
Finsler geometry, the more familiar Riemannian space is ‘non-localised’ by allowing the
line-element to depend a single vector, which is defined on the tangent bundle [75,76].

However, strictly speaking, standard Finsler geometries are defined as generalised
Riemannian spaces and the question of how to extend Finslerian structures to manifolds
with pseudo-Riemannian signatures is nontrivial and by no means settled (see [77–83] for
further discussion). Nonetheless, it seems reasonable to generalise the standard space-time
line-element,

ds2 = gµν(x)dxµdxν, µ, ν ∈ {0, 1, 2, 3, . . . }, (282)

to

ds̃2 = g̃µν(x, ∂τx)dxµdxν. (283)

This corresponds to a minimally modified Riemannian structure, in which the space-time
interval is ‘almost’ quadratic in the coordinate intervals, but is not exactly so due to the
presence of an effective Finsler metric, g̃µν(x, ∂τx). In this case, the internal time-like variable
τ may, or may not, be identified with the external space-time coordinate, depending on the
choice of embedding for the particle, string, or other extended object (e.g., D-brane).
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As we will show, explicitly, in Section 5.2, it is precisely this freedom that allows us
to describe the embedded motion of circular superconducting string loops, in a physical
pseudo-Riemannian space-time, in terms of an effective Finsler metric (283). However,
this is only possible because, in the case of circular symmetry, the space-like world-sheet
coordinate, σ, does not appear explicitly in the embedding ansatz. Therefore, in order to
treat non-circular loops in a similar way, we must consider a form of ‘generalised Finsler
geometry’, with an effective metric that depends on both ∂τx and ∂σx, as well as x.

4.2. Generalised Finsler Geometry

Based on our preliminary discussions in Section 4.1, we introduce the generalised
Finsler geometry in which geodesic motion is characterised by the action

S =
∫

ds̃ =
∫

g̃µν(x, ∂τx, ∂σx)dxµdxν, (284)

where again the multiplicative constant with units of mass has been absorbed into the
definition of the effective metric, g̃µν. Here, the time- and space-like internal variables, τ
and σ, may or may not be identified with space-time background coordinates, according to
the chosen embedding. In Section 5.2, we will identify them with the string world-sheet
coordinates. This allows us to describe non-circular superconducting string loops, in a
physical pseudo-Riemannian space-time, in terms of an effective generalised Finsler metric,
g̃µν(x, ∂τx, ∂σx).

However, before continuing, we address a possible source of confusion that arises
through the inconsistent use of terminology in the mathematical literature. What we have
called ‘generalised Finsler geometry’, for want of a better term, is sometimes referred to
simply as Finsler geometry (see for example [84]), though, strictly speaking, it is not. We
stress that, in Finsler geometry proper, the line-element functional depends on a single
vector, which is defined on the tangent bundle. By contrast, in further extensions of the
canonical Riemannanian structure, this can be generalised to include multiple vectors,
which may or may not be defined on the tangent space, as well as spinors or other mathe-
matical objects. For the rigorous mathematical treatment of these Finsler-inspired spaces
the interested reader is referred to [84], and references therein, for further details.

5. Topological Defect Strings with Internal Currents, Revisited

In this Section, we consider the effect of additional charged matter, represented by
the current jµ 6= 0, which becomes localized within the Abelian-Higgs string core. This
is not intended as a realistic model of a superconducting string but, rather, an illustrative
one, which captures certain generic features of the string phenomenology. In particular,
results obtained by Nielsen [46,48] suggest that, generically, the (3 + 1)-dimensional dy-
namics of higher-dimensional wound-strings should be equivalent to the dynamics of
superconducting defect strings under dimensional reduction.

With this in mind, we aim to go one step further than the dimensional reduction
program: we search for ansatzes for the Abelian-Higgs fields which yield EOM for the
macroscopic string dynamics that are identical to those obtained previously for both long
(i.e., formally infinite) wound strings, and wound-string loops [47,51]. We show that an
appropriate ansatz for the scalar and vector fields (and the ‘external’ current jµ), describing
long superconducting defect strings, exists in the usual sense. That is, ignoring gravita-
tional effects, such strings live in a globally Minkowski space-time and the field ansatz
is independent of the background metric. However, in order to obtain EOM for circular
loops of superconducting defect string, which are the same as those obtained previously
for wound-string loops, we must consider a generalization of the geometry to an effective
Finsler metric. To treat noncircular superconducting loops, an appropriately generalised
Finsler geometry is required.

Remarkably, by selecting an appropriate ansatz/metric combination, and combining
the Euler–Lagrange equations for the Abelian-Higgs fields with the conservation of the
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energy-momentum tensor, we obtain EOM describing the macroscopic (external) string
dynamics which are identical to those for wound-strings obtained in Section 3, without the
need for dimensional reduction. Furthermore, we also obtain EOM for the microscopic
(internal) field evolution within the string core, which are identical, under the exchange of
field theory and embedding coordinate variables, to those which determine the evolution
of the F-string in the compact extra dimensions of the wound-string model.

We argue that the selection of our ansatz/Finsler or generalised Finsler metric combi-
nation is valid, in that it reflects an alternative geometric formulation of the Abelian-Higgs
theory, in terms of an extended (Finsler or generalised Finsler) space, which is physically
equivalent to standard formulation in pseudo-Riemannian space. Although this is an uncon-
ventional approach, we note that it does not require the formulation of an effective action
and that, therefore, if the method itself is valid, the resulting string EOM are exact.

5.1. Long Defect Strings: Riemann Geometry

Let us first consider a metric with line element

ds2 = P2(τ)dτ2 − dr2 − r2dθ2 −Q2(τ)dσ2 = P2(t)dt2 − dr2 − r2dθ2 −Q2(t)dσ2, (285)

where we define the dimensionless world-sheet variables τ ∈ [0, ∞) and σ ∈ [0, 2π)
and the second equality follows from the identifications dt = ζdτ, P(t) = ζ−1P(τ) and
Q(t) = Q(τ). These, in turn, follow from the adoption of the static gauge for the string,
X0 = t = ζτ, and the final spatial coordinate is directly proportional to the space-like
world-sheet coordinate σ (27) This metric is more general than the one we need to treat
long strings, either with or without currents, but it is useful to derive the more general
EOM first and then to impose more restrictive conditions later. The corresponding Jacobian
is
√−g = rP(t)Q(t).

Now consider an ansatz of the form

φ(r, θ, z, t) = η f (r)einθ+inΓ(z,t), Aθ =
n
e

aθ(r), Ar = 0,

Az(r, z, t) =
n
e

aθ(r)Γ′(z, t), A0(r, z, t) =
n
e

a(r)Γ̇(z, t), (286)

where we have defined the coordinate z(σ, t) = Q(t)σ, for convenience, and a dash and
a dot represent differentiation with respect to z and t, respectively. (Clearly, this denotes
the true Cartesian z-axis only when Q = const.) The functions f (r) and aθ(r) obey the
boundary conditions in Equations (257) and (258), and the new radial function a(r) obeys
analogous conditions, i.e.,

a(r) =
{

0, r = 0
1, r → ∞.

(287)

Equivalently, we may write the ansatz (286) as

φ(r, θ, σ, τ) = η f (r)einθ+inΓ(σ,τ), Aθ =
n
e

aθ(r), Ar = 0,

Aσ(r, σ, τ) =
n
e

aθ(r)Q−1(τ)∂σΓ(σ, τ), Aτ(r, σ, τ) =
n
e

a(r)P−1(τ)∂τΓ(σ, τ). (288)

The two notations are completely interchangeable and, in the analysis that follows, we use
whichever one is most convenient for our purpose.

Defining the world-sheet gauge covariant derivatives and electromagnetic field tensor
via

Da = ∂a − ieAa, Faν = ∂a Aν − ∂ν Aa, (289)
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where a ∈ {τ, σ}, the scalar EOM (248) may be written as

1
r

∂r(r∂rφ) +
1
r2 Dθ(Dθφ) +

1
PQ

Dσ

(
P
Q

Dσφ

)
− 1

PQ
Dτ

(
Q
P

Dτφ

)
− λ

2
φ(|φ|2 − η2) = 0, (290)

and the vector EOM (249) becomes

1
r

∂r(rFr
ν) +

1
r2 ∂θ(Fθ

ν) +
1

PQ
∂σ

(
P
Q

Fσ
ν

)
− 1

PQ
∂τ

(
Q
P

Fτ
ν

)
+ ie(φDνφ− φDν

φ)− jν = 0, (291)

where jµ again denotes the current sourced by the externally coupled charge, which is
confined to the string core.

5.1.1. Long Defect Strings without Internal Currents

We may consider a finite section ∆ = const. of a (formally) infinitely long string by
setting

P(t) = 1, Q(t) = (2π)−1∆, (292)

so that

dt = ζdτ, dz = (2π)−1∆dσ. (293)

In this case, the scalar EOM separates into real and imaginary parts

d2 f
dr2 +

1
r

d f
dr
− n2 f

r2 (1− aθ)
2 − n2 f (1− a)2[Γ′2 − Γ̇2]− 1

2r2
s

f ( f 2 − 1) = 0, (294)

in f (1− a)[Γ′′ − Γ̈] = 0. (295)

The θ−, r−, z− and t−components of the vector EOM are:

d2aθ

dr2 −
1
r

daθ

dr
+

2 f 2

r2
v
(1− aθ) + jθ = 0 (296)

n
e

da
dr

[Γ′′ − Γ̈] + jr = 0, (297)

d2a
dr2 +

1
r

da
dr

+
2 f 2

r2
v
(1− a) +

e
n

Γ′−1 jz = 0, (298)

d2a
dr2 +

1
r

da
dr

+
2 f 2

r2
v
(1− a) +

e
n

Γ̇−1 j0 = 0, (299)

respectively. The consistency of the ansatz then requires Γ′2 − Γ̇2 = const. However, as
we will show explicitly at the end of the present section, the conservation of energy and
momentum requires us to set

Γ̇2 = Γ′2, Γ̇ = ±Γ′, (300)
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This automatically implies

Γ′′ − Γ̈ = 0, (301)

but Equation (300) represents the stronger condition and Equations (300) and (301) may be
compared with the analogous conditions (53) and (54) for the ‘internal’ angular coordinate
in the wound-string model.

The simplest way to impose (300) is to set Γ(z, t) = 0, which corresponds to the zero
current scenario, jµ = 0 [51]. The EOM (294) and (295) and (296)–(299) then reduce to the
standard EOM for the Nielsen-Olesen string the energy and tension of the finite string
section are,

E = µ|n|∆, T z = −µ|n|∆, (302)

and all other effective pressures and shears are zero, as expected. Clearly, this is exactly
analogous to the corresponding F-string case, with the effective warped-geometry string
tension aT replaced by µ|n|.

5.1.2. Long Defect Strings with Internal Currents

To construct the long-string solution with internal current, we now note that
Equation (300) is satisfied by any function of the form

Γ(z, t) = Γ(kzz + ωzt) ≡ Γ(σ, t) = Γ(mσ + ωzt), m ∈ Z (303)

where

ω2
z = k2

z, ωz = ±kz, (304)

but that it does not admit superpositions of left and right movers, Γ(z, t) = ΓL(kzz + ωzt) +
ΓR(kzz−ωzt), which are solutions to the relativistic wave Equation (301). The constant kz
is naturally interpreted as a wave number and the associated wavelength is defined via

kz = 2π/λz (305)

The imposition of periodic boundary conditions over the length ∆ then implies

∆ = mλz. (306)

The expression for Γ(z, t) in Equation (303) may be compared with (55) and (304)–(306) are
formally identical to (56), (57) and (59), since we have used the same notation to refer to
analogous, but physically different, variables. The physical interpretation of the parameters
ωz, kz and λz in the defect-string model is considered later in this section.

By analogy with Section 3, we note that different plane wave modes in the Fourier
expansion of Γ(z, t) correspond to different frequencies ωj and wavelengths λj, such
that ωj = ±k j = ±2π/λj = ±2πmj/∆, for some mj ∈ Z. By writing Γ(z, t) in the
form (301), which implies ∂Γ/∂t = ωzdΓ/du, ∂Γ/∂z = kzdΓ/du, ∂Γ/∂σ = mdΓ/du,
where u = kzz + ωzt = mσ + ωzt, we select a single mode as being characteristic of the
wave form. For functions with only nonlinear terms in u, the natural choice is the mode
with the highest amplitude, which then gives the approximate wavelength of any fluctu-
ation in current density. If Γ contains linear terms in z and t, it is most natural to use the
associated kz and ωz to give the characteristic wavelength and frequency. Linear terms in
Γ(z, t) correspond to a uniform current and any additional nonlinear terms describe local
fluctuations in current density around the mean value.

The relationship between the model parameters, in particular λz and m, and the in-
ternal structure of the string (that is, the configuration of the scalar and vector fields) will
be discussed in detail later in this section. We argue that the function Γ(z, t) determines
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the space-time embedding of lines of constant phase in the scalar field φ and that these are
analogous to the space-time embedding of the angular coordinate for wound strings in
higher-dimensional theories [51,70]. We aim to show that equivalent phase-line/angular
coordinate embeddings give rise to identical macroscopic EOM for different string species.
This enables us to specify precisely the conditions under which topological defect strings, originating
in field theory, and fundamental Nambu-Goto strings, originating in string theory, are phenomeno-
logically equivalent from an observational point of view. An advantage of this method is that it
does not require us to make any approximations. In particular, we need not resort to an
effective action to determine the EOM for the superconducting defect string.

If we now set

jθ = 0, jr = 0, (307)

jz(r, z, t) =
n
e

Γ′(t, z)j(r), j0(r, z, t) =
n
e

Γ̇(t, z)j(r), (308)

the EOM for the current-carrying string reduce to Equations (259) and (260), as in the
Nielsen-Olesen case, plus a new EOM in a(r),

d2a
dr2 +

1
r

da
dr

+
2 f 2

r2
v
(1− a) + j = 0. (309)

It may be shown that a small distribution of ‘external’ charge, that is, charge not
generated specifically by the configuration of the Abelian-Higgs fields, located near the
centre of the string,

j(r) =
{

k, 0 ≤ r ≤ δ
0, r > δ.

(310)

where k < 0 is a constant and δ� rs ≤ rv, is sufficient to prevent divergence of the electric
and magnetic field densities (i.e., the divergence of a(r)) as r → 0 [51]. Alternatively, a
phenomenologically equivalent model may be obtained by taking the pure Abelian-Higgs
action, together with the ansatz Equation (286), and imposing a cut-off rmin = δ� rs ≤ rv,
assumed to be due to quantum gravity effects at small distances [85]. This allows the
pure Abelian-Higgs string to support a zero-mode, so that no additional ‘external’ charge
is required.

In the additional current model, f (r) and aθ(r) are given by Equations (263) and (264)
and the approximate solution for a(r) is [51]

a(r) '


−kr2, r . δ

1− CK0((r/rc|n|)
1+|n|), δ . r . rc|n|,

1, r & rc|n|,
(311)

where C is a constant of integration, which must be fixed via the matching condition
at r = δ, and K0 denotes the zeroth order modified Bessel function of the second kind.
(Here, again, we assume critical coupling rs|n| = rv|n| = rc|n|, for simplicity). Typically,
j(r) gives contributions to the relevant components of the energy-momentum tensor of
order ±r2

c|n|ajΓ′2. Integrating over rdr then yields ±r2
c|n|k

2δ4Γ′2. For |k| . δ−2, which is
automatically implied by Equation (311), these are subdominant to all other contributions.
In this case, J0 ' J 0 ≡ Jz ' J z since j0, jz give subdominant contributions to constants of
motion and effective pressures and shears inside the string, as well as to the total current
Jµ + J µ + jµ.

We now define the parameters ω2(z, t) and Ω2(t) via

ω−2(z, t) =
∆2 + (2π)2r2

c|n|(∂σΓ)2

∆2 , Ω−2(t) =
1

2π

∫ 2π

0
ω−2(z, t)dσ, (312)
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by analogy with (60). For the non-superconducting Nielsen-Olesen string, both the lines of
constant phase in φ and the magnetic field lines are parallel to the central axis of the string
whereas, in the superconducting case, both become twisted. In the constant current case,
the magnetic field lines form static helices and the phase lines are helices that rotate around
the central axis at a constant angular velocity. Thus, nonlinear terms in Γ(z, t) induce local
fluctuations in angular velocity and, hence, local compressions and rarefractions in the
both the phase and magnetic field lines. The integer m which characterises the linear term
in σ in the function Γ, if present, may then be interpreted as the number of windings or
‘twists’ in the field lines over the length ∆. Physically, the parameter ω2(z, t) represents
the local fraction of the total length of a line of constant phase that lies parallel to the
string axis. It is therefore analogous to the parameter, defined for wound strings in higher
dimensions [51,53,64,86,87], which gives the local fraction of the total string length in the
non-compact directions. The parameter Ω2(t) represents the spatially-averaged (and, in
principle, still time-dependent) value of ω2(z, t).

In order to make the analogy with the wound string case more explicit, it is useful to
define the physical observables Uµ

ν as integrals (over the space-like world-sheet parameter
dσ) of components of an effective energy-momentum tensor for the string, T µ

ν
√−g. This

must therefore be defined in terms of the fundamental energy-momentum tensor for the
fields Tµ

ν
√−g and the relevant Killing vectors, so that

Uµ
ν =

∫
T µ

ν

√
−gdσ =

∫
k(ν)αTµα

√
−gdrdθdz, (313)

where k(ν)α denotes a set of vectors labelled by the index ν, not a two-index tensor. We then
have, for example, E|n| ≡ U0

0 =
∫
T 0

0dσ =
∫

k(0)αT0α√−gdrdθdz, etc. In this model, the
relevant Killing vectors are

k(0)α = [1, 0, 0, 0] = [η00, 0, 0, 0] = η(0)α,

k(θ)α = [0, 0,−r2, 0] = [0, 0, ηθθ , 0] = η(θ)α,

k(z)α = [0, 0, 0,−1] = [0, 0, 0, ηzz] = η(z)α, (314)

which may be written in a compact form as

k(ν)α = η(ν)α, (315)

where ηµν is the Minkowski metric, here expressed in the coordinates {t, r, θ, z}.
In terms of ω2(z, t), the nonzero components of the string energy-momentum tensor

may be written in a compact form as:

T 0
0
√
−g = η2|n|∆ω−2, T z

0
√
−g = ∓η2|n|∆

(
1−ω2

ω2

)
, (316a)

T 0
z
√
−g = ±η2|n|∆

(
1−ω2

ω2

)
, T z

z
√
−g = η2|n|∆

(
2ω2 − 1

ω2

)
, (316b)

T 0
θ

√
−g = ±η2|n|∆rc|n|

√
1−ω2

ω
, T z

θ

√
−g = ∓η2|n|∆rc|n|

√
1−ω2

ω
. (316c)

Clearly, these expressions should be compared with Equations (61a)–(61c) in the wound-
string case. Strictly, they represent the order of magnitude values of the components of the
energy-momentum tensor but the approximate equalities simply reflect the fact that we
have used the approximate solutions, Equations (263), (264) and (311), when performing the
integrals over dr, together with the condition |k| . δ−2. The expressions may be made exact
by determining the appropriate numerical solutions for scalar and vector EOM functions,
f (r), aθ(r) and a(r), but this does not affect the macroscopic dynamics of the string since
each component T I

J
√−g is scaled by the same multiplicative factor of order unity.



Symmetry 2022, 14, 2166 47 of 67

Interestingly, the EOM (300) is precisely the condition required to ensure that the
Lagrangian L is independent of Γ̇ and Γ′. In fact, imposing (300) ensures that L reduces
exactly to the Lagrangian of the Nielsen-Olesen string, at the level of the energy-momentum
tensor. This is analogous to the wound string case considered in Section 2, where the EOM
governing the motion of the windings was found to be precisely the condition required to
ensure that the string Lagrangian is independent of the higher-dimensional embedding
coordinate.

The conservation equation for the fundamental fields

∇µTµ
ν

√
−g =

∂

∂xµ

(
Tµ

ν

√
−g
)
− 1

2
∂gαβ(x)

∂xν
Tαβ
√
−g = 0, (317)

implies the conservation law for the string

∇µT µ
ν

√
−g =

∂

∂Xµ

(
T µ

ν

√
−g
)
− 1

2
∂gαβ(X)

∂Xν
T αβ

√
−g = 0, (318)

where Tµ
ν
√−g and T µ

ν
√−g are related via Equation (313) and the xν denote the space-

time background coordinates whereas the Xν denote embedding coordinates. For long
strings, this gives

∂0(T 0
0
√
−g) + ∂z(T z

0
√
−g) = 0, (319a)

∂0(T 0
z
√
−g) + ∂z(T z

z
√
−g) = 0, (319b)

∂0(T 0
θ

√
−g) + ∂z(T z

θ

√
−g) = 0. (319c)

each of which, it may be verified directly, is equivalent to Equation (300). (see Equa-
tions (319a)–(319c), for comparison, in the wound-string case). Equation (319c) explicitly
ensures the conservation of electric charge, since

J0√−g =
e

(2π)2∆r2
c|n|η

2
T 0

θ

√
−g = −Jz√−g =

e
(2π)2∆r2

c|n|η
2
T z

θ

√
−g. (320)

Finally, for convenience, we split Γ(σ, t) into linear and nonlinear parts

Γ(σ, t) = mσ + ωzt + ΓNL(mσ + ωzt) (321)

and introduce the parameter α2, which quantifies the nonlinearity of the windings in the
field lines, via

α−2 =
1

2πm

∫ 2π

0
(∂σΓ)2dσ =

1
2πm

∫ 2π

0

(
1 +

∂σΓNL
m

)2
dσ, (322)

by analogy with (88). The number of complete windings over the length ∆ is given by

nz =
1

2π

∫ 2π

0
∂σΓdσ, (323)

so that the nonlinear terms in Γ make no contribution and we see that

nz = m, (324)

as in the wound-string case. However, here, nz refers to the number of complete twists
in the lines on constant phase, over the interval z ∈ [0, ∆] at θ = const., as opposed to
the number of windings in the compact internal space. The effective local and spatially
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averaged values of the model parameters, (Qeff)2(σ, t) and 〈Q2〉(t), are related as in the
wound-string case, by Equation (107), and it is possible to show that

〈λ2
z〉 = α2λ2

z , 〈n2
z〉 = n2

z/α2, (325)

〈ω2
z〉 = 〈k2

z〉, 〈k2
z〉 =

(2π)2

〈λ2
z〉

. (326)

The constants of motion and integrated pressures and shears inside the string may then be
written in a compact form as:

E|n| = 2πη2|n|∆
(

1 +
(2π)2R2

〈λ2
z〉

)
= 2πη2|n|∆Ω−2, (327)

Pz = ±2πη2|n|〈nz〉 ×
(2π)2r2

c|n|
〈λz〉

= ±2πη2|n|∆
(

1−Ω2

Ω2

)
, (328)

Λθ = ±(2π)2η2|n|rc|n|nz = ±2πη2|n|∆
√

1−Ω2

Ω
α (329)

Π|n| = 2πη2|n|∆

√√√√1 +
(2π)2r2

c|n|
λ2

z
(2α−2 − 1)

= 2πη2|n|∆Ω−1
√

2− α2 − (1− α2)Ω2, (330)

T z = −2πη2|n|∆
(

1−
(2π)2r2

c|n|
〈λ2

z〉

)
= −2πη2|n|∆

(
2Ω2 − 1

Ω2

)
, (331)

which should be compared with (89)–(93), using (88) where necessary.
Here, E|n| denotes the total energy, Pz the linear momentum of the current, Λθ the total

angular momentum in the θ−direction, and Π|n| the total 4−momentum of the string in
the length ∆, while T z = Uz

z is the integrated pressure in the z−direction. The integrated
pressure in the θ−direction is T θ = Uθ

θ = 0, as expected for a string with a stable fixed
radius. Note that, technically, Λθ , as given in (91), is defined as the geometric mean
Λθ = ±

√
−U0

θU0θ , for convenience. However, all three quantities Λθ , U0
θ and U0θ are

conserved, differing only by factors of rc|n|.
Analogous expressions also hold for the energy and momentum densities and local

pressures and shears. These may be obtained by replacing Ω2(t) with ω2(z, t) or by
replacing the quantities 〈Q2〉 with (Qeff)2 and setting α2 = 1 in Equations (89)–(93). In the
simple linear case, corresponding to constant current, we have 〈Q2〉 = (Qeff)2 = Q2. In
particular, we note the existence of a critical tensionless solution for

ω2(t, z) = Ω2(t) = 1/2, ∀z, t (332)

or, equivalently

λz =
√
〈λ2

z〉 = 2πrc|n|, (333)
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whereas zero net tension requires only the weaker condition√
〈λ2

z〉 = 2πrc|n| ↔ Ω2(t) = 1/2, ∀t. (334)

The parallels with the wound-string case are obvious. For ω2(t, z) > 1/2 the local ‘tension’
of the string becomes a repulsive pressure. However, though such a solution exists in
the classical model, quantum mechanical considerations suggest it can never be realised
physically, since superconducting strings with currents exceeding the threshold value

Jmax '
e

2πrc|n|,
, (335)

where e is the coupling (i.e., charge) and rc|n| is the string radius, become unstable and
decay [2]. In our formulation, this threshold is equivalent to a minimum wavelength for
the phase- and magnetic field-line ‘twists’,

λmin
z = 2πrc|n|, (336)

which is precisely the wavelength required to satisfy the tensionless condition (332).
The fundamental equations of motion and the expressions for the physical properties

of the (long) current-carrying Abelian-Higgs string are completely analogous to those
obtained for wound F-strings in Section 2, under the identifications

Γ(z, t)↔ ϕ(z, t), rc|n| ↔ R, (337)

where ϕ(z, t) represents the angular embedding coordinate in the higher-dimensional
space and R is compactification radius (and, where necessary, the identifications ∆↔ a∆,
λz ↔ aλz etc, where a denotes the ‘warp factor’ of the wound-string background geometry).
In some sense, this is unsurprising, since the motion of higher-dimensional windings is for-
mally equivalent to an effective world-sheet current in (3+1) dimensions under dimensional
reduction [46–48], as stated previously. Nonetheless, it is common in the literature to con-
struct effective actions for either current-carrying defect
strings [49,69,88,89] or dimensionally reduced strings [48] in order to determine (and
solve) their approximate equations of motion. The approach outlined here demonstrates an
exact equivalence between the two (albeit in a specific case, that of long straight strings)
without the need for an effective action. In the following sections, we extend this result
for circular, then arbitrary planar loop configurations, though a complete generalization
to arbitrary configurations in (3+1) dimensions is left to future work. A similar approach
may, in principle, be extended to any other species of defect string in which the flow of
current is associated with ‘twists’ in an order parameter, for example chiral strings or vorton
models [50,51,53,62,63,90–96].

5.2. Circular Defect-String Loops: Finsler Geometry

To treat circular superconducting loops, we again consider the line-element (285) but,
instead of imposing the condition (292), we instead allow P(t) and Q(t) to be genuine
functions of time.

5.2.1. Circular Defect-String Loops without Currents

As in the case of long strings, it is in many ways simpler to obtain the zero-current
solution as a particular limit of the more general case, in which a nonzero superconducting
current exists. This avoids the needless repetition of similar calculations. We therefore refer
the reader to the following subsection, in which the EOM for the non-superconducting
circular string loop is recovered by substituting Γ(σ, t) = 0 (jµ = 0) into the more general
formulae that are valid for Γ(σ, t) 6= 0 (jµ 6= 0).
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5.2.2. Circular Defect-String Loops with Currents

We may consider a circular loop by interpreting σ ∈ [0, 2π) as an angular coordinate
and Q(t) as a (time-dependent) radial factor in (285), so that the background metric contains
a genuinely time-dependent g00 component. The real and imaginary parts of the scalar
EOM then become

d2 f
dr2 +

1
r

d f
dr

+
n2 f
r2 (1− aθ)

2 + n2 f (1− a)2
[

1
Q2 (∂σΓ)2 − 1

P2 Γ̇2
]
+

1
2r2

s
f ( f 2 − 1) = 0, (338)

in f (1− a)
[

1
Q2 ∂2

σΓ +
1

P2 Γ̈ +
1

PQ
d
dt

(
Q
P

)
Γ̇
]
= 0. (339)

Adopting the conditions in Equation (307), the r− and σ−components of the vector
EOM are:

n
e

da
dr

[
1

Q2 ∂2
σΓ +

1
P2 Γ̈ +

1
PQ

d
dt

(
Q
P

)
Γ̇
]
= 0, (340)

d2a
dr2 +

1
r

da
dr

+
2 f 2

r2
v
(1− a) +

e
n
(∂σΓ)−1 jσ = 0. (341)

The θ−component is again as in the Nielsen-Olesen case and the t−component is identical
to Equation (299). We then define

jσ(r, σ, t) =
n
e

∂σΓ(t, σ)j(r), j0(r, σ, t) =
n
e

Γ̇(t, σ)j(r), (342)

and impose the condition

Γ̇2 =
P2

Q2 (∂σΓ)2, Γ̇ = ± P
Q

∂σΓ, (343)

which automatically implies

∂σΓ2 +
Q2

P2 Γ̈ +
Q
P

d
dt

(
Q
P

)
Γ̇ = 0. (344)

This may be shown explicitly by differentiating Equation (343) with respect to both
σ and t, then eliminating ∂σΓ̇. Equations (343) and (344) represent generalisations of
Equations (300) and (301) and, as we will soon show, can be cast in ana analogous form to
(149) for an appropriate choice of P(t) and Q(t).

We again note that (343) is precisely the condition required to ensure that the La-
grangianL reduces to that of the Nielsen-Olesen string at the level of the energy-momentum
tensor, being independent of Γ̇, ∂σΓ and P2, Q2. Thus, subject to Equation (343), the remain-
ing EOM in the radial functions f (r), aθ(r) and a(r) reduce to those obtained in Section 3.1.
Adopting the same ansatz for j(r), Equation (310), the solutions for all three functions, plus
j(r) itself, are those obtained previously.

The parameters ω2(σ, t) and Ω2(t) are now defined as

ω−2(σ, t) =
Q2 + r2

c|n|(∂σΓ)2

Q2 , Ω−2(t) =
1

2π

∫ 2π

0
ω−2(σ, t)dσ, (345)

and the physical properties and effective energy-momentum tensor for the string may be
defined using only a slight modification of Equation (313):

Uµ
ν =

∫
T µ

ν

√
−gdσ =

∫
κ(ν)αTµα

√
−gdrdθdσ. (346)
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Here we have replaced the integral over dz with an integral over dσ and the set of vec-
tors κ(ν)α are defined by analogy with Equations (314) and (315), but with an important
difference, related to the gσσ component of the new metric. Thus, we set

κ(0)α = [1, 0, 0, 0] = [η00, 0, 0, 0] = η(0)α,

κ(θ)α = [0, 0,−r2, 0] = [0, 0, ηθθ , 0] = η(θ)α,

κ(σ)α = [0, 0, 0,−Q2] = [0, 0, 0, gσσ] = g(σ)α, (347)

or, equivalently

κ(ν)α = η(ν)α + δ(σ)(ν)(g(σ)α − η(σ)α). (348)

We note that, for Q2(t) = 1, Equations (347) and (348) reduce to Equations (314) and (315),
respectively. Though the definition of κ(σ)α, especially, in Equations (347) and (348) may
appear arbitrary, we will show that it is in fact necessary, in order to yield a self-consistent
set of conservation equations.

However, as we shall see, the consistency of the Euler–Lagrange equations and the
conservation of the energy-momentum tensor also require us to impose a condition relating
the metric component g00 = P2(t) to the ‘Q-coordinate’ velocity, namely P2 = 1− Q̇2. Im-
posing this condition, and interpreting Q(t) as a genuine space-time coordinate, the metric
becomes Finsler and, strictly speaking, we cannot call the set κ(ν)α ‘Killing vectors’, since
the original concept of a Killing vector, defined by Killing’s Equation (see, for example [97]),
applies only to Riemannian and pseudo-Riemannian geometries. However, the concept of
a Killing-like vector field, which characterizes an isometry, has been extended to Finsler
spaces in [98,99].

Using the definitions in Equations (347) and (348), the components of T µ
ν
√−g that

are analogous to those in Equations (316a)–(316c) are

T 0
0
√
−g = 2πη2|n|Q

P
ω−2, T σ

0
√
−g = ±2πη2|n|

(
1−ω2

ω2

)
, (349a)

T 0
σ

√
−g = ±2πη2|n|Q2

(
1−ω2

ω2

)
, T σ

σ

√
−g = 2πη2|n|PQ

(
2ω2 − 1

ω2

)
, (349b)

T 0
θ

√
−g = ±2πη2|n|Qrc|n|

√
1−ω2

ω
, T σ

θ

√
−g = ∓2πη2|n|Prc|n|

√
1−ω2

ω
, (349c)

and the relevant conservation equations are

∂0(T 0
0
√
−g) + ∂σ(T σ

0
√
−g) = 0, (350a)

∂0(T 0
σ

√
−g) + ∂σ(T σ

σ

√
−g) = 0, (350b)

∂0(T 0
θ

√
−g) + ∂σ(T σ

θ

√
−g) = 0. (350c)

Substituting from Equations (349a)–(349c) into Equations (350a)–(350c), it may be verified
that Equations (350b) and (350c) are each equivalent to

Q
Q̇

ω̇

ω
= 1−ω2, (351)

and that Equation (350a) gives

P2
(

1−ω2 − 2
Q
Q̇

ω̇

ω

)
+ PṖ

Q
Q̇

= 0. (352)
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In fact, Equation (351) follows directly from the definition of ω2 under the assumption that
ω2 = ω2(t) or, equivalently, ∂σω = 0. For circular loops, this is required by symmetry and
Γ(σ, t) contains no nonlinear terms, so that

Γ(σ, t) = nσσ + ωσt, (nσ ∈ Z) (353)

Equations (351) and (352) together imply

P(2ω2 − 1) + PṖ
Q
Q̇

= 0. (354)

We now note that this is equivalent to the EOM for a circular wound string loops
obtained in Section 2 (see also [51,86]), if we impose the conditions

P2(t) = 1− Q̇2(t), P(t) = ±
√

1− Q̇2(t), (355)

which, together with Equation (351), implies

Q
Q̇

Ṗ
P
=

QQ̈
P2 = 2ω2 − 1. (356)

The two unique EOM that satisfy both the fundamental Abelian-Higgs EOM and the
conservation Equations (350a)–(364), and which are sufficient to determine the two free
functions Q(t) and Γ(σ, t), may then be written as

(1− Q̇2)(2ω2 − 1) + QQ̈ = 0, (357a)

Γ̇2 =
(1− Q̇2)

Q2 (∂σΓ)2. (357b)

Equations (357a) and (357b) are, clearly, formally analogous the two EOM that determine
the dynamics of the circular wound-string loop, i.e., Equation (149) under the identification
Q(t) ↔ ρ(t). Together with the Finsler condition (355) this implies P(t) ↔

√
1− ρ̇2 and

Equations (351), (352) and (354) are formally equivalent to Equations (163), (165) and (166),
respectively.

The normalized components of the current density are

J0√−g =
e

2π

√
1− Q̇(ti)

Q(ti)

Q√
1− Q̇

Γ̇, Jσ
√
−g =

e
2π

√
1− Q̇(ti)

Q(ti)

√
1− Q̇
Q

∂σΓ, (358)

by analogy with (161), so that using the EOM in Γ gives

J0√−g = ± e
2π

√
1− Q̇(ti)

Q(ti)
∂σΓ = −Jσ

√
−g = ∓ e

2π

√
1− Q̇(ti)

Q(ti)
Γ̇, (359)

by analogy with (162). The components of the 4-current may be expressed in terms of
T 0

θ
√−g and T σ

θ
√−g, given by Equation (349c), and it is straightforward to show that

the current conservation equation is equivalent to Equation (350c). As for long strings, the
EOM in Γ(σ, t) may be written as a dispersion relation

ω2
σ = P2k2

σ, ωσ = ±Pkσ, (360)

where we have defined the (time-dependent) wavenumber and wavelength as

kσ(t) =
2π

λσ(t)
, λσ(t) =

2πQ(t)
nσ

. (361)
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However, since we have decided to interpret σ as an angular coordinate, and hence to
interpret Q(t) as a radial coordinate, we are free to redefine the metric such that

ds2 = P2(t)dt2 − dr2 − r2dθ2 −Q2(t)dσ2 → P2(t)dt2 − dx2 − dQ2(t)−Q2(t)dσ2, (362)

where x is a standard (static) Cartesian coordinate. Note that, here, Q is really a function of
the ‘internal’ world-sheet coordinate τ, but that this is identified directly with the physical
time coordinate t via the choice of the static gauge for the string embedding, t = ζτ. Hence,
both {t, r, θ, σ} and {t, x, Q, σ} are legitimate coordinate systems for the string. The former
contains the coordinates that are most useful to describe the string core, r and θ, but it is
more convenient to adopt the latter to describe the macroscopic string dynamics. Using the
conditions (355), the effective Finsler-type metric may then be written as:

ds2 = (1− Q̇2(t))dt− dx2 − dQ2(t)−Q2(t)dσ2. (363)

In the new coordinate system the components of the effective energy-momentum ten-
sor involving only t and σ are the same as before, but there also exist additional components
whose conservation equation,

∂0(T0
Q
√
−g) + ∂σ(Tσ

Q
√
−g)− 1

2
∂QgσσTσσ

√
−g = 0, (364)

must be satisfied by the macroscopic dynamics of the string. Although T σσ√−g is well
defined (albeit implicitly) by Equations (254) and (346), the additional components T0

Q
√−g

and Tσ
Q
√−g cannot be specified using these. In order to apply the same method as that

used to determine T σσ√−g, etc, we would first need to write down a new ansatz for
the field variables φ, Aµ (and jµ) in the new coordinate system, after the transformation
{t, r, θ, σ} → {t, x, Q, σ}.

Nonetheless, we do know that, whatever the correct definitions of these quantities,
the resulting conservation equation must be compatible with (354). Based on the results
derived in Section 2, we propose the set

T 0
Q
√
−g = −2πη2|n|QQ̇

P
ω−2, T σ

Q
√
−g = ±2πη2|n|Q̇

(
1−ω2

ω2

)
,

T σσ
√
−g = −2πη2|n| P

Q

(
2ω2 − 1

ω2

)
. (365)

by analogy with Equation (159c). The conservation Equation (364) then gives

P2(2ω2 − 1) + QQ̈ + Q̇2
(

1− Q
Q̇

Ṗ
P
− 2

Q
Q̇

ω̇

ω

)
= 0. (366)

Applying the ‘Finsler conditions’ (355)/(363), Equation (366) reduces to (357a). Our defi-
nitions of T0

Q
√−g and Tσ

Q
√−g are therefore consistent with both the Euler–Lagrange

equations of the Abelian-Higgs model and the conservation equations for the energy-
momentum tensor corresponding to the previous set of coordinates {t, r, θ, σ}, in which the
microscopic field ansatz was defined.

It is straightforward to verify that the general solution to Equation (357b) is of the form

Γ(σ, t) = Γ

(
nσσ± nσ

∫ √
1− Q̇2

Q
dt

)
, (367)

whereas, at least for Q̇(ti) = 0, the solution of Equation (357a) takes the simple form

Q(t) = Q(ti)

√
1−

(
1− 2ω2(ti)

ω4(ti)

)
sin2

(
ω2(ti)

Q(ti)
(t− ti)

)
. (368)
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These solutions have been studied in detail in [51,64,86] and Equations (367) and (368)
should be compared with Equations (154), (155) and (192), respectively.

After applying the Finsler conditions, both the EOM (357a) and (357b) and the expres-
sions for the components of the energy momentum tensor (350a)–(364) are equivalent to
those obtained in Section 2, for circular wound string loops with time-dependent radius
ρ(t), under the identifications

Γ(σ, t)↔ ϕ(σ, t), Q(t)↔ ρ(t), rc|n| ↔ R, (369)

or, strictly, Q(t) = aρ(t) and P(t) = a
√

1− ρ̇2(t) if a < 1 in the wound string model.
This, in turn, justifies our ‘guess’ for the T0

Q
√−g and Tσ

Q
√−g components of the

effective string energy-momentum tensor. The definitions proposed in Equation (365),
together with the conditions (355), ensure we obtain a self-consistent set of Euler–Lagrange
and conservation equations for the superconducting defect string, which turn out to be
formally equivalent to the EOM obtained in the wound-string case, despite the fact that they
are derived from radically different actions, i.e., the fundamental action for the Abelian-
Higgs fields (245) and the Nambu-Goto action for the F-string (2).

We note that this result was by no means certain. The formal correspondence in [46]
demonstrates that the motion of windings in the compact extra dimensions can be inter-
preted as a charge density on the effective (3+1)-dimensional world sheet of the string. It
does not show that the resulting EOM will be identical to those obtained for any particular
defect string model. In principle, any differences in the macroscopic evolution equations
could give rise to specific higher-dimensional signatures in the wound-string case. This
could have occurred, for example, if it were not possible to reconcile Equation (364) with
Equations (350a)–(350c) to form a self-consistent set.

Using the procedure above, we obtain precisely the same EOM as in the wound-string
case, but derived from the fundamental Euler–Lagrange and conservation equations for
the Abelian-Higgs fields. In particular, our results suggest that the EOM coupling the
evolution of the windings to the (3+1)-dimensional dynamics of the F-string are precisely
equivalent to the EOM coupling the internal field evolution to the macroscopic dynamics
of the superconducting U(1) string. This makes sense if we consider the configuration of
the F-string in the internal space as determining its ‘internal’ structure from an effective
(3+1)-dimensional perspective.

Thus, together with f (r), aθ(r), a(r) and j(r), the functions Γ(σ, t) and Q(t) = ρ(t)
determine both the microscopic string structure and its macroscopic evolution. It fol-
lows that the expressions for the constants of motion also take the same form as those
given in Section 2. We may study the behavior of f (r), aθ(r), a(r), j(r) and Γ(σ, t)
in the coordinate system covering the internal structure of the string core, {t, r, θ, σ},
whereas Q(t) determines the macroscopic motion in the {t, x, Q, σ} coordinate system.
Equations (357a) and (357b) therefore describe the interplay between the large scale dy-
namics of the string, as a composite structure, and the microscopic configuration of its
constituent fields. In practice, we can reconstruct the former from the latter. Since the EOM
in Q(t) depends only on the constants ∂σΓ = nσ and rc|n|, it may be solved independently.
We then substitute the solution into the second EOM to determine Γ(σ, t) and, together
with the solutions (either approximate or numerical) for f (r), aθ(r), a(r) and j(r), the
microscopic field evolution is precisely determined.

It is intriguing, and suggestive of a more fundamental link, that the same set of
equations describing current-carrying string loops can be obtained from such different
fundamental theories (without the need for approximations or effective actions) when one
theory, first defined in Minkowski space, then has a ‘Finsler condition’ imposed upon it
at the level of the EOM. As we shall see in the next Section, the EOM governing arbitrary
planar loops, in the wound string case, may also be obtained from the fundamental Abelian-
Higgs equations. In this model, one first defines these in Minkowski space-time, before
imposing a ‘generalised Finsler condition’.



Symmetry 2022, 14, 2166 55 of 67

5.3. Noncircular Defect-String Loops: Generalised Finsler Geometry

To treat noncircular superconducting loops, we must consider a generalisation of
the line-element (285), in which the free functions depend also on an ‘internal’ space-like
variable, i.e., such that P(t)→ P(t, σ) and Q(t)→ Q(t, σ).

5.3.1. Noncircular Defect-String Loops without Currents

As for circular string loops, it is again simpler to obtain the zero-current solution as a
particular limit of a more general scenario, which in this case corresponds to an arbitrary
planar loop with nonzero current. We derive the EOM for this configuration in the following
subsection, and the corresponding non-superconducting solution is again recovered by
substituting Γ(σ, t) = 0 (jµ = 0).

5.3.2. Noncircular Defect-String Loops with Currents

Let us now consider a metric with line element of the form

ds2 = P2(σ, t)dt2 − dr2 − r2dθ2 − 2U(t, σ)dtdσ−Q2(σ, t)dσ2, (370)

giving
√−g = r

√
P2Q2 + U2. Using the same field ansatz, Equation (286), but identifying

Γ(z, t) ≡ Γ(σ, t) and substituting Aσ(r, σ, t) = (n/e)a(r)∂σΓ for Az(r, z, t) = (n/e)a(r)Γ′,
the scalar EOM again separates into real and imaginary parts

d2 f
dr2 +

1
r

d f
dr
− n2 f

r2 (1− aθ)
2

−n2 f (1− a)2

(−X)
[P2(∂σΓ)2 −Q2Γ̇2 + 2UΓ̇∂σΓ]− 1

2r2
s

f ( f 2 − 1) = 0, (371)

and

(−X)[Q2Γ̈− P2∂2
σΓ− 2U∂σΓ̇− ∂σUΓ̇− U̇∂σΓ + 2QQ̇Γ̇− 2P∂σP∂σΓ]

−1
2

∂(−X)

∂t
[Q2Γ̇−U∂σΓ]− 1

2
∂(−X)

∂σ
[−P2∂σΓ−UΓ̇] = 0, (372)

respectively, where we have denoted (−X) = P2Q2 + U2.
Next, we again adopt the conditions (307) and define in the remaining nonzero com-

ponents of jµ as in Equation (342). Under these conditions, it may be also shown that, if
Equation (372) is satisfied, the r− component of the vector EOM vanishes identically, while
the σ−, and t−components both reduce to (309) and the θ−component again reduces to
that obtained for the Nielsen-Olesen string.

For the new metric (370), we modify the definition of the effective energy-momentum
tensor for the string in Equation (346), so that

Uµ
ν =

∫
T µ

ν

√
−gdσ =

∫
κ̃(ν)αTµα

ν

√
−gdrdθdσ. (373)

The new set of vectors κ̃(ν)α are defined by analogy with Equations (347) and (348), but with
an important difference, related to the gσσ and g0σ components of the new metric. Thus,
we set

κ̃(0)α = [1, 0, 0,−U(σ, t)] = [η00, 0, 0, 0] = η(0)α,

κ̃(θ)α = [0, 0,−r2, 0] = [0, 0, ηθθ , 0] = η(θ)α,

κ̃(σ)α = [0, 0, 0, [−Q2 + (P2Q2 + U2)]/(1− P2)]

= [0, 0, 0, (gσσ + ηθθ(−g))/(1− g00)], (374)

or, equivalently

κ̃(ν)α = η(ν)α + δ(σ)(ν)δ
σ

α

[
(g(σ)σ + ηθθ(−g))/(1− g00)− η(σ)σ

]
, (375)
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where gµν refers to the metric giving the line element (370). Note that, when U(σ, t) = 0 and
Q(σ, t) = Q(t), Equations (374) and (375) reduce to Equations (347) and (348), respectively.
Again, the definition of κ̃(σ)α may appear arbitrary at first, but we will show that it is
necessary in order to obtain a consistent set of conservation equations.

If we now assume that

P2(∂σΓ)2 −Q2Γ̇2 + 2UΓ̇∂σΓ = 0, (376)

the scalar EOM (371) reduces to the usual one for the Nielsen-Olesen string, as before.
Equation (376) may be solved in the variable (Γ̇/∂σΓ), so that

Γ̇
∂σΓ

=
U ±

√
P2Q2 + U2

Q2 =
P2

−U ±
√

P2Q2 + U2
, (377)

which we note is formally analogous to (210) for appropriate choices of P, Q and U.
(These will be considered, in detail, shortly). Next, adopting the definitions given in
Equations (374) and (375), the components of T µ

ν
√−g that are analogous to those in

Equations (316a)–(316c) and (349a)–(349c) can be written as

T 0
0
√
−g = 2πη2|n| Q2√

P2Q2 + U2
ω−2,

T σ
0
√
−g = −2πη2|n|

[
U√

P2Q2 + U2
ω−2 ∓

(
1−ω2

ω2

)]
, (378a)

T 0
σ

√
−g = 2πη2|n|

[
U√

P2Q2 + U2
ω−2 ±

(
1−ω2

ω2

)](
Q2 − (P2Q2 + U2)

1− P2

)
,

T σ
σ

√
−g = 2πη2|n| P2√

P2Q2 + U2

×
[

1−
(

1−ω2

ω2

)
(U ±

√
P2Q2 + U2)2

P2Q2

](
Q2 − (P2Q2 + U2)

1− P2

)
, (378b)

T 0
θ

√
−g = ∓2πη2|n|rc|n|Q

√
1−ω2

ω
,

T σ
θ

√
−g = ±2πη2|n|rc|n|

U ±
√

P2Q2 + U2

Q

√
1−ω2

ω
, (378c)

where we have defined ω2(σ, t) as in Equation (345) but with Q2 = Q2(σ, t). The relevant
conservation equations are Equations (350a)–(350c). Once more, we note that the condition
which ensures the consistency of the field ansatz, in this case Equation (376), is precisely
the condition required to ensure that the Lagrangian reduces to that of the Nielsen-Olesen
string at the level of the energy-momentum tensor.

For noncircular loops, the normalised components of the current density may be
defined as

J 0√−g =
e

2π

U(σ, ti)±
√

P2(σ, ti)Q2(σ, ti) + U2(σ, ti)

Q2(σ, ti)

Q2√
P2Q2 + U2

Γ̇,

J σ
√
−g =

e
2π

U(σ, ti)±
√

P2(σ, ti)Q2(σ, ti) + U2(σ, ti)

Q2(σ, ti)

√
P2Q2 + U2

Q2 ∂σΓ, (379)
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by analogy with Equation (213), so that using the EOM in φ gives

J 0√−g = ± e
2π

U(σ, ti)±
√

P2(σ, ti)Q2(σ, ti) + U2(σ, ti)

Q2(σ, ti)
∂σΓ

= −J σ
√
−g = ∓ e

2π

U(σ, ti)±
√

P2(σ, ti)Q2(σ, ti) + U2(σ, ti)

Q2(σ, ti)
Γ̇. (380)

by analogy with (214). The components of the 4-current may again be expressed in terms
of T 0

θ
√−g and T σ

θ
√−g, now given by Equation (378c), and it is straightforward to show

that the current conservation equation is then equivalent to Equation (350c).
Although the full system of evolution equations, that is, the remaining Euler–Lagrange

equations of the Abelian-Higgs model, (372) and (376), and the conservation equations,
(378a)–(378c), appear incredibly complicated, we will show that careful treatment allows
us to demonstrate their consistency. Furthermore, this will allow us to write the general
solution for Γ(t, σ) in terms of Q(t, σ), and its first and second derivatives in t and σ, via
the imposition of a suitable ‘generalised Finsler condition’.

As a first step towards demonstrating the self-consistency of Equations (350a)–(350c),
using the components T µ

ν
√−g obtained in Equations (378a)–(378c), we note that each

contains terms in ω, ω̇ and ∂σω. In the case of circular loops, we had ∂σω = 0, so that the
EOM contained terms in only ω and ω̇. However, we were able to eliminate the latter via
appropriate manipulation, leaving us with a single self-consistent EOM in Q and ω, in
addition to the EOM in Γ. Even in this more general case, we still have three EOM and two
quantities (ω̇ and ∂σω) we wish to eliminate, so this poses no problem.

We begin the elimination of ω̇ and ∂σω by first writing each of the components of
T µ

ν
√−g in Equations (378a) and (378b) as the sum of two terms, one independent of the

factor (ω−2 − 1) and one directly proportional to (ω−2 − 1). Thus, we set

T 0
0
√
−g = β + β(ω−2 − 1), T σ

0
√
−g = γ + δ(ω−2 − 1), (381a)

T 0
σ

√
−g = ε + ζ(ω−2 − 1), T σ

σ

√
−g = η + θ(ω−2 − 1), (381b)

where the values of β, γ, δ, ε, ζ, η and θ are obtained by comparison of Equations (381a)
and (381b) with Equations (378a) and (378b), giving

β =
Q2√

P2Q2 + U2
, (382)

γ = δ∓ 1, δ = − U√
P2Q2 + U2

± 1. (383)

ε = −Q2 − (P2Q2 + U2)

1− P2 (δ∓ 1), ζ = −Q2 − (P2Q2 + U2)

1− P2 δ, (384)

η =
Q2 − (P2Q2 + U2)√

P2Q2 + U2
, θ = −Q2 − (P2Q2 + U2)

1− P2
δ2

β
. (385)

Equations (381a) and (381b) are formally equivalent to (215a) and (215b) and the definitions
of β, γ, δ, ε, ζ, η and θ (382) and (385) are analogous to those in Equations (216)–(219).
Substituting from Equations (381a) and (381b) into Equations (350a) and (350b), rearranging
to make ∂t(ω−2 − 1) the subject, and equating the results, gives

[β(ζ̇ + ∂σθ)− ζ(β̇ + ∂σδ)](1−ω2) + [β(ε̇ + ∂ση)− ζ(β̇ + ∂σγ)]ω2 = 0. (386)
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where we have used the fact that ζδ− βθ = 0, which may be explicitly verified by direct
substitution. This equation involves only ω and is formally equivalent to (222).

Next, we interpret the function Q(σ, t) as an effective ‘local’ radial coordinate (i.e., de-
pending on both t and σ), and make the coordinate transformation {t, r, θ, σ} → {t, x, Q, σ}.
This corresponds to the change of line element

ds2 = P2(σ, t)dt− dr2 − r2dθ2 − 2U(σ, t)dtdσ−Q2(σ, t)dσ2

→ P2(σ, t)dt− dx2 − dQ2(σ, t)− 2U(σ, t)dtdσ−Q2(σ, t)dσ2. (387)

We then impose the ‘generalised Finsler condition’, which relates the metric components
g00 = P2(σ, t), g0σ = −U(σ, t) and gσσ = −Q2(σ, t) to both the temporal and spatial
derivates of the Q−coordinate, via the identifications

P2 = 1− ρ̇2, Q2 = ρ2 + (∂σρ)2, U = ρ̇∂σρ, (388)

where ρ(σ, t) may be interpreted as the genuine local radius of the string. Together with
the conditions (388), Equation (387) implies that the metric is a generalised Finsler metric.
This may be expressed as:

ds2 =

1−
[

∂

∂t

(
Q2 − (P2Q2 + U2)

1− P2

)1/2]2
dt− dx2 − dQ2 −Q2dσ2, (389)

where the behaviour of the functions P(σ, t), Q(σ, t) and U(σ, t) must be reconstructed by
solving the EOM for ρ(σ, t). The method used from here on is precisely analogous to that
used in Section 2 and we begin by rewriting the line element (389) as:

ds2 = (1− ρ̇2)dt2 − dx2 − dρ2 − (ρ2 + (∂σρ)2)dσ2. (390)

Next, we note that substituting for (ε̇ + ∂ση), (β̇ + ∂σγ), β and ζ from
Equations (382)–(385), the terms in the second set of square brackets in Equation (386)
are proportional to the quantity

χ = (1− ρ̇2)

(
1− ∂2

σρ

ρ

)
+

(
1 +

(∂σρ)2

ρ2

)
ρρ̈ + 2

[
(∂σρ)2

ρ2 − ρ̇

ρ
∂σρ∂σ ρ̇

]
, (391)

which was defined previously in Equation (224). It may be verified that χ = 0 is the unique
EOM obtained from the conservation Equations (350a)–(350c) in the limit ω2 → 1. In other
words, this corresponds to the macroscopic evolution equation of either a Nambu-Goto or
Nielsen-Olesen string, at least in the classical theories, ignoring gravitational effects. We
then have

β(ε̇ + ∂ση)− ζ(β̇ + ∂σγ) =
[

β∂σρ− ρ2ρ̇δ
]
× ρ3

[(1− ρ̇2)ρ2 + (∂σρ)2]
3
2

χ, (392)

The first set of square brackets in Equation (386) may again be written purely in terms
of the quantities β and δ (c.f. (225)) so that the final remaining independent EOM, involving
only derivatives of ρ and powers of ω, but not ω̇ or ∂σω, may be written in a relatively
compact form as:

χ +
ρ3(β∂σρ− ρ2ρ̇δ)

[(1− ρ̇2)ρ2 + (∂σρ)2]
3
2

[
ρ2(δβ̇− βδ̇)− 2δ(ρρ̇β + ρ∂σρδ) +

ρ2δ

β
(δ∂σβ− β∂σδ)

]
×

(
1−ω2

ω2

)
= 0. (393)
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This is formally equivalent to (226). We see, therefore, that the term proportional to
(1−ω2)/ω2 quantifies the contribution of the superconducting current. Specifically, this is
expressed via the embedding function for the lines of constant phase, Γ(σ, t), in terms of
the associated parameter ω2(σ, t). This, in turn, may be thought of as a kind of ‘current
parameter’, whereby ω2 = 1 implies J0 = −Jz = 0, while ω2 → 0 gives J0 = −Jz → ∞.
(As noted in Section 2). It is straightforward to show that ω2 = 1/2 corresponds to the
tensionless case, for which ρ̇ = 0, ∂σ ρ̇ = 0 and ρ̈ = 0 for all t, by directly substituting each
of these conditions into Equation (393). Substituting the generalised Finsler conditions (388)
into Equation (376), we obtain

(1− ρ̇2)(∂σΓ)2 − (ρ2 + (∂σρ)2)2Γ̇2 + 2ρ̇∂σρΓ̇∂σΓ = 0, (394)

and it is straightforward, but tedious, to demonstrate that, under these conditions, this
is precisely equivalent to Equation (372) (see analogous results in Section 2). Thus,
Equations (393) and (394) alone are sufficient to completely specify the dynamics of the string.

We now solve for Γ(σ, t) in terms of ρ(σ, t) and its derivatives. For the sake of nota-
tional simplicity, we first rewrite Equation (393) as

−Zω2 + Y(1−ω2) = 0, (395)

where the factors Z and Y are independent of ∂σΓ or, equivalently(
Z
Y

)
=

(
1−ω2

ω2

)
, (396)

c.f. Equations (227) and (228). Using the definition of ω2(σ, t) (345), but with Q(σ, t) given
by Equation (388), Equation (396) is equivalent to

(∂σΓ)2 =
1

r2
c|n|

(ρ2 + (∂σρ)2)

(
1−ω2

ω2

)
. (397)

This expression has physical significance: as we we will see, it allows us to interpret the
EOM in Γ(t, σ) as dispersion relation governing longitudinal ‘waves’ (i.e., compressions
and rarefractions) in the helical phase lines within the string core, as in the case of long
strings and circular loops. We then have

Γ̇2 =
1

r2
c|n|

(
ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2

)2(1−ω2

ω2

)
, (398)

which allows us to reconstruct the required form of Γ(σ, t):

Γ(σ, t) =
∫

∂σΓdσ +
∫

Γ̇dt

=
1

rc|n|

∫ √
ρ2 + (∂σρ)2

√
1−ω2

ω
dσ

± 1
rc|n|

∫ (
ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2

)√
1−ω2

ω
dt. (399)

Clearly, Equations (397)–(399) are precisely analogous to (229)–(231).
For circular strings (∂σρ = 0), we recover

n2
σ =

ρ2

r2
c|n|

(
1− ρ̇2 + ρρ̈

1− ρ̇2 − ρρ̈

)
=

ρ2

r2
c|n|

(
1−ω2

ω2

)
, (400)
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which is equivalent to Equation (354), using the expression for ω2(t) from Equation (345).
This motivates the following definitions for noncircular loops:

(neff
σ )2 =

(veff
θ )2(leff

σ )2

(ve f f
σ )2(2π)2r2

c|n|

= (∂σΓ)2, (401)

where

(leff
σ )2 = (2π)2(ρ2 + (∂σρ)2), (402)

and

(veff
θ )2

(veff
σ )2

=

(
1−ω2

ω2

)
. (403)

Here neff
σ and leff

σ denote the effective local winding number and string radius, respectively,
for given values of σ and t, while veff

θ and veff
σ denote the local velocities of the phase lines

in the θ−direction (perpendicular to the string core axis) and the σ−direction (parallel to
the string core axis).

Together with Equations (401)–(403), the following definitions then form a
self-consistent set:

(leff
σ )2 = (neff

σ )2(λeff
σ )2, (veff

θ )2(λeff
σ )2 = (veff

σ )2(2π)2R2, (404)

(keff
σ )2 =

(2π)2

(λeff
σ )2

, (405)

(ωeff
σ )2 = (veff

σ )2(keff
σ )2 ≡ (ωeff

θ )2 =
(veff

θ )2

r2
c|n|

= Γ̇2, (406)

which are compeletely analogous to their counterparts in the wound-string model. Com-
bining Equations (403) and (404), we then have

(λeff
σ )2 = (2π)2r2

c|n|

(
1−ω2

ω2

)
. (407)

where λeff
σ (σ, t) denotes the effective local wavelength of the phase line ‘twists’. Equation (407)

reproduces the tensionless condition, (λeff
σ )2 = λσ = (2π)2r2

c|n|, when ω2(σ, t) = 1/2 for
all σ, t.

We would like to be able to verify that the expressions for (leff
σ )2, (neff

σ )2, (veff
σ )2, (veff

θ )2,
(λeff

σ )2 and (ωeff
σ )2 ≡ (ωeff

θ )2 reduce to their equivalents for both circular loops and straight
strings, in appropriate limits. However, from Equations (401)–(407), we do not have enough
information to write down explicit expressions for (ωeff

σ )2, (veff
σ )2, or (veff

θ )2. By analogy
with Section 2, the missing piece comes from identifying (ωeff

σ )2 with the integrand of the
integral over dt in Equation (399). Hence, we have that

Γ(σ, t) =
∫

neff
σ dσ +

∫
ωeff

σ dt, (408)

where

(neff
σ )2 =

1
r2

c|n|
(ρ2 + (∂σρ)2)

(
1−ω2

ω2

)
, (409)
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(ωeff
σ )2 =

1
r2

c|n|

(
(ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2)2

ρ2 + (∂σρ)2

)(
1−ω2

ω2

)
, (410)

and the sign of ωeff
σ relative to neff

σ depends on the sign of Γ̇ relative to ∂σΓ. These are
completely equivalent to their wound-string counterparts (240)–(242), under the exchange
ρ↔ aρ and rc|n| ↔ R.

It may then be shown explicitly that the expressions for (leff
σ )2, (neff

σ )2, (veff
σ )2, (veff

φ )2,
(λeff

σ )2 and (ωeff
σ )2 ≡ (ωeff

φ )2, defined in Equations (401), (402) and (404)–(406), reduce to
their equivalents, for circular loops and long strings, in the limits ∂σρ→ 0 and (2π)2ρ→ ∆,
respectively. As in previous Sections, formally we may write down exact expressions for
the constants of motion and integrated pressures and shears, but we are unable to evaluate
them explicitly without further specifying the ansatz for ρ(σ, t).

We now note that, interpreting ρ(t, σ) as the genuine radial coordinate for the loop,
the associated conservation equation takes the form

∂0(T0
ρ

√
−g) + ∂σ(Tσ

ρ

√
−g)− 1

2
∂ρgσσTσσ

√
−g = 0. (411)

This, in turn, requires

T 0
ρ

√
−g = −2πη2|n| ρ2ρ̇√

(1− ρ̇2)ρ2 + (∂σρ)2)
ω−2 ∓ 2πη2|n|∂σρ

(
1−ω2

ω2

)
, (412a)

T σ
ρ

√
−g = 2πη2|n| ∂σρ√

(1− ρ̇2)ρ2 + (∂σρ)2)

×
[

1−
(

1−ω2

ω2

)
(ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2))2

(1− ρ̇2)(ρ2 + (∂σρ)2)

]

± 2πη2|n|ρ̇
(

1−ω2

ω2

)
(ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2))2

(1− ρ̇2)(ρ2 + (∂σρ)2)
, (412b)

T σσ
√
−g = −2πη2|n| (1− ρ̇2)√

(1− ρ̇2)ρ2 + (∂σρ)2)

×
[

1−
(

1−ω2

ω2

)
(ρ̇∂σρ±

√
(1− ρ̇2)ρ2 + (∂σρ)2))2

(1− ρ̇2)(ρ2 + (∂σρ)2)

]
. (412c)

The expression for T σσ√−g follows directly from the definitions in Equations (373)–(375),
whereas it may be shown that those for T 0

ρ
√−g and T σ

ρ
√−g are necessary for consistency.

Using these definitions, Equation (411) is equivalent to (393). Yet again, all expressions
obtained in this Section are equivalent to those obtained for arbitrary planar loops of wound-
string in Section 2, under the identifications Γ(σ, t)↔ ϕ(σ, t) and rc|n| ↔ R, together with
ρ(σ, t)↔ aρ(σ, t), etc., where necessary in order to account for a warp factor of a2 < 1 in
the string theory model.

Finally we note that, though it is beyond the scope of the current work, it would be
useful to define a parameter α(t), the generalization of the constant α defined for long
straight strings, which quantifies the degree of nonlinearity in the phase/magnetic field-line
‘twists’, at a given moment in time, for noncircular loops. By analogy with our previous
results, we could then use this to determine the spatially-averaged values of the parameters
defined in Equations (401), (402) and (404)–(406), namely 〈l2

σ〉(t), 〈n2
σ〉(t), 〈v2

σ〉(t), 〈v2
φ〉(t),

〈λ2
σ〉(t) and 〈ω2

σ〉(t) ≡ 〈ω2
φ〉(t), as well as a generalized expression for Ω2(t), which is

valid for arbitrary current-carrying loop configurations. As before, based on our previous
findings, we expect the condition of zero net tension to correspond to Ω2 = 1/2, for which
a2〈λ2

σ〉 = (2π)2r2
c|n| and 〈ω2

σ〉 = 1/r2
c|n| for all t. Such a definition would allow us to write

the constants of motion and bulk properties of noncircular superconducting strings in terms
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of spatially-averaged values of the parameters which determine the microscopic ‘internal’
structure of the string core. This could be useful for describing the bulk properties of string
networks and help yield further insights into the relation between their microscopic and
macroscopic dynamics.

5.4. Summary of the Defect-String Model

We have shown that, by adopting an appropriate ansatz for the Abelian-Higgs fields,
and imposing an appropriate Finsler condition on the space-time metric such that

ds2 = dt2 − dr2 − r2dθ2 − ρ2(t)dσ2 →
ds̃2 = (1− ρ̇2(t))dt2 − dr2 − r2dθ2 − ρ2(t)dσ2, (413)

the evolution equations for a circular superconducting string loop can be derived, exactly,
from the standard Abelian-Higgs field equations. The appropriate ansatz for scalar field
describes rotating ‘twists’ in the lines of constant phase, resulting in the existence of a
second topological invariant, N =

∫
∂ϑ/∂σ|θ=const.dσ (N ∈ Z), analogous to that found in

the case of chiral strings [44,50].
The time-dependent embedding of the lines of constant phase that are situated at

the edge of the string core, r = rc|n|, is exactly analogous to the embedding of the higher-
dimensional windings of an F-string with identical macroscopic motion in the large space-
time dimensions: the only difference is the replacement R ↔ rc|n|, where R is the radius
of the compact internal space, and aρ(t)→ ρ(t), where necessary, due to the presence of
warping caused by flux-compactifications. We conclude that the similarity (dissimilarity)
of the embedding of the lines of constant phase, in the defect-string model, and the higher-
dimensional windings, in the F-string model, is the key determinant of the similarity
(dissimilarity) of the macroscopic string dynamics. Crucially, this similarity is quantitative:
when the embedding of the phase-lines is exactly equivalent to the embedding of the
windings, under the exchange of variables given above, then the macroscopic dynamics and
all observable string parameters, including the (3+1)-dimensional energy and momentum
densities, pressures, and shears, are identical. In this case, there is no observable difference,
from a (3+1)-dimensional perspective, between the species of topological defect string and
its higher-dimensional F-string counterpart.

We conjecture that a similar equivalence holds in even more complicated scenarios, for
example, when the modified Abelian-Higgs strings considered here are replaced by chiral
strings, or vortons, etc. [92–96], and when simple F-strings are replaced by general (p, q)-
strings, i.e., bound states of p F-strings and q D-strings [30–33]. For more complex defect
string species, one must consider the embedding(s) of ‘twisted lines’ in which the relevant
order parameter(s) of the model remain constant. For more complex F/D-string bounds
states, one must substitute the relevant effective string tensions and, where necessary,
consider multiple embeddings, possibly corresponding to the presence of multiple order
parameters in the defect string counterpart.

In the case of noncircular loops, we imposed an appropriate generalised Finsler condition,

ds2 = dt2 − dr2 − r2dθ2 − ρ2(t, σ)dσ2 →
ds̃2 = (1− ρ̇2(t, σ))dt2 − dr2 − r2dθ2

−ρ̇(t, σ)∂σρ(t, σ)dtdσ− (ρ2(t, σ) + (∂σρ)2(t, σ))dσ2, (414)

and used this together with the previous ansatz for the microscopic structure of the Abelian-
Higgs fields in the superconducting string. Imposing this condition, we again found that the
fundamental Abelian-Higgs field equations reduce to those for the standard Nielsen-Olsen
string, plus the EOM describing the macroscopic dynamics of an arbitrary planar wound-
string loop. Yet again, the correspondence is exact: the key determinants of equivalent
dynamics are the embeddings of the lines of constant phase (in the defect-string model) and
the higher-dimensional windings (in the F-string case). Equivalent embeddings, under the
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replacements R↔ rc|n| and aρ(t)→ ρ(t), give identical macroscopic dynamics, observable
energy and momentum densities, pressure and shears.

Though tentative, these results suggest that the method we have outlined above is
valid much more generally. If so, it may be extended to both arbitrary string configurations
and arbitrary defect and F/D-string species in future works. This would allow us to
determine, exactly, which string species are distinguishable, and which are not, via their
observable cosmological and astrophysical signatures.

6. Conclusions

We have outlined a detailed model of wound F-strings, in a physically intuitive coor-
dinate system based on cylindrical polars in the large space-time dimensions, and have
identified the key physical parameters which determine their macroscopic dynamics and
physical observables. These include the effective (3+1)-dimensional energy and momentum
densities, pressures, and shears, which may be expressed compactly in terms of the param-
eter ω2(t, σ) ∈ [0, 1]. This represents the local fraction of the string length lying parallel
to the macroscopic directions, so that ω2 = 1 represents an unwound string and the limit
ω2 → 0 represents a string contained entirely within the compact space.

Equivalently, for fixed winding radius R, the local fraction ω2(t, σ) can be expressed
in terms of an effective local winding number, neff

σ (t, σ), and wavelength, λeff
σ (t, σ), and

the equation of motion for the angular embedding coordinate in the compact internal
space takes the form of a canonical dispersion relation. This is, essentially, the dispersion
relation for waves ‘in’ the string, i.e., for compressions and rarefractions in the rotating
higher-dimensional windings which, from a (3+1)-dimensional perspective, appear as
superconducting currents. However, our treatment goes beyond the usual paradigm of
dimensional reduction and we consider the full higher-dimensional string configuration,
rather than integrating out the higher-dimensional variables to construct an approximate
effective action [49,69].

This motivates us to consider a similarly detailed ansatz for superconducting defect
strings, i.e., one that is capable of describing both the macroscopic ‘external’ evolution of the
string, as an extended object, and the evolution of the ‘internal’ variables that determine the
microscopic structure of the string core. This is equivalent to describing the macroscopic
string dynamics purely in terms of the evolution of fundamental fields, again without
the use of an approximate effective action. The major advantage of this approach is that
it allows us, in conjunction with our previous results for wound-strings, to determine
exactly when two inequivalent string species are observationally indistinguishable, from a
(3+1)-dimensional perspective.

We found two key factors that determine whether a given wound-string configuration
is distinguishable from a superconducting defect string. These are (a) the embedding of the
higher-dimensional windings (for F-strings) and (b) the embedding of the ‘twists’ in the
lines of constant phase along the string length (for defects). When the two embeddings are
equivalent under the exchange rc|n| ↔ R, where rc|n| is the radius of the defect-string core
and R is the radius of the windings in the compact space, the dispersion relation for the
superconducting current in the former exactly matches the dispersion relation that governs
the evolution of the windings in the latter. In this scenario, it is physically reasonable to
expect the macroscopic dynamics of each string species to also be identical, thus rendering
them indistinguishable to observers in (3+1) dimensions: but how can such an exact
equivalence be demonstrated? This is the question that was asked and answered in the
final section of our paper, and its solution is the main achievement of this work.

We have shown that, when equivalent embeddings for the phase-lines and higher-
dimensional windings are imposed, the same equations of motion for the macroscopic
string variables, e.g., the local effective loop radius ρ(t, σ), can be obtained in each model.
Remarkably, with the use of an appropriate ansatz, the Euler–Lagrange equations for
the fundamental Abelian-Higgs fields reduce to the EOM of the standard Nielsen-Olesen
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string plus the EOM for the macroscopic string radius, ρ(t, σ), obtained from the wound-
string model.

However, there is a catch. In order to derive the correct EOM for ρ(t, σ) from the
Abelian-Higgs field equations, we must impose an appropriate Finsler condition on the
space-time metric, for circular loops, and an appropriate generalised Finsler condition for
non-circular loops. Mathematically, this trick is equivalent to modelling a time-evolving
string, embedded in a fixed background geometry, as a fixed (comoving) string embedded
in a time-evolving background. Interestingly, in the case of circular loops, the effective
space-time background required is of Finsler type, with an effective Finsler metric of the
form g̃µν(x, ∂τx). For non-circular loops, an effective generalised Finsler metric of the form
g̃µν(x, , ∂τx, ∂σx) must be imposed.

These results demonstrate the potential importance of these novel geometric structures
in modelling complex physical systems in astrophysics and cosmology, but also hint at a
possible deeper connection between the mathematics of string theory, including higher-
dimensional embeddings [100,101], and the mathematics of Finsler and generalised Finsler
spaces [102,103]. In future work we will attempt to define, in more abstract and general
terms, the conditions under which a given higher-dimensional configuration of a string,
field, or other extended object (e.g., a D-brane), embedded in a physical pseudo-Riemannian
space, can be described, from a (3+1)-dimensional viewpoint, in terms of an effective Finsler
or generalised Finsler geometry.

Finally, because the text of this paper is rather long and involved, we present a bullet
point summary of the our main conclusions, below, for added clarity. The new and novel
results presented in this work are:

1. The demonstration that the macroscopic EOM for current-carrying strings, or, equiva-
lently, strings with higher-dimensional windings, can be obtained from a microscopic
field theory ansatz, without the the need for the standard approximations used in
constructing an effective action.

2. This provides a unified framework for studying various string-theoretic and field-
theoretic string species in which both macroscopic ‘external’ and microscopic ‘internal’
variables are treated at the same level, i.e., without integrating out the latter in order
to obtain approximate dynamical equations for the former.

3. This, in turn, permits us to identify the precise conditions under which string-theoretic
and field-theoretic string species become indistinguishable, observationally, to a
macroscopic observer.

4. For Nambu-Goto strings with higher-dimensional windings and superconducting
Abelian-Higgs strings this occurs when the helical embedding of the windings exactly
matches the embedding of the lines of constant phase in the vortex-string core. How-
ever, a similar method of comparison can be used, in principle, to compare any two
string-theoretic and field-theoretic string species.

5. Remarkably, the derivation of the macroscopic EOM for the field-theoretic string
species requires us to model these in an effective Finsler or generalised Finsler ge-
ometry, where former applies to circular string loops and the latter to non-circular
configurations.

6. This demonstrates the utility of these ‘exotic’ geometries in modelling complex phys-
ical systems in cosmology and astrophysics, but the exact mechanism behind this
correspondence, i.e., why it works, requires further investigation.

7. Nonetheless, the correspondence discovered here, in a few test cases, hints at a deeper
and as yet unexplored connection between Finsler-type geometries and string theory,
perhaps along the lines considered decades ago by the mathematician
Matsumoto [104]. Though more work is needed to confirm this, it opens up an
interesting new direction for research in both string theory and the theory of topologi-
cal defects.
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